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ABSTRACT: Cyber-Physical Machine Tools (CPMT) represent a new generation of 

machine tools that are smarter, well connected, widely accessible, more adaptive and more 

autonomous. Development of CPMT requires standardized information modelling method 

and communication protocols for machine tools. This paper proposes a CPMT Platform 

based on OPC UA and MTConnect that enables standardized, interoperable and efficient data 

communication among machine tools and various types of software applications. First, a 

development method for OPC UA-based CPMT is proposed based on a generic OPC UA 

information model for CNC machine tools. Second, to address the issue of interoperability 

between OPC UA and MTConnect, an MTConnect to OPC UA interface is developed to 

transform MTConnect information model and data to their OPC UA counterparts. An OPC 

UA-based CPMT prototype is developed and further integrated with a previously developed 

MTConnect-based CPMT to establish a CPMT Platform. Third, different applications are 

developed to demonstrate the advantages of the proposed CPMT Platform, including an OPC 

UA Client, an advanced AR-assisted wearable Human-Machine Interface and a conceptual 

framework for CPMT powered cloud manufacturing environment. Experimental results have 

proven that the proposed CPMT Platform can significantly improve the overall production 

efficiency and effectiveness in the shop floor. 

Key words: Cyber-Physical Machine Tools; Machine Tool 4.0; digital twin; OPC UA; 

MTConnect 

1. INTRODUCTION  

Machine tools play a vital role in the realm of manufacturing in that their performances 

significantly impact on production efficiency and effectiveness. In response to the 

requirements of Cyber-Physical Production Systems (CPPS) [1,2] and Smart Factory[3–6], 

there exists an urgent need to advance existing Computer Numeric Control (CNC) machine 
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tools to a higher level of connectivity, accessibility, intelligence and autonomy. In this 

context, Machine Tool 4.0 [7] was proposed as a new technological evolution of machine 

tools triggered by recent advancements of Information and Communication Technologies 

(ICT) such as Cyber-Physical Systems (CPS), Internet of Things (IoT) and cloud technology. 

In general, Machine Tool 4.0 defines a new generation of machine tools that are smarter, well 

connected, widely accessible, more adaptive and more autonomous [8]. Xu [7] proposed 

three new types of machine tools as the possible solutions of Machine Tool 4.0, namely 

Cyber-Physical Machine Tools (CPMT), vertically-integrated machine tools, and 

horizontally-integrated machine tools. 

• CPMT refers to the integration of the machine tool, machining processes, computation 

and networking, where embedded computations monitor and control the machining 

processes, with feedback loops in which machining processes can affect computations 

and vice versa. 

• Vertically-integrated machine tools are those that can support end-to-end digital 

integration throughout the engineering process encompassing design, process 

planning, manufacturing, assembly, and so forth. Model-based manufacturing such as 

STEP-NC-enabled CAD/CAM/CNC integration [9,10] is one of the key enabling 

technologies;  

• Horizontally-integrated machine tools refer to machine tools that are interconnected 

with other manufacturing facilities and resources (e.g. robots, conveyors, measurement 

devices, enterprise resource planning systems) through semantics-enabled machine-to-

machine (M2M) communications, eventually leading towards a cooperative production 

system. 

The focus of this research is on CPMT. In general, CPMT is a CPS-based machine tool 

which has the characteristics of a typical CPS, such as network connectivity, adaptability, 

predictability, intelligence, with real-time feedback loops and with humans in the loop [11]. 

With extensive real-time machining data and computations deeply integrated with machine 

tool and machining processes, CPMT provides various types of feedback loops such as 

autonomous feedback control, shop floor decision-making support and cloud-based analytics; 

all intend to improve the performance, efficiency and effectiveness of a machine tool. The 

core of a CPMT, as well as the most significant advancement of CPMT compared to 

traditional CNC machine tools, lies in its Machine Tool Digital Twin (MTDT). MTDT refers 

to the digital twin of the machine tool that is capable of: (1) representing the characteristics 



and real-time status of the machine tool, (2) monitoring and controlling the machine tool with 

built-in computation and intelligence, and (3) sending the shop-floor manufacturing data to 

different Human-Machine Interfaces (HMIs) as well as the cloud to provide efficient 

decision-making support for different users. 

Modelling of the MTDT is a challenging task. Firstly, CNC machine tools are complex 

systems comprising various types of components and peripheral devices. Different types and 

brands of machine tools may have different structures and components. In order to 

comprehensively and intuitively represent a physical machine tool in the cyber world, a 

generic information model for machine tools representing the logical structure as well as the 

real-time status of each critical component of the machine tool must be developed. Secondly, 

a large amount of different types of real-time machining data obtained from various types of 

data acquisition devices (e.g. CNC controller, RFID tags, power meters, accelerometers, 

dynamometers, acoustic emission sensors) presents a great challenge in data communication, 

management and analytics. Open, unified and cross-platform communication standards must 

be implemented to address these issues. Recently, MTConnect [12] and OPC UA [13] have 

both shown great capabilities in terms of information modelling and real-time data exchange 

for manufacturing systems. Both MTConnect and OPC UA are open and royalty free 

communication standards designed for industrial automation. MTConnect provides a concrete 

information modelling method specifically designed for CNC machine tools with some 

predefined data structures and rules, whereas OPC UA offers a more generic information 

modelling method in order to cover a broader range of industrial equipment and systems. 

In our previous work presented in [14], a systematic development method based on a 

generic system architecture for CPMT was proposed to provide the guidance on advancing 

CNC machine tools to CPMT. An MTConnect-based CPMT prototype was developed to 

demonstrate the feasibility and capability of the proposed CPMT. In this paper, we propose a 

CPMT Platform based on both OPC UA and MTConnect. Firstly, the development method 

for OPC UA-based CPMT is proposed. The system architecture and generic OPC UA-based 

information modelling method for CPMT are studied. An OPC UA-based CPMT prototype is 

developed based on a 3-axis CNC milling machine (EMCO Concept Mill 105) to validate the 

feasibility of the proposed method. Secondly, a CPMT Platform that is compatible with both 

OPC UA and MTConnect is proposed. Communication interfaces between OPC UA and 

MTConnect are developed. A prototype of the CPMT Platform is established by integrating 

the OPC UA-based CPMT prototype with the previously developed MTConnect-based 

CPMT prototype. Furthermore, an advanced wearable HMI with Augmented Reality (AR)-



assisted process monitoring and simulation functions, and a conceptual framework for CPMT 

powered cloud manufacturing environment are introduced to demonstrate the potential of the 

CPMT Platform. 

The remainder of this paper is organized as follows. Section 2 reviews the state-of-art 

work related to digital twin technologies as well as the implementation of OPC UA. Section 3 

introduces the proposed OPC UA-based CPMT, including a generic information modelling 

method and an OPC UA-based CPMT prototype. The CPMT Platform is proposed in Section 

4, and the integration of OPC UA- and MTConnect-based CPMT is demonstrated through a 

case study. Section 5 briefly introduces two applications for the CPMT Platform. Conclusions 

are given in Section 6. 

2. LITERATURE REVIEW  

Digital twin is a key component of any CPS. The core of a CPMT lies in its MTDT. 

Development of MTDT requires standardized information modelling technology and 

communication protocol. This research utilizes OPC UA as a key enabling technology to 

develop the CPMT Platform. This section reviews the state-of-the-art work on digital twin 

and OPC UA related research and identifies the research gaps in this field. A brief review of 

MTConnect-related work and the details of MTConnect-based CPMT can be found in [15]. 

2.1 Digital Twin related research 

With the rapid development of CPS, the concept of digital twin (or cyber twin) has 

attracted more and more attention. The term “digital twin” was initially brought to public by 

NASA’s Modelling, Simulation, Information Technology & Processing Roadmap in 2010 

[16]. Currently, there exist various definitions of digital twin from different perspectives such 

as lifecycle management, mission requirements, prognostics and diagnostics activities, and so 

forth [17]. A commonly used definition of digital twin was provided by Glaessgen and 

Stargel [18], i.e. ‘Digital twin is an integrated multi-physics, multi-scale, probabilistic 

simulation of a complex product and uses the best available physical models, sensor updates, 

etc., to mirror the life of its corresponding twin.’ 

Nowadays, digital twin is considered as a key enabler for Product Lifecycle Management 

(PLM), CPPS and Smart Factory in the era of Industry 4.0 [19–21]. Lee et al. [22] proposed a 

conceptual CPS architecture for a manufacturing system, where each critical component has a 

digital twin for capturing sensory data and synthesizing future steps. These digital twins are 



then aggregated as a digital twin for a particular machine, endowing the machine with self-

awareness, self-prediction and self-comparison capabilities. Tao et al. [20] proposed a new 

digital twin-driven approach to realize more efficient, smart and sustainable product design, 

manufacturing and service. Tao et al. [23] proposed a five-dimension digital twin model for 

the Prognostics and Health Management (PHM) of complex equipment. Advantages of the 

digital twin approach compared to traditional prediction methods have been validated through 

a case study of the fault cause prediction of a wind turbine. Aiming to develop digital-twins 

of virtual machine tools for cyber-physical manufacturing, Cai et al. [24] presented some 

techniques for extracting machining characteristics profiles using sensory data integration and 

machining information fusion. However, unified communication standard and information 

model were not implemented for data management. Schroeder et al. [25] presented a 

methodology to model the digital twin of a manufacturing device, making use of 

AutomationML at a high level. A digital twin of a valve was modelled to represent its 

physical components as well as some attributes. Urbina Coronado et al. [26] proposed a Shop 

Floor Digital Twin framework which represents parts, operators, capital equipment and 

consumables in the shop floor and allows decision-making support for different users. A 

Web-based Manufacturing Execution System (MES) was developed to collect and track 

materials, cutting tool usage, operator activities and work-in-process. STEP Tools Inc. [27] 

developed a digital thread solution which keeps the design, manufacturing, and inspection 

data of a product connected around a digital twin. A 3D model-based machining simulator 

which fuses STEP models of the product, MTConnect status of the machine tool and Quality 

Information Framework (QIF) metrology feedback was developed to build the digital twin of 

the product while it is being machined. 

2.2 OPC UA related research 

The introduction of OPC UA in CPPS architecture is essential in the context of Industry 

4.0. Reference Architecture Model Industry 4.0 (RAMI 4.0) has been proposed to provide 

orientations and standardization for Industry 4.0; OPC UA was the only standard being 

recommended in the communication layer [28,29]. Implementation of OPC UA for Industry 

4.0 is partly standardized as an international standard IEC 62541. Since OPC UA provides 

both communication protocol and information modelling method, it can be readily utilized to 

model the digital twins of manufacturing facilities.  

In the last few years, research on the integration of OPC UA into process monitoring and 

control has been extensively studied. Schlechtendahl et al. [30] proposed a holistic approach 



to integrating existing production systems to the Industry 4.0 environment. OPC UA was 

validated as a critical enabler for discovering existing resources, enabling data 

communication through cloud-based gateways and eventually transforming current 

production systems to CPPS. Garcia et al. [31] presented a low-cost CPPS architecture in 

which OPC UA can be used to access field data in automation systems. An OPC UA-based 

information model for a plant-floor system was also proposed. Muller et al. [32] presented an 

open source and free implementation of OPC UA. A customizable OPC UA server developed 

on an Arduino microcontroller board enabled a closed-loop temperature control of the nozzle 

of a 3D printer. Imtiaz and Jasperneite [33]  developed a Nano OPC UA server which can be 

integrated into low-memory devices and at the same time possessing all the features of a 

standard OPC UA server. The use of such Nano OPC UA servers demonstrated the 

scalability of OPC UA in low-level IoT-based devices. Luo et al. [34] proposed a three-tier 

architecture for a smart manufacturing process where OPC UA is utilized to integrate various 

industrial field networks into the top-level factory energy management system. Wu et al. [35] 

developed a fog computing-based platform for process monitoring and prognosis by 

integrating OPC UA and MTConnect with milling machines. Ayatollahi et al. [36] developed 

a semantic communication interface that allows remote control of a machine tool with a 

standard OPC UA client. Sequenced control commands can be executed by dragging methods 

or variables exposed by the OPC UA server. Pauker et al. [37] proposed a service 

orchestration method for flexible manufacturing cells based on service-oriented architecture 

(SOA) paradigm and OPC UA communication. Various services which represent the 

mechatronic functions of the equipment were defined in the address space of the OPC UA 

server, thus the flexibility of the manufacturing cells can be enhanced. OPC UA has also been 

extensively implemented as the communication protocol in power consumption monitoring 

and energy efficiency analysis systems [38–40]. Design and development of an OPC UA 

information model need to follow a model-driven approach. Pauker et al. [41] proposed a 

systematic and generic approach for developing an information model to represent the static 

and dynamic behaviour of a manufacturing system. Developing the information model for a 

complex manufacturing system requires a huge amount of programming work. Girbea et al. 

[42] proposed several algorithms that aid an efficient and automatic generation of address 

space in OPC UA servers. Owing to the generic and flexible information modelling method, 

OPC UA has also been implemented in various types of process monitoring and control 

systems in different industries such as Smart Grid [43], Oil and Gas production [44] and 

Public transportation systems [45]. 



2.3 Research gaps 

The state-of-the-art work indicates an urgent need of developing digital twins for 

manufacturing devices for the realization of CPPS and Smart Factory. Previous work on 

digital twin mainly focused on products, manufacturing systems or shop floors; few studies 

were on machine tools. OPC UA has been extensively implemented in various types of 

manufacturing devices and systems as the communication protocol. Yet, implementation of 

OPC UA in machine tools is still not common. There has not been much attention paid to a 

generic OPC UA-based information model for machine tools. Furthermore, although OPC 

UA and MTConnect are both capable of being used for developing CPMT, they are not yet 

interoperable. Given the crucial role machine tools will play in the envisioned CPPS and 

Smart Factory, current CNC machine tools need to be advanced to CPMT with the 

implementation of standardized information models and communication protocols. This 

paper attempts to bridge these research gaps by developing a CPMT Platform. A generic 

OPC UA information model for machine tools is proposed to develop an OPC UA-based 

CPMT. As a part of the CPMT Platform, an interface between OPC UA and MTConnect is 

developed.  

3. OPC UA-BASED CYBER-PHYSICAL MACHINE TOOL  

3.1 Generic system architecture of OPC UA-based CPMT  

The generic system architecture for an OPC UA-based CPMT is proposed (Figure 1). This 

architecture aims at providing a generic, systematic, extensible and customizable solution for 

developing OPC UA-based CPMT, based on the generic CPMT architecture proposed in our 

previous work [14]. This section introduces the main components and their functions in the 

proposed architecture. The detailed development principles and implementation strategies 

will be discussed and demonstrated in the case study that follows.  



 

Figure 1. Generic system architecture of OPC UA-based CPMT 

As shown in Figure 1, the physical devices include CNC machine tools, cutting tools, 

workpieces, sensors and data acquisition devices. These physical devices are responsible for 

carrying out machining tasks as well as transmitting the real-time machining data to the 

MTDT. Extracting data from CNC controllers often requires vendor-dependent tools, such as 

Application Programming Interfaces (APIs) or even hardware adapters. A recent trend has 

been observed that more and more CNC manufacturers and third-party developers are 

developing embedded OPC UA servers or OPC UA plugins for CNC controllers. For 

example, Siemens has integrated the OPC UA server in their SINUMERIK 828D and 840D 

controllers [46]. It can be predicted that OPC UA-based data acquisition from CNC 

controllers will be made easier in the near future.  

In order to comprehensively represent the machining processes in a MTDT, external 

sensors are still needed to enable the provision of a more complete set of data for MTDT. 

Firstly, static properties of the machine tool and its critical components (size of the 

worktable, geometry of the cutting tools, etc.) need to be obtained from the shop floor. RFID 

tags and readers can be used to transmit these data to the MTDT. Secondly, some critical 

real-time machining data (cutting forces, vibrations, acoustic emissions, motor power, etc.) 

need be collected using various types of sensors and data acquisition devices based on 



specific needs of the users. These data represent the actual machining processes, hence 

providing the foundation of advanced data analytics in the MTDT. 

With various types of data acquisition devices implemented in the shop floor, different 

networking techniques (Ethernet, WiFi, Profinet, Bluetooth, etc.) need to be implemented to 

transmit the data to the MTDT. MTDT is the core of the proposed CPMT consisting of three 

main modules: 1) data pre-processing, 2) OPC UA Server and 3) local OPC UA Client. 

1) Data pre-processing: to reduce the amount of real-time data transferred to the OPC 

UA Server, the data obtained from various sensors need to be cleansed and pre-

processed (e.g. using edge/fog computing methods) so that only useful data and 

features of the sensor signals are delivered to the OPC UA Server for further analysis. 

2) OPC UA Server: the OPC UA information model that represents the logical structure 

of the machine tool is integrated in the OPC UA Server. Data obtained from the 

physical world are correlated to the nodes in the address space and grouped to their 

corresponding components in the information model. When other OPC UA Clients 

require data, the OPC UA Server encodes the required data into standardized messages 

(OPC UA Binary or XML defined by OPC UA standard) and sends them to the Clients 

while maintaining and securing the connections. 

3) Local OPC UA Clients: these are customizable OPC UA Clients embedded in the 

MTDT. To achieve better real-time performance, these Clients are connected to the 

Server in the local (shop floor) network. They request data from the Server, analyse 

and process them with customized algorithms and provide decision-making supports 

for processes such as monitoring, machining simulation and PHM. 

The proposed OPC UA-based CPMT enables three types of feedback control from the 

MTDT to the physical machine tool as indicated in Figure 1. In the autonomous feedback 

control, control commands are directly sent to the CNC controller from the MTDT. This is 

achieved by implementing real-time process optimization algorithms in local OPC UA 

Clients. These clients interface with the CNC controller through specific APIs or hardware 

adapters depending on the type of the controller. In the shop floor decision-making supports, 

local OPC UA Clients which provide decision-making support functions (e.g. visualization, 

monitoring, simulation, PHM) require the related real-time data from the OPC UA Server and 

provide corresponding functions to machine operators, maintenance technicians and shop 

floor managers to help them make efficient decisions during machining processes. Various 

types of HMIs such as laptops, smart phones and wearable devices can be utilized as OPC 



UA Clients since OPC UA is platform-independent. In the cloud-based decision-making 

supports, various OPC UA Clients developed by third-party service providers can be 

provided as services in the cloud. These Clients can discover and be connected to the OPC 

UA Server in the MTDT in order to access the field-level manufacturing data through the 

Internet. Various value-added services such as remote monitoring, historical data analytics 

and production planning can be integrated into the Clients and provisioned to different users 

(product designers, process planners, production managers, etc.) through the Internet.  

3.2 Generic OPC UA information model for CPMT  

The information modelling method provided by OPC UA is generic and flexible. In 

general, OPC UA information model is represented using four main components, i.e. Objects, 

Variables, Methods and References. Objects are instances of an ObjectType which is 

equivalent to a Class in the Object-Oriented Programming term. ObjectType is used to define 

the base structure of an information model. The instance of an ObjectType is an Object which 

handles the data of the system that it is representing. Objects can contain variables and 

methods as their child components, mainly for characterizing and manipulating the data. 

References are used to define the relations between all these components. To build an OPC 

UA information model of a device, designers need to define all these components based on 

their understanding of the structure as well as the available data of the device. As a result, the 

design of an OPC UA information model, even though for a same device, can vary from one 

to another. In our proposed CPMT, the information model is one of the most critical 

components since it represents the structure and the available data of the machine tool. 

Although there exist various types of CNC machine tools, they usually follow the same 

logical structure and contain the same types of data. Therefore, a generic OPC UA 

information model that is particularly designed for CNC machine tools needs to be developed 

to provide the guidance for information model designers. 

Recently, a Companion Specification – OPC UA Information Model for CNC Systems 

[47] was published by a joint working group of the OPC Foundation and the German 

Machine Tool Builders’ Association (VDW). The specification defines an OPC UA 

information model to interface and exchange data with CNC systems. Although this 

information model contains a comprehensive set of data in CNC systems, it is not suitable for 

the OPC UA-based CPMT proposed in this research. On the one hand, this information 

model focuses only on the data within the CNC kernel of a CNC system. Some process data 

that are necessary for modelling the MTDT, such as the data from the Programmable Logic 



Controller (PLC) and external data acquisition devices of a machine tool, are not included. 

On the other hand, the structure of this information model does not represent the logical 

relations of all the components and subsystems in a CNC machine tool. Since MTConnect 

standard has already defined a hierarchically structured data model specifically for CNC 

machine tools [48], a corresponding OPC UA information model needs to be developed in 

consideration of the interoperability between OPC UA- and MTConnect-based CPMT. The 

requirements of the generic OPC UA information model for a CPMT are defined as follows:  

1) It should be a hierarchical structure, similar to the information model defined in 

MTConnect that indicates the logical relations of all the critical components and the 

available data of the machine tool;  

2) Data from different data sources should be grouped into their related components to 

represent the static properties as well as real-time status of each component;  

3) It should allow efficient mappings from MTConnect data sources to the respective 

OPC UA nodes; 

4) Modifications and extensions of this generic model should be easily achieved for 

producing a more specific information model. 

Based on these requirements, a generic OPC UA information model for CPMT is 

proposed (Figure 2). Initially, TypeDefinitions (for the complete information model) need to 

be defined. TypeDefinitions explain the type information of the objects and data variables 

that can be obtained from a particular information model. In the proposed generic information 

model, the MachineToolType of BaseObjectType is defined as a complex ObjectType 

representing a CNC machine tool. It has four Properties as static string variables representing 

the static properties of the machine tool, i.e. the name, manufacturer and manufacture date of 

the machine and the name of its controller. MachineToolType has four SubObjectTypes as 

shown in Figure 2. ControllerType contains variables for handling real-time data that can be 

extracted from the CNC controller such as power status, alarms and feed rate. AxesListType 

handles the nodes of three SubObjectTypes namely LinearAxesType, RotaryAxesTpe and 

SpindleType. LinearAxesType and RotaryAxesType consist of variables to hold actual and 

commanded positions of the axis along with the corresponding engineering unit. SpindleType 

is used to handle information about the speed, override and motor power of the spindle. 

CuttingToolType is used to handle the information regarding the cutting tools, such as the 

identification, type, material and size of the cutting tool. Two SubObjectTypes, i.e. 

ToolVibrationType and CuttingForcesType are created to handle variables representing the 



vibration generated from and cutting forces applied on the cutting tool. SystemsType handles 

the information about other subsystems of the machine tool. It has three SubObjectTypes, i.e. 

DoorType, ToolTurretType and CoolantType. 

 

Figure 2. Generic OPC UA information model for machine tools 

It is noted that this generic information model does not intend to be inclusive of all 

components and available data of a machine tool. Instead, it contains some common and 

critical components, subsystems and data of a typical CNC machine tool. A specific 

information model can be developed by modifying or extending this generic model, based on 

the actual structure and available data of the machine tool. 

3.3 OPC UA-based CPMT Prototype  

To validate the proposed system architecture and the generic OPC UA information model, 

this section introduces an OPC UA-based CPMT prototype. The system architecture, the 

specific OPC UA information model for the machine tool and the development processes of 

the OPC UA Server are illustrated. Since the OPC UA Client for this prototype is developed 

as the CPMT Platform application, it will be introduced in the next section. 



3.3.1 System architecture 

The system architecture of the OPC UA-based CPMT Prototype is described in Figure 3. 

It can be divided as three main modules, i.e. 1) machine tool and control software, 2) external 

data acquisition system, and 3) MTDT.  

1) Machine tool and control software: the machine tool used for this prototype is a 3-axis 

milling machine (EMCO Concept 105 Mill). The simplified structure of the machine 

tool is shown in Figure 3. It is equipped with a Fanuc 21 CNC controller. The machine 

tool is controlled by the iWindow control software developed in our previous work 

[49]. iWindow can be treated as open source control software which sends control 

commands to the CNC and acquires real-time data from the CNC. The real-time data 

that can be extracted from the CNC include power status, execution mode, alarms, 

axes positions, spindle speed, feed rate, program information, and so on. These data 

are continuously transferred to the OPC UA Server through memory-mapped files. 

2) External data acquisition system: in this prototype, several RFID tags are assigned to 

the machine tool and cutting tools to store their static property data. An Arduino Uno 

development board equipped with a RFID reader is used to obtain these data and 

transfer them to the OPC UA Server through serial communication. A 3-axis 

dynamometer (Kistler type 9273) is mounted on the work table to measure the cutting 

forces in X, Y and Z directions. A Piezoelectric accelerometer (PCB model 352C65) is 

used to measure the vibration of the cutting tool. Signals from the sensors are collected 

by a data acquisition card (NI PXI-1031) and pre-processed using LabVIEW. A TCP 

server is created in LabVIEW to transfer the sensor data to the OPC UA Server. 

3) MTDT: it comprises an OPC UA Server and some local OPC UA Clients. The 

information model for the EMCO Milling machine is created in the OPC UA Server. 

The Server and iWindow run on a same host machine. The Server acquires real-time 

CNC data from iWindow using memory-mapped files. It also contains a serial receiver 

and a TCP client which receive real-time data from Arduino and LabVIEW 

respectively. All these data are correlated to their corresponding nodes in the 

information model. When the Server receives requests from OPC UA Clients, it 

encodes the requested data to standardized OPC UA Binary messages and sends them 

to the Clients. The local OPC UA Clients receive real-time data from the Server and 

perform various shop floor decision-making support functions such as process 

monitoring, data analytics and visualization and high-fidelity machining simulation.  



 

Figure 3. System architecture of the OPC UA-based CPMT prototype 

3.3.2 OPC UA Server 

The OPC UA Server can be divided into two main parts. The primary part is responsible 

for creating and handling the address space where the information model is implemented, as 

well as loading the address space to the main memory. The secondary part is responsible for 

handling the underlying system. The underlying system in this context refers to the CNC 

machine tool and the external data acquisition systems to which the server is connected. Data 

access from the underlying system is realized through memory-mapped file transfer, serial 

communication and TCP/IP communication. 

The structure of the OPC UA information model developed for the EMCO Concept 105 

Mill is illustrated in Figure 4. This information model is created as an instance of a modified 

version of the generic information model proposed in Section 3.2. The object EmcoCNC 

represents the machine tool which has child objects as its components, including Controller, 

Axes and Cutting tool. Likewise, Axes has child objects as its subcomponents, including 

three linear axes and the Spindle. All these objects are instantiated from the ObjectTypes 

defined in the generic information model. The data that can be obtained from the underlying 

system are modelled as variables and correlated to their corresponding components.  



 

Figure 4. OPC UA information model for the EMCO Concept 105 Milling Machine 

To illustrate some details of this information model, the attributes of the child nodes of the 

Controller object are listed in Table 1. These nodes are variables instantiated from the 

TypeDefinitions defined in the generic information model. They represent the real-time data 

that can be extracted from the CNC controller, and hence are modelled as the child nodes of 

the Controller object. For example, the Power_Status represents the power status (on or off) 

of the machine tool. It is a Boolean type read-only variable with 1000ms minimum sampling 

interval; while the Execution_Mode is a read-write string variable with 1000ms minimum 

sampling interval, indicating the execution mode (automatic, manual or Manual Data Input) 

of the CNC controller. All the available data acquired from the underlying system are 

similarly defined in the information model. The Parent Node attribute indicates to which 

object the data are correlated. The access level determines if the data can be read or write by 

the OPC UA Clients. Due to the huge amount of real-time data and the speed limit of the 

local network, the minimum sampling interval for all variables is set to either 100ms or 

1000ms, depending on the real-time performance required by the OPC UA Clients.  

 

 

 



Table 1. Nodes and attributes of Controller object 

BrowseName Data Type Access Level 

Minimum Sampling 

Interval (ms) Parent Node 

Power_Status Boolean Read 1000 ControllerType 

Alarm String Read 100 ControllerType 

Emergency_Stop Boolean Read-Write 100 ControllerType 

Execution_Mode String Read-Write 1000 ControllerType 

Program String Read-Write 1000 ControllerType 

Program_Line Double Read 100 ControllerType 

Program_Block String Read 100 ControllerType 

Feedrate Double Read 100 ControllerType 

FR_Override Double Read-Write 100 ControllerType 

 

The Information model is an integral part of the OPC UA server and hence the hierarchical 

representation shown in Figure 4 needs to be represented in its respective source codes. In our 

case study we made use of an open source Information Model Compiler library that was 

provided as a part of the repository on Github by the OPC Foundation. The Information 

Model Compiler intakes an XML representation of the hierarchy and a comma separated 

value (CSV) file which enlists all the ObjectTypes, Objects, Variables and Methods along 

with an identifier value to every single component. The generated source code is then 

integrated as a part of the OPC UA Server. Since the OPC UA Clients developed for this 

prototype are mainly used in the local network, OPC UA Binary is used for the data encoding 

in this Server. OPC UA Binary has smaller size and allows faster encoding and decoding 

compared to XML, thus enabling more efficient data transmission between the OPC UA 

Server and local OPC UA Clients. 

The User Interface (UI) of the developed OPC UA Server is shown in Figure 5. The 

Server endpoint URL is displayed as per it is defined in the XML server configuration file. 

Once the OPC UA Client establishes a successful connection with the server, details of the 

connection will be displayed in the Sessions module. This information can be used to identify 

the current users who are accessing the server for real-time data access. Once the user creates 

a subscription for a node on the OPC UA Client, the subscription details will be reflected in 

the Subscriptions module. More details regarding the status and overall performance 

information of the Server is shown at the bottom of the UI. 



 

Figure 5. User Interface of the OPC UA Server 

4. CYBER-PHYSICAL MACHINE TOOLS PLATFORM 

The implementation of OPC UA and MTConnect in machine tools not only enables CNC 

machine tools to be advanced to CPMT, but also increases the interoperability throughout all 

machine tools in the shop floors. However, the proposed OPC UA- and MTConnect-based 

CPMT are not yet interoperable between each other, although they have similarly structured 

information models. In this section, we propose a CPMT Platform which allows MTConnect 

information models and data to be transformed to their OPC UA counterparts, hence enabling 

an interoperable data communication environment for both OPC UA- and MTConnect-based 

CPMT. 

4.1 Conceptual framework of the CPMT Platform  

The conceptual framework of the CPMT Platform is shown in Figure 6. An OPC UA 

Central Server is proposed as the server for all machine tools in the CPMT Platform. It 

receives all the data from different types of machine tools and data acquisition systems and 

communicates with the OPC UA Clients. In general, machine tools in the shop floor can be 

categorized into four types based on the communication capability of the CNC controllers. As 

shown in Figure 6, machine tool #1 directly communicates with the Central Server through 



OPC UA APIs. Machine tool #2 has embedded OPC UA Server which communicates with 

the Internal Client. The Internal Client then communicates with the Central Server. Machine 

tool #3 and #4 send data to MTConnect Agents through external and embedded MTConnect 

Adapters respectively. The MTConnect to OPC UA Interface receives data from MTConnect 

Agents and converts MTConnect information models to OPC UA information models, and 

then sends the data to the OPC UA Central Server. In this way, each machine tool in the shop 

floor has an OPC UA information model in the OPC UA Central Server. Various OPC UA 

Clients can communicate with the Central Server, require real-time data of each machine tool 

and provide various services for all machine tools in the shop floor. Thus, an interoperable 

CPMT Platform can be realized. 

 

Figure 6. Conceptual framework of the CPMT Platform 

4.2 MTConnect to OPC UA Interface  

In order to make OPC UA- and MTConnect-based CPMT interoperable, the information 

models and the real-time data need to be transformed into either of these two formats. Since 

the structure of MTConnect information model and the types of MTConnect data are 

specifically defined for CNC machine tools, it is more reasonable and efficient to develop 

parsing algorithms which can transform MTConnect information model and data into the 

corresponding nodes in the OPC UA space address. Therefore, an MTConnect to OPC UA 

Interface is developed as a critical component in the OPC UA Central Server. The proposed 

MTConnect to OPC UA Interface consists of two main algorithms, i.e. probe XML parsing 

algorithm and current XML parsing algorithm. Initially, a probe request is sent to the 

MTConnect agent from the OPC UA Central Server to acquire the MTConnect probe XML 



file which includes information of all the available components and data items in the 

MTConnect information model. Then the probe XML parsing algorithm parses the probe 

XML file and aids the designer to create the corresponding OPC UA nodes in the OPC UA 

Central Server. The specific mappings from the Structural Elements and Data Elements in 

MTConnect information model to OPC UA nodes follow the mapping rules defined in the 

MTConnect-OPC UA companion specification [50]. Thus, the OPC UA information model is 

created. Next, the current XML parsing algorithm is used to acquire real-time MTConnect 

data and send them to the related OPC UA nodes. The flowchart of the current XML parsing 

algorithm is shown in Figure 7. The OPC UA Central Server continually sends a current 

request to the MTConnect Agent according to the required minimum sampling interval. Once 

a response is acquired, the current XML file will be loaded for a thorough search to find the 

current data items. Hierarchically, a search on each level for the current data is done. If a data 

item containing current data of the machine is found, it will be stored in its corresponding 

OPC UA node in the OPC UA Central Server. 



 

Figure 7. Flowchart of the current XML parsing algorithm 

4.3 A Prototype of the CPMT Platform  

To validate the feasibility of the proposed approach, a prototype of the CPMT Platform is 

developed based on an OPC UA-based CPMT and a MTConnect-based CPMT. The 

experimental setup of the prototype is described in Figure 8. The MTConnect-based CPMT is 

developed on a Sherline 3-axis mill. It is controlled by the LinuxCNC software on a Linux 

PC, through the parallel port. An MTConnect Adapter is developed on the Linux PC to 

retrieve CNC data from LinuxCNC software through the open source APIs. External sensors 

and data acquisition systems are implemented. The NI PXI 1031 collects all the sensor data 

and pre-process them using LabVIEW. The NI PXI 1031 is connected to the Linux PC 



through Ethernet. A TCP Server is created in LabVIEW to send the sensor data to 

MTConnect Adapter on the Linux PC. All these MTConnect data from the Sherline Mill and 

external sensors are transmitted to the MTConnect Agent on the Windows PC using TCP/IP 

protocol. The OPC UA-based CPMT is the one introduced in Section 3.3. The EMCO 

Concept Mill 105 is controlled by the iWindow control software installed on the Windows 

PC, through Ethernet connection. The Windows PC is also installed with the MTConnect 

Agent and the OPC UA Central Server. A simplified flowchart is shown in Figure 9 to 

illustrate the workflow in the OPC UA Central Server. On the one hand, the MTConnect 

information model of the Sherline Mill resides in the MTConnect Agent. The MTConnect to 

OPC UA Interface parses the MTConnect XML files in the MTConnect Agent and assists 

designers to transform them into OPC UA nodes. Thus, the MTConnect information model 

and data are transformed to OPC UA information model and data in the OPC UA Central 

Server. On the other hand, the OPC UA information model of the EMCO Mill also resides in 

the OPC UA Central Server. CNC data of the EMCO Mill are extracted from the iWindow 

software and fed to the OPC UA Central Server using memory mapped files.  

 

 

Figure 8. Experimental setup for the prototype of CPMT Platform 



 

Figure 9. Simplified flowchart of the OPC UA Central Server 

An OPC UA Client is developed for this prototype to demonstrate the advantages of the 

CPMT Platform. The Client runs on a laptop which is connected to the local network. It 

connects with the OPC UA Central Server on the Windows PC, requiring the real-time data 

of both machine tools using OPC UA protocol, and providing various monitoring and 

decision-making support functions for both machine tools. The User Interface of the Client is 

shown in Figure 10. It comprises five main modules marked from 1 to 5 with each module 

responsible for carrying out respective functions. Firstly, the URL of the OPC UA Central 

Server is typed into the address bar to build the connection between the Client and the Central 

Server. Once connected, the information model hierarchy of the currently connected machine 

tools are presented in Module 1. As shown in Figure 10, EmcoCNC and SherlineCNC 

represent the two machine tools connected with the Central Server. All the available 

components and their related data items are listed in the tree structures. Users can browse the 

information models to understand the logical structure of the machine tool and what data of 

the machine tools are available to be accessed. Details of a selected node in the information 

models are displayed in Module 2, including all the properties and attributes related to that 

node. Module 3 displays all the relevant real-time data of the respective machine tool selected 

from the Machine Tool selection menu. As shown in Figure 10, when EmcoCNC is selected, 

all the real-time data of the EMCO Mill are displayed in Module 3. This gives users a 



comprehensive understanding of the real-time status of all the machine tools in the CPMT 

Platform. Once the user selects a node and decides to monitor it, the subscription details of 

the monitored node will be displayed in the Module 4. At the same time in the ‘Data 

Visualization’ tab in Module 5, a real-time plot of the parameter will be displayed. Module 5 

also provides some data visualization and analytics functions, such as multiple data 

visualization that indicates the relevance between two machining parameters and machine 

tool utilization analysis based on the execution mode of the CNC controller. The refresh rate 

of the data of each node is the minimum sampling interval defined in the node attributes. 

Although the current version of our OPC UA Client only supports some basic status 

monitoring, data visualization and analytics functions, it has validated the great advantages 

and huge potential of the proposed CPMT Platform. Since the information models and real-

time machining data of different machine tools can be efficiently managed in the CPMT 

Platform at the same time, various OPC UA-based shop floor decision-making support 

applications can be developed to improve the performance, efficiency and effectiveness of 

the machine tools. It is worth mentioning that the security of data exchange is not the focus of 

this research since the experiments are conducted in a local network. The cyber security issue 

in the proposed CPMT Platform needs to be addressed in future research. 

 

Figure 10. OPC UA Client for the CPMT Platform 



5. APPLICATIONS OF THE CPMT PLATFORM  

This section briefly introduces two applications for the proposed CPMT Platform to 

further demonstrate its advantages and potentials. The first application presents AR-assisted 

machining process monitoring and simulation functions developed on a wearable device – 

Microsoft HoloLens. This application demonstrates the advanced shop floor decision-making 

supports enabled by the CPMT Platform. The second application, on the other hand, 

introduces a conceptual framework for a CPMT powered cloud manufacturing environment 

which enables dynamic information exchange between various cloud-based services and the 

CPMT Platform. 

5.1 AR-assisted process monitoring and simulation 

Recent advancement in AR technology has shown great advantages in developing intuitive 

HMIs for manufacturing facilities. The CPMT Platform allows all the available data of the 

machine tools to be accessed in real time, thus providing a solid foundation for implementing 

AR technology. In this application, AR is implemented in our CPMT Platform to develop an 

intuitive HMI on a Microsoft HoloLens. This advanced HMI not only provides users with 

intuitive perceptions of the real-time machining processes, but also supports high-fidelity 

machining simulations based on the actual machining parameters. 

The experimental environment and the workflow of this application is described in Figure 

11. The HoloLens is connected to the host machine in the local network through WiFi. It 

acquires real-time machining data of the EMCO Mill from the CPMT Platform Application. 

The user “taps” the marker fixed on the machine tool to calibrate the positions of the virtual 

objects (virtual workpiece, cutting tool, tool path and text information) to be overlaid. The 

real-time axes positions acquired from the CPMT Platform Application are used for tracking 

the movements of the cutting tool and the workpiece. On the one hand, when the user 

wearing the HoloLens looks at the machine tool during machining processes, a 

comprehensive and intuitive understanding of the machining process can be realized since the 

real-time machine tool status, program information, cutting tool information, etc. are 

displayed in real machining environment. The virtual cutting tool and tool path can also be 

overlaid during machining, such that the visualization of the machining processes can be 

enhanced when coolant or chips obstruct the process. On the other hand, the virtual 

workpiece, virtual fixtures and virtual cutting tool can be overlaid on the worktable during a 

dry run. In this situation, all the virtual objects are driven by the actual axes positions 



obtained from the machine tool in real time. Interactions among these objects such as 

material removal and tool collision can be calculated and simulated. The user can also 

observe the simulation process from different angles and distances in the 3D environment. 

Thus, high-fidelity and intuitive machining simulation based on real machining parameters 

can be achieved. Although this application is developed for the EMCO Mill, it is obvious that 

it can be implemented on all the machine tools in the CPMT Platform, since the real-time 

data of all machine tools can be accessed from the CPMT Platform Application.  

 

Figure 11. AR-assisted process monitoring and simulation using HoloLens 

5.2 CPMT powered cloud manufacturing  

The proposed CPMT platform can also play a significant role in enabling horizontal 

integration [5] together with cloud manufacturing. Cloud manufacturing as a trend of future 

manufacturing is envisioned to provide cost-effective, flexible and scalable solutions to 

companies by sharing manufacturing resources as services with lower support and 

maintenance costs [51]. In a traditional cloud manufacturing architecture, manufacturing 

resources are abstracted as virtual entities in the cyberspace via resource virtualization 

technologies with an emphasis on extracting the capability information of connected 



manufacturing resource [52,53]. These virtual manufacturing resources in the cloud are 

encapsulated as on-demand manufacturing services that can be consumed on a pay-as-you-go 

pricing model. A significant challenge in cloud manufacturing is that virtual resource 

information is not always in sync with physical resource capability and availability 

information. Therefore, service scheduling and resource coordination in the cloud cannot be 

always guaranteed as optimal decisions due to a lack of understanding of dynamic machine 

tool status. 

With the assistance of the proposed CPMT platform, virtual manufacturing resources are 

twining with their physical counterparts and a network of CPMTs can communicate with 

each other and self-configure themselves to collaboratively undertake a manufacturing job. 

Figure 12 below depicts a conceptual framework for integrating the proposed CPMT platform 

with a cloud manufacturing environment. Real-time machine status streamed from the 

physical entity will enable a cloud manufacturing system to make context-adaptive decisions 

in the cloud. Specifically, an optimal combination of machine tools based on real-time 

machine condition will be selected to deliver high quality manufacturing services in the 

cloud. On the other direction, any status update from the cloud that occurs on a machine tool 

will also be feedback to the physical machine tool via the communication channel between 

the physical machine tool and its digital twin in the cyberspace. 



 

Figure 12. Conceptual framework for a CPMT powered cloud manufacturing environment 

6. CONCLUSIONS 

Industry 4.0 envisions the next generation of manufacturing systems as CPPS that 

comprise various smart, autonomous, cooperative and interconnected manufacturing 

facilities. Given the critical role machine tools play in any manufacturing systems, there 

exists an urgent need to advance existing CNC machine tools to a higher level of 

connectivity, accessibility, intelligence and autonomy, i.e. Machine Tool 4.0. Based on recent 

advancements in ICT such as CPS, IoT and cloud technology, CPMT is considered as a 

promising development trend for machine tools in the new era of Machine Tool 4.0. The core 

of a CPMT lies in the digital twin of the machine tool, i.e. MTDT. Modelling of the MTDT is 

a critical yet challenging task since it requires standardized information modelling method 

and communication protocols for machine tools. OPC UA and MTConnect both provide 

feasible solutions for this task.  



Our previous work has proven the feasibility of developing an MTConnect-based CPMT. 

Due to the lack of a systematic development method for OPC UA-based CPMT and the 

interoperability issue between OPC UA and MTConnect, this paper proposes a CPMT 

Platform to bridge the research gaps. The main contributions of this research are summarized 

as follows. First, a development method for OPC UA-based CPMT is proposed based on a 

generic OPC UA information model for CNC machine tools. An OPC UA-based CPMT 

prototype is developed on an EMCO 3-axis milling machine to validate the feasibility. 

Second, to address the issue of interoperability between OPC UA and MTConnect, an 

MTConnect to OPC UA interface is developed to transform MTConnect information model 

and data to their OPC UA counterparts. A CPMT Platform is established by connecting the 

OPC UA-based CPMT prototype with a previously developed MTConnect-based CPMT. 

Third, different applications are developed to demonstrate the advantages of the proposed 

CPMT Platform, including an OPC UA Client, an advanced AR-assisted wearable HMI and a 

conceptual framework for CPMT powered cloud manufacturing environment. Experimental 

results have proven that the proposed CPMT platform can significantly improve the 

interoperability and efficiency of data communication among machine tools and various 

types of software applications, and hence enhancing the overall production efficiency and 

effectiveness in the shop floor. 

Recently, OPC UA and MTConnect are attracting more and more attention in both 

industry and academia. With the rapid increase of OPC UA and MTConnect 

implementations, more and more CNC machine tools in the shop floors can be advanced to 

CPMT. The proposed CPMT Platform can thus enable an interoperable communication 

environment for the envisioned CPPS and Smart Factory. It is noted that the development of 

CPMT and CPMT platform is still at an early stage. The focus of future work in this area is 

envisioned as the implementation of Artificial Intelligence in the CPMT platform. First, 

advanced data analytics based on recent advancements of Machine Learning can be 

implemented into the proposed CPMT platform to provide more intelligent decision-making 

supports such as predictive maintenance. Second, direct feedback control loop from the 

MTDT to the CNC needs to be developed to allow autonomous in-process machining 

optimization. Furthermore, cooperation between the CPMT platform and other manufacturing 

devices such as industrial robots and logistic systems needs to be investigated to establish the 

envisioned CPPS and Smart Factory. 
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