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Summary 

 

Schizophrenia is a severe and enduring mental illness with psychopathology including 

positive symptoms, negative symptoms and cognitive impairment. It has been hypothesised 

that such symptoms represent a loss of integration within and between brain regions. This is 

known as the dysconnectivity hypothesis and integrates with other neurochemical 

hypotheses of the disorder.  

In this thesis, I sought to explore the dysconnectivity hypothesis using amplitude envelope 

correlation in MEG, firstly in two groups of individuals with schizophrenia. I then sought to 

address the continuum model of schizophrenia through exploring functional connectivity in 

two groups with high schizotypy. Next, I explored dysconnectivity in schizophrenia in more 

depth by looking separately at individuals with recent onset psychosis and those with 

established schizophrenia. I then went on to look at connectivity following ketamine 

administration thus seeking to link this model of schizophrenia with my findings in those 

with schizophrenia. Finally, I explored the GABA hypothesis of schizophrenia using MRS, 

again in two groups of individuals with schizophrenia, at different stages of illness and linked 

this with connectivity.   

Overall, this work supports the dysconnectivity hypothesis of schizophrenia, finding reduced 

connectivity in schizophrenia. Such changes are found predominantly in the later stages of 

the disorder suggesting the possibility of progressive changes in connectivity throughout its 

course. I found increased connectivity following ketamine administration in the same 

frequency band and region suggesting the drug does not model later stages of the disorder 

well (where I predominantly found hypo-connectivity). In addition, I found reduced GABA 
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in later stages of schizophrenia but not in early stages, again suggesting progressive changes 

throughout the course of the disorder.  

Finally, I also found hypo-connectivity in healthy volunteers with high schizotypy scores 

suggesting biological continuity between subclinical symptoms and diagnosable 

schizophrenia.  

Overall, these results add support to the dysconnectivity hypothesis, the GABA/glutamate 

hypothesis and the continuum hypothesis of schizophrenia. 
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Chapter 1 General Introduction 

1.1 Schizophrenia   

Schizophrenia is typically a severe and enduring mental illness with a prevalence of 0.4-0.7% 

(Saha et al. (2005). Its psychopathology includes positive symptoms such as delusions and 

hallucinations and negative symptoms such as apathy and avolition. More recently it has been 

recognised that cognitive impairment can be a prominent feature of schizophrenia with 

impairments identified in a wide range of cognitive processes, including executive function, 

working memory, attention and learning (Heinrichs and Zakzanis, 1998). Such cognitive 

impairment is poorly responsive to anti-psychotic medication and as a result can cause 

significant morbidity (Owen et al., 2016). It has been found to correlate with employment 

(Gold et al., 2002), functional outcome (Green et al., 2000) and independent living.  

Diagnosis is made using diagnostic criteria outlined in the Diagnostic and Statistical Manual 

of Mental Disorders (American Psychiatric Association, 2013) and the International 

Statistical Classification of Diseases and Related Health Problems (WHO, 1993). ICD-10 

divides the disorder into paranoid, hebephrenic, undifferentiated, catatonic and residual 

schizophrenia, reflecting the heterogeneity of the disorder. Therefore, whilst criteria are 

standardised, patients can vary significantly in their presentation.  

The disorder typically presents in adolescence and early adulthood with prodromal, 

subclinical symptoms prior to the onset of frank psychosis. However, studies of individuals 

at high risk of developing schizophrenia and longitudinal studies of children that later go on 

to develop the disorder suggest that there are impairments in multiple domains including 

neuromotor, receptive language and cognitive development even before the onset of the 

disorder (Cannon et al., 2002, Keshavan et al., 2005). 
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It has long been recognized that schizophrenia is a heterogeneous condition with its course 

varying according to nature of onset, pattern of psychotic episodes, psychopathology 

between episodes and also treatment response (Carpenter and Kirkpatrick, 1988, Tandon et 

al., 2013). For example, a review by Menezes et al. (2006) described 42% of patients having 

a “good outcome”, 35% an “intermediate outcome” and 27% a “poor outcome”. Prognosis 

is linked to response to treatment, the mainstay of which is with antipsychotic medication. 

Antipsychotics act by blocking dopamine receptors (Jones and Pilowsky, 2002), however, 

such treatments do not necessarily address the underlying aetiology of the disorder. Whilst 

most antipsychotics are effective in treating positive symptoms, they are less effective in 

treating negative and cognitive symptoms. In addition, up to 30% of patients with 

schizophrenia have residual symptoms after failing to respond to two different antipsychotics 

and are therefore classified as treatment resistant (Meltzer, 1997). It has been suggested that 

this differential response to treatment may be due to heterogeneity in aetiology.  

Whilst the disorder is heterogeneous on multiple levels, the diagnosis often comes with a 

significant burden to sufferers, with medical comorbidity being much higher than the general 

population (Smith et al., 2013). Such medical co-morbidities are under-recognised which may 

contribute to the average life expectancy for sufferers being 10-20 years less than the general 

population (Smith et al., 2013, Chesney et al., 2014).  

Recent advances in genomic technologies have led to significant improvements in our 

understanding of the genetic architecture of schizophrenia. The heritability of schizophrenia 

is around 80%, suggesting that a large proportion of susceptibility is inherited. It is now 

known that both common polymorphisms and rare variants such as Single Nucleotide 

Variants (SNVs) and Copy Number Variants (CNVs) contribute to schizophrenia 

susceptibility with varying effect sizes across a large number of genes (Rees et al., 2015). 
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Studies have also shown that a proportion of genetic risk of schizophrenia is not inherited 

but occurs de novo (Kirov et al., 2012).  

At present, there are several challenges in the field of schizophrenia, the most significant 

being our limited understanding of aetiology and pathophysiological mechanisms underlying 

schizophrenia as well as the lack of effective, tolerable treatments for the disorder.  

 

1.2 Aetiological Theories of Schizophrenia 

There are multiple aetiological theories that seek to explain the development of 

schizophrenia, including the following: 

1.2.1 Neurotransmitter hypotheses 

1.2.1.1 The Dopamine Hypothesis 

Initial aetiological theories of schizophrenia focussed upon the dopamine hypothesis which 

suggests that schizophrenia results from hyper-dopaminergia. Dopamine is a member of the 

catecholamine family with multiple projections through the brain, namely, nigrostriatal, 

mesolimbic and mesocortical pathways. Initial hypotheses suggesting hyper-dopaminergia as 

a mechanism in schizophrenia were developed after amphetamines (which increase 

dopamine release) were found to cause positive symptoms of schizophrenia. (Reviewed by 

Lieberman and Koreen (1993). In addition, it was discovered that dopamine receptor 

antagonists had antipsychotic actions that were related to their affinity for dopamine 

receptors (Seeman et al., 1976). The dopamine hypothesis was later modified to suggest that 

there is hyper-dopaminergia in subcortical regions and hypo-dopaminergia in pre-frontal 

regions (Davis et al., 1991). This resulted in the development of an antipsychotic, 

aripiprazole, which is a dopamine receptor partial agonist (Bowles and Levin, 2003). All other 
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licenced antipsychotics are dopamine receptor antagonists in addition to their actions at 

numerous other receptors (Mailman and Murthy, 2010). Whilst they are effective in treating 

positive symptoms of schizophrenia, they treat negative and cognitive symptoms poorly and 

therefore, it has been suggested that disruptions to dopamine alone do not fully explain the 

pathogenesis of schizophrenia. In addition,  around a third of patients fail to respond 

adequately to such drugs and therefore other aetiological mechanisms have been sought 

(Elkis, 2007).  

 

1.2.1.2 The GABA/Glutamate Hypothesis 

GABA is the primary inhibitory neurotransmitter in the central nervous system. It is 

synthesised by Glutamic Acid Decarboxylase (GAD67), an enzyme that converts glutamate 

to GABA. Glutamate is the primary excitatory neurotransmitter in the central nervous 

system (Rothman et al., 2003). It acts upon three ionotropic receptors; NMDA, kainate and 

AMPA receptors and eight metabotropic receptors. In particular, the ionotropic NMDA 

receptor (NMDAR) has been implicated in schizophrenia. The NMDAR is important in 

synaptic plasticity, cortical development, learning and working memory (Collingridge et al., 

2013), all of which are relevant in the psychopathology of schizophrenia.  

In normal neuronal functioning, primary glutamatergic firing onto GABAergic interneurons 

results in reduced secondary glutamatergic tone and therefore reduced dopaminergic 

neuronal firing in mesolimbic pathways. It is purported that in schizophrenia, there is 

hypofunction at NMDA receptors attached to GABAergic interneurons and that this results 

in disinhibition of secondary glutamatergic neurons (Schwartz et al., 2012, Homayoun and 

Moghaddam, 2007).  
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Glutamate was initially implicated in the pathogenesis of schizophrenia due to the 

psychotogenic effects of dissociative anaesthetics such as ketamine which act by blocking 

the NMDAR.  NMDAR antagonists block NMDA receptors on GABAergic interneurons 

resulting in excess glutamate release (Moghaddam and Krystal, 2012). This is supported by 

animal (Bustos et al., 1992, Moghaddam et al., 1997) and human (Rowland et al., 2005, Stone 

et al., 2012) studies finding increased glutamate following administration of NMDA receptor 

antagonists. It is postulated that hyperglutamatergia causes increased activation of 

dopaminergic neurones which leads to psychosis (Howes et al., 2015). NMDA receptor 

blockade has also been shown to alter D2 receptor binding and expression (du Bois et al., 

2008). In addition, excess glutamate may also result in excitotoxicity and neuronal death. This 

has been postulated as a model of schizophrenia since such drugs exacerbate symptoms in 

patients with schizophrenia (Lahti et al., 1995) and mimic positive, negative and cognitive 

symptoms of schizophrenia in healthy controls (Adler et al., 1999, Krystal et al., 2005). In 

addition, over recent years it has been noted that sufferers of autoimmune NMDAR 

encephalitis, (involving antibodies targeted at the NMDAR) often experience symptoms of 

psychosis (Deakin et al., 2014).  

GABA was first implicated in schizophrenia after multiple post-mortem studies of patients 

with the disorder showed reduced GAD67 mRNA and protein levels (Curley et al., 2011, 

Thompson et al., 2009). As discussed, GAD67 is the enzyme responsible for most cortical 

GABA production and GAD67 complete knockout mice show a 93% reduction in GABA 

and die within hours of birth (Asada et al., 1997). Other studies of mice with incomplete 

knockout of GAD67 show learning and social behaviour deficits (Zhang et al., 2014a) thus 

linking deficits in GABA synthesis with symptoms seen in schizophrenia. In other animal 

studies, density of GABAergic interneurons are reduced following the administration of 

NMDA antagonists (Braun et al., 2007, Keilhoff et al., 2004). This therefore links the 
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NMDAR hypofunction hypothesis and the GABAergic findings seen in schizophrenia. 

However, although post mortem studies clearly point towards disruption in GABA, in vivo 

studies of GABA using MRS in patients with schizophrenia are unclear with some studies 

showing a reduction in GABA, some showing an increase and some showing no change 

compared to healthy controls.  

As discussed above, it is believed that the dopamine dysregulation seen in schizophrenia may 

be downstream of NMDA receptor dysregulation. SPECT and PET studies show enhanced 

striatal dopamine release in patients with schizophrenia in response to amphetamine 

(Laruelle et al., 1999). Similar results are found in healthy participants given ketamine 

(Kegeles et al., 2000) and in animal studies (Balla et al., 2001, Balla et al., 2002). This, again, 

therefore supports the NMDAR hypofunction hypothesis and suggests that dopamine 

dysregulation can also be explained by the model.  

The involvement of GABA and glutamate pathways in the aetiology of schizophrenia is also 

supported by proteomic and genomic studies. Pathogenic CNVs in schizophrenia have been 

found to converge upon genes involved in glutamatergic and GABAergic neurotransmission 

(Pocklington et al., 2014) supporting hypotheses of the aetiology of schizophrenia 

implicating these neurotransmitter systems.  

In addition, in vivo studies using Magnetic Resonance Spectroscopy (MRS) have found 

abnormal glutamate levels in schizophrenia (Marsman et al., 2013). Since glutamate is known 

to have excitotoxic effects when present in excess (Lau and Tymianski, 2010) it has been 

postulated that in the early stages of schizophrenia hyper-glutamatergia leads to excitotoxicity 

(Plitman et al., 2014). This is supported by a review of MRS studies by Poels et al. (2014) 

who found an increase in glutamatergic levels in the medial prefrontal cortex in early stage 

drug naïve patients with schizophrenia compared to controls. A meta-analysis by Marsman 
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et al. (2013) found that glutamate reduces with age in patients with schizophrenia suggesting 

possible neurochemical differences between early and later stages of the disorder. However, 

a meta-analysis by Merritt et al. (2016) found no association between glutamate levels and 

age or symptom severity in schizophrenia. 

In summary, the NMDAR hypofunction hypothesis integrates the dopaminergic hypothesis 

of schizophrenia and also explains not only the positive symptoms of the condition but also 

the negative and cognitive symptoms. However, given that a significant proportion of 

patients with schizophrenia do not respond to antipsychotic medication (that primarily alter 

dopamine), it may be that patients with glutamate abnormalities represent distinct subtype 

of patients with schizophrenia to those with dopamine abnormalities (Egerton et al., 2012, 

Howes et al., 2015). Currently available antipsychotics (that primarily act upon dopamine) 

treat positive symptoms fairly well but do not treat negative and cognitive symptoms well. 

Such symptoms may therefore be better explained by glutamatergic perturbations   

 

1.2.2 Dysconnectivity hypothesis 

Connectivity refers to communication within and between brain regions. This can be divided 

into structural, functional and effective connectivity. Structural connectivity refers to the 

exploration of physical properties of white matter tracts within the brain and is often studied 

using an MRI technique known as diffusor tensor imaging (DTI). Functional connectivity 

refers to the correlation in neural activity over time in different brain regions and can be 

measured in vivo using multiple neuroimaging techniques such as fMRI, EEG and MEG. 

Effective connectivity refers to the directed influence of one brain region on the 

physiological activity in another brain region and can be explored using modelling techniques 

such as dynamic causal modelling (Friston, 1994).  
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It has been hypothesized that schizophrenia is a syndrome of dysconnectivity and that 

symptoms of the disorder result from abnormal communication within and between cortical 

networks (Friston and Frith, 1995, Pettersson-Yeo et al., 2011, Stephan et al., 2006, Stephan 

et al., 2009b, Friston et al., 2016). Synchronised oscillatory neural activity (as measured non-

invasively in humans using Magnetoencephalography - MEG) is considered to be required 

for such communication. This oscillatory activity, particularly in the gamma frequency band, 

is dependent upon the interaction between excitatory (glutamatergic) and inhibitory 

(GABAergic interneuron) activity (Mann and Mody, 2009).  

GABAergic interneurons can be subdivided into multiple types according to their gene 

expression (parvalbumin, somatostatin), morphology (basket cell, chandelier cell), 

electrophysiology and synaptic connectivity (Tremblay et al., 2016, Markram et al., 2004). 

The most common type is the parvalbumin expressing interneuron. Activation of fast-

spiking parvalbumin (PV) interneurons has been found to be important in the generation of 

synchronous gamma oscillations (Cardin et al., 2009). PV interneurons (Hashimoto et al., 

2008) and gamma oscillations have been found to be disrupted in schizophrenia (Uhlhaas 

and Singer, 2010). In addition, basket cells expressing cholecystokinin (CCK) have been 

found to be important in theta oscillations and are disrupted in schizophrenia (Curley and 

Lewis, 2012).  

Given that neural oscillations require the synchronised activity of large groups of neurones, 

this provides a link between the dysconnectivity hypothesis of schizophrenia and 

neurochemical hypotheses implicating GABA and glutamate. Much of the work in 

schizophrenia has explored the gamma frequency band. High frequency gamma oscillations 

(30-90 Hz) occur in many cortical areas and are important for cognitive processing 

(Whittington et al., 2011). There is evidence of impaired high frequency synchronised 

oscillatory activity in patients with schizophrenia during perceptual, working memory and 
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executive tasks (Phillips and Uhlhaas, 2015). Therefore, in addition to providing a link 

between dysconnectivity and neurochemistry, abnormal oscillatory activity has the potential 

to provide a link between these and the impaired sensory processing and cognitive function 

of schizophrenia.  

In addition to its role in gamma oscillations, inhibitory/excitatory balance has also been 

found to be important for oscillations in other frequency bands. Studies using GABA 

agonists in humans find reduced alpha power at rest (Schreckenberger et al., 2004, 

Ahveninen et al., 2007) and during working memory tasks (Lozano-Soldevilla et al., 2014), 

highlighting the importance of inhibitory tone for oscillations in this frequency band. It is 

believed that alpha oscillations are important in directed attention and that increased alpha 

power results in functional inhibition whereas decreased alpha power results in engagement 

(Frey et al., 2015). Through the direction of attention towards task relevant information and 

suppression of task irrelevant information, alpha modulation is believed to be important in 

cognitive processes such as working memory and therefore may clearly have an important 

role in schizophrenia (Kustermann et al., 2016, Abeles and Gomez-Ramirez, 2014). In 

addition to reduced alpha power and coherence (Stevens and Livermore, 1982), studies have 

found less efficient modulation of alpha in schizophrenia (Kustermann et al., 2016).  

GABAergic activity has also been found to impact upon beta oscillations. Task based studies 

using GABA agonists have shown increased amplitude of baseline beta power (Hall et al., 

2010) and increased movement related beta desynchronization (Hall et al., 2011) in healthy 

controls. Work by Muthukumaraswamy et al. (2013) exploring the GABA transporter 

agonist, Tiagabine, which increases endogenous GABA activity, also found increased 

baseline beta power and event related desynchronization but reduced post-movement beta 

rebound (PMBR) following administration of Tiagabine in healthy controls. Studies of 

schizophrenia have found abnormal beta oscillations during perceptual tasks (Uhlhaas et al., 
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2006, Sun et al., 2013) and at rest (Venables et al., 2009). Therefore, oscillatory activity in 

multiple frequency bands has been found to be affected by excitatory/inhibitory balance and 

abnormalities implicated in schizophrenia.  

It is considered that measurements such as power and frequency of gamma oscillatory 

activity as measured by MEG and EEG may be reflective of local connectivity, whilst low-

frequency oscillations reflect long-distance integration (Donner and Siegel, 2011). However, 

in order to explore the dysconnectivity hypothesis of schizophrenia further, studies have 

investigated more widespread network connectivity across the brain using the methods 

outlined previously.  

 

1.2.2.1 Structural Connectivity in Schizophrenia  

Fractional anisotropy (FA) is a measure of white matter fibre integrity that has been found 

to be reduced in schizophrenia (Tamnes and Agartz, 2016, Cookey et al., 2014). A review of 

DTI studies by Tamnes and Agartz (2016) in early onset schizophrenia found mostly reduced 

FA in patients but no consistent region or degree. Deficits in white matter integrity in early 

stages of schizophrenia were also found in a review by Cookey et al. (2014). Attempts have 

been made to explore the impact of stage of illness, age and duration of onset in order to 

elucidate the progressive nature of such changes. Cross sectional studies looking at structural 

connectivity in both First Episode (FE) and chronic patients have found differences between 

the two. For example, Friedman et al. (2008) and Kong et al. (2011) both found significantly 

reduced FA in chronic patients but not in FE. White et al. (2011) found overall lower FA in 

patients which was more pronounced in chronic patients compared with FE. Other studies 

have found negative correlations between FA and illness duration (Carpenter et al., 2008). 
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A meta-analysis of diffusor tensor imaging (DTI) in schizophrenia by Yang et al. (2017) 

found an inverse relationship between FA and age in patients with schizophrenia which is 

reflected in studies of FA in healthy ageing (Grieve et al., 2007). This replicates work by 

Rosenberger et al. (2008), who found an age-related decline in FA in patients with 

schizophrenia in certain fibre tracts which was not evident in healthy controls. In addition 

to studies comparing FE and chronic schizophrenia, studies have also compared UHR 

groups with FE. In a longitudinal study by Carletti et al. (2012), UHR patients that later went 

on to develop psychosis showed progressive reductions in FA over time. Taken together, 

such studies suggest that there may be a progressive decline in structural connectivity 

throughout the course of schizophrenia. This fits with hypotheses and work in schizophrenia 

that suggests neurochemistry changes throughout the course of the disorder. However, most 

of these studies rely upon a cross sectional design and therefore are prone to confounding. 

 

1.2.2.2 Functional connectivity 

Over the last 20 years, the dysconnectivity hypothesis has been supported by multiple studies 

exploring functional connectivity in schizophrenia (Pettersson-Yeo et al., 2011). However, 

as with structural connectivity studies, results of from functional connectivity studies are 

heterogeneous, with hypo-connectivity hypothesised to underlie loosening of associations 

seen in schizophrenia (Friston and Frith, 1995) and hyper-connectivity thought to lead to 

increased salience of internal stimuli resulting in delusions and hallucinations (Whitfield-

Gabrieli et al., 2009). Such differences in connectivity may also be due to the heterogeneity 

of the disorder, disease state at the time of the study, medication exposure and also 

methodological differences between studies (Fornito et al., 2012).  
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Evidence suggests that there is a link between structural connectivity and functional 

connectivity (Greicius et al., 2009, Honey et al., 2009, Skudlarski et al., 2008, Goni et al., 

2014, Hagmann et al., 2008, Garcés et al., 2016, Chu et al., 2015, Hermundstad et al., 2013). 

For example, Marshall et al. (2015) found that occipital cortical oscillations are modulated by 

individual differences in fronto parietal white matter tracts.  

 

1.2.2.2.1 Task-based Studies of Functional Connectivity in Schizophrenia  

Much of the connectivity research in schizophrenia has focussed upon connectivity during 

task performance such as sensory processing and working memory tasks (Nielsen et al., 2017, 

Goghari et al., 2017). Whilst results of such studies are heterogeneous, most have shown 

dysconnectivity; particularly reduced functional connectivity in frontal regions. (Reviewed by 

Pettersson-Yeo et al. (2011)). Task based functional connectivity studies using MEG have 

implicated various regions and frequency bands in schizophrenia. For example, a visuo-

motor study using amplitude envelope correlations by Brookes et al. (2016) found reduced 

occipital alpha in patients with schizophrenia. Roiser et al. (2013) also found reduced 

connectivity during a visual task in schizophrenia but in a fronto-parietal network. They also 

found that this reduced connectivity predicted lower intelligence. Fujimoto et al. (2013) 

found reduced connectivity during auditory oddball task. Hirvonen et al. (2017) found 

reduced phase synchrony in the theta, alpha and gamma bands in patients with chronic 

schizophrenia during a visual perceptual closure task.  
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1.2.2.2.2 Resting-State Studies of Functional Connectivity in Schizophrenia  

Analysis of spontaneous activity (at rest, when not engaged in a task) is useful in 

understanding whether any changes represent underlying impairments in the generation of 

neural activity or whether impairments are only present when performing a task. Resting-

state paradigms are also useful in patient populations, as they are not confounded by 

behavioural performance on a task. In addition, linking with the NMDAR hypothesis of 

schizophrenia, excitation/inhibition regulates functional connectivity in resting-state 

networks. For example, a study by Duncan et al. (2013) found a correlation between 

prefrontal connectivity and prefrontal glutamate in healthy controls. In addition, Stagg et al. 

(2014) found a correlation between local GABA and motor network functional connectivity 

at rest. Therefore, for these reasons, resting-state functional connectivity is a useful 

parameter to explore in patients with schizophrenia.  

The majority of studies exploring resting-state connectivity in schizophrenia have used fMRI. 

Results from ICA-based resting state fMRI studies of schizophrenia are inconsistent whereas 

the majority of the seed-based resting-state fMRI studies show reduced connectivity in 

schizophrenia (Yu et al., 2012). 

There are a limited number of MEG resting-state studies of schizophrenia and again, 

methodologies are heterogeneous (Bowyer et al., 2015, Canive et al., 1998, Fehr et al., 2003, 

Hinkley et al., 2011, Kim et al., 2014, Rutter et al., 2009, Sperling et al., 1998). Only some of 

these studies have used connectivity metrics in their analysis (Bowyer et al., 2015, Hinkley et 

al., 2011, Kim et al., 2014).  Results of these studies are mixed with one study finding hyper-

connectivity (Bowyer et al., 2015), one finding hypo-connectivity (Kim et al., 2014) and 

another finding both hypo and hyper-connectivity in different brain regions (Hinkley et al., 

2011) in schizophrenia. Several studies have used coherence, a frequency domain measure 

that quantifies coupling in terms of amplitude and phase (Bowyer et al., 2015, Kim et al., 
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2014, Hinkley et al., 2011). Using MEG Coherence Source Imaging (CSI MEG) in the 3-

50Hz frequency range, Bowyer et al. (2015) found increased amplitude coherence in patients 

with schizophrenia in the right inferior frontal lobe, left superior frontal lobe, right middle 

frontal lobe and right cingulate. Kim et al. (2014) found decreased coherence in patients 

between the PCC and MPFC in the gamma band at rest. They also measured the difference 

in power spectral density in the Default Mode Network (DMN) between resting and task 

conditions and found resting DMN activity to be augmented in the PCC in schizophrenia. 

Using the mean imaginary coherence between a voxel and the rest of the brain, Hinkley et 

al. (2011) found decreased connectivity in LPFC and right superior temporal cortex and 

increased connectivity in left extra striate and right inferior PFC in patients with 

schizophrenia in the alpha band.  

 

1.2.2.2.3 The Impact of Antipsychotic Medication Upon Functional Connectivity 

Given the heterogeneity of schizophrenia, it is perhaps unsurprising that results from studies 

of connectivity in the disorder are also heterogeneous (Pettersson-Yeo et al., 2011). 

However, this may be due to other factors aside from the disorder itself such as exposure to 

antipsychotic medication, differences in imaging methodology and analysis technique.  

The majority of brain imaging studies of schizophrenia involve patients medicated with 

antipsychotics. This is because it may be (in certain circumstances) ethically questionable and 

practically difficult to undertake an imaging study on an untreated patient with schizophrenia. 

Attempts to elucidate underlying pathophysiological mechanisms of schizophrenia have 

been made using studies of antipsychotic-naïve first episode patients, patients with 

prodromal symptoms and first degree relatives. However, when comparing patients with first 

episode schizophrenia and established schizophrenia, medication exposure continues to be 
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a confounding factor. Any changes found could be due to the pathophysiology of the disease 

or due to medication exposure.  

Antipsychotics are a heterogeneous group in themselves and are often described as “dirty 

drugs” as many have affinity for multiple receptors including serotonin, acetylcholine, 

noradrenaline, histamine and dopamine (Mailman and Murthy, 2010). However, their 

antipsychotic effect appears to be primarily due to D2 receptor antagonism.  Aripiprazole 

and brexipiprazole (D2 receptor partial agonists) are the only currently available 

antipsychotics that are not D2 receptor antagonists (Bowles and Levin, 2003). Given that 

such neurotransmitter systems are widespread throughout the brain, changes in functional 

connectivity may also depend upon the receptor profile of a particular antipsychotic.  

In addition, studies using fMRI are complicated by the fact that the BOLD signal represents 

neural and vascular processes. Changes in BOLD signal due to antipsychotic medication may 

be the result of a direct drug action on cerebral blood vessels rather than being solely due to 

changes in neural activity. For example, D2 blockade reduces dopamine induced 

vasoconstriction, consequently leading to increased blood flow and increased BOLD signal. 

Therefore, there may be a direct drug action on cerebral blood vessels rather than the BOLD 

response solely being due to neural activity (Abbott et al., 2013). In contrast, MEG is a direct 

measure of neural activity and is therefore, not impacted by effects upon blood flow- 

however, medication may still act as a confounding factor via a direct effect upon neuronal 

activity.  

Multiple studies have attempted to explore the impact of antipsychotic exposure upon 

functional connectivity (Stephan et al., 2001, Lui et al., 2010, Klasen et al., 2013, Li et al., 

2016). Such studies may help to disentangle the effects of antipsychotics from those of the 

illness itself. Over recent years, many of these studies have assessed functional connectivity 
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in schizophrenia pre-and post-treatment with antipsychotics using resting-state paradigms 

(Lui et al., 2010, Hadley et al., 2014, Sarpal et al., 2015, Kraguljac et al., 2016b, Li et al., 2016). 

Some have shown normalisation of pre-treatment dysconnectivity following short term 

treatment (Hadley et al., 2014), whilst others have found incomplete attenuation of 

dysconnectivity (Kraguljac et al., 2016c). Sarpal et al. (2015) found region specific increases 

and decreases in connectivity with treatment response (at 12 weeks). A longer term 

longitudinal study by Li et al. (2016) found a mixed pattern of baseline neural activity 

abnormalities (measured with amplitude of low frequency fluctuations (ALFF) of BOLD), 

only some of which normalised after 1 year of antipsychotic treatment.  

Some studies have explored the impact of antipsychotics using EEG (Schoen et al., 2011, 

Takahashi et al., 2010, Kikuchi et al., 2007) but very little work has explored the effects of 

antipsychotic medications upon neural oscillations or functional connectivity in 

schizophrenia using MEG. A study by Canive et al. (1998) found reduced alpha peak 

frequency and power at baseline in patients with schizophrenia. Delta and theta activity were 

normalised with antipsychotic treatment but no such normalisation of alpha frequency and 

power was seen.  

Overall, due to the heterogeneity of study populations used and differing study designs, there 

is no clear picture of the impact of antipsychotics upon connectivity in patients with 

schizophrenia. There appears to be no consistent effect of antipsychotic medication upon 

fMRI resting-state functional connectivity since some studies find normalisation whilst 

others do not. It is difficult to draw conclusions regarding their impact upon MEG functional 

connectivity but future work should take this into consideration either in design or in the 

drawing of conclusions. 
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1.3 The Continuum Hypothesis of Schizophrenia 

The diagnosis of schizophrenia is categorical, meaning that patients must meet certain criteria 

to receive a diagnosis (APA, 1994, WHO, 1993). However, the dimensional view of 

schizophrenia considers the disorder as existing on a continuum (Claridge and Beech, 1995) 

with sub-clinical psychotic traits in healthy individuals (schizotypy) (Rado, 1953) existing at 

one end of the spectrum and schizophrenia existing at the other. Authors have argued that 

schizotypy is “psychopathologically similar but less severe” than schizophrenia (Nelson et 

al., 2011) or in other words that it is “qualitatively similar but quantitatively different” (Grant, 

2015). This dimensional view is supported by studies using factor analysis that find three 

main dimensions of schizotypy that reflect those of schizophrenia (positive, negative and 

disorganised) (Bentall et al., 1989). In addition, this continuum model is supported by other 

research which suggests that not only do schizotypy and schizophrenia share common 

psychopathology, there is also a genetic and neurobiological overlap (Reviewed by Ettinger 

et al. (2014)). 

One aim of this thesis is to explore the biological validity of the continuum hypothesis of 

schizophrenia. In addition, I will explore the utility of the study of schizotypy in 

understanding more about the aetiology and pathophysiology of schizophrenia without the 

confounder of antipsychotic exposure as previously discussed. What follows is a brief 

overview of studies exploring the schizotypal spectrum and how these fit with the literature 

around schizophrenia.  
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1.3.1 Continuity Between Schizophrenia and Schizotypy 

1.3.1.1 Genetic Continuity 

Multiple studies using varying methodologies have explored the genetic commonality 

between schizotypy and schizophrenia. Studies exploring relatives of those with 

schizophrenia have found that schizotypy is more common in them, suggesting familial 

correlation between the two (Yaralian et al., 2000, Vollema and Postma, 2002). However, 

there are very few molecular genetics studies that support a genetic continuity between 

schizophrenia and schizotypy. Stefanis et al. (2013) found an association between two 

schizophrenia susceptibility variants and positive schizotypy in a healthy cohort of young 

men. Using a genome wide association study, Fanous et al. (2007) found an overlap between 

genetic association profiles for schizophrenia and schizotypy. A recent study showed that 

various genetic and environmental risk factors for schizophrenia could predict schizotypy, 

again supporting this notion (Morton et al., 2017). However, Jones et al. (2016) found no 

association between polygenic risk scores for schizophrenia and psychotic like symptoms in 

a healthy population. There was a strong association between schizophrenia polygenic risk 

score and negative symptoms at 16.5 years and also for anxiety disorder at 15.5 years. In 

addition, a recent study by Hatzimanolis et al. (2017) failed to find an association between 

polygenic risk scores for schizophrenia and schizotypy scores in a cohort of healthy 

volunteers.  

Overall, these studies do not provide robust evidence for genetic continuity between 

schizophrenia and schizotypy. However, Grant (2015) argues that healthy individuals with 

high schizotypy should have less genetic overlap with schizophrenia as this reflects higher 

resilience. Should they possess more genetic loading for schizophrenia then they would 

potentially then have developed clinically diagnosable schizophrenia.  Alternatively, the lack 
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of robust evidence for genetic continuity may mean that those with high schizotypy represent 

a group with purely non-genetic risk.   

 

1.3.1.2 Neurobiological Continuity 

1.3.1.2.1 Structural Brain Changes 

Grey matter volume reductions and ventricular enlargement are common findings in studies 

of schizophrenia (Shepherd et al., 2012). In line with such studies, multiple studies have 

explored structural changes in schizotypy or schizotypal traits with inconsistent results, some 

showing increased grey matter volume (Nenadic et al., 2015, Modinos et al., 2010), some 

showing reduced grey matter volume in schizotypy (DeRosse et al., 2015, Ettinger et al., 

2012) and others showing region specific changes in both directions (Wang et al., 2015, 

Wiebels et al., 2016).  

 

1.3.1.2.2 Connectivity in Schizotypy  

As discussed, it has been hypothesized that schizophrenia is a syndrome of dysconnectivity 

(Friston and Frith, 1995, Pettersson-Yeo et al., 2011) and over the last 20 years, this 

hypothesis has been supported by multiple studies exploring structural and functional 

connectivity in schizophrenia (Pettersson-Yeo, Allen, Benetti, McGuire, & Mechelli, 2011).  

 

1.3.1.2.2.1 Structural Connectivity 

As discussed previously, deficits in structural connectivity have been found in schizophrenia 

that suggest a progressive decline throughout the disorder. Studies have explored structural 

connectivity in schizotypy with mixed results, some finding decreased FA (Nelson et al., 
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2011), some finding increased FA (Smallman et al., 2014) and others finding both increased 

and decreased FA depending upon brain region (Volpe et al., 2008).  

 

1.3.1.2.2.2 Functional connectivity 

As with schizophrenia, much of the resting-state functional connectivity research in 

schizophrenia continuum disorders has utilised fMRI. The most recent study by Zhu et al. 

(2017) found reduced functional connectivity between bilateral precuneus and contralateral 

parahippocampal gyrus in schizotypal personality disorder and a negative correlation 

between functional connectivity and total SPQ score. Other studies have found mixed 

patterns of dysconnectivity in schizophrenia continuum disorders with region dependent 

increases and decreases in connectivity (Wang et al., 2015, Zhang et al., 2014b, Lagioia et al., 

2010). To date, there are no published resting-state MEG studies of schizotypy.  

Other studies of functional connectivity in schizotypy have used task based approaches. For 

example, using a self-reflection fMRI task in adolescents, Debbane et al. (2014) found that 

positive schizotypy correlated with activation of the dorsomedial prefrontal cortex (dmPFC) 

and the posterior cingulate cortex (PCC), as well as the dorsolateral PFC and the lingual 

gyrus. This reflects similar findings in patients with schizophrenia (van der Meer et al., 2010).  

 

1.3.2 Utility of Using Schizotypy to Understand Schizophrenia 

Whilst not entirely consistent, these findings suggest that there may be neurobiological 

continuity between schizophrenia and schizotypy, particularly when exploring specific 

dimensions of schizotypy. If we consider this to be the case, schizotypy in the general 

population may be a valuable resource in understanding more about schizophrenia. For 
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example, we may be able to gain valuable insights into the underlying aetiology and 

neurobiology of schizophrenia in an un-medicated group, free from the potential confound 

of medication. We may also understand more about protective factors that have prevented 

healthy individuals with subclinical traits from developing schizophrenia.   

 

1.4 Ketamine as a Model of Schizophrenia  

As previously discussed, it has been postulated that NMDAR antagonists such as Ketamine 

model schizophrenia (Frohlich and Van Horn, 2014). This is in part due to the finding that 

such drugs exacerbate symptoms in patients with schizophrenia (Lahti et al., 1995) and mimic 

positive, negative and cognitive symptoms of schizophrenia in healthy controls (Adler et al., 

1999, Krystal et al., 2005). In addition, the NMDAR has been implicated in schizophrenia 

through molecular studies of dysbindin (a protein linked to NMDAR function and working 

memory (Karlsgodt et al., 2011). Genes regulating the NMDAR co-agonist D-serine have 

also been found to be disturbed in schizophrenia (Chumakov et al., 2002). SPECT studies 

have also found in vivo evidence of NMDAR hypofunction in schizophrenia (Pilowsky et 

al., 2006). Thus molecular, genetic and imaging studies support the use of ketamine as a 

model of schizophrenia.  

In addition, again, as previously discussed, it is postulated that symptoms of schizophrenia 

result from dysconnectivity and this is supported by multiple studies (Fornito et al., 2012). 

Studies suggest that synchronised oscillatory activity is dependent upon the interaction 

between excitatory (glutamatergic) and inhibitory (GABAergic interneuron) activity (Uhlhaas 

et al., 2008). Given that such transmitter systems are perturbed with ketamine and that 

dysconnectivity has been implicated in schizophrenia, we may expect the administration of 

ketamine, a model of schizophrenia, to result in dysconnectivity in healthy individuals.  
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Several studies of the impact of ketamine upon functional connectivity in healthy controls 

have found increased connectivity following ketamine administration (Hoflich et al., 2015, 

Rivolta et al., 2015, Driesen et al., 2013a, Anticevic et al., 2015a).  Of these studies, the 

majority used fMRI to explore functional connectivity, aside from resting-state MEG studies 

by Rivolta et al. (2015) and Muthukumaraswamy et al. (2015).  

Using transfer entropy, Rivolta et al. (2015) found thalamo-cortical hyper-connectivity 

involving the visual cortex. Other studies have found reduced connectivity following 

ketamine administration (Kraguljac et al., 2016a, Scheidegger et al., 2012). Using ICA in 

MEG, Muthukumaraswamy et al. (2015) also found reduced fronto-parietal network activity 

following ketamine administration. Interestingly,  Driesen et al. (2013b) found decreased 

connectivity during a working memory task but increased connectivity at rest (Driesen et al., 

2013a) following ketamine. This suggests that its effects upon functional connectivity may 

be state dependent. Effects may also relate to the amount or duration of ketamine use with 

a more naturalistic study finding reduced resting-state functional connectivity in chronic 

ketamine users (Liao et al., 2016). 

When considering the link between the neurological impact of ketamine and the 

neuropathology of schizophrenia, Anticevic et al. (2015a) found increased connectivity 

following ketamine administration and in a group of patients with early schizophrenia but 

reduced functional connectivity in chronic schizophrenia. The authors therefore suggest that 

ketamine is a better model for the early stages of schizophrenia than the late stages.  

This is supported by studies such as Liao et al. (2016) who found hypo-connectivity in 

chronic ketamine users suggesting acute versus chronic NMDAR antagonism may have 

differential effects upon functional connectivity. Animal studies also support this, with a 
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study by Ahnaou et al. (2017) finding increased phase amplitude coupling following acute 

administration of ketamine but decreased coherence with chronic ketamine administration. 

The neurochemical effects of ketamine are also reflected in those of schizophrenia, 

particularly early stages. For example, Stone et al. (2012) found increased glutamate in the 

anterior cingulate cortex following ketamine administration, in line with MRS studies of first 

episode schizophrenia finding increased glutamate (Theberge et al., 2002) in patients.  

Given this evidence, the administration of ketamine may be a useful way of indirectly 

exploring the neurobiology of schizophrenia without confounding factors such as 

medication exposure.  

 

1.5 Objectives 

Together, the dysconnectivity hypothesis of schizophrenia and the NMDAR hypothesis can 

explain some of the psychopathology of the disorder. However, studies of functional 

connectivity and in vivo neurochemistry in schizophrenia are inconsistent. This thesis seeks 

to explore these hypotheses further in multiple groups of patients with schizophrenia using 

novel neuroimaging analysis methods. The first experimental chapter explores functional 

connectivity using both MEG and FMRI in two groups of patients with schizophrenia. The 

second explores functional connectivity in the context of the continuum hypothesis of 

schizophrenia in healthy participants with high and low schizotypy scores. The third 

experimental chapter attempts to elucidate functional connectivity findings in schizophrenia 

further by exploring the impact of disease stage. The fourth looks at functional connectivity 

following ketamine exposure in order to explore this drug as a model of schizophrenia. The 

fifth experimental chapter combines together the results from all of these studies using a 

meta-analytic approach in order to strengthen conclusions. Finally, the sixth experimental 
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chapter uses MRS to look at GABA and this is explored this in the context of functional 

connectivity.  

Given the vast amounts of heterogeneous findings in the literature, the overall aim of the 

thesis is to use robust and standardised analysis pipelines and metrics of functional 

connectivity, in multiple cohorts of participants, to explore the neurobiology of 

schizophrenia, the schizophrenia spectrum and a pharmacological model of schizophrenia. 

In particular, the thesis will focus on functional connectivity measured with MEG. As 

previously discussed, there are many ways of exploring MEG functional connectivity but for 

consistency and due to the fact that it is a robust and repeatable measure (Colclough et al., 

2016), I have chosen to use amplitude-amplitude coupling in classic oscillatory bands 

throughout this thesis. Also, although as discussed, several neurotransmitters are implicated 

in the pathogenesis of schizophrenia, given our previous work on GABA, we have chosen 

to focus upon this neurotransmitter.  
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Chapter 2 Methods 

2.1 Imaging Methods 

2.1.1 MEG 

Magnetoencephalography (MEG) is a non-invasive functional brain imaging technique used 

to measure synchronised neuronal activity. It measures weak magnetic fields, generated by 

the electrical activity of many thousands of neurones and is therefore a direct measure of 

neural activity. In addition, it also has the advantage over other imaging techniques of having 

a high temporal resolution (within the millisecond range) (Baillet et al., 2001). 

 

2.1.1.1 MEG Signal Generation and Detection 

The electrical current created by post-synaptic potentials in dendrites of neurones generates 

associated perpendicular magnetic fields. These magnetic fields are small, much smaller than 

environmental magnetic fields generated by vehicle traffic for example.  Therefore, only 

when multiple (thousands to millions) of aligned neurones fire synchronously is this magnetic 

field large enough to be detected by the MEG system (Singh, 2006). The system can only 

detect magnetic fields from sources orientated perpendicular to the brain surface. However, 

given the complex structure of the cortex, it is likely that the proportion of grey matter 

aligned radially and therefore not leading to a magnetic field that can be detected is small 

(Hillebrand and Barnes, 2002).  

For the MEG system to detect a magnetic field, several requirements must be met: 

1. The population of neurones must be large and firing synchronously. 

2. The population of neurones/dendrites must all be aligned in the same direction. 
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3. This alignment must be perpendicular to the surface of the brain. e.g. apical dendrites 

of pyramidal cells  

 

In order to detect these small neuro-magnetic fields, the MEG system is extremely sensitive. 

The system houses 200-300 Superconducting Quantum Interference Devices (SQUIDs) that 

are distributed evenly over the head in a liquid helium dewar reservoir that maintains them 

at -269oC. SQUIDs are small rings of superconducting material with insulating breaks. Each 

SQUID is coupled to a magnetometer, which is a small loop that picks up magnetic activity 

and magnifies it in order for the SQUID to sense it. The breaks within SQUIDs have a 

superconducting effect and when a magnetic field passes over it, this causes a potential, 

which fluctuates according to how much magnetic field is passing over the loop.  

 

Given the sensitivity of the system in detecting very weak magnetic fields, it is important that 

environmental magnetic activity (or noise) is minimised as much as possible. This is done in 

two ways:  

1. Shielding: The MEG system is housed in a magnetically shielded room (MSR), built 

of multiple layers of aluminium and mu metal. This helps to block out external 

environmental magnetic fields.  

2. Sensor design: Specially designed magnetometers called gradiometers help to 

discriminate neural signals from noise. There are two different types of gradiometers 

(named according to their design); axial and planar. Both types of gradiometers are 

made of oppositely wound coils. Magnetic fields decay rapidly the further from the 

source they become and gradiometers are therefore more sensitive to closer neural 

signals rather than more distant environmental or physiological sources. Given that 
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the magnetic fields deteriorate with distance, MEG can only be used for deep sources 

provided the signal to noise ratio is high enough (Vrba and Robinson, 2001).  

 

The system used in all subsequent studies discussed in this thesis is a CTF 275 axial 

gradiometer design. Third-order gradiometer mode is constructed using reference 

magnetometers midway up the dewar. This gives enhanced noise rejection without 

significantly reducing depth sensitivity. All data in this thesis was processed using third-order 

mode. 

 

2.1.1.2 MEG Analysis 

There is an increasing realisation within the neuroscience research field that neural 

oscillations play a critical role in perception and cognition and MEG is well-suited to studying 

these oscillations (Donner and Siegel, 2011). Oscillations are waves of complex neural 

activity that can be described according to their phase, amplitude and frequency. They can 

be divided into multiple frequency bands though spectral decomposition. Each frequency 

within an oscillation can be represented using the power spectrum. Through spectral analysis, 

the signal is expressed as a function of frequency rather than time, a transformation known 

as the Fourier transform. Given that amplitude and therefore power varies over time, the 

signal can be divided into shorter segments. Spectral analysis can then be carried out on these 

segments to obtain a more dynamic assessment of activity, known as time-frequency analysis. 

Using the Hilbert transform, time-varying amplitude envelopes can be obtained which can 

then be used to generate time/frequency/amplitude spectrograms of data (Brookes et al., 

2011, Swettenham et al., 2009). 

 



CHAPTER 2  Methods 

 28 

In addition to understanding the neural signal in “sensor space”, we are also interested in 

understanding the signal in “source space”, i.e., where it has come from in the brain. In order 

to localise the source of measured neural activity, we must solve the “inverse problem”. 

Working out what magnetic field would be measured in a detector array given the magnitude, 

position and orientation of a neuronal current source (solving the forward problem) is 

relatively straight forward (Singh, 2006). However, solving the inverse problem, or localising 

a current generator given an externally measured magnetic field is more difficult due to the 

infinite number of possible solutions. This is known as non-uniqueness (Mosher et al., 1999). 

Through adding additional information (or a priori constraints), the possible solutions can 

be reduced to one unique solution. There are multiple ways to solve the inverse problem, 

including equivalent dipole fitting and distributed current models. Equivalent dipole fitting 

models a single active source at any given moment (Wood, 1982) whilst distributed current 

models, such as minimum norm, estimate a continuous current distribution that is generating 

the observed response (Hamalainen and Ilmoniemi, 1994). Another commonly used method 

is a type of spatial filtering called beamforming (Hillebrand et al., 2005). This involves using 

weighted sums of MEG detector outputs (and the forward model as a prior) to estimate the 

“virtual electrode output” within the brain. Throughout this thesis, a linearly constrained 

minimum variance (LCMV) beamformer has been used (Van Veen et al., 1997). The use of 

a beamforming approach is advantageous, particularly when analysing resting-state data, as 

it can be used to study activity that is not tightly phase-locked to a stimulus (Singh, 2006). In 

addition, it offers additional noise rejection that is beneficial when analysing non-averaged 

data (Vrba, 2002). 
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2.1.1.3 MEG Functional Connectivity Analysis  

The high temporal resolution of MEG allows the identification of precise timings of activity 

within the brain. Temporal relationships in activity between brain areas can then be identified 

using this information. This is known as functional connectivity. There are multiple methods 

of assessing functional connectivity using MEG (Siegel et al., 2012) including phase-phase, 

phase-amplitude and amplitude-amplitude coupling. Figure 2.1 shows a schematic of phase 

coherence (phase-phase coupling) and amplitude correlation (amplitude-amplitude 

coupling).  

 

 

A. Phase Coherence

B. Amplitude Correlation

Figure 2.1: Diagram of  phase coherence and amplitude correlation
(Adapted from Siegel et al., 2012) 
A. Phase coherence quantifies the consistency of  the phase between two 

simultaneous signals with the same frequency. Left panel shows phase 
coherence with zero phase lag. Right panel shows phase coherence with non-
zero phase lag.

B. Amplitude correlation assesses the synchronisation of  power sources from 
different sources. Signals can have the same (left panel) or different (right 
panel) underlying frequencies.  
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Spatial reduction to analyse correlation then usually involves a seed based, ICA (Independent 

Component Analysis) or atlas-based approach. In seed-based approaches, a virtual sensor 

within the brain is chosen and correlations are explored between the seed and other brain 

regions (Hipp et al., 2012). ICA based analysis is a data-driven approach whereby patterns of 

activity are explored across the whole brain, revealing networks of synchronised activity over 

time (Brookes et al., 2011). Finally, atlas-based approaches involve dividing the brain into 

pre-defined regions and comparing activity across all regions.   

Over recent years, amplitude envelope correlation has been used extensively (Brookes et al., 

2016, O'Neill et al., 2015) and has been found to be robust and repeatable (Colclough et al., 

2016) and successful in identifying differences between patients with schizophrenia and 

healthy controls (Brookes et al., 2016). I have therefore chosen to use this method 

throughout this thesis. Figure 2.2 outlines the methodology. In summary, measured data is 

frequency filtered into frequency bands of interest. Following this a beamformer is used to 

reconstruct time-courses in the areas of interest. In this thesis, brain regions have been 

defined using the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 

2002) which includes 90 sources of interest in the cortex and subcortical regions. Given the 

potential for signal leakage and artefactual correlation, a method to reduce this must be used. 

I have chosen to orthogonalise signals using multivariate linear regression to reduce zero-

time lag correlation for any pair of brain regions within the AAL atlas (Colclough et al., 2015). 

From here, for every frequency band and AAL region, the Hilbert envelope (amplitude 

envelope) of source-space neural oscillatory activity are then computed from orthogonalised 

signals. Further analysis then involves looking at the correlation between amplitude 

envelopes in one AAL region and another, thus providing a measure of connectivity between 

brain regions.  
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Prior to further statistical analysis, a variance stabilising transformation, (Fishers Z 

transformation) is then applied to the correlation coefficients to normalise their behaviour 

and reduce estimation bias when averaging (Silver and Dunlap, 1987). The theoretical 

variance of the z statistic is then calculated in order to transform Fishers Z scores into z 

statistics. This corrects for variable number of trials (and hence degrees of freedom) for each 

person. Connectivity matrices can then be constructed using z statistics as edge weights for 

all AAL atlas regions (Figure 2.3). 
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Fig 2.2 MEG analysis pipeline for resting-state functional connectivity.
1-7. We used an AAL atlas-guided beamforming approach to define 90 cortical and subcortical seed
regions. We first filtered data into canonical functional bands and then reconstructed virtual sensor time
series in each of the 90 AAL regions. The data was orthogonalised to suppress source leakage. We
applied a Hilbert transform to give estimates of amplitude and phase for each of these regions.
Amplitude envelopes were then cross-correlated to derive the degree of connectivity between AAL
regions. z statistics were derived from the correlation coefficients and used to construct connectivity
matrices.
8-9. Data was initially masked to show only the highest 5% of connections and this was followed by a t-
test of these connections.
10-12. A Gaussian mixture modelling approach was also used to define connections as signal or noise.
“Signal” connections were plotted onto connectivity maps, followed by t-tests of these connections.
(Blue=lower connectivity in these connections in cases.)
13. Strength of connectivity was calculated by summing z statistics of signal connections horizontally.
(Red=Cases. Blue=Controls)
14. Global connectivity was calculated by summing all z statistics of signal connections. Mean, median
and t-test. (Red=Cases. Blue=Controls)

1 2 3 4 5 6

9 8 7

12 11 10

14 13
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From here further statistical analysis can be used. One such statistical analysis approach used 

throughout this thesis involves classifying connections into “signal” or “noise” using a 

statistical thresholding procedure based on Gaussian mixture modelling (GMM) (Plataniotis 

and Hatzinakos, 2000). Using the Expectation-Maximisation algorithm with two 

components randomly selected as the initial component means, a Gaussian mixture 

distribution is fitted to z statistics by maximum likelihood. In each frequency band, only 

connections with a greater than 50% probability of being within the signal are then accepted 

as valid. The noise distribution is modelled separately for each cohort and z-scores are 

corrected for this noise model. This analytical step is important as it corrects for any general 

bias in signal to noise ratio (SNR) between two cohorts. General SNR is therefore normalised 

Fig 2.3 Correlation Matrix.
Correlation matrix showing amount of correlation between AAL nodes. x and y axes represent AAL
nodes from 1-90. Orange points= Positive correlation between regions. Black points=No correlation
between regions. Blue points=negative correlation between regions.
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by this procedure and consequently any remaining statistical differences between groups are 

more likely to be due to true group differences. In addition, the method allows for statistical 

thresholding because connections can be labelled as “signal”, rather than “noise” and only 

these are tested for statistical differences. See Appendix 1 for further details regarding the 

benefits of utilising a GMM approach.  
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Throughout this thesis, connectivity is displayed on circular connectivity maps to show 

connections between AAL nodes. An example of this with explanations can be seen in Figure 

2.4. Figures in this thesis show connectivity maps without AAL labels.  

 

 

Fig 2.4 Circular Connectivity Map.
Connectivity map showing connections between AAL nodes. The circle is anatomically organised with
the right hemisphere on the right side and the left hemisphere on the left. Labels show AAL regions,
starting from the top with frontal cortex, cingulate cortex, hippocampus and amygdala, temporal cortex,
deeper brain regions, parietal cortex, occipital cortex and precuneus. Lines represent connections
between these regions. Darker lines represent stronger connections and paler lines represent weaker
connections. The colour represents the region of the connection in this instance. When the map is
showing differences in connectivity between groups, blue lines represent reduced connectivity and red
lines represent increased connectivity.
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2.1.2 Magnetic Resonance Imaging (MRI) 

MRI is a non-invasive imaging technique that allows the direct visualisation of soft tissues as 

well as giving information regarding function. It exploits the fact that atomic nuclei absorb 

and emit energy when placed in an external magnetic field. Given that hydrogen atoms exist 

in abundance in the human body, (particularly in fat and water), these are often used to 

generate the radio frequency signals that are detected by MRI systems.  

Hydrogen nuclei possess an intrinsic property called nuclear spin, meaning that the nuclei 

rotate. To a degree, when placed in a magnetic field, the nuclei have a tendency to align 

themselves parallel with the field. The overall direction of many nuclei when placed in a 

magnetic field is called the net magnetisation. This net magnetisation is proportional to the 

magnetic field with larger fields producing greater alignment. Those protons aligned with the 

magnetic field are in a lower energy state and those not aligned are in a high-energy state.  

Spinning protons precess or wobble around the axis of the external magnetic field. The 

frequency of this precession or resonance frequency is known as the Larmor frequency and 

is proportional to the strength of the magnetic field.  

When an electromagnetic radio frequency is applied at the same frequency as the resonance 

frequency of the proton, they absorb energy and the proton moves to a higher energy state. 

Net magnetisation is then brought away from equilibrium, which results in the nuclei 

precessing around the field with a frequency of 42.58 MHz/T (De Graaf, 2013). This results 

in radio waves at this frequency being emitted from the body, which can then be measured 

and analysed. The energy is then retransmitted when the radio frequency transmission (or 

RF pulse) is turned off. Protons then return to their original orientation of external magnetic 

field. This is known as T1 recovery to thermal equilibrium. This recovery rate is different for 

every tissue and hence allows different tissues to be distinguished. At the same time that the 
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protons are returning back to align along the field, individual protons start to interact with 

each other, leading to de-phasing of the spins, which reduces the measured signal. This is 

known as T2 relaxation and its rate is also dependent on the tissue types within the region. 

Signals are received and measured by a receiver coil and MR sequences then distinguish 

tissues based upon their T1 and T2 decay processes. Finally, certain substances are magnetic 

in nature and directly lead to inhomogeneities in the primary magnetic field –the so-called 

susceptibility artefact. This variation in magnetic field leads to additional dephasing as 

different spins see a different magnetic field and hence precess at slightly different rates. This 

dephasing is known as T2* relaxation, and is particularly useful for fMRI (Filippi, 2009).  

 

2.1.2.1 Functional Magnetic Resonance Imaging (fMRI) 

fMRI is a method of measuring functional activity and connectivity using MRI. The 

technique detects changes in blood flow, known as the Blood Oxygen Level Dependent 

(BOLD) signal (Kwong et al., 1992). It is therefore an indirect measure of neural activity and 

assumes a correlation between neural activity and blood flow. This is known as neurovascular 

coupling and suggests that neuronal function results in increased blood flow and therefore 

increased oxygenated haemoglobin (oxy-haemoglobin) concentration in activated regions of 

the brain. Oxygenated and deoxygenated haemoglobin have different magnetic properties 

and the method takes advantage of this.  Oxy-haemoglobin is diamagnetic and deoxy-

haemoglobin is paramagnetic, leading to faster T2* relaxation.  More oxygenation therefore 

results in a higher signal and a brighter image (Amaro and Barker, 2006). Neural activity 

therefore results in a transient increase in MR signal, known as the BOLD haemodynamic 

response function (HRF).  
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During an fMRI study, an activation map is produced which depicts the level of engagement 

of particular brain regions during a task or in response to a stimulus. The scale of such 

responses can then be compared between conditions or between subjects. This data can then 

be used to construct maps representing regions of the brain activated by specific tasks by 

superimposing signal onto structural images of the brain.  

There are several important considerations when evaluating fMRI. Whilst BOLD has 

excellent spatial resolution, it has relatively poor temporal resolution of 1-2 seconds. This is 

because, following stimulus onset, it takes several seconds for HRF to peak and several 

seconds to return to baseline following stimulus cessation. In addition, physiological noise 

(including the cardiac and respiratory cycles) can produce BOLD artefacts (Birn et al., 2006, 

Dagli et al., 1999). Such effects may lead to confounding in case-control studies where factors 

such as medication exposure and anxiety for example (which could affect this physiological 

noise) may have a differential effect upon cases and controls (Murphy et al., 2013).  

 

2.1.2.1.1 fMRI Resting-State Connectivity Analysis 

At rest, fMRI detects low frequency (~0.01-0.1Hz) BOLD oscillations. Functional 

connectivity analysis in fMRI involves estimating the correlation in activity of BOLD time-

courses in distinct brain regions. There are multiple methods for exploring this but the most 

popular include seed based correlation analysis (Biswal et al., 1995) and independent 

component analysis (ICA) (Rogers et al., 2007). Seed-based analysis refers to a method 

whereby correlation in BOLD time-series is assessed between a seed region and other brain 

regions. ICA involves the data-driven identification of patterns of BOLD activity across the 

whole brain, resulting in networks of activity. Alternatively, atlas-based approaches, similar 

to those described previously for MEG analysis, can be used. Using this method, the brain 
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is parcelled into regions, using an atlas such as the AAL atlas, in order to reduce the data 

from hundreds of thousands of voxels to hundreds of regions. BOLD time-series can then 

be correlated between all regions of the atlas (Faria et al., 2012).  

In this thesis, for consistency, I have chosen to use AAL-atlas based functional connectivity 

analysis similar to that used for MEG analysis.  

 

2.1.2.2 Magnetic Resonance Spectroscopy (MRS) 

MRS is an MRI method involved in the non-invasive detection and quantification of brain 

metabolites in vivo. The technique takes advantage of the fact that each metabolite produces 

a unique MRS signal because protons within the molecule experience different spin 

frequencies or resonance frequencies (De Graaf, 2013). As previously discussed, atomic 

nuclei such as the hydrogen nucleus (1H) exhibit resonance behaviour in a magnetic field. 

However, within different metabolites, this resonance frequency or Larmor frequency is not 

uniform but is dependent upon the chemical environment of the molecule. This variation in 

resonance frequency is due to concepts known as chemical shift and J-Coupling.  

Resonance frequency is partially determined by the external magnetic field to which a proton 

is exposed, however, within a metabolite, the nucleus is shielded from the external magnetic 

field by surrounding electrons. Increased shielding occurs when an electron cloud is drawn 

closer to a hydrogen proton and results in reduced resonance frequency (and the reverse is 

also true). This is known as chemical shift.  

When there is more than one type of chemical environment for hydrogen protons within a 

molecule (e.g. CH3), J-coupling occurs. This is the correlation of different nuclei in the same 
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molecule mediated through their binding electrons. Since each metabolite has a different 

chemical structure, J-Coupling helps to distinguish between them.  

MRS is able to detect multiple brain metabolites, providing their concentration within the 

brain is sufficient for detection. Water is the most abundant proton containing brain 

metabolite and therefore contributes most to the signal detected by MRS. Water suppression 

pulses are therefore used to suppress the water peak to allow visualisation of spectra from 

other, much less abundant metabolites. Water is suppressed by selectively exciting protons 

that constitute the water peak by applying an RF pulse with the same frequency as water.  

Usually, MRS is used to detect and quantify metabolites within a specified region of interest 

within the brain, known as single voxel MRS. Again, through the use of RF pulses, slices in 

x, y and z orientations are selected, the intersection of which creates the voxel in which 

metabolites are quantified.  

The detected signal is then plotted onto a spectrum where the x axis represents frequency 

and the y axis represents amplitude of the signal. An example MRS spectrum can be seen in 

Figure 2.5.  Metabolite concentration can then be calculated by measuring the area under its 

peak (Stagg and Rothman, 2014).  
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2.1.2.2.1 GABA MRS 

The quantification of GABA is technically difficult for several reasons. Firstly, GABA is 

found at relatively low concentrations in the brain (~1-2mM) (Table 2.1)(Duarte et al., 2012). 

In addition, as depicted in Figure 2.5, the GABA peaks are obscured by the peaks of several 

other more abundant metabolites, in particular, the 3.0ppm Cr peak. Therefore, in order to 

quantify GABA, a technique called J-editing is used (Mullins et al., 2014). This technique 

Figure 2.5 Example 1H MRS Spectrum
Reproduced from Duarte et al. (2012)
Example 1H MRS spectrum acquired at 14.1T in the rat hippocampus. Spectrum indicates individual
metabolites and their role in brain physiology.



CHAPTER 2  Methods 

 42 

uses the physical properties of the GABA molecule to separate it from the other metabolites 

in the spectre. The GABA molecule has a weakly coupled spin system. This refers to coupling 

that occurs when adjacent spins within a molecule affect the field experienced by a spin. As 

a result, the GABA spectrum contains multiplets, or signals that are split into sub-peaks. 

GABA contains three methylene groups which results in three distinct multiplets in the 

spectrum occurring at 1.9, 2.3 and 3.0ppm. The GABA signal at 3.0ppm is coupled to a 

signal at 1.9ppm. When a frequency-selective pulse (editing pulse) is applied at 1.9ppm, 

coupling of the signals means that there will be an effect at both 1.9 and 3.0ppm, leaving 

uncoupled resonances unaffected. This is referred to the “ON” scan. The scan is then 

repeated without the editing pulse. This is known as the “OFF” scan and the difference 

between the spectre obtained during repeated ON and OFF scans results in a spectrum only 

containing signals affected by the pulse i.e. the GABA spectrum. This is known as J-

difference editing and is used in MEGA-PRESS, the method used in this thesis (Mullins et 

al., 2014). GABA is then quantified by measuring the area under the peak, modelled as a 

Gaussian. 
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Table 2.1      Brain metabolite concentrations (mM). Adapted from Duarte et al. (2012)  

Alanine 0.3 

Ascorbate 1.4 

Aspartate 2.1-3.1 

Creatine 3.2-5.8 

Phosphocreatine 2.2-4.5 

GABA 1.3-2.5 

Glutamine 1.6-2.2 

Glutamate 8.9-12.8 

Glutathione 1.1-1.4 

Glycine 1.2 

Glucose 1.4-2.2 

Myo-inositol 4.9-5.7 

Scyllo-inositol 0.3-0.4 

Lactate 0.5-0.7 

N-Acetylaspartate 11-13.5 
 

 However, the signal detected in an MRI scanner cannot be used to quantify a metabolite 

and must be calibrated, usually by referencing to another internal reference compound, such 

as water or creatine. Creatine (Cr) is often used for this purpose by calculating the ratio of 

GABA to Cr. Since Cr is measured in the same spectrum as the other metabolites, this 

prevents errors from partial volume effects within the voxel and regional magnetic field 

susceptibility variations (Li et al., 2003).  

 However, referencing to Cr may act as a confounder since some studies in schizophrenia 

have found a difference in Cr between patients and controls (Ongur et al., 2009). This is not 

a consistent finding, however as others have found no difference in Cr between patients and 

controls (Marsman et al., 2014). Alternatively, water can be used as a reference by completing 

another scan without the usual water suppression. The water peak has a higher SNR and is 

easier to model, however, GABA/H2O quantification must be corrected for the 
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composition of the tissue (i.e. the relative amounts of grey matter, white matter and CSF) 

(Mullins et al., 2014) due to the differing levels of water in these tissues. Studies of MRS 

GABA in schizophrenia have used both Cr and water as a reference and there is no clear 

consensus as to which reference compound is best. In this thesis, I have therefore chosen to 

quantify both and compare the two, since for a patient effect to be truly robust, I would 

suggest that it must be present in both GABA/Cr and GABA/H2O measures. 
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Chapter 3 A Multimodal Study of Resting-State 

Connectivity in Schizophrenia   

3.1 Rationale 

Multiple studies report functional dysconnectivity in schizophrenia. (Reviewed by 

Pettersson-Yeo et al. (2011)). However, very few studies have explored resting-state 

connectivity in schizophrenia using MEG and results are inconsistent (Bowyer et al., 2015, 

Kim et al., 2014). In addition, to date, only one study directly compares resting-state 

connectivity using both fMRI and MEG in the same sample (Houck et al., 2017). In this 

study, I sought to elucidate the relationship between schizophrenia and resting-state 

connectivity using MEG in two separate samples of individuals with schizophrenia. I also 

sought to compare resting-state connectivity using fMRI and MEG in one of these cohorts.  

 

3.2 Background 

It has been hypothesized that schizophrenia is a syndrome of dysconnectivity; referring to 

abnormal integration both within and between brain regions (Friston and Frith, 1995, 

Stephan et al., 2006, Stephan et al., 2009a). Over the last 20 years, this hypothesis has been 

supported by multiple studies exploring functional connectivity in schizophrenia (Pettersson-

Yeo et al., 2011), specifically, the correlation in neural activity in different brain regions over 

time. Functional connectivity can be measured in vivo using multiple neuroimaging 

techniques such as fMRI, EEG and MEG. Results of such studies are heterogeneous and it 

is hypothesised that hypo-connectivity may underlie loosening of associations seen in 

schizophrenia (Friston and Frith, 1995) and hyper-connectivity may lead to increased salience 

of internal stimuli resulting in delusions and hallucinations (Whitfield-Gabrieli et al., 2009). 
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Such differences in connectivity may also be due to the heterogeneity of the disorder, disease 

state at the time of the study, medication exposure and also methodological differences 

between studies (Fornito et al., 2012). 

Much of the connectivity research in schizophrenia has focussed upon connectivity during 

task performance such as sensory processing and working memory tasks (Nielsen et al., 2017, 

Goghari et al., 2017). Analysis of spontaneous activity (at rest, when not engaged in a task) 

is useful in understanding whether any changes represent underlying impairments in the 

generation of neural activity or whether impairments are only present when performing a 

task. In addition, resting-state paradigms are useful in patient populations, (where there may 

be significant impairment such as cognitive dysfunction), as they are not confounded by 

behavioural performance on a task (Fox and Greicius, 2010).  

The majority of studies exploring resting-state connectivity in schizophrenia have used fMRI. 

fMRI exploits the blood oxygen dependent (BOLD) signal which is thought to be a correlate 

of neural activity (Buxton, 2002). The relationship between neural activity and increased 

blood flow is referred to as neurovascular coupling. An increase in the BOLD signal is a 

result of increased oxygenated haemoglobin caused by neural activity and consequent 

changes in cerebral blood flow. There are multiple methodologies utilised in analysing resting 

state fMRI including seed-based, ICA-based and graph theory-based approaches (van den 

Heuvel and Hulshoff Pol, 2010). Given that neural oscillatory activity is thought to underlie 

the BOLD response, it is not surprising that similarities have been found between measures 

of connectivity using magnetoencephalography (MEG) and BOLD fMRI, both during task 

performance (Luckhoo et al., 2012) and at rest (Brookes et al., 2011). However, whilst fMRI 

gives excellent spatial resolution, it is an indirect measure of neural activity with poor 

temporal resolution. As a result, non-neural, physiological confounds such as movement, 

cardiac and respiratory activity can influence apparent associations (Murphy et al., 2013). 



CHAPTER 3                A Multimodal Study of Resting State Connectivity in Schizophrenia   

 47 

Results from ICA-based resting state fMRI studies of schizophrenia are inconsistent whereas 

the majority of the seed-based fMRI studies show reduced connectivity in schizophrenia (Yu 

et al., 2012). When including task based fMRI studies, the picture is one of reduced functional 

connectivity in schizophrenia, particularly in frontal regions (reviewed by (Pettersson-Yeo et 

al., 2011). 

In contrast to fMRI, MEG is a direct measure of neural activity with excellent temporal 

resolution and can therefore be considered complementary to fMRI (Brookes et al., 2011). 

There are multiple methods for investigating resting-state connectivity in MEG, one of 

which is amplitude envelope correlation. This method of analysis has been found to be 

robust and repeatable (Colclough et al., 2016) and successful in identifying differences 

between patients with schizophrenia and healthy controls (Brookes et al., 2016). 

There are a limited number of MEG resting-state studies of schizophrenia and again, 

methodologies are heterogeneous (Bowyer et al., 2015, Canive et al., 1998, Fehr et al., 2003, 

Hinkley et al., 2011, Kim et al., 2014, Rutter et al., 2009, Sperling et al., 1998). Only some of 

these studies have used connectivity metrics in their analysis (Bowyer et al., 2015, Hinkley et 

al., 2011, Kim et al., 2014), the others using spectral analysis.  Results of MEG resting-state 

connectivity studies are mixed with one study finding hyper-connectivity (Bowyer et al., 

2015), one finding hypo-connectivity (Kim et al., 2014) and another finding both hypo and 

hyper-connectivity in different brain regions (Hinkley et al., 2011) in schizophrenia. 

 

3.3 Aims and Hypotheses 

Given these inconsistent findings, I sought to further explore resting-state connectivity in 

two groups of individuals with schizophrenia. The majority of studies have found reduced 

connectivity in schizophrenia (Pettersson-Yeo et al., 2011) and therefore, I tested the 
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hypothesis that participants with schizophrenia would show reduced resting-state 

connectivity compared with matched healthy control participants.  

In this chapter, data will be reported from two studies; one conducted at Cardiff University 

and the other conducted as part of the University of Nottingham’s Multi-modal Imaging 

Study in Psychosis (MISP) (Robson et al., 2016). Rather than combine the data, analysis was 

carried out on both groups separately in order to look for consistency in results between the 

two studies.  Amplitude-amplitude coupling in resting-state MEG was used in both groups 

to explore the dysconnectivity hypothesis of schizophrenia. For one group, I also used 

amplitude-amplitude coupling in resting-state fMRI to explore both the dysconnectivity 

hypothesis and the complementarity of fMRI and MEG. To my knowledge, only one other 

study has explored resting-state connectivity using both fMRI and MEG in the same 

participant group (Houck et al., 2017). In contrast to Houck et al. (2017), who used an ICA 

based approach, I used an AAL atlas based amplitude envelope correlation approach. In 

combining this with similar analysis of fMRI resting-state data I sought to gather 

complementary information regarding both electrophysiological network connectivity and 

haemodynamic connectivity in a patient population.  

 

3.4 Materials and Methods 

3.4.1 Participants 

Both studies were ethically approved in line with local and national practices (REC reference: 

Study 1- 10/WSE03/48, Study 2- 12/WM/0307). Participants in both studies gave written, 

informed consent prior to taking part.  
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Since data were collected as part of two different studies in two different sites, study 

protocols around recruitment and behavioural measures were somewhat different and so I 

will outline both studies separately.  

 

3.4.1.1 Study 1 

The data used in this study were acquired as part of a multi-modal imaging study of 

schizophrenia previously conducted at Cardiff University.  28 participants with a DSM-IV 

diagnosis of schizophrenia (20 males, 8 females; mean age: 44.6 +/-8.3, age range: 22-58) 

took part in the study. An age and sex matched group of 30 healthy control participants (18 

males, 12 females; mean age 41.8+/-10.6, age range: 25-58) were recruited locally through a 

University noticeboard. 

Participants with schizophrenia were recruited from an existing database of individuals that 

had previously taken part in the Cardiff Cognition in Schizophrenia Study (Rees et al., 2014). 

As part of the previous study, they were formally diagnosed using the Schedules for Clinical 

Assessment in Neuropsychiatry (SCAN) interview (Wing et al., 1990) and DSM-IV criteria 

(APA, 1994). This diagnosis was then verified by clinical consensus.  

Inclusion criteria were:  age between 16 and 75; English as a first language; normal or 

corrected vision; ability to give informed consent and for the case group, a DSM IV diagnosis 

of schizophrenia. Exclusion criteria were: a diagnosis of epilepsy or any severe neurological 

event such as head injury with loss of consciousness or clinically identified complications; 

any metal in their body that would preclude MRI or interfere with MEG scanning; for healthy 

controls, history of affective or psychotic disorder in themselves (assessed via administration 

of the MINI) or a first degree relative.   

The Schedule for Clinical Assessment in Neuropsychiatry (SCAN) (Wing et al., 1990) was 

administered to the case group, which then informed ratings on the Scale of the Assessment 
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of Positive Symptoms (SAPS) (Andreasen, 1984) and the Scale of the Assessment of 

Negative Symptoms (SANS) (Andreasen, 1983). These assessment tools are used to rate the 

positive and negative symptoms associated with schizophrenia. 

 

3.4.1.2 Study 2 

For this study, data were acquired as part of the University of Nottingham’s Multi-modal 

Imaging Study in Psychosis (MISP) (Robson et al., 2016).   

28 cases with a DSM-IV diagnosis of schizophrenia (21 males, 7 females; mean age: 26.7 +/-

5.8, age range 18-44) took part in the study. An age, sex and socio-economic background 

matched group of 29 healthy control participants (22 males, 7 females; mean age:  27.3 +/-

6.7, age range 18-48) also took part. Controls had no history of neurological illness. 

A symptom severity score of persisting symptoms was derived for each case using the SSPI 

(Liddle et al., 2002), a variant of the digit symbol substitution test and the SOFAS as outlined 

in Palaniyappan et al. (2013).   This was calculated by extracting the first principle component 

using PCA and allowed quantification of the three main syndromes of schizophrenia: reality 

distortion, psychomotor poverty and disorganisation. (The extraction of the symptom 

severity score was completed by the team in Nottingham.) 

 

3.4.2 MRI Data Acquisition 

Individual anatomical MRIs (1-mm isotropic, T1-weighted (Cardiff: FSPGR, Nottingham: 

MPRAGE) were acquired using a 3.0 T MRI scanner (Cardiff: General Electric, Nottingham: 

Philips). 
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3.4.3 Functional MRI Procedure and Data Acquisition for Study 1 

fMRI data was available for 27 cases and 30 controls, due to this not being performed in the 

initial stages of the study.   

An eyes-open, resting-state scan lasting 10 min was acquired using a BOLD-weighted 

gradient-echo echo-planar imaging sequence (TR/TE=3000/35ms; FOV= 20.5cm; 53 

slices, slice thickness=3.2mm; resolution=3.2mm isotropic, 200 volume acquisitions).  

Resting-state functional data were de-spiked (using 3dDespike), time-shifted to a common 

temporal origin (using 3dTshift), brain extracted (using 3dAutomask) and volume registered 

(using 3dvolreg – all programs taken from the AFNI software package, 

http://afni.nihm.nih.gov/afni (Cox, 1996)).  The mean functional volume for each subject 

was registered to the corresponding high-resolution T1-weighted image and normalised to 

the MNI-152 brain template (MNI152, nonlinearly derived, McConnell Brain Imaging 

Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada) 

using flirt from the FSL package. The functional data were transformed into MNI space. 

White matter (WM) and cerebral spinal fluid (CSF) masks were calculated from the 

anatomical data using 3dSeg and were eroded by 1 voxel. The functional data were cleaned 

by regressing in one step the following (using 3dTproject): motion parameters and their 

derivatives; GM and CSF time-series calculated by averaging over the eroded mask; a set of 

sines and cosines for bandpass filtering between 0.01Hz and 0.1Hz; and a set of regressors 

to censor time points with motion greater than a Euclidean norm of 0.2. This resulted in 30 

controls and 23 cases with adequate quality data for further analysis. Low frequency 

fluctuations were then extracted from 90 regions of interest as defined by the AAL atlas 

(Tzourio-Mazoyer et al., 2002). These were then used in subsequent analysis described below.   
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3.4.4 MEG Procedure and Data Acquisition 

Identical 275-channel axial gradiometer CTF systems (VSM MedTech) were used at both 

centres to collect MEG data. For Study 2 (MISP) participants were orientated supine. For 

Study 1, participants were seated upright in the scanner. Data were acquired at a sampling 

frequency of 1200Hz for study 1 and 600Hz for study 2. Electromagnetic coils were placed 

at three fiduciary locations (bilateral pre-auricular and nasion) and their position relative to 

the MEG sensors was localised before and after each session. For study 1, MEG data was 

co-registered to the individual anatomical MRI of each participant by marking the positions 

of the fiducial coils on each MRI. For study 2, a 3D digitiser (Polhemus Inc., Vermont) was 

used to obtain a three-dimensional digitation of the participants’ head shape, relative to the 

fiducial markers. 

For study 1, participants completed two resting state tasks, each lasting 5 minutes; one with 

their eyes open and focused on a central red fixation point and the other with their eyes 

closed. For study 2, participants completed one 10 minute, eyes open resting state task.  

Datasets were down-sampled to 600Hz (where required); band-pass filtered at 1-150Hz and 

segmented into 2 second epochs. Each epoch was then visually inspected for artefacts such 

as large muscle contractions or movement and if present, excluded from subsequent analysis. 

Datasets were filtered into the following bandwidths: Delta (1–4 Hz), theta (4–8 Hz), alpha 

(8–13 Hz), beta (13–30 Hz), low gamma (30–50 Hz) and high gamma (50-90 Hz). 
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3.4.5 Pipeline for Amplitude-Amplitude Coupling 

Figure 3.1 outlines the methods for data analysis used in the studies. Using the Automated 

Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002), 90 sources of interest in 

the cortex and subcortical regions were identified from which time-series were extracted and 

analysed. MEG data for each participant and frequency band were source reconstructed 

using a linearly constrained minimum variance (LCMV) beamformer on a 6mm grid. Single 

shell source models were registered to the standard co-ordinate space of the Montreal 

Neuroimaging Institute.  Orthogonalisation of signals using linear regression was used to 

reduce any zero-time lag correlation suggestive of signal leakage thereby reducing any 

artefactual correlation (Colclough et al., 2015). The Hilbert envelope (amplitude envelope) 

of source-space neural oscillatory activity in each frequency band for every AAL region was 

then computed from orthogonalised signals. A median filter was applied to smooth out large 

deflections in the data. The Hilbert Envelope with the maximum percentage change within 

each AAL region was then used for further analysis.  
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3.4.6 Statistical Analyses 

Amplitude envelope cross-correlations for every pair of AAL regions were computed across 

the entire resting state run for each frequency band for MEG time series. This gave a single 

value (correlation coefficient) for each pair of AAL regions, quantifying the degree of 

Figure 3.1 MEG analysis pipeline for resting-state functional connectivity.
1-7. We used an AAL atlas-guided beamforming approach to define 90 cortical and subcortical seed
regions. We first filtered data into canonical functional bands and then reconstructed virtual sensor time
series in each of the 90 AAL regions. The data was orthogonalised to suppress source leakage. We
applied a Hilbert transform to give estimates of amplitude and phase for each of these regions.
Amplitude envelopes were then cross-correlated to derive the degree of connectivity between AAL
regions. z statistics were derived from the correlation coefficients and used to construct connectivity
matrices.
8-9. Data was initially masked to show only the highest 5% of connections and this was followed by a t-
test of these connections.
10-12. A Gaussian mixture modelling approach was also used to define connections as signal or noise.
“Signal” connections were plotted onto connectivity maps, followed by t-tests of these connections.
(Blue=lower connectivity in these connections in cases.)
13. Strength of connectivity was calculated by summing z statistics of signal connections horizontally.
(Red=Cases. Blue=Controls)
14. Global connectivity was calculated by summing all z statistics of signal connections. Mean, median
and t-test. (Red=Cases. Blue=Controls)

1 2 3 4 5 6

9 8 7

12 11 10

14 13
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amplitude correlation between them. A variance stabilising transformation, (Fishers Z 

transformation) was applied to the correlation coefficients to normalise their behaviour and 

reduce estimation bias when averaging (Silver and Dunlap, 1987). The theoretical variance 

of the z statistic was then calculated in order to transform Fishers Z scores into z statistics. 

This transformation corrects for the different number of trials in different groups. 

Connectivity matrices were constructed using z statistics as edge weights for all AAL atlas 

regions. Resulting matrices are symmetrical, with each square representing the z statistic of 

connectivity between one brain region and another.  Connectivity matrices were constructed 

for every participant for every frequency band. Averaged, uncorrected group-wise data was 

then plotted onto connectivity matrices to visually compare connectivity between groups.  

In order to reduce the number of comparisons, those connections with a z statistic within 

the highest 5%, present 95% of the time in the bootstrapping procedure were considered the 

most prominent connections and plotted onto a circular map. This was followed by group 

comparisons of these strongest connections.  

A further analysis method involved classifying connections into signal or noise using a 

statistical thresholding procedure based on Gaussian mixture modelling (GMM) as discussed 

in Chapter 2 (Plataniotis and Hatzinakos, 2000). Using the Expectation-Maximisation 

algorithm with two components randomly selected as the initial component means, a 

Gaussian mixture distribution was fitted to the z statistics by maximum likelihood. In each 

frequency band, only connections with a greater than 50% probability of being within the 

signal were accepted as valid.  

 

The signal z statistic for every region was summed horizontally to give the strength of 

connectivity of each region. Two-tailed t-tests were used to evaluate between group 
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differences in strength and statistical significance was defined as a threshold of 0.05. 

Additionally, global connectivity was calculated and compared between groups by summing 

all signal connections.  

Permutation testing of the maximum t-statistic was used to test for statistical differences 

between case and control groups. Case and control labels were swapped randomly, creating 

two artificial matrices, which were then compared. This was repeated 2000 times to generate 

a null distribution. This was then compared with the value from the real result to ascertain 

the probability that the result occurred by chance. This is called omnibus testing and 

automatically controls for multiple comparisons.  

These same analysis procedures were also used for the fMRI BOLD time-series in Study 1. 

After carrying out the GMM procedure on both the MEG and fMRI data, connections were 

found that were valid for both. Those connections were then analysed further and cases 

compared with controls. The uncorrected t-statistic for fMRI and MEG were then plotted 

against each other to explore associations. Since the fMRI data was collected in the eyes-

open condition, I compared this only to the eyes-open MEG data. 

 

3.5 Results 

3.5.1 Demographic and Clinical Information 

Table 3.1 shows participant demographic and clinical information, including medication, 

reported as mean daily dose equivalents (DDD) (WHO, 2012), mean SAPS and SANS scores 

for study 1 and disease severity scores for study 2. DDD refers to the average daily 

maintenance dose for a drug. DDD for antipsychotics was calculated by dividing the 

participants prescribed daily dose by the average daily maintenance dose of that drug. For 
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those on multiple antipsychotic medications, these were added together. Mean DDD across 

cases was then calculated by averaging these values across the cohort (Sweileh et al., 2014).   

For study 1, all except for one case were treated with antipsychotic medication. Both SAPS 

and SANS scores overall were low suggesting a group of cases with minimal symptoms. For 

study 2, all cases were treated with antipsychotic medication. Participants in study 1 were 

significantly older than those in study 2 (p<0.001) 

 

Study 1 Study 2

Schizophrenia 
n=28

Control
n=30

Schizophrenia 
n=28

Control
n=29

Age 
(Mean (SD)) 44.67(8.31) 41.86(10.66) 26.7(5.8) 27.3(6.7)

Gender 
(M(F)) 20(8) 18(12) 21(7) 22(7)

Antipsychotic DDD 
(Mean (SD)) 1.17(0.82) --- 1.24(0.69) ---

SAPS 
(Mean (SD)) 3.46(3.89) --- --- ---

SANS 
(Mean (SD)) 3.96(2.77) --- --- ---

Illness Severity --- --- 0.25(0.88) ---

Table 3.1 Demographic and clinical information
S.D = standard deviation, M=male,  F= female, DDD= mean daily dose equivalents, SAPS= Scale of  the 
Assessment of  Positive Symptoms, SANS= Scale of  the Assessment of  Negative Symptoms
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3.5.2 Study 1: Resting State Functional Connectivity Analysis: Uncorrected 

Analysis of Differences  

 

Figure 3.2 shows grouped connectivity matrices for cases and controls and difference in 

mean connectivity for study 1 for all frequency bands. The left panel shows results for the 

eyes-open condition and the right panel shows results for the eyes-closed condition.  

 

Eyes Open Eyes Closed

Controls
Connectivity

Matrices

Patients
Connectivity

Matrices

Difference in 
Mean Connectivity

Controls
Connectivity

Matrices

Patients
Connectivity

Matrices

Difference in 
Mean Connectivity

Delta
1-4Hz

Theta
4-8Hz

Alpha
8-13Hz

Beta
13-30Hz

Low Gamma
30-50Hz

High Gamma
50-90Hz

Figure 2: Study 1 Connectivity matrices. 
Left panel = Eyes Open,  Right panel = Eyes Closed. Orange=higher connectivity. Blue=lower connectivity. Figure 2: Study 1 Connectivity matrices. 

Left panel = Eyes Open,  Right panel = Eyes Closed. Orange=higher connectivity. 
Blue=lower connectivity. 

Figure 3.2: Study 1 Connectivity matrices. 
Left panel = Eyes Open,  Right panel = Eyes Closed. Orange=higher connectivity. Blue=lower 
connectivity. x axes=AAL nodes 1-90, y axes=AAL nodes 1-90
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For most frequency bands, particularly theta, alpha, beta and low gamma, there is a hub 

region of increased connectivity (represented by a central block of orange on the connectivity 

matrices) that represents connectivity in the posterior parietal and occipital regions. This is 

evident for both cases and controls. Uncorrected comparisons between cases and controls 

shows reduced connectivity in cases in the alpha and beta frequency bands. This is 

represented by blue regions and appears to be particularly prominent in the posterior parietal 

hub region previously discussed. Differences in other frequency bands appear much noisier 

with more widespread differences.  
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Figure 3.3 shows circular connectivity maps for study 1 using the data masking procedure 

outlined above. Each point on the connectivity map represents an AAL node. Similar 

patterns of connectivity are evident in both cases and controls with again, posterior parietal 

and occipital connections being the most consistent connections as well as fronto-temporal 

Eyes Open Eyes Closed

Controls
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Connectivity

Patients
Masked

Connectivity

Difference in 
Mean

Connectivity

Controls
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Patients
Masked

Connectivity

Difference in 
Mean

Connectivity

Delta
1-4Hz

Theta
4-8Hz

Alpha
8-13Hz

Beta
13-30Hz

Low Gamma
30-50Hz

High Gamma
50-90Hz

Figure 3: Uncorrected connectivity maps.
Left panel = Eyes Open. Right panel = Eyes Closed.
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of  the 
time in the bootstrapping procedure.
Controls Masked Connectivity = mean highest connections over all controls.
Patients Masked Connectivity = mean highest connections over all patients.
Difference in Mean Connectivity= Patients Masked Connectivity minus Controls Masked 
Connectivity. Blue=lower connectivity in cases. Red = higher connectivity in cases.

Figure 3.3: Uncorrected connectivity maps.
Left panel = Eyes Open. Right panel = Eyes Closed.
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of  the time in 
the bootstrapping procedure.
Controls Masked Connectivity = mean highest connections over all controls.
Patients Masked Connectivity = mean highest connections over all patients.
Difference in Mean Connectivity= Patients Masked Connectivity minus Controls Masked Connectivity. 
Blue=lower connectivity in cases. Red = higher connectivity in cases.
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and parieto-temporal connections. When calculating the difference in mean connectivity, 

there is a consistent reduction in connectivity in these occipital and parietal connections in 

the alpha and beta frequency band. 

 

3.5.3 Study 1: GMM Analysis 

 

GMM analysis did not reveal a consistent pattern of “signal” and “noise” nodes for the delta, 

theta, low gamma or high gamma frequency bands. In these frequency bands, there were no 

node-node connections identified that had a mean probability of being in “signal”, averaged 

across participants, of greater than 50%. Therefore, data will only be presented for the alpha 

and beta frequency bands and are shown in Figure 3.4. Using this approach, “signal” 

connections were found predominantly in occipital, parietal and temporal regions in the 

alpha frequency band. In the beta frequency band, signal connections were more widespread 

and in addition included fronto-parietal and temporo-parietal connections. In both the eyes-

open and eyes-closed conditions, posterior (occipital and parietal) connections were 

“Signal” 
Connections

Uncorrected
t-test

Corrected
t-test

Connectivity 
Strength

Global 
Connectivity 

Sum

“Signal” 
Connections Uncorrected 

T-test
Corrected

T-test
Connectivity

Strength

Global
Connectivity

Sum

Study 1
Eyes Open 

Study 1
Eyes Closed 

Alpha 8-13Hz Beta 13-30Hz

Figure 4: Study 1 GMM Analysis.
Left panel = Alpha (8-13Hz). Right panel = Beta (13-30Hz)
Signal connections= connections found to be in the “signal” Gaussian using GMM.
Uncorrected t-test= uncorrected t-test of signal connections between cases and controls. Red lines=increased connectivity. Blue lines= decreased connectivity in cases.
Corrected t-test= corrected t-test of signal connections between cases and controls. Red lines=increased connectivity. Blue lines= decreased connectivity in cases.
Connectivity Strength= Sum of every signal connection for each AAL node. Horizontal axes=AAL node. Vertical axes=Connectivity strength. Red=Cases. Blue=Controls.
Global Connectivity Sum= Violin plot of sum of all signal connections for cases and controls. Red=Cases. Blue=Controls.

Figure 3.4: Study 1 GMM Analysis.
Left panel = Alpha (8-13Hz). Right panel = Beta (13-30Hz)
Signal connections= connections found to be in the “signal” Gaussian using GMM.
Uncorrected t-test= uncorrected t-test of signal connections between cases and controls. Red
lines=increased connectivity. Blue lines= decreased connectivity in cases.
Corrected t-test= corrected t-test of signal connections between cases and controls. Red lines=increased
connectivity. Blue lines= decreased connectivity in cases.
Connectivity Strength= Sum of every signal connection for each AAL node. Horizontal axes=AAL node.
Vertical axes=Connectivity strength. Red=Cases. Blue=Controls.
Global Connectivity Sum= Violin plot of sum of all signal connections for cases and controls.
Red=Cases. Blue=Controls.



CHAPTER 3                A Multimodal Study of Resting State Connectivity in Schizophrenia   

 62 

consistently reduced in cases in the alpha frequency band. Randomisation testing of the t-

statistic identified the following connections as being significantly (p<0.05, corrected) 

reduced in cases:  

 

In the beta frequency band, uncorrected reduced connectivity in cases was more widespread 

and included multiple fronto-parietal and homologous frontal connections. The following 

connections were significantly reduced in cases after correction for multiple comparisons: 

 

 

 

Alpha	Eyes-Open	(one	connection):	
Right	Superior	Occipital	(50)	to	Right	Fusiform	(56)	

Alpha	Eyes-Closed:	
Multiple	occipito-occipital	connections	plus	left	fusiform	to	left	mid	temporal

Right	Calcarine (44)	to	Left	Superior	Occipital	(49)
Left	Cuneus	(45)	to	Right	Cuneus	(46)

Left	Cuneus	(45)	to	Left	Superior	Occipital	(49)
Left	Cuneus	(45)	to	Right	Superior	Occipital	(50)
Left	Cuneus	(45)	to	Right	Mid	Occipital	(52)	
Left	Cuneus	(45)	to	Left	Inferior	Occipital	(53)

Left	Cuneus	(45)	to	Left	Precuneus	(67)
Right	Cuneus	(46)	to	Left	Superior	Occipital	(49)
Right	Cuneus	(46)	to	Left	Mid	Occipital	(51)
Right	Cuneus	(46)	to	Left	Precuneus	(67)
Left	Lingual	(47)	to	Left	Mid	Occipital	(51)

Left	Lingual	(47)	to	Left	Inferior	Occipital	(53)	
Right	Lingual	(48)	to	Left	Inferior	Occipital	(53)

Left	Superior	Occipital	(49)	to	Left	Mid	Occipital	(51)
Left	Superior	Occipital	(49)	to	Left	Inferior	Occipital	(53)	

Left	Superior	Occipital	(49)	to	Left	Precuneus	(67)
Right	Superior	Occipital	(50)	to	Right	Mid	Occipital	(52)

Left	Fusiform	(55)	to	Left	Mid	Temporal	(85)

Beta	Eyes-Open:	
Left	Superior	Occipital	(49)	to	Left	Mid	Occipital	(51)
Right	Inferior	Parietal	(62)	to	Right	SupraMarginal (64)

Beta	Eyes-Closed:
Left	Supplementary	Motor	Area	(19)	to	Right	Paracentral	Lobule	(70)
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Connectivity strength was significantly reduced in cases in both conditions.  

 

Global connectivity strength was also reduced in both conditions and frequency bands 

(Alpha: eyes open, p=0.006, eyes closed, p<0.001. Beta: eyes open, p<0.001, eyes closed, 

p=0.009).  

 

3.5.4 Study 1: fMRI Results 

fMRI results can be seen in figure 3.5. Uncorrected differences between cases and controls 

show predominantly increased connectivity in cases occipitally and parietally. However, 

these differences did not reach statistical significance.  

Alpha	Eyes-Open	(p=0.0148)
Right	Superior	Occipital	(50)

Left	Mid	Occipital	(51)

Alpha	Eyes-Closed	(p<0.001)
Left	Cuneus	(45)	
Right	Cuneus	(46)	
Left	Lingual	(47)	

Left	Superior	Occipital	(49)	
Right	Superior	Occipital	(50)

Left	Mid	Occipital	(51)
Right	Mid	Occipital	(52)
Left	Inferior	Occipital	(53)	
Right	Inferior	Occipital	(54)	
Left	Angular	Gyrus	(65)	

Beta	Eyes-Open	(0.005)
Left	Mid	Occipital	(51)

Left	Superior	Parietal	(59)	
Right	Inferior	Parietal	(62)	
Left	SupraMarginal (63)	
Left	Angular	Gyrus	(65)	

Beta	Eyes-Closed	(0.02)	
Left	Angular	Gyrus	(65)	
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3.5.5 Study 1: Comparison between MEG and fMRI Results 

Since valid connections were only found in the alpha and beta frequency bands using the 

GMM procedure in study 1, only these frequency bands were compared with the fMRI data.  

 

Figure 3.5 shows comparisons between fMRI and MEG in the alpha and beta frequency 

bands. In the alpha frequency band, signal connections present in both fMRI and MEG data 

were predominantly in occipital and parietal regions. Overall, the difference in these 

connections for fMRI revealed increased connectivity in cases, whereas, as discussed 

previously, reduced connectivity was found in MEG. However, for fMRI, these differences 

did not reach statistical significance. When looking at correlations across node-node 

connections, between t-tests in MEG and fMRI, there was no correlation in the alpha 

frequency band.  

GMM Signal Connections
for fMRI and MEG

Uncorrected
Difference in Mean

Connectivity
For fMRI

Uncorrected
Difference in Mean

Connectivity
For MEG

Correlation between fMRI 
and MEG t-statistic

Alpha
8-13Hz

Beta
13-30Hz

Figure 5: fMRI vs MEG connectivity
Top panel= alpha, lower panel=beta
GMM Signal connections= Connections identified as ”signal” in GMM procedure for both fMRI and MEG. 
Difference in Mean Connectivity= Patients Connectivity minus Controls Connectivity. Blue=lower connectivity in cases. Red = higher 
connectivity in cases.
Correlation between fMRI and MEG t-statistic.

Figure 3.5: fMRI vs MEG connectivity
Top panel= alpha, lower panel=beta
GMM Signal connections= Connections identified as ”signal” in GMM procedure for both fMRI and 
MEG. 
Difference in Mean Connectivity= Patients Connectivity minus Controls Connectivity. Blue=lower 
connectivity in cases. Red = higher connectivity in cases.
Correlation between fMRI and MEG t-statistic.
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In the beta frequency band, signal connections present in both fMRI and MEG data were 

predominantly in occipital and parietal regions as well as fronto-parietal and temporo-

parietal. Increases and decreases in connectivity in cases in these connections were evident 

in the fMRI data. Again, these differences were non-significant. MEG data revealed reduced 

connectivity in these connections in cases. There was a significant correlation between t-tests 

of MEG beta connectivity between cases and controls and fMRI connectivity. i.e. those 

connections showing the biggest reductions in connectivity in cases in fMRI also show the 

biggest reductions in connectivity in the MEG beta frequency band.  

 

3.5.6 Study 2: Resting State Functional Connectivity Analysis: Uncorrected 

Analysis of Differences  

Given that robust connections were only found in the alpha and beta frequency bands in 

study 1, only these frequency bands were explored in study 2.  

 

Figure 3.6 shows grouped connectivity matrices for cases and controls and difference in 

mean connectivity for study 1 and 2 for alpha and beta frequency bands. The left panel shows 

Controls	Connectivity
Matrices

Cases		Connectivity
Matrices

Difference	in	Mean	
Connectivity

Controls	Connectivity
Matrices

Cases	
Connectivity
Matrices

Difference	in	Mean	
Connectivity

Schizophrenia Study	1
(Cardiff)	Eyes	Open	

Schizophrenia Study	1
(Cardiff)	Eyes	Closed	

Schizophrenia Study	2
(Nottingham	MISP)

Figure 6: Study 1 and 2 Connectivity matrices
Left panel = Alpha (8-13Hz). Right panel = Beta (13-30Hz) 
Orange=higher connectivity. Blue=lower connectivity. 

Alpha	(8-13Hz) Beta	(13-30Hz)

Figure 3.6: Study 1 and 2 Connectivity matrices. 
Left panel = Alpha (8-13Hz),  Right panel = Beta (13-30Hz). Orange=higher connectivity. Blue=lower 
connectivity. 
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results for the alpha frequency band and the right panel shows results for the beta frequency 

band. Again, a hub region of increased connectivity (orange central area corresponding to 

posterior parietal region) is seen in study 2 in both the alpha and beta frequency bands in 

both cases and controls. (When comparing with results for study 1, patterns of connectivity 

appear very similar.)   

In study 2, uncorrected comparisons between cases and controls shows reduced connectivity 

in cases in the alpha and beta frequency bands, again in the posterior parietal hub region 

previously discussed. However, there also appear to be regions of more widespread increased 

connectivity in study 2, particularly in the beta frequency band.  

 

 

Controls 
Connectivity

Matrices
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Connectivity

Matrices

Difference in 
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Connectivity

Controls 
Connectivity
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Cases 
Connectivity

Matrices

Difference in 
Mean 

Connectivity

Schizophrenia Study 1
(Cardiff) Eyes Open 

Schizophrenia Study 1
(Cardiff) Eyes Closed 

Schizophrenia Study 2
(Nottingham MISP)

Alpha (8-13Hz) Beta (13-30Hz)

Figure 7: Study 1 and 2 Uncorrected connectivity maps
Left panel = Alpha (8-13Hz). Right panel = Beta (13-30Hz)
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of the time in the bootstrapping
procedure.
Controls Masked Connectivity = mean highest connections over all controls.
Cases Masked Connectivity = mean highest connections over all patients.
Difference in Mean Connectivity= Cases Masked Connectivity minus Controls Masked Connectivity.
Blue=lower connectivity in cases. Red = higher connectivity in cases.

Figure 3.7: Study 1 and 2 Uncorrected connectivity maps
Left panel = Alpha (8-13Hz). Right panel = Beta (13-30Hz)
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of the time
in the bootstrapping procedure.
Controls Masked Connectivity = mean highest connections over all controls.
Cases Masked Connectivity = mean highest connections over all patients.
Difference in Mean Connectivity= Cases Masked Connectivity minus Controls Masked Connectivity.
Blue=lower connectivity in cases. Red = higher connectivity in cases.



CHAPTER 3                A Multimodal Study of Resting State Connectivity in Schizophrenia   

 67 

Figure 3.7 shows circular connectivity maps for studies 1and 2 in the alpha and beta 

frequency bands using the data masking procedure outlined above. The left panel shows the 

alpha frequency band and the right shows the beta frequency band. Again, similar patterns 

of connectivity are seen in cases and controls in study 2 as those seen in study 1. Uncorrected 

differences in mean connectivity show similar patterns of reduced connectivity in cases in 

the alpha and beta frequency bands in study 2 to those seen in study 1.  

 

3.5.7 Study 2: GMM Analysis 

Results between study 1 and 2 diverge somewhat when analysing the data using a GMM 

approach.  
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“Signal” 
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Corrected
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Connectivity
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Global
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Sum

Study 1
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Study 1
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Alpha 8-13Hz Beta 13-30Hz

Figure 8: Study 1 and 2 GMM Analysis.
Left panel = Alpha (8-13Hz). Right panel = Beta (13-30Hz)
Signal connections= connections found to be in the “signal” Gaussian using GMM.
Uncorrected t-test= uncorrected t-test of signal connections between cases and controls. Red lines=increased connectivity. Blue lines= decreased connectivity in cases.
Corrected t-test= corrected t-test of signal connections between cases and controls. Red lines=increased connectivity. Blue lines= decreased connectivity in cases.
Connectivity Strength= Sum of every signal connection for each AAL node. Horizontal axes=AAL node. Vertical axes=Connectivity strength. Red=Cases. Blue=Controls.
Global Connectivity Sum= Violin plot of sum of all signal connections for cases and controls. Red=Cases. Blue=Controls.

Figure 3.8: Study 1 and 2 GMM Analysis
Left panel =Alpha (8-13Hz), Right panel=Beta (13-30Hz)
Signal connections= connections found to be in the ”signal” Gaussian using GMM.
Uncorrected t-test=uncorrected t-test of  signal connections between cases and controls. Red 
lines=increased connectivity. Blue lines=decreased connectivity in cases.
Connectivity Strength=Sum of  every signal connection for each AAL node. Horizontal axes=AAL node. 
Vertical axes=Connectivity strength. Red=cases. Blue=controls.
Global Connectivity Sum= Violin plot of  sum of  all signal connections for cases and controls. 
Red=cases. Blue=controls.
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GMM analysis results in the identification of similar “signal” connections in study 2 to those 

found in study 1. An uncorrected t-test comparing these connections in cases and controls 

results in increased temporo-parietal and parieto-occipital connectivity in cases in the alpha 

frequency band. In the beta frequency band, it results in two connections with increased 

connectivity in cases. However, after correcting for multiple comparisons, there were no 

significant differences between cases and controls in the alpha and beta frequency bands for 

study 2. This was also the case when exploring connectivity strength and global connectivity.   

 

3.6 Correlations with clinical scores 

3.6.1 Study 1 

3.6.1.1 Eyes Open 

In the alpha frequency band, there was one occipital connection that correlated with SAPS, 

however, this did not reach statistical significance after permutation testing to correct for 

multiple comparisons across connections. There were no other correlations found between 

connectivity in the alpha or beta frequency bands and SANS, DDD or age.  

3.6.1.2 Eyes Closed 

In the beta frequency band, there was one parietal connection that negatively correlated with 

SAPS, however, this did not reach statistical significance. There was also one parietal 

connection that negatively correlated with age in this frequency band but again, this did not 

reach statistical significance. Aside from these two correlations, there were no correlations 

found between connectivity and SAPS, SANS, DDD or age.  
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3.6.2 Study 2 

In the alpha frequency band, connectivity in multiple parietal-occipital connections and one 

temporo-parietal connection negatively correlated with illness severity. However, these did 

not reach statistical significance. Results were similar for the beta frequency band with fairly 

widespread connectivity being negatively correlated with illness severity. After randomisation 

testing, connectivity in one connection between the right angular gyrus and left mid temporal 

negatively correlated with illness severity (Figure 3.9).   

In the beta frequency band DDD negatively correlated with connectivity in two occipital 

connections. However, after randomisation testing, these did not meet statistical significance. 

In the alpha frequency band, there were no correlations between connectivity and age. In the 

beta frequency band, age positively correlated with connectivity in multiple temporo-parietal 

and temporo-occipital connections. However, after randomisation, these did not meet 

statistical significance.  

 

 

Patients GMM Masked Data
Uncorrected beta connectivity 

correlation with illness
severity

Corrected beta connectivity 
correlation with illness

severity

Correlation of  most 
significant connection 

with illness severity

Minimum Uncorrected p= 0.00037 Minimum Corrected p= 0.04740

Figure 11: Study 2 Correlation between beta connectivity and illness severity
Red=Positive correlation, Blue=negative correlation

Minimum Uncorrected p= 0.00037

Figure 3.9: Study 2 Correlation between beta connectivity and illness severity
Red=Positive correlation, Blue=negative correlation
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3.7 Discussion 

Resting-state dysconnectivity has repeatedly been found in patients with schizophrenia. 

However, few studies have used MEG to probe resting-state connectivity in schizophrenia 

and of those that have, results are heterogeneous (Bowyer et al., 2015, Hinkley et al., 2011, 

Kim et al., 2014). In this study, amplitude-amplitude coupling, a robust and repeatable metric, 

was used to elucidate the link between schizophrenia and connectivity. In addition, a novel 

method of limiting analysis to only “signal” connections was used in order to reduce bias 

and threshold data.  

Through this method, robust “signal” connections in the alpha and beta frequency bands 

were identified. Using this GMM approach, statistically significantly reduced connectivity 

was evident in one schizophrenia study (in two conditions) in the alpha and beta frequency 

bands. In a second study, we found no statistically significant differences between cases and 

controls when using this approach. Results from Study 1 were consistent with research 

finding dysconnectivity in schizophrenia, particularly those finding reduced parietal and 

occipital connectivity in patients with schizophrenia (Henseler et al., 2010, Zhuo et al., 2014, 

Wende et al., 2015). In addition, the finding of reduced connectivity specifically in the alpha 

and beta frequency bands is of interest. Using similar methodology, Brookes et al, 2016 found 

reduced alpha connectivity in patients with schizophrenia from the same cohort used in study 

2 (MISP) when undertaking a motor task. Zumer et al. (2014) found that alpha oscillations 

are involved in gating information flow from visual areas to higher cortical centres. It may 

be, therefore that reduced alpha connectivity may represent a deficit in gating information 

flow in patients with schizophrenia that results in abnormal salience. This supports early 

theories such as that of Venables (1964) that the lack of control over the flood of sensory 

information (or input dysfunction) may be an underlying pathophysiological mechanism of 

schizophrenia (Freedman et al., 2002).  
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3.7.1 Inconsistencies between Study 1 and Study 2 

There may be several explanations as to why there was a difference in results between the 

two studies. Firstly, the studies were developed and executed independently in two different 

sites. Therefore, the two cohorts may differ due to methodological differences during 

recruitment and data collection. This is evident when exploring the 

demographic/background of participants included in the two studies. There was a significant 

difference in age of participants between the two studies. Also, whilst not formally 

investigated (as data was not available for both studies), illness duration was heterogeneous 

in Study 2 (range: 7 months-12 years, mean: 4.6 years), whereas all cases recruited in Study 1 

were recruited from a database of individuals with schizophrenia that had taken part in 

research (and therefore been diagnosed) many years earlier. It may be the case that age (and 

consequently illness duration) may account for differences in connectivity between studies. 

This is supported by a recent study by Sheffield et al. (2016) that found an age-related 

accelerated decline in functional connectivity in schizophrenia.  In addition, Anticevic et al. 

(2015a), found hyper-connectivity in early schizophrenia and in healthy controls after 

administration of ketamine but hypo-connectivity in a group with chronic schizophrenia, 

suggesting that underlying neurobiology and consequently, connectivity may change through 

the course of the illness and therefore be affected by age. This is also supported by studies 

finding changes in structural connectivity (Friedman et al., 2008) and neurochemistry 

(Marsman et al., 2013) through the course of schizophrenia. However, there was no 

statistically significant correlation between age and connectivity in either study presented 

here and it is therefore difficult to firmly conclude that age and illness duration led to 

differences in results between studies. 
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There was a significant negative correlation in Study 2 between beta connectivity and illness 

severity. In this instance, illness severity is a holistic measure of the severity of the disorder 

and is calculated using current psychopathology, a measure of cognition and a measure of 

social and occupational functioning. It has been suggested that beta synchrony has a role in 

higher level cognition (Donner and Siegel, 2011) and this may therefore explain why illness 

severity negatively correlated with beta connectivity in study 2. Differences in illness severity 

may therefore also explain why there were significant differences in connectivity in cases in 

Study 1 but not in Study 2 (although this was not formally investigated as illness severity 

scores were not available for Study 1).  

 

3.7.2 MEG vs fMRI 

There were clear differences in results when comparing fMRI and MEG in study 1. Using 

MEG, there was reduced connectivity in cases, whereas, there were no statistically significant 

differences between cases and controls when using fMRI. Such differences in results between 

imaging techniques were also evident in a recent fMRI and MEG resting-state study of 

schizophrenia using ICA whereby the authors found frontal and temporal hyperconnectivity 

and hypoconnectivity in the PCC using MEG and hypoconnectivity using fMRI (Houck et 

al., 2017). In the current study however, when looking at correlations between t-tests of 

connectivity using the two modalities, I found a significant correlation between fMRI and 

beta frequency band MEG. This suggests that data collected using the two methodologies 

are complementary and that there is a link between haemodynamic network connectivity and 

electrophysiological network connectivity in schizophrenia. This is consistent with other 

work linking beta band activity and connectivity seen in MEG to fMRI (Garcés et al., 2016, 

Singh et al., 2002, Brookes et al., 2011). 
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3.7.3 Strengths 

Whilst resting-state functional connectivity using both fMRI and MEG in schizophrenia has 

been previously explored (Houck et al., 2017), this is the first study to use AAL atlas-based 

amplitude envelope/BOLD time-series correlations to compare the two methods.   

Using the same analysis pipeline for both methodologies and both studies conducted at both 

sites, has resulted in finding a consistent hub region of increased connectivity in both cases 

and controls.  

Differences between cases and controls have been rigorously corrected for during the 

analysis stage, for example, the number of trials included after artefact rejection. In addition, 

the novel GMM based approach of thresholding data results in reduced bias due to 

differences in SNR between groups.  

 

3.7.4 Limitations 

There are several limitations to the study, which may account for differences seen between 

participants with schizophrenia and healthy controls. Firstly, antipsychotic medication 

exposure has been found to cause modulations in functional connectivity. (Kraguljac et al., 

2016c, Bai et al., 2016, Lui et al., 2010). All participants with schizophrenia (except one case 

in Study 1) were prescribed antipsychotic medication and therefore, this could be a potential 

confounding factor. Therefore, differential functional connectivity may be due to differential 

antipsychotic exposure. However, in both studies presented here, there was no correlation 

between connectivity and DDD, suggesting that this may not be the case.  
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Antipsychotic exposure may also explain the different results found in fMRI and MEG. D2 

blockade (an action of most antipsychotics) reduces dopamine-induced vasoconstriction 

(Krimer et al., 1998) and therefore, could have a differential effect upon haemodynamic 

networks as measured by BOLD.  

Nicotine exposure may also have an impact upon connectivity (Wang et al., 2017, Hobkirk 

et al., 2017). Participants were not asked to refrain from smoking, therefore, acute effects of 

nicotine exposure cannot be ruled out. This should be taken into consideration in future 

studies of this nature.  

 

3.8 Conclusions 

In conclusion, reduced functional connectivity was found in one cohort of cases with 

schizophrenia in the alpha and beta frequency bands. This result was not replicated in a 

second cohort. However, in the second study, I found a significant negative correlation 

between beta band connectivity and illness severity suggesting connectivity in this frequency 

band is lower in more unwell patients. Therefore, this study supports the dysconnectivity 

hypothesis of schizophrenia and a link between connectivity and psychopathology. 

Furthermore, these results suggest that dysconnectivity in schizophrenia is frequency 

specific. In addition, whilst there was no correlation between age and connectivity in these 

studies, there was a significant difference in age (and possibly duration of illness) between 

our two groups which may account for differences in results between the two studies. Future 

studies could therefore explore this in further detail and in Chapter 5, I will do this by 

exploring functional connectivity in two groups of patients with differing duration of illness.  

Whilst there were significant differences in cases with schizophrenia using MEG, there were 

no significant differences using fMRI. This may be due to the BOLD signal being a non-
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specific measure that relates to all neural signals, only some of which will carry disease 

relevant information. The BOLD signal consists of synchronised activity at multiple 

frequencies (Magri et al., 2012, Scheeringa et al., 2011) and therefore may explain differential 

effects in fMRI and MEG. In addition, multiple factors affect the BOLD signal that are non-

neural in origin such as anxiety, breathing rate, cardiovascular fitness, nicotine exposure, and 

eye movement artefacts all of which could differentially affect patients.  

However, there was a positive correlation between t-tests of fMRI connectivity between 

cases and controls and beta band connectivity in MEG between cases and controls 

suggesting a link between the two measures. 



CHAPTER 4                MEG Resting State Connectivity Modulations in Schizotypy in a 
Healthy Population 

 76 

Chapter 4 MEG Resting State Connectivity Modulations 

in Schizotypy in a Healthy Population  

4.1 Rationale 

The dimensional view of schizophrenia considers the disorder as existing on a continuum 

with subclinical symptoms of psychosis at one end (schizotypy) and clinically diagnosable 

schizophrenia at the other. This dimensional view is supported by genetic and 

neurobiological research (Reviewed by (Ettinger et al., 2014)). However, whilst there is 

substantial evidence supporting dysconnectivity in schizophrenia, there is very little research 

exploring resting-state connectivity in schizophrenia spectrum disorders (Wang et al., 2015, 

Zhang et al., 2015, Lagioia et al., 2010, Zhu et al., 2017). In this study, I sought to explore 

the continuum hypothesis of schizophrenia through looking at MEG resting-state 

connectivity in healthy participants with high and low schizotypy. 

 

4.2 Background 

Schizophrenia is a neuropsychiatric condition consisting of three core characteristic 

syndromes; reality distortion (positive symptoms), psychomotor poverty (negative 

symptoms) and disorganisation (cognitive). The diagnosis of schizophrenia is categorical, 

meaning that patients must meet certain criteria to receive a diagnosis (APA, 1994, WHO, 

1993). However, the dimensional view of schizophrenia considers the disorder as existing on 

a continuum (Claridge and Beech, 1995) with sub-clinical psychotic traits in healthy 

individuals (schizotypy) (Rado, 1953) existing at one end of the spectrum and schizophrenia 

existing at the other. This dimensional view is supported by studies using factor analysis that 
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find three main dimensions of schizotypy that reflect those of schizophrenia (positive, 

negative and disorganised) (Bentall et al., 1989). 

In addition, this continuum model is supported by other research which suggests that not 

only do schizotypy and schizophrenia share common psychopathology, there is also a genetic 

and neurobiological overlap (Reviewed by (Ettinger et al., 2014)). (However, as discussed in 

Chapter 1, findings of shared genetic predisposition in schizophrenia and schizotypy are 

limited with more evidence against this, particularly for positive symptoms.)  

As discussed previously, it has been hypothesized that schizophrenia is a syndrome of 

dysconnectivity; referring to abnormal integration within and between brain regions and a 

significant body of research has sought to explore this (Friston and Frith, 1995, Pettersson-

Yeo et al., 2011, Stephan et al., 2006, Stephan et al., 2009a). However, despite support for 

the continuum hypothesis of schizophrenia, very little research has explored functional 

connectivity across the schizophrenia continuum (Wang et al., 2015, Zhang et al., 2015, 

Lagioia et al., 2010). The exploration of functional connectivity in schizotypy is useful as it 

allows us to understand more about schizophrenia spectrum disorder without confounding 

factors such as medication. 

As with schizophrenia, much of the resting-state functional connectivity research in 

schizophrenia continuum disorders has utilised fMRI. The most recent study by Zhu et al. 

(2017) found reduced functional connectivity between bilateral precuneus and contralateral 

parahippocampal gyrus in schizotypal personality disorder and a negative correlation 

between functional connectivity and total SPQ score. Other studies have found mixed 

patterns of dysconnectivity in schizophrenia continuum disorders with region dependent 

increases and decreases in connectivity (Wang et al., 2015, Zhang et al., 2014b, Lagioia et al., 
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2010). To date, to my knowledge, there are no published resting-state MEG studies of 

schizotypy.  

  

4.3 Aims and Hypotheses 

Given the accumulating evidence for dysconnectivity in schizophrenia, supported by 

findings in Chapter 3, I sought to use similar methods to explore the biological validity of 

the continuum model of schizophrenia.  

Whilst there are no consistent findings regarding functional connectivity in schizotypy (Wang 

et al., 2015, Zhang et al., 2014b, Lagioia et al., 2010, Zhu et al., 2017), I tested the hypothesis 

that there would be dysconnectivity in schizotypy reflecting shared biological factors with 

schizophrenia. Given that it is suggested that schizotypy may represent a less severe form of 

schizophrenia, I hypothesised that there would be an intermediate pattern of dysconnectivity 

in individuals with schizotypy as compared to previous findings in schizophrenia.    

In this chapter, I will report data from two studies; one conducted at Cardiff University (UK 

MEG Partnership (MR/K005464/1) and 100 brains) and the other conducted at the 

University of Nottingham (UK MEG Partnership). I will use our previously validated 

method of amplitude-amplitude coupling in resting-state MEG to explore dysconnectivity in 

schizotypy and thus the biological validity of the continuum model of schizophrenia. 
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4.4 Materials and Methods 

4.4.1 Participants 

Both studies were ethically approved in line with local and (if required) national practices. 

Participants in both studies gave written, informed consent prior to taking part.  

For both studies, participants were healthy individuals who were homogenous in age, 

ethnicity, education and handedness. Participants had no self-reported history of psychiatric 

or neurological conditions and reported no use of psychoactive drugs. For Study 1, 183 

participants were recruited as part of the UK MEG Partnership project and 100 Brains study 

(Brealy et al., 2015) at Cardiff University. For Study 2, 70 participants were recruited as part 

of the UK MEG Partnership project at the University of Nottingham. Neither of these 

resting-state datasets had been previously analysed.  

Participants were assessed using the Schizotypal Personality Questionnaire (SPQ) (Raine, 

1991). This is a self-rated questionnaire consisting of 74 items that fall under nine subscales; 

ideas of reference, social anxiety, odd beliefs/magical thinking, unusual perceptual 

experiences, eccentric/odd behaviour and appearance, no close friends, odd speech, 

constricted affect, suspiciousness/paranoid ideation.  

Group analysis of these studies involved comparing participants with the highest 20% 

schizotypy (cases) scores with those with the lowest 20% schizotypy scores (controls). This 

resulted in 33 cases and 33 controls in Study 1 and 14 cases and 14 controls in Study 2. This 

method was chosen to create a case-control design in order to be able to directly compare 

results from this study and other studies presented in this thesis.  
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4.4.2 MRI Data Acquisition 

Individual anatomical MRIs (1-mm isotropic, T1-weighted (Cardiff: FSPGR, Nottingham: 

MPRAGE) were acquired using a 3.0 T MRI scanner (Cardiff: General Electric, Nottingham: 

Philips). 

 

4.4.3 MEG Procedure and Data Acquisition 

Identical 275-channel axial gradiometer CTF systems (VSM MedTech) were used at both 

centres to collect MEG data. For Study 1, participants were seated upright in the scanner. 

For Study 2 participants were orientated supine. Data were acquired at a sampling frequency 

of 1200Hz for the study 1 and 600Hz for study 2. Electromagnetic coils were placed at three 

fiduciary locations (bilateral pre-auricular and nasion) and their position relative to the MEG 

sensors was localised before and after each session. For study 1, MEG data was co-registered 

to the individual anatomical MRI of each participant by marking the positions of the fiducial 

coils on each MRI. For study 2, a 3D digitiser (Polhemus Inc., Vermont) was used to obtain 

a three-dimensional model of the participants’ head shape, relative to the fiducial markers. 

For both studies, participants completed one 5 minute, eyes open resting-state task. 

Datasets were down-sampled to 600Hz (where required); band-pass filtered at 1-150Hz and 

segmented into 2 second epochs. Each epoch was then visually inspected for artefacts such 

as large muscle contractions or movement and if present, excluded from subsequent analysis. 

Datasets were filtered into the following bandwidths: Delta (1–4 Hz), theta (4–8 Hz), alpha 

(8–13 Hz), beta (13–30 Hz), low gamma (30–50 Hz) and high gamma (50-90 Hz). 
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4.4.4 Pipeline for Amplitude-Amplitude Coupling and Statistical Analyses 

The analysis pipeline and statistical analyses used for the studies in this chapter have been 

described previously in Chapter 3. In summary, we used an AAL atlas-guided beamforming 

approach to define regions of interest and then cross-correlated amplitude envelopes to 

define connectivity between regions. A GMM approach was then used to define “signal” and 

“noise” connections and signal connections were then compared between groups. For 

further information see Chapter 3. Preliminary analysis was carried out initially on the whole 

cohort of 183 participants in Schizotypy Study 1 (Cardiff) for every frequency band. Using 

the GMM method outlined above, robust connections were only found in the alpha and beta 

frequency bands in this cohort and therefore only these frequency bands were used for 

subsequent analysis of datasets.  

 

4.5 Results 

4.5.1 Demographic and Clinical Information 

The demographic and clinical assessment of case and control groups are shown in Table 4.1, 

where “Cases” refers to the high-SPQ group and “Controls” refers to the low-SPQ group. 

No significant difference in age or sex was found between groups. (Note: SPQ scores appear 

much higher for participants in Nottingham compared to Cardiff. This is because the SPQ 

questionnaire utilised in Nottingham required a Likert response whereas that in Cardiff 

required a binary response.)  
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4.5.2 Resting State Functional Connectivity Analysis: Uncorrected Analysis of 

Differences 

Figure 4.1 shows grouped connectivity matrices for cases and controls and difference in 

mean connectivity for Schizotypy Studies 1 and 2 for all frequency bands. The left panel 

shows results for Study 1 and the right panel shows results for Study 2.  

As per the results presented in Chapter 3, there is a hub region of increased connectivity 

(represented by a central block of orange on the connectivity matrices), particularly in the 

alpha and beta frequency bands that represents connectivity in the posterior parietal and 

occipital regions. This is evident for both cases and controls in Study 1 and 2. The difference 

in mean connectivity between cases and controls shows reduced connectivity in cases in the 

alpha frequency bands in both studies and in the beta (and somewhat theta) frequency band 

in Study 1. This is represented by blue regions and appears to be particularly prominent in 

the posterior parietal hub region previously discussed.  

Study 1 (Cardiff) Study 2 (Nottingham)

Variable (mean+/-
S.D.)

Control 
Group
(n=33 )

Case Group
(n= 33)

p-value/
X2

Control 
Group
(n=14 )

Case Group
(n=14 )

p-value/
X2

Age (years) 22.9+/-3.34 24.45+/-4.3 0.11 37.03+/-
11.78

38.92+/-
11.13 0.67

Sex (M/F) 7M/26F 11M/22F 0.27 6M/8F 8M/6F 0.45

SPQ total score 1.79+/-1.05 27.79+/-6.2 *<0.01 106.57+/-
15.71

217.93+/-
16.13 *<0.01

Table 4.1 Demographic and clinical information
S.D = standard deviation, M=male,  F= female, SPQ=Schizotypal personality questionairre (Note 
differing SPQ scores between Study 1 and 2 due to differing SPQ methodology. 
*p<0.05 significant
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As seen in Figure 4.2, when taking a data masking approach, the results are similar, with the 

highest connectivity connections being mainly in posterior occipital and parietal regions as 

well as temporal, particularly for Study 1. For Study 2, the strongest connections are much 

more widespread. When calculating the difference in mean connectivity, there is a consistent 

reduction in connectivity in these occipital and parietal connections in both studies in the 

alpha frequency band and in Study 1 in the beta frequency band. In study 2, there is increased 

connectivity in the beta frequency band posteriorly and fronto-parietally.  

Study 1 Study 2

Controls
Connectivity

Matrices

Cases
Connectivity

Matrices

Difference in 
Mean

Connectivity

Controls
Connectivity

Matrices

Cases
Connectivity

Matrices

Difference in 
Mean

Connectivity

Alpha
8-13Hz

Beta
13-30Hz

Figure 4.1: Schizotypy Study 1 and 2 Connectivity matrices. 
Left panel = Study 1,  Right panel = Study 2. Orange=higher connectivity. Blue=lower connectivity. 



CHAPTER 4                MEG Resting State Connectivity Modulations in Schizotypy in a 
Healthy Population 

 84 

 

 

4.5.3 GMM Analysis 

When using a GMM approach, as seen in Figure 4.3, again, “signal” connections were found 

predominantly in occipital and parietal regions in the alpha frequency band. In the beta 

frequency band, signal connections were more widespread and in addition included fronto-

parietal and temporo-parietal connections.   

In both schizotypy studies, posterior (occipital and parietal) connections were consistently 

reduced in cases in the alpha frequency band. A corrected t-test resulted in the following 

connections being significantly reduced in cases:  

Study 1 Study 2

Controls
Masked 

Connectivity

Cases
Masked 

Connectivity

Difference in 
Mean Masked 
Connectivity

Controls
Masked 

Connectivity

Cases
Masked 

Connectivity

Difference in 
Mean

Masked 
Connectivity

Alpha
8-13Hz

Beta
13-30Hz

Figure 4.2: Schizotypy Study 1 and 2 Uncorrected Connectivity Maps. 
Left panel = Study 1,  Right panel = Study 2. 
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of  the 
time in the bootstrapping procedure.
Controls Masked Connectivity = mean highest connections over all controls.
Cases Masked Connectivity = mean highest connections over all cases.
Difference in Mean Connectivity= Cases Masked Connectivity minus Controls Masked Connectivity. 
Blue=lower connectivity in cases. Red = higher connectivity in cases.
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In the beta frequency band, reduced connectivity was found in Study 1 parieto-parietally. 

However, these differences did not reach statistical significance. In contrast, in Study 2, there 

were multiple connections showing increased connectivity. Again, none of these reached 

statistical significance. 

Reductions in connectivity strength were found in both studies (Study 1, p=<0.01 (Right 

Superior Parietal (60), Study 2, p=0.0352 (Left Precuneus (67)) in the alpha frequency 

band. No significant differences in connectivity strength were found in the beta frequency 

band in either schizotypy study. 

In the alpha frequency band, there was significantly reduced global connectivity in 

Schizotypy Study 1 (p=0.01908) in cases. Global alpha connectivity was non-significantly 

reduced in Schizotypy Study 2 (p=0.053713). No significant differences in global 

connectivity were found in the beta frequency band in either schizotypy study. 

Schizotypy	Study	1:
Left	Precuneus	to	Paracentral	Lobule

Schizotypy	Study	2:
Left	Precuneus	to	Right	Angular	Gyrus
Left	Precuneus	to	Right	Cuneus
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4.5.4 Correlation between Connectivity in Schizophrenia and Schizotypy 

Further exploration and comparison of data presented in Chapter 3, Schizophrenia Study 1 

and Schizotypy Study 1 presented in this chapter revealed interesting associations which are 

shown in Figure 4.4. I looked only at connections that were labelled as “valid” in both 

Alpha 8-13Hz

“Signal” 
Connections

Uncorrected t-
test Corrected t-test Connectivity 

Strength

Global 
Connectivity

Sum

Schizotypy 
Study 1

Schizotypy
Study 2

Beta 13-30Hz

Schizotypy
Study 1

Schizotypy
Study 2

Figure 4.3: Schizotypy Study 1 and 2 GMM Analysis. 
Signal	connections=	connections	found	to	be	in	the	“signal”	Gaussian	using	GMM.	
Uncorrected t-test= uncorrected t-test of signal connections between cases and controls.
Corrected t-test= corrected t-test of signal connections between cases and controls.
Red lines=increased connectivity. Blue lines= decreased connectivity in cases.
Significant	Connections:
Alpha:	Schizotypy	Study	1:	Left	Precuneus to	Paracentral	Lobule

Schizotypy	Study	2:	Left	Precuneus to	Right	Angular	Gyrus,	Left	Precuneus to	Right	Cuneus
Connectivity	Strength=	Sum	of	every	signal	connection	for	each	AAL	node.	
Horizontal	axes=AAL	node.	Vertical	axes=Connectivity	strength.	
Global	Connectivity	Sum=	Violin	plot	of	sum	of	all	signal	connections	for	cases	and	controls.	
Red=Cases.	Blue=Controls.
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Schizophrenia Study 1 (eyes open) and Schizotypy Study 1. T-tests of these connections 

between cases and controls in both studies were significantly correlated in the beta frequency 

band (r=0.390078, p<0.01), suggesting an association between beta connectivity in 

schizophrenia and beta connectivity in schizotypy.  

 

Valid
Both

Cases 
versus Controls

High SPQ 
versus Low SPQ

Figure 4.4: Beta band correlation between t-tests in Schizophrenia Study 1 and Schizotypy Study 1
Valid Both= Connections valid after GMM in both Schizophrenia Study 1 and Schizotypy Study 1 
Cases versus Controls= t-test of  valid connections between patients and controls in Schizophrenia Study 1
High SPQ versus Low SPQ= t-test of  valid connections between cases and controls in Schizotypy Study 1
Correlation between t-tests of  Schizophrenia Study 1 and Schizotypy Study 1

Schizophrenia Study 1

Schizotypy Study 1
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4.6 Discussion 

Resting-state dysconnectivity has been repeatedly found in patients with schizophrenia (Yu 

et al., 2012). However, despite growing interest in the continuum hypothesis of 

schizophrenia, there are few studies exploring resting-state connectivity in schizophrenia 

spectrum disorders and none, to date, using MEG (Zhu et al., 2017, Wang et al., 2015, Zhang 

et al., 2014b, Lagioia et al., 2010).  

A robust and repeatable metric (amplitude-amplitude coupling in MEG with spatial filtering 

of connections using Gaussian Mixture Modelling) was used to elucidate the neurobiological 

continuity between schizotypy and schizophrenia. Through this method, robust connections 

were identified in the alpha and beta frequency bands in a large cohort of healthy individuals. 

Using a GMM approach to identify only valid signal connections, I found reduced 

connectivity in two schizotypy studies in the alpha frequency band. In addition to global 

connectivity being reduced in both studies, connectivity of specific connections between the 

left precuneus and the right paracentral lobule, right angular gyrus and right cuneus were also 

reduced.  

The precuneus forms an important part of the default mode network (DMN) along with the 

posterior cingulate cortex, medial prefrontal cortex and the bilateral temporo-parietal 

junction (Utevsky et al., 2014). The network shows increased activity at rest and reduced 

activity during externally orientated, task performance and is considered important for 

internally orientated cognition (Mantini and Vanduffel, 2013). Given its importance in 

cognition, multiple studies have sought to explore DMN connectivity in schizophrenia both 

at rest (Bluhm et al., 2007, Liu et al., 2012, Zhou et al., 2007) and during task performance 

(Whitfield-Gabrieli et al., 2009). More specifically, disrupted precuneus connectivity has been 

implicated in schizophrenia with one meta-analysis  finding reduced resting-state precuneus 

connectivity in schizophrenia (Kuhn and Gallinat, 2013). Since then, other studies have also 
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found disrupted precuneus connectivity in schizophrenia. For example, Gong et al. (2014) 

found an association between functional connectivity of the precuneus and rare genetic 

variants in schizophrenia. Guo et al. (2014) also found disrupted resting-state functional 

connectivity in a parietal circuit including the precuneus in schizophrenia. These results 

suggest that DMN and specifically, precuneus connectivity is important in schizophrenia. 

The precuneus is believed to play a role in many cognitive functions including self-awareness 

and consciousness (Laureys et al., 2004), visuospatial imagery, episodic memory retrieval and 

self-processing (Reviewed by (Cavanna and Trimble, 2006), therefore providing a clear link 

with impairments seen in schizophrenia.  

 

Studies exploring DMN, and specifically precuneus connectivity in schizophrenia spectrum 

disorders are much scarcer but along with our results, support neurobiological continuity 

between schizotypy and schizophrenia. For example, a study of resting-state functional 

connectivity in schizotypal personality disorder found reduced functional connectivity 

between bilateral precuneus and contralateral parahippocampus (Zhu et al., 2017). In 

addition, a study of structural changes in schizotypy found a correlation between precuneus 

grey matter volume and negative schizotypy (Nenadic et al., 2015).  

In addition to significant differences between participants with high and low schizotypy 

scores in the alpha frequency band, I also found a significant correlation between t-test scores 

of differences between patients and controls in Schizophrenia Study 1 and t-test scores of 

differences between high and low schizotypy participants in Schizotypy Study 1 in the beta 

frequency band. This along with the results outlined above support biological continuity 

between schizophrenia and schizotypy.  
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4.7 Conclusion 

In summary, I found reduced connectivity in two separate cohorts of healthy participants 

with high schizotypy scores in the alpha frequency band. Whilst this dysconnectivity was 

global, I also found reduced connections from the precuneus, an important part of the DMN 

that has been implicated in schizophrenia previously. Given this and the previous finding of 

dysconnectivity in schizophrenia in Chapter 3, this study supports the notion of a biological 

continuum between subclinical psychotic symptoms and diagnosable schizophrenia.   
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Chapter 5 The Impact of Disease Stage upon Resting 

State Connectivity in Schizophrenia; an MEG 

Study 

5.1 Rationale 

As previously discussed, evidence for functional dysconnectivity in schizophrenia is growing 

(Pettersson-Yeo et al., 2011). However, results from such studies are heterogeneous, with 

some finding increased connectivity, some finding reduced connectivity and some finding 

region dependent increases and decreases in connectivity. In Chapter 3, I found different 

patterns of connectivity changes in patients with schizophrenia in two similar studies using 

the same analysis pipeline, suggesting that differences between studies are not solely due to 

methodological heterogeneity. Different functional connectivity findings in schizophrenia 

could be due to the heterogeneity of the disorder, the stage of disease or other factors such 

as medication exposure or nicotine exposure. In this study, I sought to explore the impact 

of disease stage upon resting-state functional connectivity in schizophrenia.  

 

5.2 Background 

Schizophrenia is a heterogeneous disorder in terms of its presentation, course and prognosis. 

Throughout the course of the disorder, evidence suggests that progressive brain changes 

occur such as reductions in grey matter volume, cortical thinning and lateral ventricle 

enlargement (Olabi et al., 2011, Dietsche et al., 2017, Ho et al., 2003). Such changes can be 

evident even before illness onset. For example, it has been found that grey matter loss occurs 

even prior to illness onset in studies of Ultra High Risk (UHR) groups and that this 
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progresses as illness develops (Cannon et al., 2015). This is also reflected in studies of white 

matter changes (Carletti et al., 2012) and neurochemistry (Marsman et al., 2013).  

As discussed previously, dysconnectivity has been implicated in the pathogenesis of 

schizophrenia and supported by numerous studies, including our own reported in Chapter 

3. However, results from such studies are heterogeneous. Given that neurobiology appears 

to change throughout the course of schizophrenia, one contributing factor to the 

heterogeneity of functional connectivity research findings in the field may be the stage of the 

disorder studied.  

When considering structural connectivity in schizophrenia, attempts have been made to 

explore the impact of stage of illness, age and course of onset in order to elucidate the 

progressive nature of such changes. Cross sectional studies looking at structural connectivity 

in both First Episode (FE) and chronic patients have found differences between the two. 

For example, Friedman et al. (2008) and Kong et al. (2011) both found significantly reduced 

FA in chronic patients but not in FE. White et al. (2011) found overall lower FA in patients 

which was more pronounced in chronic patients compared with FE. Other studies have 

found negative correlations between FA and illness duration (Carpenter et al., 2008). A meta-

analysis of diffusor tensor imaging (DTI) in schizophrenia by Yang et al. (2017) found an 

inverse relationship between FA and age in patients with schizophrenia which is reflected in 

studies of FA in healthy ageing (Grieve et al., 2007). This replicates work by Rosenberger et 

al. (2008), who found an age-related decline in FA in patients with schizophrenia in certain 

fibre tracts which was not evident in healthy controls. In addition to studies comparing FE 

and chronic schizophrenia, studies have also compared UHR groups with FE. In a 

longitudinal study by Carletti et al. (2012), UHR patients that later went on to develop 

psychosis showed progressive reductions in FA over time. Taken together, such studies 
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suggest that there may be a progressive decline in structural connectivity throughout the 

course of schizophrenia.  

Given such findings in the structural connectivity literature, many studies have attempted to 

explore stage specific changes in functional connectivity in schizophrenia. Functional 

connectivity findings in FE psychosis are mixed, with findings of variable (Yoon et al., 2015), 

reduced (Woodward et al., 2009, Benetti et al., 2009) and increased (Boksman et al., 2005) 

connectivity in patients. Of those studies exploring more chronic stages of schizophrenia 

using fMRI, the majority report reduced functional connectivity in patients (Pettersson-Yeo 

et al., 2011). Studies have attempted to elucidate this relationship between functional 

connectivity and stage of disease further by looking at different stages in the same study. For 

example, a meta-analysis by Li et al. (2017) showed predominantly frontal dysconnectivity 

(both increases and decreases) in first episode psychosis, becoming more widespread in 

“chronic stages”, again suggesting some progression of functional dysconnectivity 

throughout the disorder.   

Some authors postulate that the progressive changes seen in schizophrenia represent an 

“accelerated ageing” process (Kirkpatrick et al., 2008). Structural connectivity or white matter 

integrity has also been found to decline in healthy ageing and to be associated with cognitive 

ability and decreased functional connectivity in certain networks (Geerligs et al., 2015, 

Andrews-Hanna et al., 2007). Sheffield et al. (2016) found reduced pseudo-resting-state 

(whereby task-dependent signal is modelled and regressed out) functional connectivity in 

patients with schizophrenia in the cingulo-opercular and fronto-parietal networks. They 

found a stronger negative association between age and connectivity of these networks than 

in the healthy control group which the authors suggest supports accelerated ageing of these 

networks in schizophrenia. 
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5.3 Aims and Hypotheses 

As discussed, a growing evidence base suggests that changes in brain structure and function 

may be progressive throughout the course of schizophrenia. Therefore, the grouping 

together of patients of all illness durations may have contributed to some of the heterogeneity 

in results seen between studies, such as those seen in Chapter 3.  

I tested the hypothesis that resting-state functional connectivity differs depending on the 

stage of schizophrenia. I sought to explore whether functional dysconnectivity is present at 

very early stages of the illness and whether it is static and trait like or dynamic and progressive 

in nature. Given previous research findings in the field, I expected to see dysconnectivity 

present in early stages of schizophrenia but with reduced severity compared to later stages 

of the disorder. In this chapter, I will report data from the Medical Research Council Study 

of Psychosis and the Role of Inflammation, GABA and Glutamate (MRC SPRING). This is 

a cross-sectional, multi-centre study but here I only report data collected in Cardiff 

University. For consistency across studies, I will use the previously validated method of 

amplitude-amplitude coupling in resting-state MEG to explore dysconnectivity in different 

stages of schizophrenia. 

 

5.4 Materials and Methods 

5.4.1 Participants 

The study was ethically approved in line with national practices (14/NW/0298). Participants 

gave written, informed consent prior to taking part.  

The data used in this study were acquired as part of a multi-centre study of schizophrenia 

entitled MRC SPRING. The study was conducted at Cardiff University, The University of 

Nottingham and The University of Manchester. In this chapter, I will only present data 
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collected at Cardiff University by myself and Dr Loes Koelewijn. There were two arms of 

the study, one investigating recent onset psychosis and the other investigating established 

psychosis.   

 

5.4.1.1 Recent Onset Psychosis Group  

18 participants within 5 years of a first DSM-IV diagnosis of schizophrenia or 

schizophreniform disorder (13 males, 5 females; mean age: 23 +/-4.28, age range: 18-31, 

mean illness duration: 8.86 months) took part in the study. Participants had no exposure, 

discontinued or minimal exposure (<12 weeks) to antipsychotic medication.  

 

5.4.1.2 Established Psychosis Group 

20 participants with more than 10 years’ history of a DSM-IV diagnosis of schizophrenia (17 

males, 3 females; mean age: 39 +/-7.78, age range: 27-54, mean illness duration: 201.6 

months) took part in the study. Participants had at least eight weeks’ stable treatment prior 

to taking part in the study.  

Cases were recruited through local Community Mental Health Teams (CMHTs), specialist 

Early Intervention for Psychosis Services and Clozapine clinics. Participants were diagnosed 

through clinical assessment and case note review followed by verification using a clinical 

research consensus diagnostic approach (involving myself and Dr James Walters) using 

DSM-IV criteria.  

 

5.4.1.3 Healthy Control Groups 

Both patient groups were matched to 10 healthy control participants according to age, sex 

and parental occupation. These were recruited locally through an online advert and the 

University noticeboard. The recent onset control group consisted of 7 males, 3 females; mean 
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age: 23 +/-3.03, age range: 18-26. The established control group consisted of 10 males, 2 

females; mean age: 39 +/-7.78, age range: 29-54. 

 

5.4.1.4 Inclusion and Exclusion Criteria 

For all groups inclusion criteria were; male or female, aged 18 - 55 years, ability to understand 

and willing to give written informed consent and English as first language or fluent. 

Exclusion criteria for patient groups were; clinically significant neurological disorder, history 

of head injury with loss of consciousness >5 minutes, current harmful use of, or recent 

dependence on, psychoactive substances (excluding nicotine), contraindications for MR 

scanning (e.g. claustrophobia, pregnancy etc). Exclusion criteria for control groups were; 

personal history of psychosis or related disorder as determined by MINI-International 

Neuropsychiatric Interview (MINI), current or recent (within 2 years) presence of depressive 

symptoms or treatment with antidepressant medication, current use of any medication which 

may interfere with the study, first degree relative with a history of psychosis, clinically 

significant neurological disorder, history of head injury with loss of consciousness >5 

minutes.  

 

5.4.2 MRI Data Acquisition 

Individual anatomical MRIs (1-mm isotropic, T1-weighted, FSPGR) were acquired using a 

3.0 T MRI scanner (General Electric). 
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5.4.3 MEG Procedure and Data Acquisition 

A 275-channel axial gradiometer CTF system (VSM MedTech) was used to collect MEG 

data. Participants were seated upright in the scanner. Data were acquired at a sampling 

frequency of 1200Hz. Electromagnetic coils were placed at three fiduciary locations (bilateral 

pre-auricular and nasion) and their position relative to the MEG sensors was localised before 

and after each session. MEG data was co-registered to the individual anatomical MRI of each 

participant by marking the positions of the fiducial coils on each MRI. Participants 

completed one 10 minute, eyes open resting-state task. 

Datasets were down-sampled to 600Hz; band-pass filtered at 1-150Hz and segmented into 

2-second epochs. Each epoch was then visually inspected for artefacts such as large muscle 

contractions or movement and if present, excluded from subsequent analysis. Datasets were 

filtered into the following bandwidths: Delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 

(13–30 Hz), low gamma (30–50 Hz) and high gamma (50-90 Hz). 

  

5.4.4 Pipeline for Amplitude-Amplitude Coupling and Statistical Analyses 

The analysis pipeline and statistical analyses used for the studies in this chapter have been 

described previously in Chapter 3. In summary, I used an AAL atlas-guided beamforming 

approach to define regions of interest and then cross-correlated amplitude envelopes to 

define connectivity between regions. A GMM approach was then used to define “signal” and 

“noise” connections and signal connections were then compared between groups. For 

further information see Chapter 3. Given previous analysis only finding robust connections 

in the alpha and beta frequency bands, only these frequency bands were used for subsequent 

analysis in this study.  
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5.4.5 Behavioural Assessment 

The Positive and Negative Syndrome Scale (PANSS) semi-structured interview was 

administered to all participants to assess current psychopathology. The PANSS is a 30 item 

scale which allows assessment of positive, negative and general psychopathology (Kay et al., 

1987). In addition, IQ was measured using the short form of the Wechsler Adult Intelligence 

Scale (Blyler et al., 2000) which included assessment of digit symbol, arithmetic, information 

and block design.   

Medication history was obtained through thorough case note review (where possible), 

whereby medication name, start date, end date and maximum dosage was extracted. The 

defined daily dose of antipsychotic medication (DDD) was calculated using average 

maintenance doses stated by WHO (WHO, 2012). Lifetime DDD years of antipsychotic 

medication was calculated by adding cumulative DDD for each participant and dividing by 

365.25 in line with Hulkko et al. (2017).  

 

5.5 Results 

5.5.1 Demographic and Clinical Information 

The demographic and clinical assessment of case and control groups are shown in Table 5.1.  
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5.5.2 Resting State Functional Connectivity Analysis: Uncorrected Analysis of 

Differences 

Figure 5.1 shows grouped connectivity matrices for cases and controls and difference in 

mean connectivity for the Recent Onset Group and Established Group for the alpha and 

beta frequency bands. The left panel shows results for the recent onset group and the right 

panel shows results for the established group.  

As per the results presented in Chapters 3 and 4, there is a hub region of increased 

connectivity (represented by a central block of orange on the connectivity matrices) that 

represents connectivity in the posterior parietal region. This is evident for both cases and 

controls for both the recent onset and established groups. The difference in mean 

Recent Onset Established

Variable (mean+/-
S.D.)

Control 
Group
(n=10 )

Case Group
(n=18 ) p-value

Control 
Group
(n=12 )

Case Group
(n=20 ) p-value

Age (years) 23(3.03) 23(4.28) 0.53 41(8.45) 39(7.78) 0.45

Sex (M/F) 7/3 12/5 --- 10/2 17/3 ---
Illness Duration 

(months) 8.86(11.30)* 201.6(61.50)*

FSIQ 97.80(17.53) 90.33(19.47) 0.32 100.50(18.90) 87.95(14.09) 0.04*

PANSS Positive 14.16(6.77) 10.95(2.64)

PANSS Negative 11.83(5.78) 14.7(7.80)

PANSS General 25.55(8.60) 24.3(6.09)

PANSS Total 51.55(17.69) 49.95(13.88)

PSP 73.88(10.78)* 62.5(12.51)*

Current DDD 1.19(0.70)* 1.81(0.84)*

Lifetime DDD Years 0.22(0.13)* 21.32(12.47)*

Handedness (R/L) 8/2 16/2 10/2 19/1

Socioeconomic
group

1/2/3/4/5
4/2/1/3/0 6/2/5/1/4 6/2/0/4/0 9/2/1/2/6

Table 5.1 Demographic and clinical information
S.D = standard deviation, M=male,  F= female, *p<0.05 significant
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connectivity between cases and controls shows reduced connectivity in cases in both the 

alpha and beta frequency bands in both studies. This is represented by blue regions on the 

connectivity matrices and appears more pronounced for the established arm of the study. 

However, these changes appear fairly widespread and reflect a general reduction in 

connectivity throughout. This is likely to be due to signal to noise ratio differences.  

 

 

As seen in Figure 5.2, when looking at the top 5% of connections, the results are similar, 

with the highest connectivity connections being mainly in posterior occipital and parietal 

regions as well as temporo-parietal and fronto-parietal connections. The strongest 

connections appear to be much more widespread for the Established Group study. When 

calculating the difference in mean connectivity, there is a consistent reduction in connectivity 

in these occipital and parietal connections in both studies in the alpha and beta frequency 

bands, although this is much more pronounced for the Established group study. For the 

recent onset group in the beta frequency band there is some evidence of increased 

connectivity in patients occipitally.  

Recent Onset Group Established Group

Controls
Connectivity

Matrices

Cases
Connectivity

Matrices

Difference in 
Mean

Connectivity

Controls
Connectivity

Matrices

Cases
Connectivity

Matrices

Difference in 
Mean

Connectivity

Alpha
8-13Hz

Beta
13-30Hz

Figure 5.1: SPRING Connectivity matrices. 
Left panel = Recent Onset Psychosis,  Right panel = Established Psychosis. Orange=higher 
connectivity. Blue=lower connectivity. 
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5.5.3 GMM Analysis 

When using a GMM approach, as seen in Figure 5.3, “signal” connections were widespread 

but most pronounced in occipital and parietal regions in both the alpha and beta frequency 

bands.  

Uncorrected t-tests revealed widespread reduced connectivity in patients in both the recent 

onset and established groups in both frequency bands. After corrected t-tests, none of these 

connections reached statistical significance. The GMM procedure has corrected for 

differences in SNR previously discussed and therefore only differences surviving correction 

are shown.  

 

Recent Onset Group Established Group

Controls
Masked 

Connectivity

Cases
Masked 

Connectivity

Difference in 
Mean Masked 
Connectivity

Controls
Masked 

Connectivity

Cases
Masked 

Connectivity

Difference in 
Mean

Masked 
Connectivity

Alpha
8-13Hz

Beta
13-30Hz

Figure 5.2: SPRING Uncorrected Connectivity Maps. 
Left panel = Recent Onset Psychosis,  Right panel = Established Psychosis. 
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of  the time in 
the bootstrapping procedure.
Controls Masked Connectivity = mean highest connections over all controls.
Cases Masked Connectivity = mean highest connections over all cases.
Difference in Mean Connectivity= Cases Masked Connectivity minus Controls Masked Connectivity. 
Blue=lower connectivity in cases. Red = higher connectivity in cases.
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Reductions in connectivity strength (p=0.027) and global connectivity (p=0.013309) were 

found only in the established group in the alpha frequency band.  

 

 

 

Alpha 8-13Hz

“Signal” 
Connections

Uncorrected t-
test Corrected t-test Connectivity 

Strength

Global 
Connectivity

Sum

Recent
Onset 
Group

Established 
Group

Beta 13-30Hz

Recent
Onset 
Group

Established 
Group

Figure 5.3: SPRING GMM Analysis. 
Signal connections= connections found to be in the “signal” Gaussian using GMM. 
Uncorrected t-test= uncorrected t-test of signal connections between cases and controls.
Corrected t-test= corrected t-test of signal connections between cases and controls.
Red lines=increased connectivity. Blue lines= decreased connectivity in cases.
Connectivity Strength= Sum of  every signal connection for each AAL node. 
Horizontal axes=AAL node. Vertical axes=Connectivity strength. 
Global Connectivity Sum= Violin plot of  sum of  all signal connections for cases and controls. 
Red=Cases. Blue=Controls.
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5.5.4 Correlation with Clinical Scores 

There were no statistically significant correlations between connectivity and age, PANSS 

scores (positive, negative, general and total), current DDD, lifetime DDD years or PSP for 

either group in either frequency band.  

 

5.6 Discussion 

There is a growing evidence base supporting resting-state dysconnectivity in patients with 

schizophrenia (Yu et al., 2012). However, results are inconsistent, particularly those using 

MEG (Bowyer et al., 2015, Kim et al., 2014, Hinkley et al., 2011). Evidence from studies of 

brain structure and function suggests that there are progressive neurobiological changes in 

schizophrenia throughout the course of the disorder. Therefore, one explanation for 

heterogeneity in resting-state findings may be heterogeneity in schizophrenia illness duration 

in study populations. I sought to explore the relationship between the chronicity of 

schizophrenia and functional connectivity using amplitude-amplitude coupling in MEG. 

Using this method, I analysed whole brain connectivity and found reductions in connectivity 

strength and global connectivity in patients with established schizophrenia in the alpha 

frequency band. I found no statistically significant differences in connectivity between 

patients with recent onset psychosis and healthy controls in either frequency band. This 

finding of a difference in connectivity between first episode and chronic stages of 

schizophrenia is consistent with structural connectivity findings (Friedman et al., 2008, Kong 

et al., 2011).  
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I did not find any correlations between connectivity and demographic or behavioural 

measures. Given hypotheses suggesting that schizophrenia represents a disorder of 

accelerated ageing (Sheffield et al., 2016), it is perhaps surprising that I did not find any 

correlations between age and connectivity. However, this may be because we looked at 

groups at two ends of the spectrum with the recent onset group having an average age of 23 

and the established group having an average age of 39. I may have found an association 

between age and connectivity had I looked at patients across the span of the disorder. There 

may be non-linear effects of age that have not been captured by the sampling in this study.  

Overall, these results support the hypothesis that there is a progressive decline in functional 

connectivity over the course of the disorder. However, there are inherent issues with making 

longitudinal conclusions based upon cross-sectional data. The conclusion that schizophrenia 

is a progressive condition and the differences between patients with early stage psychosis 

and established schizophrenia are due to disease progression is just one explanation for our 

findings. Other explanations include the following:   

Firstly, in terms of their response to treatment, the groups studied may be very different. The 

“recent onset” group included any patient with schizophrenia or schizophreniform disorder 

within 12 weeks of treatment. Due to methods of recruitment used, the “established group” 

were predominantly a group of patients with treatment resistant schizophrenia, prescribed 

clozapine. 19 out of 20 patients were treated with clozapine.  

It has been suggested that treatment resistant schizophrenia could be a different subtype of 

schizophrenia (Gillespie et al., 2017). As well as glutamatergic function (Mouchlianitis et al., 

2016, Demjaha et al., 2014) and dopamine synthesis capacity (Demjaha et al., 2012) being 

different in treatment resistant schizophrenia, there is also reduced grey matter volume 

(Anderson et al., 2015) when compared to treatment responders. It may therefore follow 
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that patients with treatment resistant schizophrenia show different changes in functional 

connectivity when compared to treatment responders (Paul and Sharfman, 2016). This is 

supported by a study by White et al. (2016) who found reduced connectivity between the 

ventral striatum and the substantia nigra and between the dorsocaudal putamen and the 

thalamus and increased connectivity between dorsal caudate and medial prefrontal cortex in 

treatment resistant patients compared to responders.  

A systematic review of longitudinal outcomes in schizophrenia revealed that while there is 

around a 40% remission rate, approximately 25% of patients have a “poor outcome” 

(Menezes et al., 2006). Given this heterogeneous prognosis, our recent onset group is likely 

to be mixed according to response to treatment and hence whether they will go on to be 

considered as having treatment resistant schizophrenia or even established schizophrenia. 

Therefore, if our recent onset group consisted of patients with mixed prognosis, they may 

not be representative of established patients who go on to have treatment resistant 

schizophrenia. This difference between prognosis in the groups may account for differences 

in functional connectivity.  

Secondly, an issue with most studies that divide patients according to illness duration is 

antipsychotic medication exposure.  Those with a longer illness duration are likely to have 

been exposed to medication for longer. In our cohorts, there were statistically significant 

differences between recent onset and established groups according to current DDD and 

lifetime DDD years. Differences in connectivity between early and late stages of the disorder 

may therefore be explained by antipsychotic medication exposure.  Several studies have 

explored functional connectivity in schizophrenia pre-and post-treatment with 

antipsychotics using resting state paradigms (Hadley et al., 2014, Sarpal et al., 2015, Kraguljac 

et al., 2016c). These studies have found normalisation of dysconnectivity in schizophrenia 
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after antipsychotic treatment both in the short term (Kraguljac et al., 2016c, Hadley et al., 

2014) and longer term (1 year) (Anticevic et al., 2015b). It therefore appears that 

antipsychotic medications have an impact upon functional connectivity either directly or 

indirectly. Unfortunately, to my knowledge, no studies have explored the long term (>10 

years) effects of antipsychotic exposure upon connectivity in a longitudinal design. In this 

study, medication exposure is unlikely to be a significant confounding factor as I did not find 

any statistically significant correlation between connectivity and medication exposure in 

either group. However, it is important to consider that this study has weak statistical power 

since there were only 10 healthy controls for each group of cases. This could be considered 

a limitation of the study.  

5.7 Conclusion 

In summary, I found reduced connectivity in patients with established schizophrenia in the 

alpha frequency band but not those within the early stages of psychosis. These results add 

further support to the dysconnectivity hypothesis of schizophrenia but also may provide 

support to the hypothesis that neurobiological changes in schizophrenia are progressive 

throughout the disorder. However, other explanations for such findings including 

medication exposure have been discussed and should be considered.  
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Chapter 6 An Investigation of the Modulation of MEG 

Resting-State Connectivity by Acute 

Administration of Ketamine 

6.1 Rationale 

Glutamate dysfunction has been implicated in the neuropathology of schizophrenia. This 

hypothesis suggests that disruptions to the neurotransmitter glutamate cause excitotoxicity, 

dopamine dysfunction and resultant psychopathology seen in schizophrenia. This was 

initially supported by work finding that NMDA receptor antagonists such as ketamine 

produce symptoms similar to those seen in schizophrenia and subsequently, ketamine has 

been adopted as a model of schizophrenia. There is a growing evidence base suggesting that 

functional dysconnectivity contributes to the psychopathology of schizophrenia. This is also 

supported by findings from studies reported in previous chapters of this thesis. In this 

chapter, I sought to explore the link between dysconnectivity and the glutamate hypothesis 

through exploring the impact of ketamine (NMDA antagonist) upon connectivity in a 

healthy group of participants.  

 

6.2 Background 

Glutamate is the primary excitatory neurotransmitter in the central nervous system 

(Rothman et al., 2003) and acts upon four different classes of receptor, the most significant 

in schizophrenia being the ionotropic NMDA receptor. The NMDAR is important in 

synaptic plasticity, cortical development, learning and working memory (Collingridge et al., 

2013), all of which are relevant in the psychopathology of schizophrenia.  
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Glutamate was initially implicated in the pathogenesis of schizophrenia due to the 

psychotogenic effects of dissociative anaesthetics such as ketamine which act by blocking 

the NMDAR.  NMDAR antagonists block NMDA receptors on GABAergic interneurons 

resulting in excess glutamate release (Stone et al., 2012)and excitotoxicity. This has been 

postulated as a model of schizophrenia since such drugs exacerbate symptoms in patients 

with schizophrenia (Lahti et al., 1995) and mimic positive, negative and cognitive symptoms 

of schizophrenia in healthy controls (Adler et al., 1999, Krystal et al., 2005). Therefore, unlike 

the dopaminergic hypothesis of schizophrenia, the glutamatergic hypothesis explains not 

only the positive symptoms of the condition but also the negative and cognitive symptoms. 

It may also explain the differences in response to traditional antipsychotic medications seen 

in patients (Egerton et al., 2012).   

The involvement of glutamate pathways in the aetiology of schizophrenia is supported by 

proteomic and genomic studies. Pathogenic CNVs in schizophrenia have been found to 

converge upon genes involved in glutamatergic and GABAergic neurotransmission 

(Pocklington et al., 2014) supporting hypotheses of the aetiology of schizophrenia 

implicating these neurotransmitter systems.  

In addition, in vivo studies using Magnetic Resonance Spectroscopy (MRS) have found 

abnormal glutamate levels in schizophrenia (Marsman et al., 2013). Since glutamate is known 

to have excitotoxic effects when present in excess (Lau and Tymianski, 2010) it has been 

postulated that in the early stages of schizophrenia hyper-glutamatergia leads to excitotoxicity 

(Plitman et al., 2014). This is supported by a review of MRS studies by Poels et al. (2014) 

who found an increase in glutamatergic levels in the medial prefrontal cortex in early stage 

drug naïve patients with schizophrenia compared to controls. A meta-analysis by Marsman 

et al. (2013) found that glutamate reduces with age in patients with schizophrenia suggesting 

possible neurochemical differences between early and later stages of the disorder.  
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As previously discussed, it is postulated that symptoms of schizophrenia result from 

abnormal communication within and between cortical networks (Fornito et al., 2012). This 

is supported by multiple studies including work presented in this thesis. Synchronised 

oscillatory activity (as measured non-invasively in humans using magnetoencephalography - 

MEG) is required for such communication. This oscillatory activity is dependent upon the 

interaction between excitatory (glutamatergic) and inhibitory (GABAergic interneuron) 

activity (Uhlhaas et al., 2008). Given this, and findings of dysconnectivity in schizophrenia 

presented in previous chapters, we may therefore expect the administration of ketamine, a 

model of schizophrenia, to result in dysconnectivity.  

Several studies have explored the effects of ketamine upon functional connectivity through 

the acute administration of low dose ketamine in healthy participants. Most, aside from 

Rivolta et al. (2015) and Muthukumaraswamy et al. (2015) who used MEG, explored this 

using fMRI. Results have been mixed, with some finding increased connectivity following 

ketamine administration (Rivolta et al., 2015, Hoflich et al., 2015) and others finding reduced 

connectivity (Kraguljac et al., 2016a, Scheidegger et al., 2012). Interestingly,  Driesen et al. 

(2013b) found decreased connectivity during a working memory task but increased 

connectivity at rest (Driesen et al., 2013a) following ketamine. This suggests that its effects 

upon functional connectivity may be state dependent. Effects may also relate to the amount 

or duration of ketamine use with a more naturalistic study finding reduced resting-state 

functional connectivity in chronic ketamine users (Liao et al., 2016).  

When considering the link between the neurological impact of ketamine and the 

neuropathology of schizophrenia, Anticevic et al. (2015a) found increased connectivity 

following ketamine administration and in a group of patients with early schizophrenia but 

reduced functional connectivity in chronic schizophrenia. The authors therefore suggest that 



CHAPTER 6             An Investigation of the Modulation of MEG Resting-State                                      
Connectivity by Acute Administration of Ketamine 

 110 

ketamine is a better model for the early stages of schizophrenia than the late stages. This 

would also fit with the previously discussed MRS findings in schizophrenia.  

 

6.3 Aims and Hypotheses 

Given the accumulating evidence for dysconnectivity in schizophrenia, (supported by 

findings in Chapter 3 and 5), as well as the glutamate hypothesis of schizophrenia, I sought 

to explore functional connectivity following acute ketamine administration. Through 

investigating functional connectivity in healthy individuals given ketamine, I attempted to 

investigate the link between this postulated model of schizophrenia and observations in the 

condition itself.  

Whilst functional connectivity findings following acute ketamine administration are mixed, 

increased resting-state connectivity has been found in multiple studies (Anticevic et al., 

2015a, Driesen et al., 2013a, Rivolta et al., 2015, Hoflich et al., 2015). Since I found reduced 

connectivity in chronic stages of schizophrenia and it has been postulated that ketamine 

models earlier stages of the disorder (Anticevic et al., 2015a), I expect to find connectivity 

with ketamine to differ from that found in chronic schizophrenia.  

The data in this study was generated by, and has previously been published by, 

Muthukumaraswamy et al. (2015) but in this chapter, I will use the analysis pipeline used 

throughout this thesis in order to make direct comparison with our previously reported data 

in schizophrenia.  
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6.4 Materials and Methods 

6.4.1 Participants 

Eighteen healthy young men with a mean age of 25.05 (age range 19-36) took part in the 

study. The study was ethically approved by a UK National Health Service research ethics 

committee. Participants were aged between 18-45, non-smokers, American Society of 

Anaesthesiologists Physical Status 1, body mass index of 18-30kg/m2. Participants gave 

written, informed consent prior to taking part. The following exclusion criteria were applied: 

any current or previous psychiatric disorder (determined by the MINI), current recreational 

or prescription drug use, MEG/MRI contraindications, needle phobia.  

 

6.4.2 MRI Data Acquisition 

Individual anatomical MRIs (1-mm isotropic, T1-weighted FSPGR) were acquired using a 

3.0 T MRI scanner (General Electric). 

 

6.4.3 MEG Procedure and Data Acquisition 

For further details regarding data acquisition, see Muthukumaraswamy et al. (2015).  

Over two separate days, participants underwent two MEG scans, one with a placebo saline 

infusion and the other using ketamine. Infusion was commenced following the recording of 

5 minutes resting-state MEG. An initial bolus of 0.25mg/kg was delivered over 1 minute, 

followed by maintenance infusion at 0.375mg/kg/h. At the start of the infusion, 10 minutes 

of eyes-open resting-state MEG was commenced.  
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A 275-channel axial gradiometer CTF system (VSM MedTech) was used to collect MEG 

data. Participants were orientated supine in the scanner. A probe over the left index finger 

monitored pulse rate and blood oxygenation level continuously. The intravenous cannula for 

infusion was located on the back of the left wrist. In case of emergency, a nasal cannula 

attached to medical oxygen was worn.   

Data were acquired at a sampling frequency of 1200Hz. Electromagnetic coils were placed 

at three fiduciary locations (bilateral pre-auricular and nasion) and their position relative to 

the MEG sensors was localised before and after each session. MEG data was co-registered 

to the individual anatomical MRI of each participant by marking the positions of the fiducial 

coils on each MRI.  

Datasets were down-sampled to 600Hz; band-pass filtered at 1-150Hz and segmented into 

2 second epochs. Each epoch was then visually inspected for artefacts such as large muscle 

contractions or movement and if present, excluded from subsequent analysis. Datasets were 

filtered into the following bandwidths: Delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 

(13–30 Hz), low gamma (30–50 Hz) and high gamma (50-90 Hz). 

  

6.4.4 Pipeline for Amplitude-Amplitude Coupling and Statistical Analyses 

The analysis pipeline and statistical analyses used for the studies in this chapter have been 

described in detail previously in Chapter 3. In summary, I used an AAL atlas-guided 

beamforming approach to define regions of interest and then cross-correlated amplitude 

envelopes to define connectivity between regions. A GMM approach was then used to define 

“signal” and “noise” connections and signal connections were then compared between 

groups. For further information see Chapter 3. Given that in previous chapters, robust 
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connections were only found in the alpha and beta frequency bands, further analysis in this 

chapter will focus on these frequency bands only.  

 

6.5 Results 

6.5.1 Resting State Functional Connectivity: Uncorrected Analysis of Differences 

 

Figure 6.1 shows grouped connectivity matrices for placebo and ketamine and difference in 

mean connectivity between the two in the alpha and beta frequency bands.  

As per the results presented in Chapters 3, 4 and 5, there is a hub region of increased 

connectivity (represented by a central block of orange on the connectivity matrices) that 

represents connectivity in the posterior occipital and parietal region. This is evident in both 

placebo and ketamine conditions. In the placebo condition, there also appear to be more 

widespread regions of increased connectivity. The difference in mean connectivity between 

placebo and ketamine shows widespread reduced connectivity with ketamine in both 

frequency bands (represented by blue regions on the connectivity matrices). There appear to 

some small central (posterior parietal) regions of increased connectivity with ketamine also.   
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Figure 6.2 shows results following a data masking approach. The highest connectivity 

connections are again, mainly posterior but also bilateral temporo-parietal and fronto-

parietal. Differences in mean connectivity between placebo and ketamine show posterior 

reductions in connectivity following ketamine administration. In the alpha frequency band, 

there appear to be some connections that are increased with ketamine.  

Placebo
Connectivity

Matrices

Ketamine
Connectivity

Matrices

Difference in Mean
Connectivity

Alpha
8-13Hz

Beta
13-30Hz

Figure 6.1: Ketamine Study Connectivity matrices. 
Orange=higher connectivity. Blue=lower connectivity. 
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6.5.2 GMM Analysis 

The results from the GMM analysis can be seen in Figure 6.3. In the alpha frequency band, 

“signal” connections were found predominantly in occipital, parietal and temporal regions. 

Signal connections were more widespread in the beta frequency band with prominent fronto-

parietal connections bilaterally.  

In the alpha frequency band, an uncorrected t-test of differences between placebo and 

ketamine conditions shows increased connectivity with Ketamine, predominantly occipitally 

and parietally. Following correction for multiple comparisons, the following connections 

Placebo
Masked Connectivity

Ketamine
Masked Connectivity

Difference in Mean
Masked Connectivity

Alpha
8-13Hz

Beta
13-30Hz

Figure 6.2: Ketamine Study Uncorrected Connectivity Maps. 
Masked connectivity refers to the connections with the highest 5% z-statistics, present 95% of  the time in 
the bootstrapping procedure.
Placebo Masked Connectivity = mean highest connections over all participants in placebo condition.
Ketamine Masked Connectivity = mean highest connections over all participants with ketamine.
Difference in Mean Connectivity= Ketamine Masked Connectivity minus Placebo Masked Connectivity. 
Blue=lower connectivity with ketamine. Red = higher connectivity with ketamine.
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were significantly stronger (0.005) in the alpha frequency band in the ketamine condition 

than placebo:  

Right lingual to right mid occipital 

Right lingual to right inferior occipital 

 

In the beta frequency band, an uncorrected t-test showed more widespread, varied 

differences between placebo and ketamine. Following correction for multiple comparisons, 

there were no statistically significant differences between placebo and ketamine in this 

frequency band.  

Connectivity strength of the right lingual AAL node was increased with ketamine in the alpha 

frequency band (0.0178). There were no statistically significant differences in connectivity 

strength between placebo and ketamine in the beta frequency band. Global connectivity 

appeared to be increased in the alpha frequency band with ketamine but this was not 

statistically significant (p=0.1). There were no differences in global connectivity in the beta 

frequency band.  
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6.6 Discussion 

Over many years, the glutamate hypothesis of schizophrenia has become a leading 

aetiological hypothesis of the disorder. This is in part due to the observed effects of NMDA 

receptor antagonist drugs such as ketamine which mimic the symptoms of schizophrenia 

(Adler et al., 1999). As a result, ketamine has now become a model of schizophrenia (Frohlich 

and Van Horn, 2014).  

Given our previously reported findings of dysconnectivity in schizophrenia, in this chapter, 

I explored the effects of ketamine upon connectivity in a healthy group of young men. The 

aim was to add evidence to the ketamine model of schizophrenia and further develop links 

between the glutamate hypothesis and the dysconnectivity hypothesis.  Using the same 

method used in previous chapters (amplitude-amplitude coupling in MEG), using a GMM 

“Signal” 
Connections

Uncorrected t-
test Corrected t-test Connectivity 

Strength

Global 
Connectivity

Sum

Alpha
8-13Hz

Beta
13-30Hz

Figure 6.3: Ketamine Study GMM Analysis. 
Signal connections= connections found to be in the “signal” Gaussian using GMM. 
Uncorrected t-test= uncorrected t-test of signal connections between placebo and ketamine.
Corrected t-test= corrected t-test of signal connections between placebo and ketamine.
Red lines=increased connectivity. Blue lines= decreased connectivity with ketamine.
Significant Connections: 
Alpha: Right lingual to Right Mid Occipital

Right lingual to Right Inferior Occipital
Connectivity Strength= Sum of  every signal connection for each AAL node. 
Horizontal axes=AAL node. Vertical axes=Connectivity strength. 
Global Connectivity Sum= Violin plot of  sum of  all signal connections for placebo and ketamine. 
Red=Ketamine. Blue=Placebo.
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procedure, I found increased connectivity following acute ketamine administration in the 

alpha frequency band. The connections that were found to be significantly increased 

following ketamine administration were occipital, from the right lingual to right mid occipital 

and right inferior occipital. Connectivity strength was also significantly increased in the alpha 

frequency band following ketamine administration.  

Results of this study reflect previous findings of increased connectivity following ketamine 

administration (Hoflich et al., 2015, Rivolta et al., 2015, Driesen et al., 2013a, Anticevic et al., 

2015a).  Of these studies, the majority used fMRI to explore functional connectivity, the 

exception being a resting-state MEG study by Rivolta et al. (2015). Using transfer entropy, 

Rivolta et al. (2015) found thalamo-cortical hyper-connectivity involving the visual cortex, 

similar to present findings using amplitude envelope correlation in MEG.  

Interestingly, using the same dataset but an ICA based analysis method, Muthukumaraswamy 

et al. (2015) found reduced activity in bilateral parietal and motor networks in the beta 

frequency band and an occipital network in the alpha frequency band. (Since ICA is a 

measure of network activity rather than node-node connectivity this apparent decrease as 

reported by Muthukumaraswamy et al. (2015) may be due to decreased power in the alpha 

and beta frequency bands.) This suggests that choice of analytic pipeline can have a 

significant outcome upon results and may explain some of the heterogeneity seen in studies 

exploring functional connectivity with ketamine. This is also evident within this analysis 

where initial simple analysis, as seen in Figure 6.1, appears to show widespread reduced 

connectivity with Ketamine, whereas using a GMM approach (Figure 6.3) resulted in mostly 

increased connectivity, particularly in the alpha frequency band. This is because, Ketamine 

generates widespread differences across the connectivity matrix in almost all nodes. The 

GMM procedure removes noise and “corrects” for this by re-centering the null distributions 

for each condition. This then enables us to see apparent local increases in connectivity with 
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Ketamine. (Appendix 1 further discusses the benefits of the GMM approach using analysis 

from this study.)  

In addition, the study design can have an impact, with a task based study by Driesen et al. 

(2013b) finding hypo-connectivity with ketamine and a resting-state study by Driesen et al. 

(2013a) finding hyper-connectivity with ketamine.  

Using the same robust and repeatable analysis pipeline throughout this thesis has the benefit 

of allowing us to compare results across chapters. The finding of hypo-connectivity in 

schizophrenia (presented in Chapter 5), particularly the later stages of schizophrenia, fits with 

the hypothesis that acute ketamine administration does not model the later stages of 

schizophrenia well. Whilst in Chapter 5, I did not find statistically significant increases in 

connectivity in early stages of illness, other studies have found similarities between 

connectivity in early schizophrenia and following ketamine administration. For example, 

Anticevic et al. (2015a) explored functional connectivity in acute ketamine administration, 

high risk, early and late stages of schizophrenia. They found increased connectivity in healthy 

controls given ketamine as well as high risk and early schizophrenia but reduced connectivity 

in the group with chronic schizophrenia. They conclude that these findings suggest ketamine 

models earlier stages of schizophrenia better than later stages. This is supported by other 

studies such as Liao et al. (2016) who found hypo-connectivity in chronic ketamine users 

suggesting acute versus chronic NMDAR antagonism may have differential effects upon 

functional connectivity. Animal studies also support this, with a study by Ahnaou et al. (2017) 

finding increased phase amplitude coupling following acute administration of ketamine but 

decreased coherence with chronic ketamine administration. 
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6.7 Conclusion 

In conclusion, I found increased occipital connectivity in the alpha frequency band in a group 

of healthy males following acute administration of ketamine- an NMDA receptor antagonist. 

Given our previous findings of reduced connectivity in patients with schizophrenia, 

particularly the more chronic stages, these results support the hypothesis that ketamine does 

not model the later stages of schizophrenia well. Taken together with previous research, 

ketamine may model the earlier stages of the disorder better than the later stages.  
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Chapter 7 Summarising Cohort Differences in Functional 

Connectivity across all Studies 

7.1 Rationale 

Throughout this thesis, I have presented functional connectivity findings from six different 

studies in order to explore not only the dysconnectivity hypothesis of schizophrenia but how 

it links with other hypotheses such as the glutamate hypothesis and the continuum 

hypothesis of schizophrenia. These studies have given interesting, and on the whole 

converging results but in this chapter, I seek to bring the studies together in order to more 

directly compare the results and to quantify effect magnitudes across these studies.  

 

7.2 Background, Aims and Hypotheses 

As discussed throughout the thesis, there are multiple hypotheses relating to schizophrenia, 

not all of which are mutually exclusive. In Chapter 3, I sought to explore the dysconnectivity 

hypothesis of schizophrenia in two studies of patients with non-duration or severity specific 

schizophrenia. In Chapter 4, I explored functional connectivity in the context of the 

continuum hypothesis of schizophrenia which suggests that schizophrenia exists on a 

continuum with subclinical psychotic symptoms in the healthy population. In Chapter 5, I 

explored the dysconnectivity hypothesis of schizophrenia in more detail, comparing earlier 

stages to later stages of the disorder. Finally, in the most recent chapter, Chapter 6, I looked 

at functional connectivity following acute ketamine administration in order to explore the 

link between the dysconnectivity hypothesis and the glutamate hypothesis of schizophrenia.  

All of these studies have resulted in a somewhat converging picture, however, in this chapter, 

I will explore this further by using an analysis technique that will allow a more direct 
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comparison of results from these studies. My aim will be to develop a cohesive picture of 

dysconnectivity in schizophrenia, schizotypy and with ketamine (a model of schizophrenia).  

 

7.3 Materials and Methods 

The studies included in this chapter have been described in detail in previous chapters but a 

brief description of each follows: 

Study 1: Schizophrenia (Cardiff), eyes-open and eyes-closed resting-state conditions. 

This study included 28 patients with non-duration or severity specific schizophrenia. 

However, overall, the group had established schizophrenia with an average age of 44.6. All, 

aside from one were treated with antipsychotic medication.   

Study 2: Schizophrenia (Nottingham: MISP), eyes-open resting-state condition.  

This study also included 28 patients with non-duration or severity specific schizophrenia. 

However, in comparison to the first study, patients were younger and more varied in their 

duration of illness with an average age of 26.7.  

Study 3: Schizotypy (Cardiff), eyes-open resting-state condition. 

In this study, 183 healthy individuals were administered the Schizotypal Personality 

Questionnaire (SPQ). Of these participants, individuals were divided into the highest and 

lowest 20% according to their scores on the SPQ. The high and low schizotypy groups were 

then compared to each other in further analysis.  

Study 4: Schizotypy (Nottingham), eyes-open resting-state condition. 

Similar methodology as above was used for this study of 70 healthy individuals.   
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Study 5: Recent Onset Schizophrenia (SPRING), eyes-open resting-state condition. 

This study included 18 patients with schizophreniform disorder or schizophrenia within 12 

weeks of treatment with antipsychotic medication.  

Study 6: Established Schizophrenia (SPRING), eyes-open resting-state condition. 

20 patients with schizophrenia of more than 10 years’ duration were included in this study. 

All except one were prescribed Clozapine and can therefore be considered to be treatment 

resistant.  

Study 7: Ketamine, eyes-open resting-state condition. 

In this study, resting-state MEG was analysed following placebo and ketamine administration 

in 18 healthy young men.  

 

7.3.1 Data Acquisition and Statistical Analyses 

The MRI and MEG procedures for data acquisition and analysis have been described in 

detail in previous chapters. The pipeline for amplitude-amplitude coupling and statistical 

analysis have also been described previously. Following on from the GMM approach used 

in all previous analyses, we limited analysis to look at only those “signal” connections present, 

in all studies, at a threshold of 50%. To be clear, a node-node connection was only analysed 

if it was identified in every separate GMM analysis as having a group-mean probability of 

being valid “signal”>50%. This left a more limited number of connections to take forward 

for subsequent analysis.  

For these “group valid” connections I then assess the relative magnitude of cohort effects 

by averaging the t-statistic across all these connections to give one summary statistic.  
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7.3.1.1 Meta-Analysis 

Given that I have completed several similar studies, I went on to use a meta-analytic 

approach to pool all of the data and look for group differences. For this analysis, I excluded 

the Schizophrenia Study 1 eyes-closed data since this would then include the same cohort of 

individuals twice and all other studies were completed with eyes-open. Pooled mean 

difference and heterogeneity were analysed using the Review Manager programme, version 

5.3 (Manager, 2014). The mean and standard deviation (of all connections that were valid in 

all studies) for each group for each study was used to calculate a standardised mean 

difference. This is the difference in mean outcome between groups divided by the standard 

deviation of outcome among participants. A weighted average of pooled data was then 

calculated by summing mean difference estimates multiplied by weights (where 

weight=1/(standard error2 + inter-trial variance) and dividing this by the sum of weights for 

all studies.  The standard error of pooled effect size was then used to derive a confidence 

interval and p value to estimate the strength of evidence against the null hypothesis of no 

pooled effect. I used a random effects model (DerSimonian and Laird, 1986) whereby 

standard errors are adjusted to take account of heterogeneity. This is used when different 

studies are estimating different but related effects and takes into account both individual and 

between study variance (Deeks et al., 2008).  

 

7.4 Results 

Figure 7.1 below shows summarised alpha connectivity cohort-differences for all studies. 

Figure 7.1A shows a connectivity map of those 62 connections that were valid 

(mean(p)>50%) in all studies. Figure 7.1B shows t-test statistics for each of these valid 

connections in each study. Overall, there appears to be reduced posterior alpha connectivity 
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in these connections in most of the studies, with Study 2 (Nottingham MISP) appearing to 

have weaker connectivity reductions in patients than the other studies. In Study 7 (SPRING 

Recent Onset) connectivity appears much more mixed, with both reduced and increased 

connectivity in patients in these connections, but with weaker effect sizes. Study 5 

(Ketamine) diverges significantly from the other studies with connectivity in these valid 

connections being increased with ketamine compared to placebo. Figure 7.1C shows 

boxplots of mean t-statistics across all of the valid connections for each study. These results 

echo those seen in Figure 7.1B, with connectivity in Study 5 (Ketamine) being increased and 

all other studies aside from Study 7 (SPRING Recent Onset) having reduced connectivity. 

In study 7, connectivity is slightly increased in cases but almost at zero (mean t-statistic) with 

no difference between cases and controls. Similar effect sizes are seen across the other studies 

showing reduced connectivity, except for Study 2 (Nottingham MISP) where the effects are 

much weaker. Figure 7.1D shows the ranked t-statistics for each connection for all studies. 

Again, results are similar, with connectivity in Study 5 (Ketamine) being increased with 

ketamine for most connections. In Study 7 (SPRING Recent Onset), the line crosses zero 

with some connections being increased and some being reduced in cases. Connectivity is 

mostly reduced in cases in Study 2 (Nottingham MISP) but with a weaker effect and again, 

the line crossing zero suggesting increased connectivity in some connections.     
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Figure 7.2 below shows summarised beta connectivity analysis for all studies. Figure 7.2A 

shows a connectivity map of only those connections that are valid in all studies. There were 

68 connections that were valid at a threshold of 50%. Figure 7.2B shows t-tests of only these 

valid connections for each study. Reduced connectivity in these connections in cases is 

evident in most studies although the effects appear weaker in Study 2, Study 4 and Study 7. 

Mixed (both increased and decreased) connectivity is seen in Study 4, 5 and 7. This is also 
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Figure 7.1 Summarized Alpha Connectivity across all studies
A. Connectivity map showing only connections valid in all studies. 
B. t-test of  valid connections in each study. Blue=reduced connectivity in cases. Red=increased 
connectivity in cases.
C. Box plots of  mean t-statistics across all valid connections for each study.
D. Graph of  sorted t-statistics for valid connections for each study. 
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evident when reviewing boxplots of mean t-statistics in Figure 7.2C. For studies 2-7, the 

mean is close to zero and boxes cross zero for studies 4-7 suggesting minimal differences 

between cases and controls. Again, when looking at t-statistics for each connection and 

study, lines are fairly close to zero aside from Study 1 (both conditions).  
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Figure 7.2 Summarized Beta Connectivity across all studies
A. Connectivity map showing only connections valid in all studies. 
B. t-test of  valid connections in each study. Blue=reduced connectivity in cases. Red=increased 
connectivity in cases.
C. Box plots of  mean t-statistics across all valid connections for each study.
D. Graph of  sorted t-statistics for valid connections for each study. 
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7.4.1 Meta-Analysis Results 

Figure 7.3 shows a forest plot of Alpha connectivity including all studies. Measures of 

heterogeneity including Chi2 (12.93, p=0.04), Tau2 (a measure of between study variance, 

0.13) and I2 (percentage of variation across studies that is due to heterogeneity rather than 

chance, 54%) suggest statistically significant heterogeneity between studies. The test for 

overall effect when combining studies indicates a 1.86 standard deviation difference across 

studies but this is non-significant (Z=1.86, p=0.06).  

 

On reflection and further review of the literature, I repeated the analysis excluding the 

Ketamine study. This was because, firstly, connectivity following Ketamine administration 

was increased, suggesting a very different effect to that seen in schizophrenia. Secondly, most 

of the other studies were of participants with later stages of schizophrenia and as discussed, 

previous studies suggest that Ketamine does not model later stages of schizophrenia well. 

Therefore, it would make more sense to exclude it from grouped analysis.   

A forest plot of Alpha connectivity for all studies except the Ketamine study is shown in 

Figure 7.4. When removing the Ketamine study, heterogeneity between studies reduced and 

was no longer significant (Tau2=0.01; Chi2=5.4, p=0.37; I2=7%). The test for overall effect 

when combining studies was again statistically significant with now highly significant 

reductions in alpha connectivity in cases (Z=3.57, p=0.0004). 

Figure 7.3 Alpha Connectivity Forest Plot Including All Studies
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A forest plot of Beta connectivity for all studies is shown in Figure 7.5. Heterogeneity 

between studies was minimal and non-significant (Tau2=0; Chi2=5.42, p=0.49; I2=0%). The 

test for overall effect when combining studies was again statistically significant with 

significant reductions in beta connectivity in cases (Z=2.92, p=0.004). 

 

A forest plot of Beta connectivity for all studies except the Ketamine study is shown in Figure 

7.6. Heterogeneity between studies was minimal and non-significant (Tau2=0; Chi2=4.71, 

p=0.45; I2=0%). The test for overall effect when combining studies was again statistically 

significant with significant reductions in beta connectivity in cases (Z=3.02, p=0.002). 

 

 

Figure 7.4 Alpha Connectivity Forest Plot Excluding Ketamine Study

Figure 7.5 Beta Connectivity Forest Plot Including All Studies

Figure 7.6 Beta Connectivity Forest Plot Excluding Ketamine Study
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7.5 Discussion 

Across seven studies of schizophrenia, the continuum of schizophrenia (schizotypy) and a 

model of schizophrenia (ketamine) I found somewhat converging results in MEG resting-

state connectivity, particularly in the alpha frequency band. I found reduced connectivity in 

patients with schizophrenia in two studies where no stage or duration of illness was specified. 

I also found reduced connectivity in a group of patients with established (treatment resistant) 

schizophrenia. I did not find differences in connectivity in a group of patients with recent 

onset psychosis (within 12 weeks of treatment). These results alone suggest that there may 

be a difference in connectivity between the early stages and later stages of the disorder and 

may help to explain some of the heterogeneity in the literature (Bowyer et al., 2015, Kim et 

al., 2014, Hinkley et al., 2011). When considering these results in the context of our findings 

in a study of an NMDA receptor antagonist (ketamine), I found increased connectivity in 

healthy individuals following ketamine administration. This reflects other work finding 

increased connectivity following ketamine administration (Anticevic et al., 2015a, Driesen et 

al., 2013a, Hoflich et al., 2015, Rivolta et al., 2015). This therefore suggests that Ketamine 

does not model established psychosis well, (where we predominantly see reduced 

connectivity.)  

Interestingly, I also found reduced connectivity in two groups of healthy participants with 

high schizotypy scores. This suggests that there may be biological continuity between 

subclinical psychotic traits in healthy individuals and clinically diagnosable schizophrenia. 

Given the lack of significant changes in connectivity in patients with recent onset psychosis, 

this suggests that the link between connectivity changes seen in schizotypy and those seen in 

schizophrenia is not simple. Study design may explain some of the differences I have found. 

Since the recent onset group were quite heterogeneous in themselves (with diagnoses of 
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schizophreniform disorder or schizophrenia), they may not all go on to develop established 

schizophrenia and therefore any changes in connectivity may be diluted by this heterogeneity.  

Results may also be partially explained by the comparator groups used. For all of the 

schizophrenia studies, I compared patients with healthy controls. These healthy controls 

were not assessed for schizotypy and therefore not selected on this basis. However, for the 

schizotypy studies, cases with high schizotypy were compared with controls with low 

schizotypy. It may therefore stand that for the recent onset group, differences may have been 

apparent had we compared them to individuals with low schizotypy. 

When combining results using a meta-analytic approach, I found reduced connectivity in 

cases (referring to patients with schizophrenia, healthy controls with high schizotypy and 

healthy controls following ketamine administration) in both the alpha and beta frequency 

bands.  

Given that connectivity was actually increased in healthy controls following ketamine 

administration, this pooled result was stronger and more significant when removing the 

Ketamine study from the pooled analysis.  

 

7.6 Conclusion 

In summary, this work supports the dysconnectivity hypothesis of schizophrenia, specifically 

finding reduced posterior alpha band connectivity in patients with schizophrenia. Such 

changes are found predominantly in the later stages of the disorder suggesting possible 

progressive changes throughout its course. I found increased connectivity following 

ketamine administration in the same frequency band and region suggesting the drug does 

not model later stages of the disorder well (where we predominantly see hypo-connectivity). 
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Based upon previous research, it may be that ketamine models the earlier stages of 

schizophrenia better than later stages. Finally, I also found hypo-connectivity in healthy 

volunteers with high schizotypy scores suggesting some biological continuity between 

subclinical symptoms and diagnosable schizophrenia. When pooled together, I found 

significantly reduced connectivity in cases with schizophrenia and schizotypy.  
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Chapter 8 The Impact of Disease Stage Upon MRS GABA 

in Schizophrenia and Correlations with MEG 

Functional Connectivity 

8.1 Rationale 

GABA has been implicated in the pathogenesis of schizophrenia for many years due to 

multiple post-mortem studies finding deficits in the enzyme responsible for its production. 

However, results from in vivo studies using Magnetic Resonance Spectroscopy (MRS) have 

been inconsistent.  

This study will investigate differences in occipital GABA between patients with differing 

stages of schizophrenia and healthy controls using MRS.  I will also explore the association 

between functional connectivity and GABA in order to elucidate the link between 

dysconnectivity seen in schizophrenia and any neurochemical deficits.  

  

8.2 Background 

As discussed in Chapter 6, a substantial body of evidence points towards the GABA and 

glutamate hypotheses in the aetiology of schizophrenia. These posit that hypofunction of the 

NMDA receptor (an ionotropic glutamate receptor) results in reduced excitation of 

GABAergic interneurons which in turn results in the disinhibition of glutamatergic pyramidal 

neurones (Homayoun and Moghaddam, 2007). This results in a change in dopamine firing 

patterns and increased dopamine release (Jackson et al., 2004). In addition to causing 

psychosis through this resultant hyperdopaminergic state, excess glutamate may also result 

in excitotoxicity and neuronal death.   
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GABA was first implicated in schizophrenia after multiple post-mortem studies of patients 

with the disorder showed reduced GAD67 mRNA and protein levels (Curley et al., 2011, 

Thompson et al., 2009). GAD67 is the enzyme responsible for most cortical GABA 

production and GAD67 complete knockout mice show a 93% reduction in GABA and die 

within hours of birth (Asada et al., 1997). Other studies of mice with incomplete knockout 

of GAD67 show learning and social behaviour deficits (Zhang et al., 2014a) thus linking 

deficits in GABA synthesis with symptoms seen in schizophrenia. In other animal studies, 

GABAergic interneuron density is reduced following the administration of NMDA 

antagonists (Braun et al., 2007, Keilhoff et al., 2004, Zhou et al., 2015). This therefore links 

the NMDAR hypofunction hypothesis and the GABAergic findings seen in schizophrenia. 

However, although post mortem studies clearly point towards disruption in GABA, results 

from in vivo studies of GABA using MRS in patients with schizophrenia are inconsistent.  

Such studies have explored varying brain regions and stages of schizophrenia. Several studies 

of the prefrontal cortex have found no difference (Tayoshi et al., 2010, Brandt et al., 2016) 

or reduced GABA in schizophrenia (Rowland et al., 2013, Marsman et al., 2014, Rowland et 

al., 2015). Studies of the occipital cortex have also found reduced GABA in schizophrenia 

(Yoon et al., 2010, Kelemen et al., 2013, Thakkar et al., 2017). One study of the hippocampus 

(Stan et al., 2015) and one of the dorsolateral prefrontal cortex (Chen et al., 2014) found no 

difference in GABA between patients with schizophrenia and controls. Other studies have 

found increased GABA in schizophrenia in the dorsal anterior cingulate cortex (Ongur et al., 

2010) and the medial prefrontal cortex (Kegeles et al., 2012). A recent meta-analysis by 

(Egerton et al., 2017) pooled studies into those exploring the medial frontal cortex, parieto-

occipital cortex and striatum. Whilst there were reductions in GABA in these regions in 

patients with schizophrenia, effect sizes were small and did not reach statistical significance. 
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However, the meta-analysis revealed significant heterogeneity between studies and also 

included studies of Ultra High Risk groups.  

Heterogeneity of results seen in MRS studies of GABA in schizophrenia may be due to 

methodological differences but could also be due to the age of participants, disease stage or 

antipsychotic exposure. In line with the hypothesis of accelerated ageing in schizophrenia 

(Kirkpatrick et al., 2008), MRS studies of GABA in schizophrenia have found differences 

between younger and older patients. For example, Rowland et al. (2015) found reduced 

GABA in the medial frontal cortex in older patients with schizophrenia whereas no 

difference in younger patients with schizophrenia. They also found a more rapid age related 

decline in GABA in patients with schizophrenia than with controls. Such findings however, 

may represent differences in illness duration or medication exposure as some studies have 

found an inverse relationship between antipsychotic medication dose and MRS GABA 

(Tayoshi et al., 2010, Kegeles et al., 2012, Marenco et al., 2016). However, confounders such 

as illness severity may explain this relationship as other studies fail to find this association 

(Kelemen et al., 2013, Goto et al., 2010). In addition, animal studies have found no change 

(Bustillo et al., 2006, McLoughlin et al., 2009) or increases (Konopaske et al., 2013) in GABA 

following antipsychotic exposure.  

GABA is important for the synchronised oscillatory activity of pyramidal neurones and 

deficits in the GABAergic system have been linked to cognitive deficits such as working 

memory impairment seen in schizophrenia (Lewis et al., 2005, Volk and Lewis, 2005). Studies 

have also found an association between inhibitory tone and more widespread functional 

connectivity (Stagg et al., 2014, Kapogiannis et al., 2013), thereby linking the dysconnectivity 

hypothesis (Stephan et al., 2009a) and hypotheses implicating the GABAergic system in 

schizophrenia (Gonzalez-Burgos et al., 2011).  
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8.3 Aims and Hypotheses 

Given the significant heterogeneity of results seen in MRS studies of GABA in schizophrenia 

and evidence suggesting that disease stage may have an impact upon GABA levels (Marenco 

et al., 2016, Kegeles et al., 2012, Rowland et al., 2013, Rowland et al., 2015), I sought to 

explore GABA levels in different stages of schizophrenia. Since most studies have seen a 

reduction of GABA in schizophrenia, I expected to see lower GABA which was more 

pronounced in later stages of the disorder than early stages.  

Previous work in this thesis has focussed upon functional connectivity and I therefore also 

sought to explore the relationship between GABA and functional connectivity in individuals 

with schizophrenia. To my knowledge, no other studies in schizophrenia have explored this 

association using MEG. However, studies of healthy individuals have found an inverse 

relationship between GABA and functional connectivity (using fMRI) (Stagg et al., 2014, 

Kapogiannis et al., 2013) and I therefore expected this relationship to be disrupted in 

schizophrenia.  

 

8.4 Materials and Methods 

8.4.1 Participants 

This study has been previously outlined in Chapter 5. The study was ethically approved in 

line with national practices. Participants gave written, informed consent prior to taking part.  

The data used in this study were acquired as part of a multi-centre study of schizophrenia 

entitled SPRING (The Study of Psychosis and the Role of Inflammation, GABA and 

Glutamate). The study was conducted at Cardiff University, The University of Nottingham 

and The University of Manchester. In this chapter, I will only present data collected at Cardiff 
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University by myself and Dr Loes Koelewijn. There were two arms of the study, one 

investigating recent onset psychosis and the other investigating established psychosis.   

 

8.4.1.1 Recent Onset Psychosis Group  

14 participants within 5 years of a DSM-IV diagnosis of schizophrenia or schizophreniform 

disorder (10 males, 4 females; mean age: 24 +/-4.36, age range: 18-31) took part in the study. 

Participants had no exposure (n=1) or minimal exposure (<12 weeks) (n=13) to 

antipsychotic medication. 

 

8.4.1.2 Established Psychosis Group 

20 participants with more than 10 years’ history of a DSM-IV diagnosis of schizophrenia (17 

males, 3 females; mean age: 39 +/-7.78, age range: 27-54) took part in the study. Participants 

had at least eight weeks’ stable treatment prior to taking part in the study.  

 

Cases were recruited through local Community Mental Health Teams (CMHTs), specialist 

Early Intervention for Psychosis Services and Clozapine clinics. Participants were diagnosed 

through clinical assessment and case note review followed by verification by clinical 

consensus.  

 

8.4.1.3 Healthy Control Groups 

Both case groups had an age, sex and parental occupation matched group of 10 healthy 

control participants. These were recruited locally through an online advert and the University 

noticeboard. The recent onset control group consisted of 7 males, 3 females; mean age: 23 

+/-3.03, age range: 18-26. The established control group consisted of 10 males, 2 females; 

mean age: 39 +/-7.78, age range: 29-54. 
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8.4.1.4 Inclusion and Exclusion Criteria 

For all groups inclusion criteria were; male or female, aged 18 - 55 years, ability to understand 

and willing to give written informed consent and English as first language or fluent. 

Exclusion criteria for case groups were; clinically significant neurological disorder, history of 

head injury with loss of consciousness >5 minutes, current harmful use of, or recent 

dependence on, psychoactive substances (excluding nicotine), contraindications for MR 

scanning (e.g. claustrophobia, pregnancy etc). Exclusion criteria for control groups were; 

personal history of psychosis or related disorder as determined by MINI (-international 

neuropsychiatric interview), current or recent (within 2 years) presence of depressive 

symptoms or treatment with antidepressant medication, current use of any medication which 

may interfere with the study, first degree relative with a history of psychosis, clinically 

significant neurological disorder, history of head injury with loss of consciousness >5 

minutes.  

8.4.2 MRI Data Acquisition and Analysis 

Individual anatomical MRIs (1-mm isotropic, T1-weighted FSPGR) were acquired using a 

3.0 T MRI scanner (General Electric). 

GABA was quantified in the occipital lobe (OCC). The occipital voxel was 3cm by 3cm by 

3cm and positioned as far as possible parallel with the junction between the occipital lobe 

and the cerebellum. (See Figure 8.1.) 
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GABA was detected with a MEGA-PRESS acquisition. In these acquisitions 

(TE/TR=68/2000ms), Gaussian editing pulses (16ms duration) were placed at either 

1.9ppm (ON) or 7.5ppm (OFF), to give a GABA edited spectra.  

GABA was then quantified using Gannet 2.0 toolkit (http://www.gabamrs.com). Following 

phase correction of individual spectra, “ON” and “OFF” were subtracted resulting in the 

edited spectrum. The edited GABA peak was then modelled as a single Gaussian, enabling 

quantification of GABA as the integral of the area under the peak. GABA concentration was 

then estimated relative to both water and, separately creatine. Fit error was calculated by 

dividing the standard deviation of the fitting residual by the amplitude of the fitted peak.  

Again, using Gannet, the voxel was segmented into grey matter, white matter and CSF and 

for GABA/H2O measurements, concentrations were then corrected for the proportions of 

these (Gasparovic et al., 2006).  

Spectra were excluded if the fit error was above 10% or there was a poor fit on visual 

inspection. An example of a poorly fit GABA spectrum can be seen in Figure 8.2. The blue 

line represents the actual spectra and the red line represents the model fit. In this example, 

the fit is poor and therefore unlikely to give a good estimation of GABA. Figure 8.3 shows 

an example of a well fit GABA spectra. Finally, outliers were excluded using a procedure in 

Figure 8.1 Occipital Voxel Position
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which only GABA measures within plus or minus two standard deviations of the mean, 

within each sub-cohort, were included in further analysis. A t-test was then performed in 

order to assess between group differences.  
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Figure 8.2 GannetFit Output example of  poorly fit GABA spectre

Figure 8.3 GannetFit Output example of  well fit GABA spectre
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8.4.3 Correlations with MEG-Derived Functional Connectivity 

Using results from the connectivity analysis outlined in previous chapters, we analysed 

correlations between GABA/H2O and GABA/Cr and connectivity. For this analysis, we 

used only connections that were valid in all studies. We corrected for multiple comparisons 

using randomisation testing (5000 iterations).  

All SPRING controls (i.e. those matched to both the recent onset and established groups) 

were used as a control group for comparison.   

 

8.5 Results 

8.5.1 GABA Analysis for the Recent Onset Psychosis Group 

Mean and standard error for GABA/Cr and GABA/H2O is shown in Figure 8.3. Outlier 

rejection led to the removal of one recent onset participant for GABA/H2O and one for 

GABA/Cr. 

There were no significant differences in GABA/Cr (t(18)=-1.13, p=0.28), GABA/H2O 

(t(19)=-0.99, p=0.33) between recent onset participants and controls.  
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Figure 8.3 Recent Onset patients vs Controls GABA Analysis
Bars represent mean occipital GABA/Cr and GABA/H2O.
Error bars represent +/-1 Standard Error of  the mean.
Red=Recent Onset Patients, Blue=Controls
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Figure 8.4 shows a scatter plot of GABA/H2O and GABA/Cr for recent onset participants 

and controls.  

 

 

 

8.5.2 GABA Analysis for the Established Schizophrenia Group 

Mean and standard error for GABA/Cr and GABA/H2O is shown in Figure 8.5. Two 

established participants were excluded due to the fit error being greater than 10%. Outlier 

rejection led to the removal of one established participant (for both GABA/Cr and 

GABA/H2O) and one established control for GABA/H2O and one for GABA/Cr.  

There was a trend towards lower GABA/Cr (t(24)=-1.79, p=0.086) in established 

participants compared to controls but this did not meet statistical significance. 

Figure 8.4 Recent Onset GABA/H2O vs GABA/Cr
Red=Recent Onset Patients, Blue Circles=Controls
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GABA/H2O (t(26)=-2.37, p=0.025) was significantly lower in established participants than 

controls.  

This trend can be seen in Figure 8.6 where established participants (red dots) are 

positioned towards the lower left of the graph whereas controls (blue circles) are more 

towards the top right.  

 

 

GABA/Cr GABA/H2O

Figure 8.5 Established patients vs Controls GABA Analysis
Bars represent mean occipital GABA/Cr and GABA/H2O.
Error bars represent +/-1 Standard Error of  the mean.
Red=Established Patients, Blue=Controls
* = t-test between groups, p<0.05
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8.5.3 Correlations with Connectivity  

8.5.3.1 Correlations between GABA and Alpha Connectivity  

Figure 8.7 shows GABA/H2O and GABA/Cr correlations with connectivity for SPRING 

Controls, SPRING Recent Onset Participants and SPRING Established Participants. For 

the SPRING Controls, there is widespread positive correlation between GABA and 

connectivity. For SPRING Recent Onset Participants, there are positive and negative 

correlations between GABA and connectivity in the occipital, parietal and temporal regions. 

These correlations are more localised to the parieto-occipital cortex in SPRING established 

participants and are mostly negative, suggesting higher connectivity with lower GABA levels. 

However, none of these findings reached statistical significance after randomisation testing.  

Figure 8.6 Established GABA/H2O vs GABA/Cr
Red=Established Patients, Blue Circles=Controls
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Figure 8.8 shows a bar-graph of all of these correlation coefficients, for all studies, with blue 

bars representing control groups and red bars representing cases. The horizontal line 

represents a correlation coefficient of zero, with bars above this representing positive 

correlations between GABA and connectivity and bars below this representing negative 

correlations. Again, the control group shows a mixed picture but with mostly positive 

correlations between GABA and connectivity whereas case groups have more mixed 

correlations between GABA and connectivity.   

GABA/H2O

GABA/Cr

SPRING Controls SPRING Recent Onset Patients SPRING Established Patients

Figure 8.7 Uncorrected Correlations of  GABA and Alpha Connectivity
Connectivity maps showing correlations of  GABA with connections valid in all studies.
Red lines=positive correlation between GABA and connectivity
Blue lines=negative correlation between GABA and connectivity
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Figure 8.9 compares correlations seen with GABA/H2O and those seen with GABA/Cr., 

Data points are fairly widespread, with case groups showing a mixed picture of correlation 

between GABA and connectivity. On the whole, for all groups, there appears to be a positive 

correlation between alpha connectivity and GABA/H2O or GABA/Cr. This suggests that 

most of the inter-subject variance in these correlations is driven by variance in GABA rather 

than creatine or water.  

Figure 8.8 Graphs of  Correlation Coefficients for GABA and Alpha Connectivity
Blue=Control Groups
Red=Patient Groups
Dotted lines=p<0.05 significance
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8.5.3.2 Correlations between GABA and Beta Connectivity  

Figure 8.10 shows GABA/H2O and GABA/Cr correlations with beta connectivity for 

SPRING Controls, SPRING Recent Onset Participants and SPRING Established 

Participants. For the SPRING Controls, there is widespread positive correlation between 

GABA and beta connectivity. For SPRING Recent Onset Participants, this pattern is more 

mixed but more closely resembles the control group. SPRING Established Participants show 

a very different pattern, with negative correlations between GABA/H2O and GABA/Cr 

and connectivity in predominantly parieto-occipital regions. Again, after randomisation 

testing, none of these correlations reach statistical significance.  

Figure 8.9 Correlation between R values for GABA/H2O and GABA Cr
Horizontal axes=GABA/H2O R values, Vertical axes=GABA/Cr R values, 
Blue circles=R values
From left to right: SPRING Controls, SPRING Recent Onset Patients, SPRING Established 
Patients
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A graph of correlation coefficients in Figure 8.11 again shows a pattern of positive 

correlations between GABA (both GABA/H2O and GABA/Cr) in the control group, a 

mixed picture in the SPRING Recent Onset Participants and predominantly negative 

correlations between GABA and connectivity in the SPRING Established Participants. This 

is also reflected in Figure 8.12. In general, effects appear much stronger for correlations with 

beta connectivity than for those with alpha connectivity. 

GABA/H2O

GABA/Cr

SPRING Controls SPRING Recent Onset Patients SPRING Established Patients

Figure 8.10 Uncorrected Correlations of  GABA and Beta Connectivity
Connectivity maps showing correlations of  GABA with connections valid in all studies.
Red lines=positive correlation between GABA and connectivity
Blue lines=negative correlation between GABA and connectivity
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Figure 8.11 Graphs of  Correlation Coefficients for GABA and Beta Connectivity
Blue=Control Groups
Red=Patient Groups
Dotted lines=p<0.05 significance

Figure 8.12 Correlation between R values for GABA/H2O and GABA Cr Correlations 
with Beta Connectivity
Horizontal axes=GABA/H2O R values, Vertical axes=GABA/Cr R values, 
Blue circles=R values
From left to right: SPRING Controls, SPRING Recent Onset Patients, SPRING Established 
Patients
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8.6 Discussion 

Reduced GABA/H2O and a trend to reduced GABA/Cr was found in participants with 

established schizophrenia compared with controls. There was no significant difference in 

GABA between recent onset participants and controls. This replicates other studies finding 

reduced GABA in the occipital cortex in patients with schizophrenia (Yoon et al., 2010, 

Kelemen et al., 2013, Thakkar et al., 2017). However, in contrast to our findings of reduced 

GABA only in established participants and not in recent onset participants, (Kelemen et al., 

2013) found reductions in GABA in drug naïve first episode patients. In addition, Yoon et 

al. (2010) found a 10% reduction in occipital GABA in a mixed group of patients with both 

chronic and recent onset schizophrenia.  

Our findings of reduced GABA in older individuals with established schizophrenia but no 

difference in GABA in recent onset (younger) patients with schizophrenia reflect findings 

from Rowland et al. (2015). These results may add support to the accelerated ageing 

hypothesis of schizophrenia and white matter studies finding more rapid decline in patients 

with age (Kochunov et al., 2014, Wright et al., 2014). Although, this is with the caveat that 

our study is cross sectional and to fully understand longitudinal changes in the disorder would 

require a longitudinal study such as the study of structural changes in schizophrenia by 

Schnack et al. (2016).   

This study found reductions in GABA/H2O but only a trend to a reduction in GABA/Cr 

in established participants with schizophrenia. Interestingly, Marenco et al. (2016) found 

reduced GABA/Cr in medicated patients but no difference in GABA/H2O. This suggests 

that the choice of reference to GABA is important especially since some studies have found 

differences in creatine between patients with schizophrenia and controls (Theberge et al., 

2007, Ongur et al., 2009, Meyer et al., 2016). Our different strength of findings in 
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GABA/H2O and GABA/Cr may therefore be due to a difference in creatine in participants 

with schizophrenia.   

For the second part of this study, I explored associations between connectivity (measured 

using amplitude envelope correlations in MEG) and GABA. The strongest effects were 

found between beta connectivity and GABA. The control group showed a consistent 

positive correlation between connectivity and both GABA/H2O and GABA/Cr. Effects 

for correlations in the Recent Onset Patient group showed an intermediate pattern with both 

positive and negative correlations. Established patients showed a much different pattern of 

correlation between GABA and connectivity with much more negative correlations, 

predominantly in the parieto-occipital cortex. Whilst these correlations did not reach 

statistical significance, the differing pattern between recent onset patients and established 

patients is interesting and again may provide support for progressive changes throughout the 

course of the disorder.  

Studies of healthy individuals have found correlations between functional connectivity 

measured with fMRI and GABA. For example, Stagg et al. (2014) found an inverse 

correlation between GABA and resting-state motor network connectivity. They also found 

that decreasing GABA with anodal tDCS resulted in increased functional connectivity.  

Kapogiannis et al. (2013) also found a negative correlation between Default Mode Network 

(DMN) GABA (and glutamate) and DMN functional connectivity using fMRI. This 

correlation was only evident in the DMN suggesting that there is a relationship between 

regional (but not global) functional connectivity and local inhibitory tone. Similarly, Shukla 

et al. (2018) found a significant negative correlation between GABA and fMRI functional 

connectivity in the ACC and no correlation in patients with schizophrenia. This, along with 

our results, suggests that GABA is important in the modulation of functional connectivity 

and that the relationship between brain chemistry and functional connectivity is perturbed 
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in schizophrenia. However, our study using MEG and MRS suggests that in healthy controls 

GABA is positively correlated with functional connectivity and that this relationship reverses 

in schizophrenia. These somewhat differing results may be due to the different brain regions 

studied and the differing cohorts of patients included in the studies.  

Multiple studies in both animals and humans have explored the relationship between GABA 

and beta oscillations. Task based studies using GABA agonists have shown increased 

amplitude of baseline beta power (Hall et al., 2010) and increased movement related beta 

desynchronization (MRBD) (Hall et al., 2011) in healthy controls. A study by 

Muthukumaraswamy et al. (2013), found increased amplitude of baseline beta power and 

enhanced MRBD following the administration of Tagabine, a GABA reuptake inhibitor. 

Taken together, these studies suggest that increased GABA may lead to increased beta and 

therefore increased connectivity. This would fit with our findings in healthy controls.  

 

8.6.1 Limitations 

Firstly, GABA as measured by MRS is a measure of total GABA in a specific voxel and 

represents GABA in presynaptic vesicles, cytoplasm and extracellular fluid. Studies suggest 

that these measurements may represent the inhibitory tone of a brain region rather than 

GABAergic synaptic activity (Stagg et al., 2011, Dyke et al., 2017). 

As previously discussed, in this study, I have looked at patients in two stages of disease state 

and it is difficult to make longitudinal conclusions based upon cross-sectional data as 

confounders such as medication exposure and illness severity could impact upon results. In 

addition, sample sizes for the SPRING study were relatively small leading to weak statistical 

power. 
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8.7 Conclusion 

In conclusion, I found reduced GABA/H2O in a group of participants with Established 

Schizophrenia. No differences in GABA were found in participants with Recent Onset 

psychosis. I also found differing patterns of correlation between participants with 

Established Schizophrenia and those with Recent Onset psychosis and controls. This may 

potentially support hypotheses of progressive changes occurring throughout the disorder. 

However, further longitudinal studies would elucidate this further.   
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Chapter 9 General Discussion 

This thesis utilised amplitude-amplitude coupling as a measure of functional connectivity in 

MEG in order to explore the dysconnectivity hypothesis of schizophrenia. In addition, 

functional connectivity was used to link dysconnectivity in schizophrenia with the continuum 

hypothesis of schizophrenia and ketamine, a model of schizophrenia.  I also explored the 

neurochemistry of schizophrenia (specifically GABA) using MRS and its link with 

dysconnectivity.  

 

9.1 Summary of Findings 

Chapter 3 explored functional connectivity in two groups of participants with schizophrenia. 

Using amplitude-amplitude coupling in MEG, I found reduced functional connectivity in 

one cohort of participants with schizophrenia in the alpha and beta frequency bands. In a 

second study, I also found a negative correlation between beta band connectivity and illness 

severity suggesting connectivity in this frequency band was lower in more unwell cases. 

Whilst I was able to identify significant patient differences using MEG, I was not able to 

identify significant differences using fMRI. However, I found a positive correlation between 

t-tests of fMRI connectivity between cases and controls and beta band connectivity in MEG 

between cases and controls suggesting a link between the two measures.  

 

Again, using amplitude-amplitude coupling in MEG, in Chapter 4, I explored the continuum 

hypothesis of schizophrenia by looking at functional connectivity in healthy individuals with 

high and low levels of schizotypy. Using this approach, I found reduced connectivity in two 

schizotypy studies in the alpha frequency band. Connectivity was globally reduced in two 
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studies in the groups with high schizotypy. In addition, connectivity of specific connections 

was reduced and these included parts of the Default Mode Network. In the beta frequency 

band, I found a significant correlation between t-test scores of differences between cases and 

controls in Schizophrenia Study 1 and t-test scores of differences between high and low 

schizotypy participants in Schizotypy Study 1.  

 

In Chapter 5, I attempted to elucidate dysconnectivity in schizophrenia further by exploring 

functional connectivity in different stages of the disorder. Using the same methods as used 

in previous chapters, I found reduced connectivity in participants with (established) more 

than 10 years’ history of schizophrenia in the alpha frequency band but not those within the 

early stages of psychosis.  

 

Given my previously reported findings of dysconnectivity in schizophrenia, in Chapter 6, I 

explored the effects of ketamine (an NMDA antagonist and model of schizophrenia) upon 

connectivity in a healthy group of young men. The aim was to add evidence to the ketamine 

model of schizophrenia and further develop links between the glutamate hypothesis and the 

dysconnectivity hypothesis.  Again, using the same method used in previous chapters, I 

found increased connectivity following acute ketamine administration in the alpha frequency 

band.  

 

In Chapter 7, I summarised the findings in the previous four chapters using several 

approaches including a meta-analytic approach. When combining results using a meta-

analytic approach, I found significantly reduced connectivity in cases (referring to 
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participants with schizophrenia, healthy controls with high schizotypy and healthy controls 

following ketamine administration) in both the alpha and beta frequency bands. Given that 

connectivity was actually increased in healthy controls following ketamine administration, 

this pooled result was stronger and more significant when removing the ketamine study from 

the pooled analysis. 

 

Given neurochemical hypotheses of schizophrenia and heterogeneity within the MRS 

literature, the final chapter of this thesis sought to investigate differences in occipital GABA 

between participants with differing stages of schizophrenia and healthy controls using MRS.  

I also explored the association between functional connectivity and GABA in order to 

elucidate the link between dysconnectivity seen in schizophrenia and any neurochemical 

deficits. I found lower GABA/H2O and a trend to reduced GABA/Cr in participants with 

established schizophrenia compared with controls but did not find a difference in GABA 

between recent onset participants and controls. In addition, there was a positive correlation 

between GABA and beta connectivity in healthy individuals that was not found in cases with 

schizophrenia.  

 

9.2 Implications of main findings and future work 

9.2.1 Reduced functional connectivity in established schizophrenia: 

Resting-state dysconnectivity has been repeatedly found in patients with schizophrenia. 

However, few studies have used MEG to probe resting-state connectivity in schizophrenia 

and of those that have, results are heterogeneous (Bowyer et al., 2015, Hinkley et al., 2011, 

Kim et al., 2014). Through utilising amplitude-amplitude coupling in MEG, I found reduced 

resting-state functional connectivity in the alpha and beta frequency bands in three separate 
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samples of participants with schizophrenia when restricting analysis to connections that were 

valid in all studies. In addition, in one study, there was reduced alpha and beta connectivity 

in participants with schizophrenia in two different conditions; eyes-open and eyes-closed. 

These results are consistent with research finding dysconnectivity in schizophrenia, 

particularly those finding reduced parietal and occipital connectivity in patients with 

schizophrenia (Henseler et al., 2010, Zhuo et al., 2014, Wende et al., 2015). In addition, a 

recent study by Hirvonen et al. (2017) also found reduced synchronisation in the visual cortex 

in patients with schizophrenia, however, this was during a perceptual task within the 30-

120Hz frequency range.   

Alpha oscillations are most prominently seen in the parietal occipital cortex at rest with the 

eyes-closed (Scheeringa et al., 2012) and alpha power is considered to reflect top-down 

inhibitory control processes (Klimesch et al., 2007). Increased posterior alpha power results 

in reduced connectivity with other brain regions. One study suggests that enhanced alpha 

power during tasks requiring internal attention may inhibit visual activity, consequently 

preventing disruption by external sensory information (Mo et al., 2013). Whilst alpha power 

was not explored in this study, power fluctuations may have therefore had an impact upon 

connectivity measures.   

I did not find reduced connectivity in participants with recent onset psychosis, suggesting a 

difference between these individuals and those with more established disorder. This is 

consistent with other studies of functional connectivity finding differences between the early 

and later stages of the disorder (Anticevic et al., 2015a) as well as those looking at changes 

in structural connectivity throughout the course of the disorder (Friedman et al., 2008, Kong 

et al., 2011).  
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Given the heterogeneity in the literature, it may therefore be wise in future studies to 

consistently divide patients according to disease stage. Alternatively, a longitudinal design 

may also be useful to explore the impact of duration of illness further.   

Other measures of connectivity such as phase-phase and phase-amplitude correlations could 

also be used. Also, given the excellent temporal resolution of MEG, which is not really 

exploited using the current methodology, dynamic connectivity measures could be used 

(O'Neill et al., 2017). 

 

9.2.2 Reduced functional connectivity in schizotypy:  

This finding lends further support to the hypothesis that there is neurobiological continuity 

between sub-clinical psychotic symptoms and clinically diagnosable schizophrenia. The 

finding of reduced functional connectivity in the alpha frequency band in two separate 

cohorts of individuals with high schizotypy mirrors our findings in several cohorts of patients 

with schizophrenia. This is perhaps surprising since, if we hypothesise that schizotypy 

represents a less severe form of clinically diagnosable psychosis, we would expect there to 

be a progressive deterioration in functional connectivity between schizotypy, the early stages 

of psychosis and later stages of psychosis. However, I did not find changes in functional 

connectivity in participants with recent onset psychosis and the findings in schizotypy are 

more similar to those of patients with established schizophrenia. It may be that whilst 

connectivity changes in schizotypy are similar to those seen in established schizophrenia, 

such individuals possess protective factors that prevent transition into diagnosable 

schizophrenia despite dysconnectivity. Results may also be partially explained by comparator 

groups used in the studies. For all of the schizophrenia studies, I compared cases with healthy 

controls. These healthy controls were not assessed for schizotypy and therefore not selected 
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on this basis. However, for the schizotypy studies, cases with high schizotypy were compared 

with controls with low schizotypy. It may therefore stand that for the recent onset group, 

differences may have been apparent had we compared them to individuals with low 

schizotypy. 

 

9.2.3 Increased functional connectivity following ketamine administration in 

healthy controls:  

Such results are consistent with previous findings of increased connectivity following 

ketamine administration (Hoflich et al., 2015, Rivolta et al., 2015, Driesen et al., 2013a, 

Anticevic et al., 2015a). The previous finding of hypo-connectivity in schizophrenia, and 

particularly the later stages of schizophrenia, fits with the hypothesis that acute ketamine 

administration is a better model for earlier stages of schizophrenia rather than later stages of 

schizophrenia. Future studies could use this method to explore the impact of chronic 

ketamine use upon functional connectivity in order to elucidate this relationship further since 

other studies have found hypo-connectivity following chronic use (Liao et al., 2016).   

 

9.2.4 Reduced occipital GABA in established schizophrenia but not in recent 

onset psychosis:  

There is heterogeneity in MRS GABA findings in schizophrenia with some studies finding 

increased GABA, some finding reduced GABA and others finding no difference in patients 

with schizophrenia. Given my previous findings of differential stage related changes in 

functional connectivity, it is perhaps not surprising that I found changes in GABA only in 

established schizophrenia and not in recent onset psychosis. These results reflect findings 

from Rowland et al. (2015) and may add support to the accelerated ageing hypothesis of 
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schizophrenia and white matter studies finding more rapid decline in patients with age 

(Kochunov et al., 2014, Wright et al., 2014). Although, this is with the caveat that our study 

is cross-sectional and to fully understand longitudinal changes in the disorder would require 

a longitudinal study such as the study of structural changes in schizophrenia by Schnack et 

al. (2016). Again, it may be useful when designing future studies to take disease stage into 

consideration.  

 

9.3 Methodological Considerations 

In the studies exploring disease stage, I have found differences between the early and later 

stages of schizophrenia. Whilst this is consistent with research that suggests a progressive 

decline in schizophrenia, the cross-sectional design of the studies makes it difficult to make 

longitudinal conclusions.  

We must consider the impact, for example, of medication exposure, upon any outcome 

measures since recent onset participants were only minimally exposed to antipsychotics 

whilst established participants received medication for a much longer duration. In the studies 

presented here, I did not find any correlation between connectivity and medication exposure 

suggesting that this has not had a large impact on results. However, in future, it may be useful 

to develop a longitudinal study exploring functional connectivity at in the same patients 

following different lengths of exposure to antipsychotics. Such studies however, are costly 

and vulnerable to attrition.   

In addition to medication as a confounding factor, we must also consider the validity of 

comparing results from a study of individuals with recent onset psychosis and a study of 

those with established schizophrenia. Such groups may be inherently different since we know 

that prognosis in first episode psychosis is heterogeneous (Menezes et al., 2006). i.e. only a 
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proportion of those with recent onset psychosis will go on to have established schizophrenia. 

Again, a longitudinal study would elucidate this further.  

Results from this thesis and in general within the neuroimaging of psychosis field reveal 

significant inconsistencies in results. This lack of consistency may be partially explained by 

low sample sizes and lack of joint analysis across groups. In particular, sample sizes were 

small in the control groups in Chapter 5. This limitation can be overcome to a degree through 

meta-analysis, (as performed in Chapter 7) in order to reach firmer conclusions.  

 

9.4 Conclusions 

This work supports the dysconnectivity hypothesis of schizophrenia, specifically finding 

reduced posterior alpha band connectivity in participants with schizophrenia. Such changes 

are found predominantly in the later stages of the disorder suggesting some progressive 

changes throughout its course. I found increased connectivity following ketamine 

administration in the same frequency band and region suggesting the drug does not model 

later stages of the disorder well (where we predominantly see hypo-connectivity). Given 

previous research, it may be that ketamine models the earlier stages of schizophrenia better 

than later stages. In addition, I found reduced GABA in later stages of schizophrenia but not 

in early stages, again suggesting progressive changes throughout the course of the disorder.  

Finally, I also found hypo-connectivity in healthy volunteers with high schizotypy scores 

suggesting some biological continuity between subclinical symptoms and diagnosable 

schizophrenia.  

Overall, these results add support to the dysconnectivity hypothesis, the GABA/glutamate 

hypothesis and the continuum hypothesis of schizophrenia. 
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9.5 Future Directions 

Our differing findings in two groups of participants with “generic” schizophrenia (Chapter 

3) as well as differing findings in recent onset psychosis and established schizophrenia 

(Chapter 5) highlight the challenges of studying such a heterogeneous condition. This is also 

reflected in previous research exploring structural connectivity, functional connectivity and 

neurochemistry in schizophrenia, whereby there isn’t a clear, consistent picture across all 

studies. Case-control studies looking at different disease stages help to a certain degree but 

do not elucidate fully due to limitations previously discussed. Longitudinal studies may help 

further but these are costly and prone to issues such as attrition.  

Overall, whilst research in schizophrenia has developed significantly over recent years, our 

understanding of the condition remains fairly limited and we continue to study schizophrenia 

as one condition despite it being evident that there is significant heterogeneity in the disorder. 

For example, it has been suggested that treatment resistant schizophrenia represents a 

different subgroup of schizophrenia. Also, in clinical practice, there are different diagnostic 

categories of the disorder.  

One field of schizophrenia research that has seen huge progress over recent years is within 

genetics. The disorder has a heritability of around 80% suggesting that a large proportion of 

susceptibility is inherited (Hilker et al.). Through the pooling of extremely large cohorts of 

patients into Genome Wide Association Studies, numerous common alleles of small effect 

have been found to be implicated in schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics et al., 2014). In addition to such common polymorphisms, rare 

variants such as Single Nucleotide Variants (SNVs) and Copy Number Variations (CNVs) 

contribute to schizophrenia susceptibility with varying effect sizes across a large number of 
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genes (Rees et al., 2014). In addition, a proportion of genetic risk for schizophrenia is not 

inherited but occurs de novo (Kirov et al., 2012).  

Therefore, these advancements in our understanding of the genetics of schizophrenia may 

aid us in understanding the neurobiology of the disorder further. For example, through the 

stratification of patients with schizophrenia according to genetic variants they possess. This 

leads on to a current study, Genetic Variants in Psychosis (GVIP), funded by the Wellcome 

Trust and the Brain and Behaviour Research Foundation that I am currently carrying out.  

Pathogenic CNVs in schizophrenia have been found to converge upon genes involved in 

GABAergic and glutamatergic neurotransmission (Pocklington et al. (2014).  In this thesis, 

the GABA/glutamate and dysconnectivity hypothesis of schizophrenia have been central 

and therefore the exploration of the impact of such rare variants upon neurobiology in 

schizophrenia seemed appropriate. Through the GVIP study, I am testing the hypothesis 

that participants with schizophrenia and CNVs/rare variants hitting GABA and glutamate 

pathways will display altered neural synchronization and neurochemistry, as measured by 

MEG and MRS respectively, compared to participants with schizophrenia but without 

significant CNVs/rare variants. This may allow development of current hypotheses of 

schizophrenia and improve our understanding of the heterogeneity of the disorder.  

In addition, within the genetics field, very large multicentre studies have resulted in huge 

breakthroughs in our understanding of the genetics of schizophrenia (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014). This approach could see progress 

within the imaging field should common protocols or valid methods to integrate data be 

developed. To a degree, this has been done for the SPRING study (for which I have only 

analysed Cardiff data, outlined in Chapter 5) but to make stronger conclusions, this would 

need to be carried out on a much larger scale.



References 

 165 

References 

Abbott, C. C., Jaramillo, A., Wilcox, C. E. & Hamilton, D. A. 2013. Antipsychotic drug 
effects in schizophrenia: a review of longitudinal FMRI investigations and neural 
interpretations. Curr Med Chem, 20, 428-37. 

Abeles, I. Y. & Gomez-Ramirez, M. 2014. Impairments in background and event-related 
alpha-band oscillatory activity in patients with schizophrenia. PLoS One, 9, e91720. 

Adler, C. M., Malhotra, A. K., Elman, I., Goldberg, T., Egan, M., Pickar, D. & Breier, A. 
1999. Comparison of ketamine-induced thought disorder in healthy volunteers and 
thought disorder in schizophrenia. Am J Psychiatry, 156, 1646-9. 

Ahnaou, A., Huysmans, H., Biermans, R., Manyakov, N. V. & Drinkenburg, W. 2017. 
Ketamine: differential neurophysiological dynamics in functional networks in the 
rat brain. Transl Psychiatry, 7, e1237. 

Ahveninen, J., Lin, F. H., Kivisaari, R., Autti, T., Hamalainen, M., Stufflebeam, S., 
Belliveau, J. W. & Kahkonen, S. 2007. MRI-constrained spectral imaging of 
benzodiazepine modulation of spontaneous neuromagnetic activity in human 
cortex. Neuroimage, 35, 577-82. 

Amaro, E., Jr. & Barker, G. J. 2006. Study design in fMRI: basic principles. Brain Cogn, 60, 
220-32. 

American Psychiatric Association 2013. Diagnostic and Statistical Manual of Mental Disorders, 
Washington, DC. 

Anderson, V. M., Goldstein, M. E., Kydd, R. R. & Russell, B. R. 2015. Extensive gray 
matter volume reduction in treatment-resistant schizophrenia. Int J 
Neuropsychopharmacol, 18, pyv016. 

Andreasen, N. C. 1983. The Scale for Assessment of Negative Symptoms (SANS). The 
University of Iowa, Iowa City (IA). 

Andreasen, N. C. 1984. The Scale for Assessment of Positive Symptoms (SAPS). The 
University of Iowa, Iowa City (IA). 

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E. & 
Buckner, R. L. 2007. Disruption of large-scale brain systems in advanced aging. 
Neuron, 56, 924-35. 

Anticevic, A., Corlett, P. R., Cole, M. W., Savic, A., Gancsos, M., Tang, Y., Repovs, G., 
Murray, J. D., Driesen, N. R., Morgan, P. T., Xu, K., Wang, F. & Krystal, J. H. 
2015a. N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical 
connectivity better model early than chronic schizophrenia. Biol Psychiatry, 77, 569-
80. 

Anticevic, A., Hu, X., Xiao, Y., Hu, J., Li, F., Bi, F., Cole, M. W., Savic, A., Yang, G. J., 
Repovs, G., Murray, J. D., Wang, X. J., Huang, X., Lui, S., Krystal, J. H. & Gong, 
Q. 2015b. Early-Course Unmedicated Schizophrenia Patients Exhibit Elevated 
Prefrontal Connectivity Associated with Longitudinal Change. J Neurosci, 35, 267-
86. 

Apa 1994. Diagnostic and statistical manual of mental disorders : DSM-IV, Washington, DC, 
American Psychiatric Association. 

Asada, H., Kawamura, Y., Maruyama, K., Kume, H., Ding, R. G., Kanbara, N., Kuzume, 
H., Sanbo, M., Yagi, T. & Obata, K. 1997. Cleft palate and decreased brain gamma-
aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid 
decarboxylase. Proc Natl Acad Sci U S A, 94, 6496-9. 

Bai, Y., Wang, W., Xu, J., Zhang, F., Yu, H., Luo, C., Wang, L., Chen, X., Shan, B., Xu, L., 
Xu, X. & Cheng, Y. 2016. Altered resting-state regional homogeneity after 13 



References 

 166 

weeks of paliperidone injection treatment in schizophrenia patients. Psychiatry Res, 
258, 37-43. 

Baillet, S., Mosher, J. C. & Leahy, R. M. 2001. Electromagnetic brain mapping. Signal 
Processing Magazine, IEEE, 18, 14-30. 

Balla, A., Koneru, R., Smiley, J., Sershen, H. & Javitt, D. C. 2001. Continuous 
Phencyclidine Treatment Induces Schizophrenia-Like Hyperreactivity of Striatal 
Dopamine Release. Neuropsychopharmacology, 25, 157-164. 

Balla, A., Sershen, H., Serra, M., Koneru, R. & Javitt, D. C. 2002. Subchronic Continuous 
Phencyclidine Administration Potentiates Amphetamine-Induced Frontal Cortex 
Dopamine Release. Neuropsychopharmacology, 28, 34-44. 

Benetti, S., Mechelli, A., Picchioni, M., Broome, M., Williams, S. & Mcguire, P. 2009. 
Functional integration between the posterior hippocampus and prefrontal cortex is 
impaired in both first episode schizophrenia and the at risk mental state. Brain, 132, 
2426-36. 

Bentall, R. P., Claridge, G. S. & Slade, P. D. 1989. The multidimensional nature of 
schizotypal traits: a factor analytic study with normal subjects. Br J Clin Psychol, 28 ( 
Pt 4), 363-75. 

Birn, R. M., Diamond, J. B., Smith, M. A. & Bandettini, P. A. 2006. Separating respiratory-
variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. 
Neuroimage, 31, 1536-48. 

Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. 1995. Functional connectivity in 
the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 
34, 537-41. 

Bluhm, R. L., Miller, J., Lanius, R. A., Osuch, E. A., Boksman, K., Neufeld, R. W., 
Theberge, J., Schaefer, B. & Williamson, P. 2007. Spontaneous low-frequency 
fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default 
network. Schizophr Bull, 33, 1004-12. 

Blyler, C. R., Gold, J. M., Iannone, V. N. & Buchanan, R. W. 2000. Short form of the 
WAIS-III for use with patients with schizophrenia. Schizophr Res, 46, 209-15. 

Boksman, K., Theberge, J., Williamson, P., Drost, D. J., Malla, A., Densmore, M., Takhar, 
J., Pavlosky, W., Menon, R. S. & Neufeld, R. W. 2005. A 4.0-T fMRI study of brain 
connectivity during word fluency in first-episode schizophrenia. Schizophr Res, 75, 
247-63. 

Bowles, T. M. & Levin, G. M. 2003. Aripiprazole: a new atypical antipsychotic drug. Ann 
Pharmacother, 37, 687-94. 

Bowyer, S. M., Gjini, K., Zhu, X., Kim, L., Moran, J. E., Rizvi, S. U., Gumenyuk, V., 
Tepley, N. & Boutros, N. N. 2015. Potential Biomarkers of Schizophrenia from 
MEG Resting-State Functional Connectivity Networks: Preliminary Data. Journal of 
Behavioral and Brain Science, 05, 1-11. 

Brandt, A. S., Unschuld, P. G., Pradhan, S., Lim, I. A., Churchill, G., Harris, A. D., Hua, J., 
Barker, P. B., Ross, C. A., Van Zijl, P. C., Edden, R. A. & Margolis, R. L. 2016. 
Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H 
MRS Study at 7 Tesla. Schizophr Res, 172, 101-5. 

Braun, I., Genius, J., Grunze, H., Bender, A., Moller, H. J. & Rujescu, D. 2007. Alterations 
of hippocampal and prefrontal GABAergic interneurons in an animal model of 
psychosis induced by NMDA receptor antagonism. Schizophr Res, 97, 254-63. 

Brealy, J. A., Shaw, A., Richardson, H., Singh, K. D., Muthukumaraswamy, S. D. & 
Keedwell, P. A. 2015. Increased visual gamma power in schizoaffective bipolar 
disorder. Psychol Med, 45, 783-94. 



References 

 167 

Brookes, M. J., Tewarie, P. K., Hunt, B. A., Robson, S. E., Gascoyne, L. E., Liddle, E. B., 
Liddle, P. F. & Morris, P. G. 2016. A multi-layer network approach to MEG 
connectivity analysis. Neuroimage, 132, 425-38. 

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., 
Barnes, G. R., Smith, S. M. & Morris, P. G. 2011. Investigating the 
electrophysiological basis of resting state networks using magnetoencephalography. 
Proceedings of the National Academy of Sciences, 108, 16783-16788. 

Bustillo, J., Barrow, R., Paz, R., Tang, J., Seraji-Bozorgzad, N., Moore, G. J., Bolognani, F., 
Lauriello, J., Perrone-Bizzozero, N. & Galloway, M. P. 2006. Long-term treatment 
of rats with haloperidol: lack of an effect on brain N-acetyl aspartate levels. 
Neuropsychopharmacology, 31, 751-6. 

Bustos, G., Abarca, J., Forray, M. I., Gysling, K., Bradberry, C. W. & Roth, R. H. 1992. 
Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in 
rat striatum: in vivo microdialysis studies. Brain Res, 585, 105-15. 

Buxton, R. B. 2002. Introduction to Functional Magnetic Resonance Imaging: Principles 

and Techniques, Cambridge, UK, Cambridge University Press. 
Canive, J. M., Lewine, J. D., Edgar, J. C., Davis, J. T., Miller, G. A., Torres, F. & Tuason, V. 

B. 1998. Spontaneous brain magnetic activity in schizophrenia patients treated with 
aripiprazole. Psychopharmacol Bull, 34, 101-5. 

Cannon, M., Caspi, A., Moffitt, T. E., Harrington, H., Taylor, A., Murray, R. M. & Poulton, 
R. 2002. Evidence for early-childhood, pan-developmental impairment specific to 
schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen 
Psychiatry, 59, 449-56. 

Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., Van Erp, T. G. M., Mcewen, S., 
Addington, J., Bearden, C. E., Cadenhead, K., Cornblatt, B., Mathalon, D. H., 
Mcglashan, T., Perkins, D., Jeffries, C., Seidman, L. J., Tsuang, M., Walker, E., 
Woods, S. W. & Heinssen, R. 2015. Progressive Reduction in Cortical Thickness as 
Psychosis Develops: A Multisite Longitudinal Neuroimaging Study of Youth at 
Elevated Clinical Risk. Biol Psychiatry, 77, 147-57. 

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H. 
& Moore, C. I. 2009. Driving fast-spiking cells induces gamma rhythm and controls 
sensory responses. Nature, 459, 663-667. 

Carletti, F., Woolley, J. B., Bhattacharyya, S., Perez-Iglesias, R., Fusar Poli, P., Valmaggia, 
L., Broome, M. R., Bramon, E., Johns, L., Giampietro, V., Williams, S. C., Barker, 
G. J. & Mcguire, P. K. 2012. Alterations in white matter evident before the onset of 
psychosis. Schizophr Bull, 38, 1170-9. 

Carpenter, D. M., Tang, C. Y., Friedman, J. I., Hof, P. R., Stewart, D., Buchsbaum, M., 
Harvey, P. D., Gorman, J. & Davis, K. L. 2008. Temporal Characteristics of Tract-
Specific Anisotropy Abnormalities in Schizophrenia. Neuroreport, 19, 1369-72. 

Carpenter, W. T., Jr. & Kirkpatrick, B. 1988. The heterogeneity of the long-term course of 
schizophrenia. Schizophr Bull, 14, 645-52. 

Cavanna, A. E. & Trimble, M. R. 2006. The precuneus: a review of its functional anatomy 
and behavioural correlates. Brain, 129, 564-83. 

Chen, C. M., Stanford, A. D., Mao, X., Abi-Dargham, A., Shungu, D. C., Lisanby, S. H., 
Schroeder, C. E., Kegeles, L. S., Chen, C.-M. A., Stanford, A. D., Mao, X., Abi-
Dargham, A., Shungu, D. C., Lisanby, S. H., Schroeder, C. E. & Kegeles, L. S. 
2014. GABA level, gamma oscillation, and working memory performance in 
schizophrenia. NeuroImage Clinical, 4, 531-9. 

Chesney, E., Goodwin, G. M. & Fazel, S. 2014. Risks of all-cause and suicide mortality in 
mental disorders: a meta-review. World Psychiatry, 13, 153-60. 



References 

 168 

Chu, C. J., Tanaka, N., Diaz, J., Edlow, B. L., Wu, O., Hamalainen, M., Stufflebeam, S., 
Cash, S. S. & Kramer, M. A. 2015. EEG functional connectivity is partially 
predicted by underlying white matter connectivity. Neuroimage, 108, 23-33. 

Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, 
H., Bougueleret, L., Barry, C., Tanaka, H., La Rosa, P., Puech, A., Tahri, N., 
Cohen-Akenine, A., Delabrosse, S., Lissarrague, S., Picard, F. P., Maurice, K., 
Essioux, L., Millasseau, P., Grel, P., Debailleul, V., Simon, A. M., Caterina, D., 
Dufaure, I., Malekzadeh, K., Belova, M., Luan, J. J., Bouillot, M., Sambucy, J. L., 
Primas, G., Saumier, M., Boubkiri, N., Martin-Saumier, S., Nasroune, M., Peixoto, 
H., Delaye, A., Pinchot, V., Bastucci, M., Guillou, S., Chevillon, M., Sainz-Fuertes, 
R., Meguenni, S., Aurich-Costa, J., Cherif, D., Gimalac, A., Van Duijn, C., 
Gauvreau, D., Ouellette, G., Fortier, I., Raelson, J., Sherbatich, T., Riazanskaia, N., 
Rogaev, E., Raeymaekers, P., Aerssens, J., Konings, F., Luyten, W., Macciardi, F., 
Sham, P. C., Straub, R. E., Weinberger, D. R., Cohen, N. & Cohen, D. 2002. 
Genetic and physiological data implicating the new human gene G72 and the gene 
for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A, 99, 13675-80. 

Claridge, G. & Beech, T. 1995. Fully and quasi-dimensional constructions of schizotypy. In: 
RAINE, A., LENCZ, T. & MEDNICK, S. A. (eds.) Schizotypal Personality. 
Cambridge: Cambridge University Press. 

Colclough, G. L., Brookes, M. J., Smith, S. M. & Woolrich, M. W. 2015. A symmetric 
multivariate leakage correction for MEG connectomes. Neuroimage, 117, 439-48. 

Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J. & Smith, S. 
M. 2016. How reliable are MEG resting-state connectivity metrics? Neuroimage, 138, 
284-93. 

Collingridge, G. L., Volianskis, A., Bannister, N., France, G., Hanna, L., Mercier, M., 
Tidball, P., Fang, G., Irvine, M. W., Costa, B. M., Monaghan, D. T., Bortolotto, Z. 
A., Molnár, E., Lodge, D. & Jane, D. E. 2013. The NMDA receptor as a target for 
cognitive enhancement. Neuropharmacology, 64, 13-26. 

Cookey, J., Bernier, D. & Tibbo, P. G. 2014. White matter changes in early phase 
schizophrenia and cannabis use: an update and systematic review of diffusion 
tensor imaging studies. Schizophr Res, 156, 137-42. 

Cox, R. W. 1996. AFNI: software for analysis and visualization of functional magnetic 
resonance neuroimages. Comput Biomed Res, 29, 162-73. 

Curley, A. A., Arion, D., Volk, D. W., Asafu-Adjei, J. K., Sampson, A. R., Fish, K. N. & 
Lewis, D. A. 2011. Cortical deficits of glutamic acid decarboxylase 67 expression in 
schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry, 168, 
921-9. 

Curley, A. A. & Lewis, D. A. 2012. Cortical basket cell dysfunction in schizophrenia. The 
Journal of physiology, 590, 715-724. 

Dagli, M. S., Ingeholm, J. E. & Haxby, J. V. 1999. Localization of cardiac-induced signal 
change in fMRI. Neuroimage, 9, 407-15. 

Davis, K. L., Kahn, R. S., Ko, G. & Davidson, M. 1991. Dopamine in schizophrenia: a 
review and reconceptualization. Am J Psychiatry, 148, 1474-86. 

De Graaf, R. A. 2013. In vivo NMR spectroscopy: principles and techniques, John Wiley & Sons. 
Deakin, J., Lennox, B. R. & Zandi, M. S. 2014. Antibodies to the N-methyl-D-aspartate 

receptor and other synaptic proteins in psychosis. Biol Psychiatry, 75, 284-91. 
Debbane, M., Vrticka, P., Lazouret, M., Badoud, D., Sander, D. & Eliez, S. 2014. Self-

reflection and positive schizotypy in the adolescent brain. Schizophr Res, 152, 65-72. 
Deeks, J. J., Higgins, J. P. T. & Altman, D. G. 2008. Analysing Data and Undertaking 

Meta-Analyses. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & 
Sons, Ltd. 



References 

 169 

Demjaha, A., Egerton, A., Murray, R. M., Kapur, S., Howes, O. D., Stone, J. M. & Mcguire, 
P. K. 2014. Antipsychotic treatment resistance in schizophrenia associated with 
elevated glutamate levels but normal dopamine function. Biol Psychiatry, 75, e11-3. 

Demjaha, A., Murray, R. M., Mcguire, P. K., Kapur, S. & Howes, O. D. 2012. Dopamine 
synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry, 
169, 1203-10. 

Derosse, P., Nitzburg, G. C., Ikuta, T., Peters, B. D., Malhotra, A. K. & Szeszko, P. R. 
2015. Evidence from structural and diffusion tensor imaging for frontotemporal 
deficits in psychometric schizotypy. Schizophr Bull, 41, 104-14. 

Dersimonian, R. & Laird, N. 1986. Meta-analysis in clinical trials. Control Clin Trials, 7, 177-
88. 

Dietsche, B., Kircher, T. & Falkenberg, I. 2017. Structural brain changes in schizophrenia 
at different stages of the illness: A selective review of longitudinal magnetic 
resonance imaging studies. Aust N Z J Psychiatry, 51, 500-508. 

Donner, T. H. & Siegel, M. 2011. A framework for local cortical oscillation patterns. Trends 
Cogn Sci, 15, 191-9. 

Driesen, N. R., Mccarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D'souza, D. C., 
Gueorguieva, R., He, G., Ramachandran, R., Suckow, R. F., Anticevic, A., Morgan, 
P. T. & Krystal, J. H. 2013a. Relationship of resting brain hyperconnectivity and 
schizophrenia-like symptoms produced by the NMDA receptor antagonist 
ketamine in humans. Mol Psychiatry, 18, 1199-204. 

Driesen, N. R., Mccarthy, G., Bhagwagar, Z., Bloch, M. H., Calhoun, V. D., D'souza, D. 
C., Gueorguieva, R., He, G., Leung, H. C., Ramani, R., Anticevic, A., Suckow, R. 
F., Morgan, P. T. & Krystal, J. H. 2013b. The impact of NMDA receptor blockade 
on human working memory-related prefrontal function and connectivity. 
Neuropsychopharmacology, 38, 2613-22. 

Du Bois, T. M., Hsu, C. W., Li, Y., Tan, Y. Y., Deng, C. & Huang, X. F. 2008. Altered 
dopamine receptor and dopamine transporter binding and tyrosine hydroxylase 
mRNA expression following perinatal NMDA receptor blockade. Neurochem Res, 
33, 1224-31. 

Duarte, J. M., Lei, H., Mlynarik, V. & Gruetter, R. 2012. The neurochemical profile 
quantified by in vivo 1H NMR spectroscopy. Neuroimage, 61, 342-62. 

Duncan, N. W., Wiebking, C., Tiret, B., Marjanska, M., Hayes, D. J., Lyttleton, O., Doyon, 
J. & Northoff, G. 2013. Glutamate concentration in the medial prefrontal cortex 
predicts resting-state cortical-subcortical functional connectivity in humans. PLoS 
One, 8, e60312. 

Dyke, K., Pepes, S. E., Chen, C., Kim, S., Sigurdsson, H. P., Draper, A., Husain, M., 
Nachev, P., Gowland, P. A., Morris, P. G. & Jackson, S. R. 2017. Comparing 
GABA-dependent physiological measures of inhibition with proton magnetic 
resonance spectroscopy measurement of GABA using ultra-high-field MRI. 
Neuroimage, 152, 360-370. 

Egerton, A., Fusar-Poli, P. & Stone, J. M. 2012. Glutamate and psychosis risk. Curr Pharm 
Des, 18, 466-78. 

Egerton, A., Modinos, G., Ferrera, D. & Mcguire, P. 2017. Neuroimaging studies of 
GABA in schizophrenia: a systematic review with meta-analysis. Translational 
Psychiatry, 7, e1147. 

Elkis, H. 2007. Treatment-resistant schizophrenia. Psychiatr Clin North Am, 30, 511-33. 
Ettinger, U., Meyhofer, I., Steffens, M., Wagner, M. & Koutsouleris, N. 2014. Genetics, 

cognition, and neurobiology of schizotypal personality: a review of the overlap with 
schizophrenia. Front Psychiatry, 5, 18. 



References 

 170 

Ettinger, U., Williams, S. C., Meisenzahl, E. M., Moller, H. J., Kumari, V. & Koutsouleris, 
N. 2012. Association between brain structure and psychometric schizotypy in 
healthy individuals. World J Biol Psychiatry, 13, 544-9. 

Fanous, A. H., Neale, M. C., Gardner, C. O., Webb, B. T., Straub, R. E., O'neill, F. A., 
Walsh, D., Riley, B. P. & Kendler, K. S. 2007. Significant correlation in linkage 
signals from genome-wide scans of schizophrenia and schizotypy. Mol Psychiatry, 12, 
958-65. 

Faria, A. V., Joel, S. E., Zhang, Y., Oishi, K., Van Zjil, P. C. M., Miller, M. I., Pekar, J. J. & 
Mori, S. 2012. Atlas-Based Analysis of Resting-State Functional Connectivity: 
Evaluation for Reproducibility and Multi-Modal Anatomy-Function Correlation 
Studies. Neuroimage, 61, 613-621. 

Fehr, T., Kissler, J., Wienbruch, C., Moratti, S., Elbert, T., Watzl, H. & Rockstroh, B. 2003. 
Source distribution of neuromagnetic slow-wave activity in schizophrenic patients--
effects of activation. Schizophr Res, 63, 63-71. 

Filippi, M. 2009. FMRI Techniques and Protocols, Humana Press. 
Fornito, A., Zalesky, A., Pantelis, C. & Bullmore, E. T. 2012. Schizophrenia, neuroimaging 

and connectomics. NeuroImage, 62, 2296-2314. 
Fox, M. D. & Greicius, M. 2010. Clinical Applications of Resting State Functional 

Connectivity. Frontiers in Systems Neuroscience, 4, 19. 
Freedman, R., Adler, L. E., Olincy, A., Waldo, M. C., Ross, R. G., Stevens, K. E. & 

Leonard, S. 2002. Input dysfunction, schizotypy, and genetic models of 
schizophrenia. Schizophr Res, 54, 25-32. 

Frey, J. N., Ruhnau, P. & Weisz, N. 2015. Not so different after all: The same oscillatory 
processes support different types of attention. Brain Res, 1626, 183-97. 

Friedman, J. I., Tang, C., Carpenter, D., Buchsbaum, M., Schmeidler, J., Flanagan, L., 
Golembo, S., Kanellopoulou, I., Ng, J., Hof, P. R., Harvey, P. D., Tsopelas, N. D., 
Stewart, D. & Davis, K. L. 2008. Diffusion tensor imaging findings in first-episode 
and chronic schizophrenia patients. Am J Psychiatry, 165, 1024-32. 

Friston, K., Brown, H. R., Siemerkus, J. & Stephan, K. E. 2016. The dysconnection 
hypothesis (2016). Schizophrenia Research, 176, 83-94. 

Friston, K. J. 1994. Functional and effective connectivity in neuroimaging: A synthesis. 
Human Brain Mapping, 2, 56-78. 

Friston, K. J. & Frith, C. D. 1995. Schizophrenia: a disconnection syndrome? Clin Neurosci, 
3, 89-97. 

Frohlich, J. & Van Horn, J. D. 2014. Reviewing the ketamine model for schizophrenia. J 
Psychopharmacol, 28, 287-302. 

Fujimoto, T., Okumura, E., Takeuchi, K., Kodabashi, A., Otsubo, T., Nakamura, K., 
Kamiya, S., Higashi, Y., Yuji, T., Honda, K., Shimooki, S. & Tamura, T. 2013. 
Dysfunctional cortical connectivity during the auditory oddball task in patients with 
schizophrenia. Open Neuroimag J, 7, 15-26. 

Garcés, P., Pereda, E., Hernández-Tamames, J. A., Del-Pozo, F., Maestú, F. & Ángel 
Pineda-Pardo, J. 2016. Multimodal description of whole brain connectivity: A 
comparison of resting state MEG, fMRI, and DWI. Hum Brain Mapp, 37, 20-34. 

Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., Posse, 
S., Jung, R. E. & Morrison, L. A. 2006. Use of tissue water as a concentration 
reference for proton spectroscopic imaging. Magn Reson Med, 55, 1219-26. 

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M. & Lorist, M. M. 2015. A Brain-Wide 
Study of Age-Related Changes in Functional Connectivity. Cereb Cortex, 25, 1987-
99. 



References 

 171 

Gillespie, A. L., Samanaite, R., Mill, J., Egerton, A. & Maccabe, J. H. 2017. Is treatment-
resistant schizophrenia categorically distinct from treatment-responsive 
schizophrenia? a systematic review. BMC Psychiatry, 17. 

Goghari, V. M., Sanford, N., Spilka, M. J. & Woodward, T. S. 2017. Task-Related 
Functional Connectivity Analysis of Emotion Discrimination in a Family Study of 
Schizophrenia. Schizophr Bull. 

Gold, J. M., Goldberg, R. W., Mcnary, S. W., Dixon, L. B. & Lehman, A. F. 2002. 
Cognitive correlates of job tenure among patients with severe mental illness. Am J 
Psychiatry, 159, 1395-402. 

Gong, X., Lu, W., Kendrick, K. M., Pu, W., Wang, C., Jin, L., Lu, G., Liu, Z., Liu, H. & 
Feng, J. 2014. A brain-wide association study of DISC1 genetic variants reveals a 
relationship with the structure and functional connectivity of the precuneus in 
schizophrenia. Hum Brain Mapp, 35, 5414-30. 

Goni, J., Van Den Heuvel, M. P., Avena-Koenigsberger, A., Velez De Mendizabal, N., 
Betzel, R. F., Griffa, A., Hagmann, P., Corominas-Murtra, B., Thiran, J. P. & 
Sporns, O. 2014. Resting-brain functional connectivity predicted by analytic 
measures of network communication. Proc Natl Acad Sci U S A, 111, 833-8. 

Gonzalez-Burgos, G., Fish, K. N. & Lewis, D. A. 2011. GABA neuron alterations, cortical 
circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast, 2011, 
723184. 

Goto, N., Yoshimura, R., Kakeda, S., Moriya, J., Hori, H., Hayashi, K., Ikenouchi-Sugita, 
A., Nakano-Umene, W., Katsuki, A., Nishimura, J., Korogi, Y. & Nakamura, J. 
2010. No alterations of brain GABA after 6 months of treatment with atypical 
antipsychotic drugs in early-stage first-episode schizophrenia. Progress in Neuro-
Psychopharmacology and Biological Psychiatry, 34, 1480-1483. 

Grant, P. 2015. Is Schizotypy per se a Suitable Endophenotype of Schizophrenia? – Do 
Not Forget to Distinguish Positive from Negative Facets. Frontiers in Psychiatry, 6, 
143. 

Green, M. F., Kern, R. S., Braff, D. L. & Mintz, J. 2000. Neurocognitive deficits and 
functional outcome in schizophrenia: are we measuring the "right stuff"? Schizophr 
Bull, 26, 119-36. 

Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. 2009. Resting-state functional 
connectivity reflects structural connectivity in the default mode network. Cereb 
Cortex, 19, 72-8. 

Grieve, S. M., Williams, L. M., Paul, R. H., Clark, C. R. & Gordon, E. 2007. Cognitive 
aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging 
study. AJNR Am J Neuroradiol, 28, 226-35. 

Guo, S., Kendrick, K. M., Yu, R., Wang, H. L. & Feng, J. 2014. Key functional circuitry 
altered in schizophrenia involves parietal regions associated with sense of self. Hum 
Brain Mapp, 35, 123-39. 

Hadley, J. A., Nenert, R., Kraguljac, N. V., Bolding, M. S., White, D. M., Skidmore, F. M., 
Visscher, K. M. & Lahti, A. C. 2014. Ventral tegmental area/midbrain functional 
connectivity and response to antipsychotic medication in schizophrenia. 
Neuropsychopharmacology, 39, 1020-30. 

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J. & 
Sporns, O. 2008. Mapping the structural core of human cerebral cortex. PLoS Biol, 
6, e159. 

Hall, S. D., Barnes, G. R., Furlong, P. L., Seri, S. & Hillebrand, A. 2010. Neuronal network 
pharmacodynamics of GABAergic modulation in the human cortex determined 
using pharmaco-magnetoencephalography. Hum Brain Mapp, 31, 581-94. 



References 

 172 

Hall, S. D., Stanford, I. M., Yamawaki, N., Mcallister, C. J., Ronnqvist, K. C., Woodhall, G. 
L. & Furlong, P. L. 2011. The role of GABAergic modulation in motor function 
related neuronal network activity. Neuroimage, 56, 1506-10. 

Hamalainen, M. S. & Ilmoniemi, R. J. 1994. Interpreting magnetic fields of the brain: 
minimum norm estimates. Med Biol Eng Comput, 32, 35-42. 

Hashimoto, T., Bazmi, H. H., Mirnics, K., Wu, Q., Sampson, A. R. & Lewis, D. A. 2008. 
Conserved regional patterns of GABA-related transcript expression in the 
neocortex of subjects with schizophrenia. Am J Psychiatry, 165, 479-89. 

Hatzimanolis, A., Avramopoulos, D., Arking, D. E., Moes, A., Bhatnagar, P., Lencz, T., 
Malhotra, A. K., Giakoumaki, S. G., Roussos, P., Smyrnis, N., Bitsios, P. & 
Stefanis, N. C. 2017. Stress-Dependent Association Between Polygenic Risk for 
Schizophrenia and Schizotypal Traits in Young Army Recruits. Schizophr Bull. 

Heinrichs, R. W. & Zakzanis, K. K. 1998. Neurocognitive deficit in schizophrenia: a 
quantitative review of the evidence. Neuropsychology, 12, 426-45. 

Henseler, I., Falkai, P. & Gruber, O. 2010. Disturbed functional connectivity within brain 
networks subserving domain-specific subcomponents of working memory in 
schizophrenia: Relation to performance and clinical symptoms. Journal of Psychiatric 
Research, 44, 364-372. 

Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, 
S., Frithsen, A., Johnson, A., Tipper, C. M., Miller, M. B., Grafton, S. T. & Carlson, 
J. M. 2013. Structural foundations of resting-state and task-based functional 
connectivity in the human brain. Proc Natl Acad Sci U S A, 110, 6169-74. 

Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T. M., 
Nordentoft, M. & Glenthøj, B. Heritability of Schizophrenia and Schizophrenia 
Spectrum Based on the Nationwide Danish Twin Register. Biological Psychiatry. 

Hillebrand, A. & Barnes, G. R. 2002. A quantitative assessment of the sensitivity of whole-
head MEG to activity in the adult human cortex. Neuroimage, 16, 638-50. 

Hillebrand, A., Singh, K. D., Holliday, I. E., Furlong, P. L. & Barnes, G. R. 2005. A new 
approach to neuroimaging with magnetoencephalography. Human brain mapping, 25, 
199-211. 

Hinkley, L. B., Vinogradov, S., Guggisberg, A. G., Fisher, M., Findlay, A. M. & Nagarajan, 
S. S. 2011. Clinical symptoms and alpha band resting-state functional connectivity 
imaging in patients with schizophrenia: implications for novel approaches to 
treatment. Biol Psychiatry, 70, 1134-42. 

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M. & Engel, A. K. 2012. Large-scale 
cortical correlation structure of spontaneous oscillatory activity. Nature neuroscience, 
15, 10.1038/nn.3101. 

Hirvonen, J., Wibral, M., Palva, J. M., Singer, W., Uhlhaas, P. & Palva, S. 2017. Whole-
Brain Source-Reconstructed MEG-Data Reveal Reduced Long-Range 
Synchronization in Chronic Schizophrenia. eneuro. 

Ho, B. C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V. & Flaum, M. 2003. 
Progressive structural brain abnormalities and their relationship to clinical outcome: 
a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen 
Psychiatry, 60, 585-94. 

Hobkirk, A. L., Nichols, T. T., Foulds, J., Yingst, J. M., Veldheer, S., Hrabovsky, S., Richie, 
J., Eissenberg, T. & Wilson, S. J. 2017. Changes in resting state functional brain 
connectivity and withdrawal symptoms are associated with acute electronic cigarette 
use. Brain Res Bull. 

Hoflich, A., Hahn, A., Kublbock, M., Kranz, G. S., Vanicek, T., Windischberger, C., Saria, 
A., Kasper, S., Winkler, D. & Lanzenberger, R. 2015. Ketamine-Induced 



References 

 173 

Modulation of the Thalamo-Cortical Network in Healthy Volunteers As a Model 
for Schizophrenia. Int J Neuropsychopharmacol, 18. 

Homayoun, H. & Moghaddam, B. 2007. NMDA Receptor Hypofunction Produces 
Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons. J 
Neurosci, 27, 11496-500. 

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R. & Hagmann, 
P. 2009. Predicting human resting-state functional connectivity from structural 
connectivity. Proc Natl Acad Sci U S A, 106, 2035-40. 

Houck, J. M., Cetin, M. S., Mayer, A. R., Bustillo, J. R., Stephen, J., Aine, C., Canive, J., 
Perrone-Bizzozero, N., Thoma, R. J., Brookes, M. J. & Calhoun, V. D. 2017. 
Magnetoencephalographic and functional MRI connectomics in schizophrenia via 
intra- and inter-network connectivity. Neuroimage, 145, 96-106. 

Howes, O., Mccutcheon, R. & Stone, J. 2015. Glutamate and dopamine in schizophrenia: 
an update for the 21(st) century. Journal of psychopharmacology (Oxford, England), 29, 
97-115. 

Hulkko, A. P., Murray, G. K., Moilanen, J., Haapea, M., Rannikko, I., Jones, P. B., Barnett, 
J. H., Huhtaniska, S., Isohanni, M. K., Koponen, H., Jääskeläinen, E. & Miettunen, 
J. 2017. Lifetime use of psychiatric medications and cognition at 43years of age in 
schizophrenia in the Northern Finland Birth Cohort 1966. European Psychiatry, 45, 
50-58. 

Jackson, M. E., Homayoun, H. & Moghaddam, B. 2004. NMDA receptor hypofunction 
produces concomitant firing rate potentiation and burst activity reduction in the 
prefrontal cortex. Proc Natl Acad Sci U S A, 101, 8467-72. 

Jones, H. J., Stergiakouli, E., Tansey, K. E., Hubbard, L., Heron, J., Cannon, M., Holmans, 
P., Lewis, G., Linden, D. E., Jones, P. B., Davey Smith, G., O'donovan, M. C., 
Owen, M. J., Walters, J. T. & Zammit, S. 2016. Phenotypic Manifestation of 
Genetic Risk for Schizophrenia During Adolescence in the General Population. 
JAMA Psychiatry, 73, 221-8. 

Jones, H. M. & Pilowsky, L. S. 2002. Dopamine and antipsychotic drug action revisited. Br 
J Psychiatry, 181, 271-5. 

Kapogiannis, D., Reiter, D. A., Willette, A. A. & Mattson, M. P. 2013. Posteromedial 
cortex glutamate and GABA predict intrinsic functional connectivity of the default 
mode network. Neuroimage, 64, 112-9. 

Karlsgodt, K. H., Robleto, K., Trantham-Davidson, H., Jairl, C., Cannon, T. D., Lavin, A. 
& Jentsch, J. D. 2011. Reduced dysbindin expression mediates N-methyl-D-
aspartate receptor hypofunction and impaired working memory performance. Biol 
Psychiatry, 69, 28-34. 

Kay, S. R., Fiszbein, A. & Opler, L. A. 1987. The positive and negative syndrome scale 
(PANSS) for schizophrenia. Schizophr Bull, 13, 261-76. 

Kegeles, L. S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann, J. J., Van 
Heertum, R. L., Cooper, T. B., Carlsson, A. & Laruelle, M. 2000. Modulation of 
amphetamine-induced striatal dopamine release by ketamine in humans: 
implications for schizophrenia. Biol Psychiatry, 48, 627-40. 

Kegeles, L. S., Mao, X., Stanford, A. D., Girgis, R., Ojeil, N., Xu, X., Gil, R., Slifstein, M., 
Abi-Dargham, A., Lisanby, S. H. & Shungu, D. C. 2012. Elevated prefrontal cortex 
gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia 
measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry, 
69, 449-59. 

Keilhoff, G., Becker, A., Grecksch, G., Wolf, G. & Bernstein, H. G. 2004. Repeated 
application of ketamine to rats induces changes in the hippocampal expression of 



References 

 174 

parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in 
human schizophrenia. Neuroscience, 126, 591-8. 

Kelemen, O., Kiss, I., Benedek, G. & Keri, S. 2013. Perceptual and cognitive effects of 
antipsychotics in first-episode schizophrenia: The potential impact of GABA 
concentration in the visual cortex. Progress in Neuro-Psychopharmacology and Biological 
Psychiatry, 47, 13-19. 

Keshavan, M. S., Diwadkar, V. A., Montrose, D. M., Rajarethinam, R. & Sweeney, J. A. 
2005. Premorbid indicators and risk for schizophrenia: a selective review and 
update. Schizophr Res, 79, 45-57. 

Kikuchi, M., Koenig, T., Wada, Y., Higashima, M., Koshino, Y., Strik, W. & Dierks, T. 
2007. Native EEG and treatment effects in neuroleptic-naive schizophrenic 
patients: time and frequency domain approaches. Schizophr Res, 97, 163-72. 

Kim, J. S., Shin, K. S., Jung, W. H., Kim, S. N., Kwon, J. S. & Chung, C. K. 2014. Power 
spectral aspects of the default mode network in schizophrenia: an MEG study. 
BMC Neurosci, 15, 104. 

Kirkpatrick, B., Messias, E., Harvey, P. D., Fernandez-Egea, E. & Bowie, C. R. 2008. Is 
Schizophrenia a Syndrome of Accelerated Aging? Schizophr Bull, 34, 1024-32. 

Kirov, G., Pocklington, A. J., Holmans, P., Ivanov, D., Ikeda, M., Ruderfer, D., Moran, J., 
Chambert, K., Toncheva, D., Georgieva, L., Grozeva, D., Fjodorova, M., 
Wollerton, R., Rees, E., Nikolov, I., Van De Lagemaat, L. N., Bayes, A., Fernandez, 
E., Olason, P. I., Bottcher, Y., Komiyama, N. H., Collins, M. O., Choudhary, J., 
Stefansson, K., Stefansson, H., Grant, S. G., Purcell, S., Sklar, P., O'donovan, M. C. 
& Owen, M. J. 2012. De novo CNV analysis implicates specific abnormalities of 
postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol 
Psychiatry, 17, 142-53. 

Klasen, M., Zvyagintsev, M., Schwenzer, M., Mathiak, K. A., Sarkheil, P., Weber, R. & 
Mathiak, K. 2013. Quetiapine modulates functional connectivity in brain aggression 
networks. Neuroimage, 75, 20-6. 

Klimesch, W., Sauseng, P. & Hanslmayr, S. 2007. EEG alpha oscillations: the inhibition-
timing hypothesis. Brain Res Rev, 53, 63-88. 

Kochunov, P., Chiappelli, J., Wright, S. N., Rowland, L. M., Patel, B., Wijtenburg, S. A., 
Nugent, K., Mcmahon, R. P., Carpenter, W. T., Muellerklein, F., Sampath, H. & 
Hong, L. E. 2014. Multimodal white matter imaging to investigate reduced 
fractional anisotropy and its age-related decline in schizophrenia. Psychiatry Res, 223, 
148-56. 

Kong, X., Ouyang, X., Tao, H., Liu, H., Li, L., Zhao, J., Xue, Z., Wang, F., Jiang, S., Shan, 
B. & Liu, Z. 2011. Complementary diffusion tensor imaging study of the corpus 
callosum in patients with first-episode and chronic schizophrenia. J Psychiatry 
Neurosci, 36, 120-5. 

Konopaske, G. T., Bolo, N. R., Basu, A. C., Renshaw, P. F. & Coyle, J. T. 2013. Time-
dependent effects of haloperidol on glutamine and GABA homeostasis and 
astrocyte activity in the rat brain. Psychopharmacology, 230, 57-67. 

Kraguljac, N. V., Frolich, M. A., Tran, S., White, D. M., Nichols, N., Barton-Mcardle, A., 
Reid, M. A., Bolding, M. S. & Lahti, A. C. 2016a. Ketamine modulates hippocampal 
neurochemistry and functional connectivity: a combined magnetic resonance 
spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry. 

Kraguljac, N. V., White, D. M., Hadley, J. A., Visscher, K., Knight, D., Ver Hoef, L., 
Falola, B. & Lahti, A. C. 2016b. Abnormalities in large scale functional networks in 
unmedicated patients with schizophrenia and effects of risperidone. Neuroimage Clin, 
10, 146-58. 



References 

 175 

Kraguljac, N. V., White, D. M., Hadley, N., Hadley, J. A., Ver Hoef, L., Davis, E. & Lahti, 
A. C. 2016c. Aberrant Hippocampal Connectivity in Unmedicated Patients With 
Schizophrenia and Effects of Antipsychotic Medication: A Longitudinal Resting 
State Functional MRI Study. Schizophr Bull, 42, 1046-55. 

Krimer, L. S., Muly, E. C., 3rd, Williams, G. V. & Goldman-Rakic, P. S. 1998. 
Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci, 1, 286-
9. 

Krystal, J. H., Perry, E. B., Jr., Gueorguieva, R., Belger, A., Madonick, S. H., Abi-Dargham, 
A., Cooper, T. B., Macdougall, L., Abi-Saab, W. & D'souza, D. C. 2005. 
Comparative and interactive human psychopharmacologic effects of ketamine and 
amphetamine: implications for glutamatergic and dopaminergic model psychoses 
and cognitive function. Arch Gen Psychiatry, 62, 985-94. 

Kuhn, S. & Gallinat, J. 2013. Resting-state brain activity in schizophrenia and major 
depression: a quantitative meta-analysis. Schizophr Bull, 39, 358-65. 

Kustermann, T., Rockstroh, B., Kienle, J., Miller, G. A. & Popov, T. 2016. Deficient 
attention modulation of lateralized alpha power in schizophrenia. Psychophysiology, 
53, 776-85. 

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, 
B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S. & Turner, R. 1992. Dynamic 
magnetic resonance imaging of human brain activity during primary sensory 
stimulation. Proceedings of the National Academy of Sciences of the United States of America, 
89, 5675-5679. 

Lagioia, A., Van De Ville, D., Debbane, M., Lazeyras, F. & Eliez, S. 2010. Adolescent 
resting state networks and their associations with schizotypal trait expression. Front 
Syst Neurosci, 4. 

Lahti, A. C., Koffel, B., Laporte, D. & Tamminga, C. A. 1995. Subanesthetic doses of 
ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology, 13, 9-19. 

Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L. & Innis, R. 1999. Increased dopamine 
transmission in schizophrenia: relationship to illness phases. Biol Psychiatry, 46, 56-
72. 

Lau, A. & Tymianski, M. 2010. Glutamate receptors, neurotoxicity and neurodegeneration. 
Pflugers Arch, 460, 525-42. 

Laureys, S., Owen, A. M. & Schiff, N. D. 2004. Brain function in coma, vegetative state, 
and related disorders. Lancet Neurol, 3, 537-46. 

Lewis, D. A., Hashimoto, T. & Volk, D. W. 2005. Cortical inhibitory neurons and 
schizophrenia. Nat Rev Neurosci, 6, 312-24. 

Li, B. S., Wang, H. & Gonen, O. 2003. Metabolite ratios to assumed stable creatine level 
may confound the quantification of proton brain MR spectroscopy. Magn Reson 
Imaging, 21, 923-8. 

Li, F., Lui, S., Yao, L., Hu, J., Lv, P., Huang, X., Mechelli, A., Sweeney, J. A. & Gong, Q. 
2016. Longitudinal Changes in Resting-State Cerebral Activity in Patients with 
First-Episode Schizophrenia: A 1-Year Follow-up Functional MR Imaging Study. 
Radiology, 279, 867-75. 

Li, T., Wang, Q., Zhang, J., Rolls, E. T., Yang, W., Palaniyappan, L., Zhang, L., Cheng, W., 
Yao, Y., Liu, Z., Gong, X., Luo, Q., Tang, Y., Crow, T. J., Broome, M. R., Xu, K., 
Li, C., Wang, J., Liu, Z., Lu, G., Wang, F. & Feng, J. 2017. Brain-Wide Analysis of 
Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia. 
Schizophr Bull, 43, 436-448. 

Liao, Y., Tang, J., Liu, J., Xie, A., Yang, M., Johnson, M., Wang, X., Deng, Q., Chen, H., 
Xiang, X., Liu, T., Chen, X., Song, M. & Hao, W. 2016. Decreased Thalamocortical 
Connectivity in Chronic Ketamine Users. PLoS One, 11. 



References 

 176 

Liddle, P. F., Ngan, E. T., Duffield, G., Kho, K. & Warren, A. J. 2002. Signs and 
Symptoms of Psychotic Illness (SSPI): a rating scale. Br J Psychiatry, 180, 45-50. 

Lieberman, J. A. & Koreen, A. R. 1993. Neurochemistry and Neuroendocrinology of 
Schizophrenia: A Selective Review. Schizophrenia Bulletin PsycArticles, 19, 371-429. 

Liu, H., Kaneko, Y., Ouyang, X., Li, L., Hao, Y., Chen, E. Y., Jiang, T., Zhou, Y. & Liu, Z. 
2012. Schizophrenic patients and their unaffected siblings share increased resting-
state connectivity in the task-negative network but not its anticorrelated task-
positive network. Schizophr Bull, 38, 285-94. 

Lozano-Soldevilla, D., Ter huurne, N., Cools, R. & Jensen, O. 2014. GABAergic 
Modulation of Visual Gamma and Alpha Oscillations and Its Consequences for 
Working Memory Performance. Current Biology, 24, 2878-2887. 

Luckhoo, H., Hale, J. R., Stokes, M. G., Nobre, A. C., Morris, P. G., Brookes, M. J. & 
Woolrich, M. W. 2012. Inferring task-related networks using independent 
component analysis in magnetoencephalography. Neuroimage, 62, 530-41. 

Lui, S., Li, T., Deng, W., Jiang, L., Wu, Q., Tang, H., Yue, Q., Huang, X., Chan, R. C., 
Collier, D. A., Meda, S. A., Pearlson, G., Mechelli, A., Sweeney, J. A. & Gong, Q. 
2010. Short-term effects of antipsychotic treatment on cerebral function in drug-
naive first-episode schizophrenia revealed by "resting state" functional magnetic 
resonance imaging. Arch Gen Psychiatry, 67, 783-92. 

Magri, C., Schridde, U., Murayama, Y., Panzeri, S. & Logothetis, N. K. 2012. The 
amplitude and timing of the BOLD signal reflects the relationship between local 
field potential power at different frequencies. J Neurosci, 32, 1395-407. 

Mailman, R. B. & Murthy, V. 2010. Third generation antipsychotic drugs: partial agonism 
or receptor functional selectivity? Current pharmaceutical design, 16, 488-501. 

Manager, R. 2014. RevMan. Version 5.3 ed. Copenhagen: The Nordic Cochrane Centre: 
The Cochrane Collaboration. 

Mann, E. O. & Mody, I. 2009. Control of hippocampal gamma oscillation frequency by 
tonic inhibition and excitation of interneurons. Nature Neuroscience, 13, 205. 

Mantini, D. & Vanduffel, W. 2013. Emerging roles of the brain's default network. 
Neuroscientist, 19, 76-87. 

Marenco, S., Meyer, C., Kuo, S., Van Der Veen, J. W., Shen, J., Dejong, K., Barnett, A. S., 
Apud, J. A., Dickinson, D., Weinberger, D. R. & Berman, K. F. 2016. Prefrontal 
GABA Levels Measured With Magnetic Resonance Spectroscopy in Patients With 
Psychosis and Unaffected Siblings. Am J Psychiatry, 173, 527-34. 

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G. & Wu, C. 2004. 
Interneurons of the neocortical inhibitory system. Nat Rev Neurosci, 5, 793-807. 

Marshall, T. R., Bergmann, T. O. & Jensen, O. 2015. Frontoparietal Structural Connectivity 
Mediates the Top-Down Control of Neuronal Synchronization Associated with 
Selective Attention. PLOS Biology, 13, e1002272. 

Marsman, A., Mandl, R. C., Klomp, D. W., Bohlken, M. M., Boer, V. O., Andreychenko, 
A., Cahn, W., Kahn, R. S., Luijten, P. R. & Hulshoff Pol, H. E. 2014. GABA and 
glutamate in schizophrenia: a 7 T (1)H-MRS study. Neuroimage Clin, 6, 398-407. 

Marsman, A., Van Den Heuvel, M. P., Klomp, D. W., Kahn, R. S., Luijten, P. R. & 
Hulshoff Pol, H. E. 2013. Glutamate in schizophrenia: a focused review and meta-
analysis of (1)H-MRS studies. Schizophr Bull, 39, 120-9. 

Mcloughlin, G. A., Ma, D., Tsang, T. M., Jones, D. N., Cilia, J., Hill, M. D., Robbins, M. J., 
Benzel, I. M., Maycox, P. R., Holmes, E. & Bahn, S. 2009. Analyzing the effects of 
psychotropic drugs on metabolite profiles in rat brain using 1H NMR 
spectroscopy. J Proteome Res, 8, 1943-52. 

Meltzer, H. Y. 1997. Treatment-resistant schizophrenia--the role of clozapine. Curr Med Res 
Opin, 14, 1-20. 



References 

 177 

Menezes, N. M., Arenovich, T. & Zipursky, R. B. 2006. A systematic review of longitudinal 
outcome studies of first-episode psychosis. Psychol Med, 36, 1349-62. 

Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J. & Mcguire, P. K. 2016. Nature of 
Glutamate Alterations in Schizophrenia: A Meta-analysis of Proton Magnetic 
Resonance Spectroscopy Studies. JAMA Psychiatry, 73, 665-74. 

Meyer, E. J., Kirov, Ii, Tal, A., Davitz, M. S., Babb, J. S., Lazar, M., Malaspina, D. & 
Gonen, O. 2016. Metabolic Abnormalities in the Hippocampus of Patients with 
Schizophrenia: A 3D Multivoxel MR Spectroscopic Imaging Study at 3T. AJNR 
Am J Neuroradiol, 37, 2273-2279. 

Mo, J., Liu, Y., Huang, H. & Ding, M. 2013. Coupling between visual alpha oscillations and 
default mode activity. Neuroimage, 68, 112-8. 

Modinos, G., Mechelli, A., Ormel, J., Groenewold, N. A., Aleman, A. & Mcguire, P. K. 
2010. Schizotypy and brain structure: a voxel-based morphometry study. Psychol 
Med, 40, 1423-31. 

Moghaddam, B., Adams, B., Verma, A. & Daly, D. 1997. Activation of glutamatergic 
neurotransmission by ketamine: a novel step in the pathway from NMDA receptor 
blockade to dopaminergic and cognitive disruptions associated with the prefrontal 
cortex. J Neurosci, 17, 2921-7. 

Moghaddam, B. & Krystal, J. H. 2012. Capturing the angel in "angel dust": twenty years of 
translational neuroscience studies of NMDA receptor antagonists in animals and 
humans. Schizophr Bull, 38, 942-9. 

Morton, S. E., O'hare, K. J. M., Maha, J. L. K., Nicolson, M. P., Machado, L., Topless, R., 
Merriman, T. R. & Linscott, R. J. 2017. Testing the Validity of Taxonic Schizotypy 
Using Genetic and Environmental Risk Variables. Schizophr Bull, 43, 633-643. 

Mosher, J. C., Leahy, R. M. & Lewis, P. S. 1999. EEG and MEG: forward solutions for 
inverse methods. IEEE Trans Biomed Eng, 46, 245-59. 

Mouchlianitis, E., Bloomfield, M. A., Law, V., Beck, K., Selvaraj, S., Rasquinha, N., 
Waldman, A., Turkheimer, F. E., Egerton, A., Stone, J. & Howes, O. D. 2016. 
Treatment-Resistant Schizophrenia Patients Show Elevated Anterior Cingulate 
Cortex Glutamate Compared to Treatment-Responsive. Schizophr Bull, 42, 744-52. 

Mullins, P. G., Mcgonigle, D. J., O'gorman, R. L., Puts, N. A., Vidyasagar, R., Evans, C. J. 
& Edden, R. A. 2014. Current practice in the use of MEGA-PRESS spectroscopy 
for the detection of GABA. Neuroimage, 86, 43-52. 

Murphy, K., Birn, R. M. & Bandettini, P. A. 2013. Resting-state fMRI confounds and 
cleanup. Neuroimage, 80, 349-59. 

Muthukumaraswamy, S. D., Myers, J. F., Wilson, S. J., Nutt, D. J., Lingford-Hughes, A., 
Singh, K. D. & Hamandi, K. 2013. The effects of elevated endogenous GABA 
levels on movement-related network oscillations. Neuroimage, 66, 36-41. 

Muthukumaraswamy, S. D., Shaw, A. D., Jackson, L. E., Hall, J., Moran, R. & Saxena, N. 
2015. Evidence that Subanesthetic Doses of Ketamine Cause Sustained 
Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in 
Humans. J Neurosci, 35, 11694-706. 

Nelson, M. T., Seal, M. L., Phillips, L. J., Merritt, A. H., Wilson, R. & Pantelis, C. 2011. An 
investigation of the relationship between cortical connectivity and schizotypy in the 
general population. J Nerv Ment Dis, 199, 348-53. 

Nenadic, I., Lorenz, C., Langbein, K., Dietzek, M., Smesny, S., Schonfeld, N., Fananas, L., 
Sauer, H. & Gaser, C. 2015. Brain structural correlates of schizotypy and psychosis 
proneness in a non-clinical healthy volunteer sample. Schizophr Res, 168, 37-43. 

Nielsen, J. D., Madsen, K. H., Wang, Z., Liu, Z., Friston, K. J. & Zhou, Y. 2017. Working 
Memory Modulation of Frontoparietal Network Connectivity in First-Episode 
Schizophrenia. Cereb Cortex, 1-10. 



References 

 178 

O'neill, G. C., Barratt, E. L., Hunt, B. A., Tewarie, P. K. & Brookes, M. J. 2015. Measuring 
electrophysiological connectivity by power envelope correlation: a technical review 
on MEG methods. Phys Med Biol, 60, R271-95. 

O'neill, G. C., Tewarie, P. K., Colclough, G. L., Gascoyne, L. E., Hunt, B. a. E., Morris, P. 
G., Woolrich, M. W. & Brookes, M. J. 2017. Measurement of dynamic task related 
functional networks using MEG. Neuroimage, 146, 667-678. 

Olabi, B., Ellison-Wright, I., Mcintosh, A. M., Wood, S. J., Bullmore, E. & Lawrie, S. M. 
2011. Are there progressive brain changes in schizophrenia? A meta-analysis of 
structural magnetic resonance imaging studies. Biol Psychiatry, 70, 88-96. 

Ongur, D., Prescot, A. P., Jensen, J. E., Cohen, B. M. & Renshaw, P. F. 2009. Creatine 
abnormalities in schizophrenia and bipolar disorder. Psychiatry Res, 172, 44-8. 

Ongur, D., Prescot, A. P., Mccarthy, J., Cohen, B. M. & Renshaw, P. F. 2010. Elevated 
gamma-aminobutyric acid levels in chronic schizophrenia. Biological Psychiatry, 68, 
667-670. 

Owen, M. J., Sawa, A. & Mortensen, P. B. 2016. Schizophrenia. The Lancet. 
Palaniyappan, L., Al-Radaideh, A., Mougin, O., Gowland, P. & Liddle, P. F. 2013. 

Combined white matter imaging suggests myelination defects in visual processing 
regions in schizophrenia. Neuropsychopharmacology, 38, 1808-15. 

Paul, S. & Sharfman, N. 2016. Functional connectivity as a means to delineate differences 
between treatment-resistant and treatment-responsive schizophrenia. J Neurophysiol, 
116, 229-31. 

Pettersson-Yeo, W., Allen, P., Benetti, S., Mcguire, P. & Mechelli, A. 2011. Dysconnectivity 
in schizophrenia: where are we now? Neurosci Biobehav Rev, 35, 1110-24. 

Phillips, K. G. & Uhlhaas, P. J. 2015. Neural oscillations as a translational tool in 
schizophrenia research: Rationale, paradigms and challenges. J Psychopharmacol. 

Pilowsky, L. S., Bressan, R. A., Stone, J. M., Erlandsson, K., Mulligan, R. S., Krystal, J. H. 
& Ell, P. J. 2006. First in vivo evidence of an NMDA receptor deficit in 
medication-free schizophrenic patients. Mol Psychiatry, 11, 118-9. 

Plataniotis, K. & Hatzinakos, D. 2000. Gaussian Mixtures and Their Applications to Signal 
Processing. Advanced Signal Processing Handbook. CRC Press. 

Plitman, E., Nakajima, S., De La Fuente-Sandoval, C., Gerretsen, P., Chakravarty, M. M., 
Kobylianskii, J., Chung, J. K., Caravaggio, F., Iwata, Y., Remington, G. & Graff-
Guerrero, A. 2014. Glutamate-mediated excitotoxicity in schizophrenia: A review. 
Eur Neuropsychopharmacol, 24, 1591-1605. 

Pocklington, A. J., O'donovan, M. & Owen, M. J. 2014. The synapse in schizophrenia. Eur 
J Neurosci, 39, 1059-67. 

Poels, E. M., Kegeles, L. S., Kantrowitz, J. T., Javitt, D. C., Lieberman, J. A., Abi-Dargham, 
A. & Girgis, R. R. 2014. Glutamatergic abnormalities in schizophrenia: a review of 
proton MRS findings. Schizophr Res, 152, 325-32. 

Rado, S. 1953. Dynamics And Classification Of Disordered Behavior. American Journal of 
Psychiatry, 110, 406-416. 

Raine, A. 1991. The SPQ: a scale for the assessment of schizotypal personality based on 
DSM-III-R criteria. Schizophr Bull, 17, 555-64. 

Rees, E., O’donovan, M. C. & Owen, M. J. 2015. Genetics of schizophrenia. Current 
Opinion in Behavioral Sciences, 2, 8-14. 

Rees, E., Walters, J. T., Georgieva, L., Isles, A. R., Chambert, K. D., Richards, A. L., 
Mahoney-Davies, G., Legge, S. E., Moran, J. L., Mccarroll, S. A., O'donovan, M. C., 
Owen, M. J. & Kirov, G. 2014. Analysis of copy number variations at 15 
schizophrenia-associated loci. Br J Psychiatry, 204, 108-14. 

Rivolta, D., Heidegger, T., Scheller, B., Sauer, A., Schaum, M., Birkner, K., Singer, W., 
Wibral, M. & Uhlhaas, P. J. 2015. Ketamine Dysregulates the Amplitude and 



References 

 179 

Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in 
Humans: Evidence From Resting-State Magnetoencephalography-Recordings. 
Schizophr Bull, 41, 1105-14. 

Robson, S. E., Brookes, M. J., Hall, E. L., Palaniyappan, L., Kumar, J., Skelton, M., 
Christodoulou, N. G., Qureshi, A., Jan, F., Katshu, M. Z., Liddle, E. B., Liddle, P. 
F. & Morris, P. G. 2016. Abnormal visuomotor processing in schizophrenia. 
NeuroImage: Clinical, 12, 869-878. 

Rogers, B. P., Morgan, V. L., Newton, A. T. & Gore, J. C. 2007. Assessing Functional 
Connectivity in the Human Brain by FMRI. Magnetic resonance imaging, 25, 1347-
1357. 

Roiser, J. P., Wigton, R., Kilner, J. M., Mendez, M. A., Hon, N., Friston, K. J. & Joyce, E. 
M. 2013. Dysconnectivity in the frontoparietal attention network in schizophrenia. 
Front Psychiatry, 4, 176. 

Rosenberger, G., Kubicki, M., Nestor, P. G., Connor, E., Bushell, G. B., Markant, D., 
Niznikiewicz, M., Westin, C. F., Kikinis, R., Saykin, A. J., Mccarley, R. W. & 
Shenton, M. E. 2008. Age-related deficits in fronto-temporal connections in 
schizophrenia: A diffusion tensor imaging study. Schizophr Res, 102, 181-8. 

Rothman, D. L., Behar, K. L., Hyder, F. & Shulman, R. G. 2003. In vivo NMR studies of 
the glutamate neurotransmitter flux and neuroenergetics: implications for brain 
function. Annu Rev Physiol, 65, 401-27. 

Rowland, L. M., Bustillo, J. R., Mullins, P. G., Jung, R. E., Lenroot, R., Landgraf, E., 
Barrow, R., Yeo, R., Lauriello, J. & Brooks, W. M. 2005. Effects of ketamine on 
anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS 
study. Am J Psychiatry, 162, 394-6. 

Rowland, L. M., Kontson, K., West, J., Edden, R. A., Zhu, H., Wijtenburg, S., Holcomb, 
H. H. & Barker, P. B. 2013. In vivo measurements of glutamate, GABA, and 
NAAG in schizophrenia. Schizophrenia Bulletin, 39, 1096-1104. 

Rowland, L. M., Krause, B. W., Wijtenburg, S. A., Mcmahon, R. P., Chiappelli, J., Nugent, 
K. L., Nisonger, S. J., Korenic, S. A., Kochunov, P. & Hong, L. E. 2015. Medial 
frontal GABA is lower in older schizophrenia: a MEGA-PRESS with 
macromolecule suppression study. Mol Psychiatry. 

Rutter, L., Carver, F. W., Holroyd, T., Nadar, S. R., Mitchell-Francis, J., Apud, J., 
Weinberger, D. R. & Coppola, R. 2009. Magnetoencephalographic gamma power 
reduction in patients with schizophrenia during resting condition. Hum Brain Mapp, 
30, 3254-64. 

Saha, S., Chant, D., Welham, J. & Mcgrath, J. 2005. A systematic review of the prevalence 
of schizophrenia. PLoS Med, 2, e141. 

Sarpal, D. K., Robinson, D. G., Lencz, T., Argyelan, M., Ikuta, T., Karlsgodt, K., Gallego, 
J. A., Kane, J. M., Szeszko, P. R. & Malhotra, A. K. 2015. Antipsychotic treatment 
and functional connectivity of the striatum in first-episode schizophrenia. JAMA 
Psychiatry, 72, 5-13. 

Scheeringa, R., Fries, P., Petersson, K. M., Oostenveld, R., Grothe, I., Norris, D. G., 
Hagoort, P. & Bastiaansen, M. C. 2011. Neuronal dynamics underlying high- and 
low-frequency EEG oscillations contribute independently to the human BOLD 
signal. Neuron, 69, 572-83. 

Scheeringa, R., Petersson, K. M., Kleinschmidt, A., Jensen, O. & Bastiaansen, M. C. M. 
2012. EEG α power modulation of fMRI resting-state connectivity. Brain 
connectivity, 2, 254-264. 

Scheidegger, M., Walter, M., Lehmann, M., Metzger, C., Grimm, S., Boeker, H., Boesiger, 
P., Henning, A. & Seifritz, E. 2012. Ketamine Decreases Resting State Functional 



References 

 180 

Network Connectivity in Healthy Subjects: Implications for Antidepressant Drug 
Action. PLOS ONE, 7, e44799. 

Schizophrenia Working Group of the Psychiatric Genomics, C. 2014. Biological insights 
from 108 schizophrenia-associated genetic loci. Nature, 511, 421-427. 

Schizophrenia Working Group of the Psychiatric Genomics, C., Ripke, S., Neale, B. M., 
Corvin, A., Walters, J. T. R., Farh, K.-H., Holmans, P. A., Lee, P., Bulik-Sullivan, 
B., Collier, D. A., Huang, H., Pers, T. H., Agartz, I., Agerbo, E., Albus, M., 
Alexander, M., Amin, F., Bacanu, S. A., Begemann, M., Belliveau, R. A., Bene, J., 
Bergen, S. E., Bevilacqua, E., Bigdeli, T. B., Black, D. W., Bruggeman, R., Buccola, 
N. G., Buckner, R. L., Byerley, W., Cahn, W., Cai, G., Campion, D., Cantor, R. M., 
Carr, V. J., Carrera, N., Catts, S. V., Chambert, K. D., Chan, R. C. K., Chan, R. Y. 
L., Chen, E. Y. H., Cheng, W., Cheung, E. F. C., Chong, S. A., Cloninger, C. R., 
Cohen, D., Cohen, N., Cormican, P., Craddock, N., Crowley, J. J., Curtis, D., 
Davidson, M., Davis, K. L., Degenhardt, F., Del Favero, J., Demontis, D., Dikeos, 
D., Dinan, T., Djurovic, S., Donohoe, G., Drapeau, E., Duan, J., Dudbridge, F., 
Durmishi, N., Eichhammer, P., Eriksson, J., Escott-Price, V., Essioux, L., Fanous, 
A. H., Farrell, M. S., Frank, J., Franke, L., Freedman, R., Freimer, N. B., Friedl, M., 
Friedman, J. I., Fromer, M., Genovese, G., Georgieva, L., Giegling, I., Giusti-
Rodríguez, P., Godard, S., Goldstein, J. I., Golimbet, V., Gopal, S., Gratten, J., De 
Haan, L., Hammer, C., Hamshere, M. L., Hansen, M., Hansen, T., Haroutunian, V., 
Hartmann, A. M., Henskens, F. A., Herms, S., Hirschhorn, J. N., Hoffmann, P., 
Hofman, A., Hollegaard, M. V., Hougaard, D. M., Ikeda, M., et al. 2014. Biological 
Insights From 108 Schizophrenia-Associated Genetic Loci. Nature, 511, 421-427. 

Schnack, H. G., Van Haren, N. E., Nieuwenhuis, M., Hulshoff Pol, H. E., Cahn, W. & 
Kahn, R. S. 2016. Accelerated Brain Aging in Schizophrenia: A Longitudinal 
Pattern Recognition Study. Am J Psychiatry, 173, 607-16. 

Schoen, W., Chang, J. S., Lee, U., Bob, P. & Mashour, G. A. 2011. The temporal 
organization of functional brain connectivity is abnormal in schizophrenia but does 
not correlate with symptomatology. Conscious Cogn, 20, 1050-4. 

Schreckenberger, M., Lange-Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T., 
Buchholz, H.-G., Bartenstein, P. & Gründer, G. 2004. The thalamus as the 
generator and modulator of EEG alpha rhythm: a combined PET/EEG study with 
lorazepam challenge in humans. NeuroImage, 22, 637-644. 

Schwartz, T. L., Sachdeva, S. & Stahl, S. M. 2012. Glutamate Neurocircuitry: Theoretical 
Underpinnings in Schizophrenia. Front Pharmacol, 3. 

Seeman, P., Lee, T., Chau-Wong, M. & Wong, K. 1976. Antipsychotic drug doses and 
neuroleptic/dopamine receptors. Nature, 261, 717-719. 

Sheffield, J. M., Repovs, G., Harms, M. P., Carter, C. S., Gold, J. M., Macdonald, A. W., 
Ragland, J. D., Silverstein, S. M., Godwin, D. & Barch, D. M. 2016. Evidence for 
Accelerated Decline of Functional Brain Network Efficiency in Schizophrenia. 
Schizophrenia Bulletin, 42, 753-761. 

Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J. & Green, M. J. 2012. 
Systematic meta-review and quality assessment of the structural brain alterations in 
schizophrenia. Neuroscience & Biobehavioral Reviews, 36, 1342-1356. 

Shukla, D. K., Wijtenburg, S. A., Chen, H., Chiappelli, J. J., Kochunov, P., Hong, L. E. & 
Rowland, L. M. 2018. Anterior Cingulate Glutamate and GABA Associations on 
Functional Connectivity in Schizophrenia. Schizophr Bull. 

Siegel, M., Donner, T. H. & Engel, A. K. 2012. Spectral fingerprints of large-scale neuronal 
interactions. Nat Rev Neurosci, 13, 121-34. 

Silver, N. C. & Dunlap, W. P. 1987. Averaging correlation coefficients: Should Fisher's z 
transformation be used? Journal of Applied Psychology, 72, 146-148. 



References 

 181 

Singh, K. D. 2006. Magnetoencephalography. In: SENIOR, C., RUSSELL, T. & 
GAZZANIGA, M. (eds.) Methods in Mind. Cambridge, USA: MIT Press. 

Singh, K. D., Barnes, G. R., Hillebrand, A., Forde, E. M. E. & Williams, A. L. 2002. Task-
Related Changes in Cortical Synchronization Are Spatially Coincident with the 
Hemodynamic Response. NeuroImage, 16, 103-114. 

Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A. & 
Pearlson, G. 2008. Measuring brain connectivity: diffusion tensor imaging validates 
resting state temporal correlations. Neuroimage, 43, 554-61. 

Smallman, R. P., Barkus, E., Azadbakht, H., Embleton, K. V., Haroon, H. A., Lewis, S. W., 
Morris, D. M., Parker, G. J. & Rushe, T. M. 2014. MRI diffusion tractography 
study in individuals with schizotypal features: a pilot study. Psychiatry Res, 221, 49-
57. 

Smith, D. J., Langan, J., Mclean, G., Guthrie, B. & Mercer, S. W. 2013. Schizophrenia is 
associated with excess multiple physical-health comorbidities but low levels of 
recorded cardiovascular disease in primary care: cross-sectional study. BMJ Open, 3. 

Sperling, W., Vieth, J., Martus, M., Demling, J. & Barocka, A. 1998. Spontaneous slow and 
fast MEG activity in male schizophrenics treated with clozapine. Psychopharmacology, 
142, 375-382. 

Stagg, C. J., Bachtiar, V., Amadi, U., Gudberg, C. A., Ilie, A. S., Sampaio-Baptista, C., 
O'shea, J., Woolrich, M., Smith, S. M., Filippini, N., Near, J. & Johansen-Berg, H. 
2014. Local GABA concentration is related to network-level resting functional 
connectivity. Elife, 3, e01465. 

Stagg, C. J., Bestmann, S., Constantinescu, A. O., Moreno, L. M., Allman, C., Mekle, R., 
Woolrich, M., Near, J., Johansen-Berg, H. & Rothwell, J. C. 2011. Relationship 
between physiological measures of excitability and levels of glutamate and GABA 
in the human motor cortex. J Physiol, 589, 5845-55. 

Stagg, C. J. & Rothman, D. L. E. 2014. Magnetic Resonance Spectroscopy: Tools for Neuroscience 
Research and Emerging Clinical Applications, Elsevier. 

Stan, A. D., Ghose, S., Zhao, C., Hulsey, K., Mihalakos, P., Yanagi, M., Morris, S. U., 
Bartko, J. J., Choi, C. & Tamminga, C. A. 2015. Magnetic resonance spectroscopy 
and tissue protein concentrations together suggest lower glutamate signaling in 
dentate gyrus in schizophrenia. Mol Psychiatry, 20, 433-439. 

Stefanis, N. C., Hatzimanolis, A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., 
Stefanis, C. N., Weinberger, D. R. & Straub, R. E. 2013. Variation in Psychosis 
Gene ZNF804A Is Associated With a Refined Schizotypy Phenotype but Not 
Neurocognitive Performance in a Large Young Male Population. Schizophrenia 
Bulletin, 39, 1252-1260. 

Stephan, K. E., Baldeweg, T. & Friston, K. J. 2006. Synaptic plasticity and dysconnection in 
schizophrenia. Biol Psychiatry, 59, 929-39. 

Stephan, K. E., Friston, K. J. & Frith, C. D. 2009a. Dysconnection in schizophrenia: from 
abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull, 35, 509-27. 

Stephan, K. E., Friston, K. J. & Frith, C. D. 2009b. Dysconnection in schizophrenia: from 
abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull, 35. 

Stephan, K. E., Magnotta, V. A., White, T., Arndt, S., Flaum, M., O'leary, D. S. & 
Andreasen, N. C. 2001. Effects of olanzapine on cerebellar functional connectivity 
in schizophrenia measured by fMRI during a simple motor task. Psychol Med, 31, 
1065-78. 

Stevens, J. R. & Livermore, A. 1982. Telemetered EEG in schizophrenia: spectral analysis 
during abnormal behaviour episodes. J Neurol Neurosurg Psychiatry, 45, 385-95. 

Stone, J. M., Dietrich, C., Edden, R., Mehta, M. A., De Simoni, S., Reed, L. J., Krystal, J. 
H., Nutt, D. & Barker, G. J. 2012. Ketamine effects on brain GABA and glutamate 



References 

 182 

levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol 
Psychiatry, 17, 664-5. 

Sun, L., Castellanos, N., Grutzner, C., Koethe, D., Rivolta, D., Wibral, M., Kranaster, L., 
Singer, W., Leweke, M. F. & Uhlhaas, P. J. 2013. Evidence for dysregulated high-
frequency oscillations during sensory processing in medication-naive, first episode 
schizophrenia. Schizophr Res, 150, 519-25. 

Sweileh, W. M., Odeh, J. B., Shraim, N. Y., Zyoud, S. E. H., Sawalha, A. F. & Al-Jabi, S. W. 
2014. Evaluation of Defined Daily Dose, percentage of British National Formulary 
maximum and chlorpromazine equivalents in antipsychotic drug utilization. Saudi 
Pharmaceutical Journal : SPJ, 22, 127-132. 

Swettenham, J. B., Muthukumaraswamy, S. D. & Singh, K. D. 2009. Spectral properties of 
induced and evoked gamma oscillations in human early visual cortex to moving and 
stationary stimuli. J Neurophysiol, 102, 1241-53. 

Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K. & Wada, Y. 
2010. Antipsychotics reverse abnormal EEG complexity in drug-naive 
schizophrenia: a multiscale entropy analysis. Neuroimage, 51, 173-82. 

Tamnes, C. K. & Agartz, I. 2016. White Matter Microstructure in Early-Onset 
Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Am 
Acad Child Adolesc Psychiatry, 55, 269-79. 

Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., Malaspina, D., 
Owen, M. J., Schultz, S., Tsuang, M., Van Os, J. & Carpenter, W. 2013. Definition 
and description of schizophrenia in the DSM-5. Schizophrenia Research, 150, 3-10. 

Tayoshi, S. Y., Nakataki, M., Sumitani, S., Taniguchi, K., Shibuya-Tayoshi, S., Numata, S., 
Iga, J.-I., Ueno, S.-I., Harada, M. & Ohmori, T. 2010. GABA concentration in 
schizophrenia patients and the effects of antipsychotic medication: A proton 
magnetic resonance spectroscopy study. Schizophrenia Research, 117, 83-91. 

Thakkar, K. N., Rösler, L., Wijnen, J. P., Boer, V. O., Klomp, D. W. J., Cahn, W., Kahn, R. 
S. & Neggers, S. F. W. 2017. 7T Proton Magnetic Resonance Spectroscopy of 
Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered 
Concentrations in Patients With Schizophrenia and Healthy Siblings. Biological 
Psychiatry, 81, 525-535. 

Theberge, J., Bartha, R., Drost, D. J., Menon, R. S., Malla, A., Takhar, J., Neufeld, R. W., 
Rogers, J., Pavlosky, W., Schaefer, B., Densmore, M., Al-Semaan, Y. & Williamson, 
P. C. 2002. Glutamate and glutamine measured with 4.0 T proton MRS in never-
treated patients with schizophrenia and healthy volunteers. Am J Psychiatry, 159, 
1944-6. 

Theberge, J., Williamson, K. E., Aoyama, N., Drost, D. J., Manchanda, R., Malla, A. K., 
Northcott, S., Menon, R. S., Neufeld, R. W., Rajakumar, N., Pavlosky, W., 
Densmore, M., Schaefer, B. & Williamson, P. C. 2007. Longitudinal grey-matter 
and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry, 191, 325-34. 

Thompson, M., Weickert, C. S., Wyatt, E. & Webster, M. J. 2009. Decreased glutamic acid 
decarboxylase(67) mRNA expression in multiple brain areas of patients with 
schizophrenia and mood disorders. J Psychiatr Res, 43, 970-7. 

Tremblay, R., Lee, S. & Rudy, B. 2016. GABAergic Interneurons in the Neocortex: From 
Cellular Properties to Circuits. Neuron, 91, 260-92. 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, 
N., Mazoyer, B. & Joliot, M. 2002. Automated anatomical labeling of activations in 
SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject 
brain. Neuroimage, 15, 273-89. 



References 

 183 

Uhlhaas, P. J., Haenschel, C., Nikolic, D. & Singer, W. 2008. The role of oscillations and 
synchrony in cortical networks and their putative relevance for the pathophysiology 
of schizophrenia. Schizophr Bull, 34, 927-43. 

Uhlhaas, P. J., Linden, D. E., Singer, W., Haenschel, C., Lindner, M. & Maurer, K. 2006. 
Dysfunctional long-range coordination of neural activity during Gestalt perception 
in schizophrenia. J Neurosci, 26. 

Uhlhaas, P. J. & Singer, W. 2010. Abnormal neural oscillations and synchrony in 
schizophrenia. Nat Rev Neurosci, 11, 100-13. 

Utevsky, A. V., Smith, D. V. & Huettel, S. A. 2014. Precuneus Is a Functional Core of the 
Default-Mode Network. The Journal of Neuroscience, 34, 932-940. 

Van Den Heuvel, M. P. & Hulshoff Pol, H. E. 2010. Exploring the brain network: a review 
on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol, 20, 519-34. 

Van Der Meer, L., Costafreda, S., Aleman, A. & David, A. S. 2010. Self-reflection and the 
brain: a theoretical review and meta-analysis of neuroimaging studies with 
implications for schizophrenia. Neurosci Biobehav Rev, 34, 935-46. 

Van Veen, B. D., Van Drongelen, W., Yuchtman, M. & Suzuki, A. 1997. Localization of 
brain electrical activity via linearly constrained minimum variance spatial filtering. 
IEEE Trans Biomed Eng, 44, 867-80. 

Venables, N. C., Bernat, E. M. & Sponheim, S. R. 2009. Genetic and disorder-specific 
aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull, 35, 826-
39. 

Venables, P. H. 1964. INPUT DYSFUNCTION IN SCHIZOPHRENIA. Prog Exp Pers 
Res, 72, 1-47. 

Volk, D. W. & Lewis, D. A. 2005. GABA Targets for the Treatment of Cognitive 
Dysfunction in Schizophrenia. Curr Neuropharmacol, 3, 45-62. 

Vollema, M. G. & Postma, B. 2002. Neurocognitive correlates of schizotypy in first degree 
relatives of schizophrenia patients. Schizophr Bull, 28, 367-77. 

Volpe, U., Federspiel, A., Mucci, A., Dierks, T., Frank, A., Wahlund, L. O., Galderisi, S. & 
Maj, M. 2008. Cerebral connectivity and psychotic personality traits. A diffusion 
tensor imaging study. Eur Arch Psychiatry Clin Neurosci, 258, 292-9. 

Vrba, J. 2002. Magnetoencephalography: the art of finding a needle in a haystack. Physica C: 
Superconductivity, 368, 1-9. 

Vrba, J. & Robinson, S. E. 2001. Signal processing in magnetoencephalography. Methods, 
25, 249-271. 

Wang, C., Bai, J., Wang, C., Von Deneen, K. M., Yuan, K. & Cheng, J. 2017. Altered 
thalamo-cortical resting state functional connectivity in smokers. Neurosci Lett, 653, 
120-125. 

Wang, Y., Yan, C., Yin, D. Z., Fan, M. X., Cheung, E. F., Pantelis, C. & Chan, R. C. 2015. 
Neurobiological changes of schizotypy: evidence from both volume-based 
morphometric analysis and resting-state functional connectivity. Schizophr Bull, 41 
Suppl 2, S444-54. 

Wende, K. C., Nagels, A., Stratmann, M., Chatterjee, A., Kircher, T. & Straube, B. 2015. 
Neural basis of altered physical and social causality judgements in schizophrenia. 
Schizophr Res, 161, 244-51. 

White, T., Magnotta, V. A., Bockholt, H. J., Williams, S., Wallace, S., Ehrlich, S., Mueller, 
B. A., Ho, B. C., Jung, R. E., Clark, V. P., Lauriello, J., Bustillo, J. R., Schulz, S. C., 
Gollub, R. L., Andreasen, N. C., Calhoun, V. D. & Lim, K. O. 2011. Global White 
Matter Abnormalities in Schizophrenia: A Multisite Diffusion Tensor Imaging 
Study. Schizophr Bull, 37, 222-32. 



References 

 184 

White, T. P., Wigton, R., Joyce, D. W., Collier, T., Fornito, A. & Shergill, S. S. 2016. 
Dysfunctional Striatal Systems in Treatment-Resistant Schizophrenia. 
Neuropsychopharmacology, 41, 1274-85. 

Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., 
Mccarley, R. W., Shenton, M. E., Green, A. I., Nieto-Castanon, A., Laviolette, P., 
Wojcik, J., Gabrieli, J. D. & Seidman, L. J. 2009. Hyperactivity and 
hyperconnectivity of the default network in schizophrenia and in first-degree 
relatives of persons with schizophrenia. Proc Natl Acad Sci U S A, 106, 1279-84. 

Whittington, M. A., Cunningham, M. O., Lebeau, F. E. N., Racca, C. & Traub, R. D. 2011. 
Multiple origins of the cortical gamma rhythm. Developmental Neurobiology, 71, 92-
106. 

Who 1993. ICD-10 Classification of Mental and Behavioural Disorders (The): Diagnostic Criteria for 
Research, World Health Organization. 

Who, C. C. F. D. S. M. 2012. Guidelines for ATC classification and DDD assignment 
2013. Oslo. 

Wiebels, K., Waldie, K. E., Roberts, R. P. & Park, H. R. 2016. Identifying grey matter 
changes in schizotypy using partial least squares correlation. Cortex, 81, 137-50. 

Wing, J. K., Babor, T., Brugha, T., Burke, J., Cooper, J. E., Giel, R., Jablenski, A., Regier, 
D. & Sartorius, N. 1990. SCAN. Schedules for Clinical Assessment in 
Neuropsychiatry. Arch Gen Psychiatry, 47, 589-93. 

Wood, C. C. 1982. APPLICATION OF DIPOLE LOCALIZATION METHODS TO 
SOURCE IDENTIFICATION OF HUMAN EVOKED POTENTIALS*. Annals 
of the New York Academy of Sciences, 388, 139-155. 

Woodward, N. D., Waldie, B., Rogers, B., Tibbo, P., Seres, P. & Purdon, S. E. 2009. 
Abnormal prefrontal cortical activity and connectivity during response selection in 
first episode psychosis, chronic schizophrenia, and unaffected siblings of 
individuals with schizophrenia. Schizophr Res, 109, 182-90. 

Wright, S., Kochunov, P., Chiappelli, J., Mcmahon, R., Muellerklein, F., Wijtenburg, S. A., 
White, M. G., Rowland, L. M. & Hong, L. E. 2014. Accelerated white matter aging 
in schizophrenia: role of white matter blood perfusion. Neurobiol Aging, 35, 2411-
2418. 

Yang, X., Cao, D., Liang, X. & Zhao, J. 2017. Schizophrenia symptomatic associations with 
diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis. 
Neuroradiology, 59, 699-708. 

Yaralian, P. S., Raine, A., Lencz, T., Hooley, J. M., Bihrle, S. E., Mills, S. & Ventura, J. 
2000. Elevated levels of cognitive-perceptual deficits in individuals with a family 
history of schizophrenia spectrum disorders. Schizophr Res, 46, 57-63. 

Yoon, J. H., Maddock, R. J., Rokem, A., Silver, M. A., Minzenberg, M. J., Ragland, J. & 
Carter, C. S. 2010. GABA concentration is reduced in visual cortex in 
schizophrenia and correlates with orientation-specific surround suppression. The 
Journal of Neuroscience, 30, 3777-3781. 

Yoon, Y. B., Yun, J.-Y., Jung, W. H., Cho, K. I. K., Kim, S. N., Lee, T. Y., Park, H. Y. & 
Kwon, J. S. 2015. Altered Fronto-Temporal Functional Connectivity in Individuals 
at Ultra-High-Risk of Developing Psychosis. PLOS ONE, 10, e0135347. 

Yu, Q., Allen, E. A., Sui, J., Arbabshirani, M. R., Pearlson, G. & Calhoun, V. D. 2012. 
Brain connectivity networks in schizophrenia underlying resting state functional 
magnetic resonance imaging. Curr Top Med Chem, 12, 2415-25. 

Zhang, K., Hill, K., Labak, S., Blatt, G. J. & Soghomonian, J. J. 2014a. Loss of glutamic 
acid decarboxylase (Gad67) in Gpr88-expressing neurons induces learning and 
social behavior deficits in mice. Neuroscience, 275, 238-47. 



References 

 185 

Zhang, Q., Shen, J., Wu, J., Yu, X., Lou, W., Fan, H., Shi, L. & Wang, D. 2014b. Altered 
default mode network functional connectivity in schizotypal personality disorder. 
Schizophr Res, 160, 51-6. 

Zhang, Y., Zheng, J., Fan, X., Guo, X., Guo, W., Yang, G., Chen, H., Zhao, J. & Lv, L. 
2015. Dysfunctional resting-state connectivities of brain regions with structural 
deficits in drug-naive first-episode schizophrenia adolescents. Schizophr Res, 168, 
353-9. 

Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., Liu, Z. & Jiang, T. 2007. 
Functional disintegration in paranoid schizophrenia using resting-state fMRI. 
Schizophr Res, 97, 194-205. 

Zhou, Z., Zhang, G., Li, X., Liu, X., Wang, N., Qiu, L., Liu, W., Zuo, Z. & Yang, J. 2015. 
Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved 
in antidepressant- and propsychotic-like behaviors following acute and repeated 
ketamine administration. Mol Neurobiol, 51, 808-19. 

Zhu, Y., Tang, Y., Zhang, T., Li, H., Tang, Y., Li, C., Luo, X., He, Y., Lu, Z. & Wang, J. 
2017. Reduced functional connectivity between bilateral precuneus and 
contralateral parahippocampus in schizotypal personality disorder. BMC Psychiatry, 
17, 48. 

Zhuo, C., Zhu, J., Qin, W., Qu, H., Ma, X., Tian, H., Xu, Q. & Yu, C. 2014. Functional 
connectivity density alterations in schizophrenia. Front Behav Neurosci, 8, 404. 

Zumer, J. M., Scheeringa, R., Schoffelen, J. M., Norris, D. G. & Jensen, O. 2014. Occipital 
alpha activity during stimulus processing gates the information flow to object-
selective cortex. PLoS Biol, 12, e1001965. 



Appendix 

 186 

Appendix 

Figure 10.1 highlights the utility of using a GMM approach on a set of data comparing 

connectivity with placebo and connectivity with Ketamine. Panel A shows data without using 

the GMM procedure outlined in Chapter 2. The scatter plot of mean Z scores for correlation 

in placebo vs Ketamine (1) shows that most of the dots for Ketamine fall below the red line 

(y=x). This includes the weakest correlations which are likely to be noise rather than true 

network correlations. A paired t-test of correlation values between Ketamine and placebo is 

then plotted onto a connectivity matrix (2) and appears to show widespread reduced 

connectivity with Ketamine. This is unlikely and suggests that there is reduced SNR with 

Ketamine and therefore reduced correlations. Through plotting t-statistics of Ketamine 

versus placebo on a histogram (3), it appears that there is a normal null distribution but this 

is not centred on zero, suggesting that there is bias in the Ketamine-placebo comparison. 

The peak is also not symmetrical, but is wider on the right. Panel B shows the same data 

following the GMM procedure to remove “noise”. The scatter plot (1) now shows that the 

weakest connections (Z<2) are clustered around the y=x line, suggesting the two sessions 

(active drug and placebo) have similar corrected null distributions. Following correction, 

those node-node connections that are known to be strongest from previous work (occipital 

and posterior parietal) show increased connectivity with active drug (2) and the t-statistic 

histogram now shows a reduced bias, with the peak closer to zero (3). GMM is therefore a 

useful procedure that allows us to model the null distribution for placebo and Ketamine 

sessions (or case and control groups) separately and correct correlation values to account for 

differences in nulls. This will then correct for any systematic errors, including SNR 

differences. 
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