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Abstract
Central to the present work is the interaction between a semiconductor quantum
dot (QD) exciton and its phonon environment. In the spectral domain, phonon
assisted dephasing of the QD exciton presents as a phonon broadband, which is
superimposed upon a narrow zero-phonon line (ZPL). The phonon broadband
exhibits a high degree of thermal sensitivity, which we exploit in order to
measure the temperature of semiconductor QD samples from their respective
photoluminescence (PL) spectra. Temperature measurement is achieved through
an automated fit procedure based upon the independent boson (IB) model with
additional Gaussian and Lorentzian broadening. We find there to be very good
agreement between fit temperature and nominal (cryostat-measured) temperature.
Further, the fit procedure enables extraction of other key parameters such as the
material deformation potential and the QD confinement lengths.

Also presented is a semi-analytical exact solution to the problem of phonon
decoherence in a QD embedded in an optical microcavity. The approach is based
on Trotter’s decomposition theorem and takes into account the effects of the
exciton-cavity and exciton-phonon coupling on equal footing, thereby providing
access to regimes of comparable polaron and polariton timescales. We show that
the emission spectrum consists of two polariton lines, with optical decoherence
determined by acoustic phonon-induced transitions between the polariton states.
When viewed in the polariton frame, we find the dependence of the polariton
line broadening on the exciton-cavity coupling strength to be well described by
Fermi’s Golden Rule for real phonon-assisted transitions.

For comparison, we additionally calculate the QD-microcavity absorption
spectra according to well-known master equation approaches and examine the
agreement between the differing methods. We show that there is good agreement
between the approaches if the polariton dynamics are slow in comparison to the
polaron timescale, but significant deviation at comparable polaron and polariton
timescales. We attribute the observed discrepancies to a break-down in the
master equation approach within the latter regime.
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Abstract

Central to the present work is the interaction between a semiconductor quantum dot
(QD) exciton and its phonon environment. In the spectral domain, phonon assisted
dephasing of the QD exciton presents as a phonon broadband, which is superimposed
upon a narrow zero-phonon line (ZPL). The phonon broadband exhibits a high
degree of thermal sensitivity, which we exploit in order to measure the temperature
of semiconductor QD samples from their respective photoluminescence (PL) spectra.
Temperature measurement is achieved through an automated fit procedure based
upon the independent boson (IB) model with additional Gaussian and Lorentzian
broadening. We find there to be very good agreement between fit temperature
and nominal (cryostat-measured) temperature. Further, the fit procedure enables
extraction of other key parameters such as the material deformation potential
and the QD confinement lengths.

Also presented is a semi-analytical exact solution to the problem of phonon
decoherence in a QD embedded in an optical microcavity. The approach is based on
Trotter’s decomposition theorem and takes into account the effects of the exciton-
cavity and exciton-phonon coupling on equal footing, thereby providing access to
regimes of comparable polaron and polariton timescales. We show that the emission
spectrum consists of two polariton lines, with optical decoherence determined by
acoustic phonon-induced transitions between the polariton states. When viewed
in the polariton frame, we find the dependence of the polariton line broadening
on the exciton-cavity coupling strength to be well described by Fermi’s Golden
Rule for real phonon-assisted transitions.

For comparison, we additionally calculate the QD-microcavity absorption spectra
according to well-known master equation approaches and examine the agreement
between the differing methods. We show that there is good agreement between
the approaches if the polariton dynamics are slow in comparison to the polaron
timescale, but significant deviation at comparable polaron and polariton timescales.
We attribute the observed discrepancies to a break-down in the master equation
approach within the latter regime.
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1
Introduction

A quantum dot (QD) defines a three-dimensional region of electronic confinement.

In the field of semiconductors, this confinement is achieved through the layering of

two or more semiconductor materials, each with a distinct bandgap energy. Typical

material choices include gallium arsenide (GaAs), aluminium gallium arsenide

(AlGaAs) and indium gallium arsenide (InGaAs).

The confinement associated with a QD has a profound impact on the properties

of the material, primarily due to band energy quantisation. In bulk semiconductors,

the promotion of an electron from the valence band to the conduction band

creates a void, or hole in the former, which may be treated as a positively charged

particle. The electron and hole form a bound pair, known as an exciton [1]. The

same is true within low-dimensional semiconductor structures, such as QDs, but

quantisation of the electron and hole energies ensures that the exciton transition

energy ΩX is a discrete, well-defined value. In a simplistic model, the creation (or

recombination) of an exciton may only occur upon absorption (or emission) of a

photon of energy equal to the exciton transition energy ΩX . In reality, however,

one cannot neglect the influence of the phonon environment on the QD dynamics,

even at zero temperature [2–6]. Physically, phonons are quasiparticles that provide

a quantum description of lattice deformation [7]. When an exciton is created, the

negative electron and positive hole interact with the surrounding lattice through

1



1. Introduction 2

the Coulomb interaction, surrounding the exciton with a phonon cloud. We treat

this phonon-dressed exciton as a quasi-particle known as a polaron [8, 9]. A

consequence of the exciton-phonon interaction is that light is not only emitted (or

absorbed) at the exciton transition energy ΩX , but also across a broad range of

frequencies through phonon mediated transitions. If we consider the absorption

(or emission) spectra, we observe a sharp peak at ΩX , which we refer to as the

zero phonon line (ZPL), alongside a broad spectrum, which we term the phonon

broadband [2–5]. This behaviour is well-described by the exactly-solvable independent

boson (IB) model [10], which is discussed in detail in Sec. 1.3 below. Within the

IB model, one may account for various parameters of the QD and its environment

such as the QD confinement lengths, the deformation potential of the material

and the temperature. As part of the present work (detailed in Chapter 2), we

apply the IB model to calculate theoretical emission spectra, which we compare

to experimental photoluminescence (PL) emission data. Through an automated

fit procedure, we determine the QD parameters that provide the best description

of the observed PL emission spectra. Of particular interest is the temperature,

upon which the phonon broadband is strongly dependent. This leads us to consider

the concept and feasibility of exploiting the thermal properties of phonons to

produce a so-called phonon thermometer.

Another branch of the present work is the phonon-induced dephasing of a QD-

microcavity system. Whilst superficially similar to the phonon-induced dephasing

of an exciton QD described above, the additional coupling between the cavity

mode and the excitonic state has a profound impact of the behaviour of the

system as a whole. With no known exact solution, phonon-induced decoherence

in a qubit-cavity system represents a long-standing fundamental problem within

quantum electrodynamics (QED). In order to investigate this problem further,

it is instructive to consider the QD-microcavity system without phonons, which

is well-described by the exactly-solvable Jaynes-Cummings (JC) model [11] (see

Sec. 1.2 below). A distinction is made between the so-called weak coupling regime

and the strong coupling regime, according to the coupling strength between the

– 2 –



1. Introduction 3

exciton and cavity [12, 13]. For the case of strong coupling, there is a partly

reversible exchange of energy, which gives rise to a superposition and light and

matter, known as a “dressed state” or polariton [14]. Whilst the JC model provides

a good basis for understanding the QD-cavity system, there is significant theoretical

and experimental evidence [15–27] to suggest that the phonons play a crucial role

in the optical decoherence and hence the overall dynamics of the system. Various

approaches to the problem of incorporating phonon-induced dephasing within a

model for the QD-microcavity system have been suggested in the literature, ranging

from Born-Markov approximations [15, 16, 28] to path-integral methods [19, 21]

and non-equilibrium Green’s function techniques [22]. We provide, in Chapter 3, a

brief discussion on the merits and deficiencies of such approaches, alongside details

of a new method that aims to address the shortcomings in existing techniques. Our

method, which we will refer to herein as the Trotter decomposition method, provides

an asymptotically exact solution to the problem of phonon-induced decoherence

in a qubit-cavity system. This solution allows us not only to rigorously prove

results already known in the literature, but also to predict new important physical

phenomena which have not been previously observed, discussed or calculated. We

conclude with a comparison of polarisation and emission spectra obtained from the

Trotter decomposition method against those obtained from the established master

equation approaches [15, 16, 28, 29] (see Chapter 4). We show that there is, in

general, good agreement between the various approaches for small to moderate

exciton-cavity coupling strengths (g < 0.2 meV), which provides an additional

confirmation of the validity and accuracy of the Trotter decomposition approach.

There is, however, significant deviation at higher coupling strengths, which we

attribute to the break-down of the master equation approaches.

In anticipation of the above, the present chapter introduces the two aforemen-

tioned models: the Independent Boson (IB) model and the Jaynes-Cummings

(JC) model. We also present a formalism for calculating the polarisation and

absorption from the density matrix of the system, which may be applied to both

the IB and JC models.

– 3 –



1. Introduction 4

1.1 Polarisation and absorption calculations

Throughout this work, we focus on linear polarisation and associated absorp-

tion/emission spectra. It is therefore natural to initially outline the formalism

through which these quantities are determined. We take, as our starting point,

the standard definition of optical polarisation,

P (t) = Tr {ρ(t)c} , (1.1)

where Tr denotes the trace operation, ρ(t) is the density matrix and the annihilation

operator c is associated with the observation mode. If we consider the QD-

cavity system, observation may be undertaken in the excitonic mode (in which

case c represents the excitonic annihilation operator d) or the cavity mode (with

c representing the cavity annihilation operator a).

For non-trivial polarisation, we must provide external excitation to the system.

We consider a pulsed excitation of the form,

Hext = δ(t − t0)V , (1.2)

V = µ(c̃† + c̃), (1.3)

where µ is a constant and c̃† is the creation operator associated with the excitation

mode. Without loss of generality, we may assume that the excitation is applied at

time t0 = 0. The density matrix immediately after this time has the form

ρ(0+) = e−iVρ(−∞)eiV , (1.4)

where ρ(−∞) is the density matrix of the fully unexcited system.

Subsequent time-evolution of the density matrix is determined by the standard

Schrödinger representation time evolution,

ρ(t > 0) = e−iHtρ(0+)eiHt , (1.5)

= e−iHte−iVρ(−∞)eiVeiHt (1.6)

– 4 –



1. Introduction 5

where H is the full system Hamiltonian (not including the external pulsed excitation

Hext). If we consider only linear polarisation we may neglect all terms higher than

first order in µ. Thus, substituting for ρ(t) in Eq. (1.1),

PL(t) = Tr{e−iHt V ρ(−∞) eiHt c}, (1.7)

where we have dropped the factor of −i. It should be noted that this polarisation

defined in Eq. (1.7) describes the linear response of a pulsed excitation in the channel

associated with operators c̃ and c̃† (through V defined in Eq. (1.3)) and measured

in the channel associated with operator c.

To find the absorption, we apply the basic principle of conservation of probability.

In terms of formal scattering theory, the absorption A(ω) is the rate for transitions

into all states other than the initial state. We employ Fermi’s golden rule for a

periodic harmonic potential V e−iωt, which states that the probability of a transition

from initial state i to final state f occurring per unit time, Ri→f , is given by1,

Ri→f (ω) = 2π| 〈i| V |f〉 |2δ(Ef − Ei − ω), (1.8)

where Hext is the external excitation, given by Eq. (1.2), and Ei(f) is the energy

of the initial (final) state |i〉 (|f〉).

The absorption is given by the transition rate between all initial and final

states, with each contribution weighted by the probability that the system is found

in the associated initial state wi

A(ω) =
∑

i,f

wi Ri→f (ω) (1.9)

= 2π
∑

i,f

wi| 〈i| V |f〉 |2δ(Ef − Ei − ω). (1.10)

Noting that a general delta-function in the frequency domain δ(ω) may be written

as,

δ(ω) =
1

2π

∫ ∞

−∞
dt e−iωt, (1.11)

1Throughout this work we take � = 1.

– 5 –
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we recast Eq. (1.10) as,

A(ω) =
∫ ∞

−∞
dt

∑

i,f

wi| 〈i| V |f〉 |2e−i(Ef −Ei)teiωt (1.12)

=
∫ ∞

−∞
dt

∑

i,f

wi 〈i| eiHt V e−iHt |f〉 〈f | V |i〉 eiωt (1.13)

=
∫ ∞

−∞
dt

∑

i

wi 〈i| eiHt V e−iHt V |i〉 eiωt. (1.14)

We now note that wi is the probability of finding the system in initial state i

before the pulse is applied: wi = 〈i| ρ(−∞) |i〉. Further noting that
∑

i 〈i| . . . |i〉

describes the trace operation, Eq. (1.14) becomes,

A(ω) =
∫ ∞

−∞
dt eiωt Tr

{
e−iHt V ρ(−∞) eiHt V

}
, (1.15)

where we have used the cyclic property of the trace operation. Taking the form

of V given in Eq. (1.3) we have,

A(ω) = µ
∫ ∞

−∞
dt eiωt

(
Tr

{
e−iHt V ρ(−∞) eiHtc̃

}
+ Tr

{
c̃†(e−iHt ρ(−∞) V eiHt)†

})

(1.16)

= µ
∫ ∞

−∞
dt eiωt

(
Tr

{
e−iHt V ρ(−∞) eiHtc̃

}
+ c.c.

)
, (1.17)

where c.c. indicates the complex conjugate. Noting that the trace within Eq. (1.17)

is in fact the linear polarisation given in Eq. (1.7) (providing the condition c = c̃ is

satisfied), we arrive at the following expression for the absorption2,

A(ω) = Re
∫ ∞

−∞
dt PL(t)eiωt = Re F {PL(t)} . (1.18)

where we have dropped the unimportant factor of µ. Accordingly, Eq. (1.18)

demonstrates that the inverse Fourier transform (F{. . .}) of the linear response

PL(t)3 in the pulsed excitation regime is equivalent, in the lowest perturbation order,

to absorption in the continuous wave excitation (CWE) regime. All references to

absorption within this work relate to this CWE regime, but are found from the

Fourier transform of polarisation in the pulsed excitation regime, as described above.
2If we had not dropped the factor of −i within the expression for polarisation given in Eq. (1.7),

the absorption would instead be given by the imaginary part of the inverse Fourier transform
3We consider only linear polarisation in this work and will herein drop the subscript L for

simplicity of notation.

– 6 –
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1.2 The Jaynes-Cummings (JC) model

The interaction of a single fermionic two-level system with a bosonic photon mode

is well-described by the JC model. In this work, we apply the JC model to an

excitonic system coupled to a cavity photon. We consider only the absolute ground

state, the excitonic ground state (neglecting excited states of the exciton) and

a single cavity mode.

The Hamiltonian H of the exciton-cavity system is given by:

H = ωXd†d + ωCa†a + g(a†d + d†a) , (1.19)

where d† (a†) is the exciton (cavity photon) creation operator, g is the exciton-cavity

coupling strength, and ωX (ωC) is the complex exciton (cavity photon) frequency,

ωX,C = ΩX,C − iγX,C , ΩX,C , γX,C ∈ R . (1.20)

Physically, the imaginary part γX of the complex exciton frequency ωX represents

the ZPL dephasing, whilst γC corresponds to the radiative decay rate. Note

that due to the inclusion of γX,C within Eq. (1.19), the Hamiltonian is in fact

not a Hamiltonian in the traditional sense: it is not Hermitian and therefore its

eigenvalues are potentially complex and do not correspond to energy.

Focusing on linear polarisation enables reduction of the basis to just three states:

the absolute ground state |0〉, the excitonic mode |X〉 and the cavity mode |C〉. In

this reduced basis, the excitonic and cavity operators may be expressed explicitly as:

d† = |X〉 〈0| , d = |0〉 〈X| , (1.21)

a† = |C〉 〈0| , a = |0〉 〈C| . (1.22)

Evaluating the polarisation P (t) according to Eq. (1.7) (see Sec. B.1.1 of the

Appendix for full derivation), we arrive at the following expression,

Pjk(t) = θ(t) 〈j| e−iHt |k〉 . (1.23)

where the index j denotes the mode of excitation (c̃ = |0〉 〈j|) and k denotes the

mode of observation (c = |0〉 〈k|). Note that we have neglected the unimportant

– 7 –
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factor of iµ. The Heaviside step function within Eq. (1.23) arises as a result of

applying the excitation at t = 0. Eq. (1.23) may be expressed as a 2 × 2 matrix

product in the {|X〉 , |C〉}, compactly accounting for all four possible combinations

of excitation and measurement conditions,

P̂ (t) = θ(t)
(

PXX(t) PXC(t)
PCX(t) PCC(t)

)
= θ(t)

(
α β

−β α

)

︸ ︷︷ ︸
Ŷ

(
e−iω1t 0

0 e−iω2t

) (
α −β
β α

)

︸ ︷︷ ︸
Ŷ −1

.

(1.24)

The coefficients α, β of eigenvector matrices Ŷ , Ŷ −1 and the eigenvalues ω1,2

have the following forms:

α =
∆√

∆2 + g2 , (1.25)

β =
g√

∆2 + g2 , (1.26)

ω1,2 =
ωX + ωC

2
±

√
g2 + δ2, (1.27)

with ∆ =
√

δ2 + g2 − δ and δ = 1/2 (ωX − ωC). It should be noted that the

eigenvalues ω1,2 are, in general, complex,

ω1,2 = Ω1,2 − iγ1,2 , (1.28)

where Ω1,2 are the real energies and γ1,2 are the associated linewidths.

1.2.1 Weak and strong coupling regimes

It is interesting to explore the influence of the term ±
√

g2 + δ2 within the eigenvalue

expression, Eq. (1.27). Considering, for simplicity, the case of zero detuning between

exciton and cavity ΩX = ΩC , we may re-express Eq. (1.27) as,

ω1,2 = ΩC − i

2
(γX + γc) ± 1

2

√
4g2 − (γX − γC)2 . (1.29)

If the exciton-cavity coupling strength g is smaller than 1/2|γX − γC | then the term

±
√

g2 + δ2 provides a purely imaginary contribution to the eigenvalues ω1,2 and

hence the real energies are degenerate (Ω1,2 = ΩC). This is known as the weak

coupling regime and is classified spectrally by a single peak in the emission or

– 8 –
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Figure 1.1: Left: absolute values of eigenvector coefficients α and β, shown as a
function of the exciton-cavity coupling strength g. The sharp peak in both |α| and |β|
at approximately 14 µeV is a consequence of the finite long-time ZPL dephasing γX and
radiative decay γC : the denominator of α and β is minimised for δ ≈ g, which, for the
case of zero detuning, occurs at g = δ = 1/2(γX − γC) = 14 µeV. Left inset: polariton
line separation ∆Ω = Ω2 − Ω1 as a function of exciton-cavity coupling strength g, with
dashed line showing ∆Ω = 2g. Right: real and imaginary parts of lower (1) and upper (2)
polariton eigenfrequencies. For both panels, we have considered the case of zero detuning
(ΩX = ΩC), γX = 2 µeV and γC = 30 µeV.

absorption spectrum. Within the weak coupling regime, there is a notable Purcell

effect (modification of the QD exciton radiative lifetime) [30, 31].

If, on the other hand, g > 1/2 |γX −γC |, the real energies Ω1,2 are non-degenerate4

and two spectral peaks are observed. The peaks are located at the real eigenenergies

Ω1,2 with respective linewidths γ1,2, as determined by Eq. (1.27).

Fig. 1.1 illustrates the real eigenenergies Ω1,2, linewidths γ1,2 and eigenvector

coefficients α β across a range of exciton-cavity coupling strengths 0 < g < 50 µeV.

The figure shows the case of zero detuning ΩX = ΩC , with realistic values of

γX = 2 µeV and γC = 30 µeV [11]. The transition from weak to strong coupling

can be clearly seen at g = (γC − γX)/2 = 14 µeV. Note that the weak-coupling

regime dependence of the exciton decay rate on the electromagnetic field density

(and hence the coupling strength g) [30–32] has been neglected.

4Considering, again, the case of zero detuning ΩX = ΩC

– 9 –



1. Introduction 10

The remainder of this work (including consideration of the phonon environment

within the QD-cavity system outlined in Chapters 3 and 4) focuses only on the

strong coupling regime. Herein, any references to “small g” should be interpreted

as small relative to the confines of the strong coupling regime.

1.2.2 Absorption

Calculating the absorption in this regime according to Eq. (1.18), we obtain spectra

formed of two Lorentzian broadened lines,

AXX(ω) = Re
{

iα2

ω − ω1
+

iβ2

ω − ω2

}
, (1.30)

ACC(ω) = Re
{

iβ2

ω − ω1
+

iα2

ω − ω2

}
. (1.31)

Note that physically, only AXX(ω) (absorption in the exciton mode under exciton

feeding) and ACC(ω) (absorption in the cavity mode under cavity feeding) are

truly absorption spectra (see Sec. 1.1), and therefore the off-diagonal elements of

F {P (t)} will not be considered.

Fig. 1.2 shows absorption spectra AXX(ω) and ACC(ω) calculated according

to Eqs. (1.30) and (1.31) for exciton-cavity coupling strengths g = 0.05, 0.10

and 0.50 meV. Each spectrum consists of two peaks, located at respective real

eigenenergies Ω1,2 with linewidths γ1,2. We interpret these peaks as polariton states,

each composed of a superposition of exciton and cavity states.

1.2.3 Rabi splitting and polariton timescale

With reference to Fig. 1.2, it is clear that the splitting between the two polariton

lines, ∆Ω = Ω1−Ω2, is strongly dependent upon the exciton-cavity coupling strength

g. This separation, known as the Rabi splitting, is straightforwardly obtained from

Eq. (1.29) for the case of zero detuning and strong coupling,

∆Ω = Ω1 − Ω2 ≈ 2g , (1.32)

This approximation is illustrated by the dashed black line in the inset of Fig. 1.1.

– 10 –
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Figure 1.2: Absorption spectra (a) AXX(ω) and (b) ACC(ω) calculated according to
the Jaynes-Cummings model, shown for various exciton-cavity coupling strengths g. We
have taken the case of zero detuning between cavity and exciton modes ΩX = ΩC and set
γX = 2 µeV and γC = 30 µeV.

The Rabi splitting ∆Ω is related to characteristic polariton timescale τJC, the

latter describing the period of Rabi oscillations in the time domain:

τJC =
2π

∆Ω
≈ π

g
. (1.33)

We will return to the Jaynes-Cummings model in Chapter 3, where we take

the model as just one part of a more sophisticated description that includes the

influence of the phonon environment on the exciton-cavity dynamics.
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1.3 The independent boson (IB) model

The general phenomenon of phonon-induced dephasing in semiconductor QDs (in

the absence of a confining cavity) has been successfully explained and quantified by

the exactly solvable IB model [10]. This model describes a polaron, formed from

a QD exciton coupled to bulk acoustic phonons [3], with a characteristic polaron

formation time τIB. The IB model accounts for the major effect of the non-Markovian

pure dephasing, although is known to fail treating the exciton ZPL broadening [5].

The Hamiltonian for the exciton-phonon system has the form

H = Hph + (ωX + V ) d†d , (1.34)

where d† (d) is the exciton creation (annihilation) operator and ωX is the complex

exciton frequency, including the long-time ZPL dephasing γX .

The contribution to the Hamiltonian from the phonon continuum Hph and the

exciton-phonon coupling V are respectively given by

Hph =
∑

q

ωqb
†
qbq , (1.35)

V =
∑

q

λ∗
q(bq + b†

−q) , (1.36)

where b†
q (ωq) is the creation operator (frequency) of the phonon mode with wave

vector q, and λq is the matrix element of the exciton-phonon coupling for this mode,

discussed further in Sec. 1.3.2. Noting that λ∗
q = λq, we may re-express Eq. (1.36) as,

V =
∑

q

λ∗
qbq + λqb

†
q . (1.37)

It is convenient at this point to adopt the formalism of open quantum systems [33],

treating the exciton as the system and the phonons as the environment. We assume

that the combined evolution of the system and environment is closed (neglecting the

ZPL dephasing γX), and therefore follows unitary Hamiltonian dynamics. However,

due to interactions between the system and the environment, neither will necessarily

follow a unitary evolution individually.

– 12 –
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The combination of the system and environment has a Hilbert space H composed

of the tensor product (⊗) of the excitonic Hilbert space H(X) and the phononic

Hilbert space H(ph),

H = H(X) ⊗ H(ph) . (1.38)

Similarly, the density matrix ρ(t) for the combined system is given by the ten-

sor product of the density matrices pertaining to the excitonic system and the

phonon environment,

ρ(t) = ρX(t) ⊗ ρph(t) . (1.39)

As discussed in the previous section, we must apply an excitation to the system

in order to obtain a non-trivial polarisation. We again assume a pulsed excitation

of the form of Eq. (1.2), but in this case demand that c̃† = d since we do not have

a cavity mode within the system. Again assuming that the excitation is applied

at time t = 0, the density matrix immediately after this time has the form of

Eq. (1.4), where ρ(−∞) is the density matrix of the fully unexcited system. In

this case, ρ(−∞) comprises an exciton part in the absolute ground state |0〉 and

a phonon part in thermal equilibrium,

ρ(−∞) = |0〉 〈0| ⊗ ρph . (1.40)

Here, the density matrix of the phonon subspace, ρph, is given by

ρph =
e−βHph

Tr {e−βHph}ph
, (1.41)

with β = (kBT )−1 and the trace being taken over all possible phonon states.

Subsequent time-evolution of the density matrix is determined by the stan-

dard Schrödinger representation time evolution, described by Eq. (1.5). Inserting

Eqs. (1.2), (1.5) and (1.40) into Eq. (1.1), for the polarisation, we obtain the following

expression for polarisation (full derivation in Sec. B.2.1 of the Appendix):

P (t) = θ(t) e−iωX t〈e−iV t〉ph , (1.42)

– 13 –
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where 〈. . .〉ph denotes the trace over all phonon states. As for the JC case, the

Heaviside step function θ(t) is a consequence of applying the excitation at t = 0,

and we have omitted the factor of iµ.

We note that e−iV t is the time-evolution operator Û(t) (see Section A.3.4 of

the Appendix for discussion), which may be expressed as,

e−iV t = Û(t) = T
[
exp

(
−i

∫ t

0
dt′ Ṽ (t′)

)]
, (1.43)

where T is the time ordering operator, and the tilde notation denotes the interaction

representation,

Ṽ (t) = eiHpht V e−iHpht =
∑

q

λ∗
qbqe

−iωqt + λqb
†
qe

iωqt . (1.44)

Using the linked cluster expansion [5, 6, 10], we may express Eq. (1.43) in terms

of the cumulant K(t) (full derivation in Sec. B.2.2 of the Appendix),

〈e−iV t〉 =
〈

T
[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]〉
= eK(t) . (1.45)

Inserting Eq. (1.45) into Eq. (1.42), we find an expression for the linear polarisation

in terms of the cumulant K(t),

P (t) = θ(t) e−iωX teK(t) . (1.46)

As shown in Sec. B.2.2 of the Appendix, the cumulant K(t) is given by

K(t) = −1
2

∫ t

0
dt1

∫ t

0
dt2

〈
T Ṽ (t1)Ṽ (t2)

〉
. (1.47)

In brief, the cumulant has this form due to the requirement of the linked cluster

theorem [10] to take only connected diagrams in the exponent. In the linear

interaction, the only connected diagram is that given in Eq. (1.47). In all higher

orders, the time integrals of the phonon propagators may be separated and hence

such orders may be factorised.
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1.3.1 Calculation of the cumulant K(t)

Returning to Eq. (1.47) and inserting the expression for Ṽ (t) from Eq. (1.44),

K(t) = −1
2

∑

q

∫ t

0
dt1

∫ t

0
dt2 |λq|2

(
[Nq + 1]e−iωq |t1−t2| + Nqeiωq |t1−t2|

)
, (1.48)

where Nq is the Bose distribution function Nq = 1/[eβωq − 1], and we have used

〈b†
qbq〉 = Nq and 〈bqb

†
q〉 = Nq + 1. Noting that λq is independent of time, we may

perform the double integration to give,

K(t) =
∑

q

|λq|2
(

Nq

ω2
q

[
eiωqt − 1

]
+

Nq + 1
ω2

q

[
e−iωqt − 1

]
+

it

ωq

)
. (1.49)

The phonon spectral density J(ω) is defined as

J(ω) =
∑

q

|λq|2δ(ω − ωq). (1.50)

This is equivalent to taking the product of |λq|2 with the density of states in

ω-space. Converting the summation over q to an integration
∑

q → V
(2π)3v3

s

∫
d3ω,

where V is the sample volume and vs is the speed of sound in the sample material,

the spectral density becomes

J(ω) = |λq|2
2V

(2π)2v3
s

ω2 , (1.51)

The cumulant K(t) therefore has the form

K(t) =
1

4π

∫
d3ω

J(ω)
ω2

(
N(ω)

ω2

[
eiωt − 1

]
+

N(ω) + 1
ω2

[
e−iωt − 1

]
+

it

ω

)
, (1.52)

where N(ω) = 1/[eβω − 1]. This may be expressed in terms of the rapid initial decay

KBB(t) (which forms the phonon broadband in frequency space) and the long-time

asymptotics K∞(t) (which forms the zero-phonon line in frequency space),

K(t) =
1

4π

∫
d3ω

J(ω)
ω4

(
N(ω)eiωt + [N(ω) + 1]e−iωt

)

︸ ︷︷ ︸
KBB(t)

+ (−iΩpt − S)
︸ ︷︷ ︸

K∞(t)

, (1.53)

where the polaron shift Ωp has the form

Ωp = − 1
4π

∫
d3ω

J(ω)
ω3 (1.54)
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Figure 1.3: Left: absolute value of the IB polarisation shown at T = 50 K. Left inset:
magnification of the initial 2.5 ps shown in the primary figure. Right: IB absorption
spectra for temperatures T = 0 K and T = 50 K. Full calculation for both panels
carried out according to Eqs. (1.68) to (1.70) with a = 3.3 nm, Dc − Dv = −6.5 eV,
vs = 4.6 × 103 m/s, and ρm = 5.65 g/cm3.

and the Huang-Rhys factor S is given by

S =
1

4π

∫
d3ω

J(ω)
ω4 coth

(
ω

2kBT

)
. (1.55)

Inserting Eq. (1.53) into Eq. (1.46), we see that the polarisation may be expressed as

P (t) = θ(t) e−Se−i(ωX+Ωp)teKBB(t) . (1.56)

The left panel of Fig. 1.3 shows the magnitude of the polarisation, which is

related to the cumulant K(t) according to Eq. (1.46). The initial rapid decay

associated with KBB(t), magnified in the inset, occurs within approximately two

picoseconds at T = 50 K. The time taken for this decay is, in general, a function

of temperature as shown in Fig. 1.4.

It is interesting at this point to also consider the absorption, which is calculated

from the polarisation according to Eq. (1.18). The right panel of Fig. 1.3 shows the

absorption spectra for two temperatures: T = 0 K and T = 50 K. If we neglect

the broadband contribution KBB, we are left with the zero-phonon line, for which
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we are able to obtain a simple analytic expression:

AZPL(ω) =
e−SγX

(ω − Ω̄X)2 + γ2
X

, (1.57)

where we have expressed ωX in terms of its real and imaginary parts and have

defined Ω̄X = ΩX + Ωp. This is a Lorentzian broadened line centred upon frequency

Ω̄X with full width at half maximum (FWHM) of 2γX .

Note that if we consider the very simple case of the system without phonons,

it is straightforward to calculate the absorption as A(ω) = γX/ [(ω − ΩX)2 + γ2
X ].

Comparison of this expression with Eqns. (1.56) and (1.57) clearly shows certain

effects associated with the phonon interaction:

1. The ZPL intensity is suppressed by a factor of e−S;

2. The ZPL is displaced from the exciton frequency ΩX by the polaron shift Ωp.

3. There is an additional contribution to the polarisation of eKBB(t), which is

simply absent in the case with no phonons. This contribution produces, in

the time domain, a rapid initial decay in P (t), as shown in Fig. 1.3. In the

frequency domain, this corresponds to a spectrally broad absorption feature

known as the phonon broadband. At zero temperature, the broadband is highly

asymmetric due to the absence of environmental phonons to assist the exciton

in absorption a photon of lower energy than the ZPL. At higher temperature,

the broadband becomes more symmetric and increases in magnitude as more

phonons become available to assist exciton transitions.

1.3.2 Matrix element λq

At low temperatures, the exciton-phonon interaction is dominated by the defor-

mation potential coupling to longitudinal acoustic (LA) phonons [3]. Assuming

that (i) the phonon parameters in the confined QD do not differ significantly

from those in the surrounding material, and (ii) the acoustic phonons have linear
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dispersion ωq = vs|q|, where vs is the sound velocity in the material, the matrix

coupling element λq is given by

λq =
qD(q)√
2ρmωqV

, (1.58)

where ρm is the mass density of the material and D(q) is the form-factor [5, 6],

D(q) =
∫

dre

∫
drh|ψX(re, rh)|2

(
Dce

−iq·re − Dve−iq·rh

)
. (1.59)

We assume a factorisable form of the exciton wave function,

ΨX(re, rh) = ψe(re)ψh(rh) , (1.60)

where ψe(h)(r) is the confined electron (hole) ground state wave function. This

assumption enables us to express the form-factor D(q) as

D(q) = −
∫

dr
[
Dv|ψh(r)|2 − Dc|ψe(r)|2

]
e−iq·r , (1.61)

with Dc(v) being the material-dependent deformation potential constant for the

conduction (valence) band.

The most straightforward case is that of a spherically symmetric parabolic

confinement potential5, producing Gaussian ground state wave functions:

ψe(h)(r) =
1√

π3/2a3
e(h)

exp


− r2

2a2
e(h)


 , (1.62)

Taking the case of equal exciton and hole confinement lengths ae = ah = a and

inserting Eq. (1.62) into Eq. (1.61) we have,

D(q) = (Dc − Dv)e− a2q2
4 , (1.63)

and thus, from Eq. (1.58), the matrix coupling element λq is given by

λq =
√

q

2ρmvsV
(Dv − Dc) exp

(
−a2q2

4

)
. (1.64)

Inserting this expression for λq into Eq. (1.51) for the spectral density,

J(ω) = J0 ω3e
− ω2

ω2
0 , (1.65)

5A more sophisticated model for anisotropic QDs is considered in Chapter 2
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Figure 1.4: Broadband contribution KBB(t) to the IB cumulant K(t) shown at varyious
temperatures. Inset: phonon memory time τIB calculated according to the time taken
for KBB(t) to drop below a threshold value. As for Fig. 1.3, the cumulant calculation
is carried out according to Eqs. (1.68) to (1.70) with a = 3.3 nm, Dc − Dv = −6.5 eV,
vs = 4.6 × 103 m/s, and ρm = 5.65 g/cm3.

with

J0 =
(Dv − Dc)2

(2π)2ρmv5
s

. (1.66)

ω0 =
√

2vs

a
. (1.67)

Exploiting the spherical symmetry of this spectral density allows us to replace
∫

d3ω with 4π
∫ ∞

0 dω ω2 in Eq. (1.53) for K(t),

KBB(t) = J0

∫ ∞

0
dω ω e

− ω2

ω2
0

(
N(ω)eiωt + [N(ω) + 1]e−iωt

)
, (1.68)

Ωp = J0

√
π

2
v3

s

a3 , (1.69)

S = J0

∫ ∞

0
dω ω e

− ω2

ω2
0 coth

(
ω

2kBT

)
, (1.70)

where, in Eq. (1.69), we have performed the analytic integration over ω. We note

from Eqs. (1.68) to (1.70) that we arrive at a fully analytic expression for the

polaron shift Ωp, but evaluation of KBB(t) and S require numeric integration. A

note on optimising the computation of KBB(t) through use of fast Fourier transform

(FFT) algorithms is provided in Sec. B.2.3 of the Appendix.
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As a final remark, the frequency ω0 is known as the cut-off frequency, and defines

a characteristic time scale of the phonon system τIB,

τIB ≈ 2π

ω0
≈

√
2π

vs

. (1.71)

For typical parameters a = 3.3 nm, vs = 4.6×103 m/s, this equates to approximately

3.2 ps. We refer to this characteristic timescale τIB as the phonon memory time.

Physically, it is the time required for the lattice atoms or ions to return to their

equilibrium positions (i.e. for the phonon cloud surrounding an exciton to dissipate)

once the exciton has recombined. A more accurate estimation of the phonon

memory time τIB may be obtained by performing the above-described full cumulant

calculation. Fig. 1.4 illustrates the broadband contribution to the cumulant KBB(t)

for various temperatures. An alternative, and more accurate, definition of the

phonon memory time τIB is the time taken for KBB(t) to drop below a threshold

value, which we take to be 10−3. At low temperature (< 5 K), τIB is strongly

temperature dependent, but becomes approximately constant beyond ∼ 5 K.
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2
The phonon thermometer

In this chapter, we focus on the phonon-induced dephasing of semiconductor

quantum dots. We seek to exploit the temperature sensitivity of the phonon

broadband to create a “phonon thermometer". To do so, we apply an optical

excitation to the semiconductor QD sample and measure the spontaneous emission

of light - the photoluminescence (PL). Initially, we consider the concept of a thermal

ratio [34], which we define as the PL intensity, I(ω), relative to its reflection about

the ZPL, I(−ω). Providing that the ZPL broadening is minimal, this simple ratio

constitutes a straightforward method to extract the sample temperature from the

influence of the phonon environment. We find, however, that the ZPL width of the

measured samples is sufficiently large to cause problems with the thermal ratio. In

view of this, we move on to a full theoretical fit of the experimental PL emission

spectra. We employ the IB model to calculate theoretical emission spectra for a

given set of QD parameters such as the QD dimensions and sample temperature.

We then compare these spectra to experimental emission data, adjusting the model

parameters through an automated fit procedure in order to optimise the agreement

between theory and experiment. There are a number of parameters of particular

interest, including the fit temperature and the confinement dimensions. The former

is clearly central to our desire to create a phonon thermometer, but will also
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enable us to verify the accuracy of the theoretical fit through comparison of the fit

temperature and the nominal (cryostat-measured) temperature of the system.

2.1 Quantum dot samples

We measure the spontaneous emission spectra from three samples, all of which are

InGaAs/GaAs pyramidal quantum dots (PQDs). PQDs are of particular academic

and industrial interest due to their inherent site-control capability [35] and their

high degree of crystal symmetry. Moreover, it is possible to vertically stack multiple

QDs within the same pyramidal recess, effectively creating QD molecules [36]. A

schematic diagram of two vertically stacked QDs is shown in Fig. 2.1; we will refer

to this structure herein as a double pyramidal quantum dot (double PDQ). Control

over the kinetic parameters during fabrication allows tuning of the distance between

the two adjacent QDs, from ∼ 0.1 nm to ∼ 1000 nm, which in turn changes the

nature of the interaction between the QDs.

2.1.1 Sample fabrication

The samples were fabricated by Dr. E. Pelucchi at University College Cork. A

detailed description of the fabrication process is beyond the scope of this work,

but an overview will be provided in this section. For further details, we refer

the reader to references [36–38].

In brief, low-pressure organo-metallic chemical vapour deposition (OMCVD)

is applied to a pre-patterned GaAs substrate along the (111) crystallographic

orientation. After growth, the GaAs substrate is removed through selective wet

etching, yielding an array of uprightstanding pyramids, each with a single QD located

near its apex. The QD is formed by an InGaAs layer deposited between GaAs

inner barriers and AlGaAs outer barriers[36]. Other quantum confinement features

arise during this fabrication process, such as lateral quantum wires (LQWRs) and

lateral quantum wells (LQWs) [37, 39, 40], but such features are unimportant in

the context of the present work and will not be discussed further.
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QD1

QD2

Figure 2.1: Schematic of a double quantum dot sample, containing two vertically stacked
quantum dots.

Of the three PQD samples under consideration, two are double PQDs (such as

those illustrated schematically in Fig. 2.1) and one is a single PQD. In relation to

the two double PQDs, which we will refer to herein as samples (A) and (B), the

QD separation is ∼ 2 nm. Investigation of prior samples by B. Van Hattem [39]

indicates that the QDs are ellipsoidal (“pancake”) in shape.

2.2 Data acquisition and peak characterisation

The steps of data collection and peak characterisation were undertaken by L.

Scarpelli at Cardiff University – the reader is directed to reference [37] for further de-

tails.

2.2.1 Data acquisition: PL emission spectra

Samples are mounted in a closed cycle cryostat and non-resonantly excited by a low

intensity Helium-Neon laser pulse at λ = 633 nm. A microscope objective is mounted

inside the cryostat on the cold shield, having a temperature of approximately 30 K.

A long-pass colour filter with a cutoff wavelength of 680 nm removes the input laser

pulse from the detection path. The QD spontaneous emission is spectrally resolved

by a spectrometer and detected by a CCD of 1340×100 square pixels of length 20 µm.

In order to create circularly polarised transitions, a permanent Neodymium magnet

is placed proximal to the rear surface of the sample in the Faraday configuration (i.e.
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aligned along the growth direction). The resultant magnetic field is Bz = 0.45 T

(where z defines the direction orthogonal to the sample plane). A quarter waveplate

projects the right and left-handed circularly polarised emission into the linear

polarisation basis. To improve the signal-to-noise ratio (SNR), and hence enhance

the resolution of the phonon sidebands, N acquisitions are summed per spectrum

(with N between 20 and 200, depending on the signal strength).

PL emission spectra are captured at nominal (cryostat-measured) temperatures

T = 5, 10, 15, 20, 30 K for each sample. Additional measurements at T = 50

and 100 K are taken in relation to the two double PQD samples. Accordingly, a

total of 19 PL spectra are available for analysis.

2.2.2 Peak characterisation

Prior to any substantive analysis of the collected emission spectra, it is important

to establish the origin of the observed spectral peaks. Peak characterisation is

performed using polarisation resolved measurements of power dependence and

fine structure splitting (FSS) [37].

Power dependence measurements look at the peak area (characterised with a

Voigt profile) as a function of the excitation power L. We expect a Lk dependence,

where a value of k ∼ 1 implies an exciton (X) transition [41, 42] and k ∼ 2

suggests a bi-exciton (XX) transition [43].

FSS measurements are undertaken in the absence of an external magnetic field

(the above-mentioned permanent Neodymium magnet is removed). A λ/2 waveplate

is located in the detection path at an angle of θλ/2 relative to the horizontal axis of

the laboratory reference frame. Variation of the angle θλ/2 alters the projection of

the linearly polarised |L1〉 and |L2〉 states onto the horizontal and vertical (H-V)

axes of the laboratory reference frame. The vertical (πV ) and horizontal (πH) PL

components are each directed to spatially separated regions of the CCD camera by a

polarisation displacer. Oscillation of the peak energy as a function of the waveplate

angle θλ/2 is a clear indication of FSS. We expect FSS in exciton (X) and biexciton

(XX) states, but not in trion (X*) states – for further information see Sec. 2.5.2 below.
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We observe two peaks in the double PQD samples. We characterise the lower

energy peak as a trion (X*) and the higher energy peak as an exciton (X). In

relation to the exciton state, we observe a FSS of 27.31 ± 0.14 µeV. In the single

PQD sample, we observe a single peak that we characterise as a trion (X*).

2.2.3 Experimental noise

We assume three primary contributions to the experimental noise within the PL

spectra:

1. Read noise σr: electronic noise generated by the CCD during the detection

of the photo-generated electrons. In broad terms, this noise depends on the

number of pixels utilised in signal measurement and the number of data

acquisitions but is independent of the PL intensity I(ω).

2. Camera sensitivity noise α: noise due to variation in the detection sensitivity

of pixels in different regions of the CCD. A signal of intensity I(ω) has

associated camera sensitivity noise αI(ω).

3. Shot noise: noise associated with the Poisson statistics of light proportional

to
√

I(ω).

Accounting for all three contributions, we arrive at the following expression for

the total experimental noise:

σD(ω) =
√

σ2
r + (αI(ω))2 + I(ω) . (2.1)

Measurements of the read noise σr and the camera sensitivity noise α are taken

for each PL spectrum during the data acquisition process.

2.3 Equilibration timescales

The primary assumption associated with the concept of a PL phonon thermometer

is that the exciton and associated polaron cloud are in thermal equilibrium at the

point of radiative exciton recombination. If this were not true then non-equilibrium
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effects would strongly influence the PL spectra and the latter would not characterise

the true sample temperature.

Thermal equilibrium is reached via a two-step process. The above-bandgap

excitation (λ = 633 nm) promotes electrons to energies above the conduction

band minimum (and holes to energies below the valence band maximum). These

photoexcited electrons (holes) are not Boltzmann-distributed; the first step in

achieving equilibrium is for the electrons (holes) to interact separately with one

another through electron-electron (hole-hole) collisions and intervalley scattering

to form a Boltzmann distribution [44]. This process is often termed carrier

thermalisation and occurs very rapidly (< 100 fs [44, 45]).

The excitation applied by the Helium-Neon laser is approximately 0.5 eV above

the bandgap, which far exceeds kBT (the latter ranging between 0.4 meV and 8.6

meV for the temperatures under consideration). Accordingly, the electron and

hole temperatures (as defined the respective Boltzmann distributions) are elevated

relative to the lattice temperature. A second stage is therefore required in order to

reach equilibrium: carrier cooling [44]. Here, the carriers interact with longitudinal

optical (LO) phonons to dissipate excess energy, heating the lattice and cooling

the charge carriers until thermal equilibrium is achieved. Hot electrons and hot

holes cool at different rates due to differences in effective mass; the lighter electrons

cool more slowly and therefore dictate the total carrier cooling time [44]. In bulk

GaAs, the electron cooling time is ∼ 1 ps [44], although is altered by various

factors including excitation power and temperature. The timescale of electron

cooling in QDs is subject to ongoing investigation, with significant debate regarding

the influence of the QD confinement. There are many proponents of a phonon

bottleneck theory [46–54]: a slowing of electron cooling due to the requirement of

multiphonon processes to facilitate transitions between the discretised conduction

band energy levels. There are, however, a significant number of reports that

contradict the prediction of a phonon bottleneck [55–62] so further investigation

into the matter is undoubtedly required.
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2.4 Thermal ratio

Before we look at a full theoretical fit procedure, it is instructive to initially consider

an alternative “phonon thermometer” technique, which we term the thermal ratio.

This technique is elegant in its simplicity, giving an insight into the broadening

of the ZPL as well as the phonon temperature.

Returning to Eq. (1.53), we note that the rapidly decaying part of the cumulant

KBB has the form KBB(t) ∝ Nqe
iωt +[Nq +1]e−iωt, where Nq is the Bose distribution

function Nq = 1/[eβωq − 1]. Physically, KBB contains both phonon absorption

(∝ Nq) and phonon emission (∝ Nq + 1) terms. When the PL emission spectrum

is considered, the phonon emission (absorption) term in the cumulant generates

the low (high) energy phonon sideband. At T = 0 K, the PL emission spectrum is

highly asymmetric – phonon absorption cannot occur at this temperature (Nq = 0)

and hence only the phonon emission (low energy) sideband is present. As the

temperature is increased, phonon absorption becomes increasingly probable and

hence the high energy sideband gains prominence. At T = 50 K, phonon absorption

and emission rates are approximately equal (Nq ∼ Nq + 1), and hence the phonon

broadband is highly symmetric about the ZPL.

The form of the rapidly decaying part of the cumulant KBB(t) enables us to

define a thermal ratio RT [34],

RT = ln
(

I(−ω)
I(ω)

)
=

ω

kBT
, (2.2)

where I(ω) is the PL intensity. Note that Eq. (2.2) is valid providing we take the

ZPL as the zero of frequency (which we may do without any loss of generality)

and we assume no long-time ZPL dephasing.

Fig. 2.2 shows the PL intensity and the corresponding thermal ratio for the trion

peak of sample (A) measured at nominal temperature T = 5 K. The thermal ratio

follows the expected linear dependence on photon frequency ω (where we have taken

the zero of frequency at the centre of the ZPL). The gradient of this line indicates a

temperature of approximately 12.8 K. We note, however, there is a significant offset

of the thermal ratio at the ZPL location. This offset is a consequence of finite ZPL
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Figure 2.2: PL emission intensity and thermal ratio calculated according to Eq. (2.2)
for the trion (X*) peak of double PQD sample (A) at nominal temperature T = 5 K. The
centre of the thermal ratio (corresponding to the location of the ZPL) has been masked.

broadening. We assume that the ZPL broadening may be approximated by a Voigt

profile: a convolution of a Lorentzian function and a Gaussian function. Such a

function is invariant under reflection about its centre, breaking the thermal ratio

defined in Eq. (2.2) (the derivation of which assumed a delta-function ZPL).

Fig. 2.3 explores the origin of the offset within the thermal ratio RT further,

looking at the thermal ratio calculated from theoretical emission spectra. The

advantage of considering theoretical spectra is that Lorentzian and Gaussian

broadening of the ZPL may be considered separately. It is clear from Fig. 2.3

that the Gaussian broadening does not cause a noticeable offset, but the offset

associated with the Lorentzian-broadened ZPL is significant. This is due to the

Lorentzian function having more pronounced tails that the corresponding Gaussian,

causing the break-down of the thermal ratio for an extended frequency range

surrounding the ZPL. Our findings in relation to the thermal ratio RT guide our

full theoretical fit procedure. In particular, we attribute separate Gaussian and

Lorentzian broadening parameters to each spectral peak.
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Figure 2.3: Thermal ratio calculated according to Eq. (2.2) from theoretical emission
spectrum at T = 5 K. Polarisation P (t) calculated according to the IB model, Eq. (1.56),
and emission spectrum given by the real part of the Fourier transform of P (t): I(ω) =
Re

∫ ∞
−∞ dt P (t) e−iωt. ZPL modified to include Lorentzian broadening (red) and Gaussian

broadening (blue), each with a FWHM of 4 µeV.

2.5 Emission spectrum: theory

Having in mind the nature of the QDs used experimentally, we must extend our IB

model theory to include the case of ellipsoidal confinement potentials. This requires

modification of the matrix element λq, but all other elements of Sec. 1.3 (Eq. (1.61)

and all prior equations) apply to this more generalised case.

An ellipsoidal confinement potential produces ground state wave functions of the

form,

ψe(h)(r) =
1√

π3/2a2
‖a⊥

exp


−x2 + z2

2a2
‖


 exp

(
− y2

2a2
⊥

)
, (2.3)

where, for simplicity, we have taken the case of a‖,e = a‖,h = a‖ and a⊥,e = a⊥,h = a⊥.

Physically, a‖ is the in-plane QD confinement length and a⊥ is the confinement

length normal to the plane. We expect our “pancake” QDs to have a‖ > a⊥. From
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Eqns. (1.51), (1.58) and (1.61), we have,

J(ω) = J0 ω3 exp
(

−
a2

‖q
2
‖

4

)
exp

(
−a2

⊥q2
⊥

4

)
, (2.4)

where J0 is defined in Eq. (1.66), q2
‖ = q2

x + q2
z and q2

⊥ = q2
y . Inserting Eq. (2.4) into

Eq. (1.52), noting that q‖ = ω sin(θ)/vs and q⊥ = ω cos(θ)/vs,

K(t) =
J0

2

∫ ∞

0
dω

∫ π

0
dθ sin(θ) ω3 exp

(
−

a2
‖ω

2 sin2(θ)
2v2

s

)
exp

(
−a2

⊥ω2 cos2(θ)
2v2

s

)
α(ω) ,

(2.5)

where α(ω) = N(ω)
ω2 [eiωt − 1] + N(ω)+1

ω2 [e−iωt − 1] + it
ω

. Integrating over θ,

K(t) =
J0vs

√
π

√
2

√
a2

‖ − a2
⊥

∫ ∞

0
dω ω2 erfi

(
ω√
2vs

√
a2

‖ − a2
⊥

)
exp

(
−

a2
‖ω

2

2v2
s

)
α(ω) , (2.6)

where erfi is the imaginary error function erfi (z) = −i erf (iz). Analogously to

the case of spherically symmetric confinement potential, we may separate the

cumulant K(t) into the rapidly decaying part KBB(t) and the long-time asymptotics:

K(t) = KBB(t) − iΩpt − S. We arrive at an analytic function for the polaron shift

Ωp, but the Huang-Rhys factor S and KBB(t) require numerical integration,

KBB(t) = F





J0vs

√
π

√
2

√
a2

‖ − a2
⊥

N(ω) erfi
(

ω√
2vs

√
a2

‖ − a2
⊥

)
exp

(
−

a2
‖ω

2

2v2
s

)

 , (2.7)

Ωp = J0

√
π

2
v3

s

a2
‖a⊥

, (2.8)

S =
J0vs

√
π

√
2

√
a2

‖ − a2
⊥

∫ ∞

0
dω erfi

(
ω√
2vs

√
a2

‖ − a2
⊥

)
exp

(
−

a2
‖ω

2

2v2
s

)
coth

(
ω

2kBT

)
,

(2.9)

where F is the inverse Fourier transform. A note on the derivation of Eq. (2.7)

is provided in Sec. C.1 of the Appendix.

As a final remark, it should be noted that the computational implementation

of Eqns. (2.7) and (2.9) is problematic for the case a‖ > a⊥. This is due to the

behaviour of the erfi function: erfi
(

ω√
2vs

√
a2

‖ − a2
⊥

)
→ ∞ as ω → ∞. This is, in fact,

compensated by the factor exp
(

−
a2

‖ω2

2v2
s

)
, but we have found that the computational

algorithm is unable to recognise this. Accordingly, we re-express Eqns. (2.7) and

(2.9) in terms of the Faddeeva function W (z), which is defined as,

W (z) = e−z2(1 + erfi(z)) . (2.10)
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We may therefore re-express Eqns. (2.7) and (2.9) as,

KBB(t) = F





J0vs

√
π

√
2

√
a2

‖ − a2
⊥

Nq η(ω)



 , (2.11)

S =
J0vs

√
π

√
2

√
a2

‖ − a2
⊥

∫ ∞

0
dω η(ω) coth

(
ω

2kBT

)
, (2.12)

where

η(ω) = W

(
ω√
2vs

√
a2

‖ − a2
⊥

)
exp

(
−a2

⊥ω2

2v2
s

)
− exp

(
−

a2
‖ω

2

2v2
s

)
. (2.13)

2.5.1 Gaussian and Lorentzian broadening

From the IB model, we know that the polarisation P (t) is related to the cu-

mulant K(t) by,

PIBM(t) = θ(t) e−iΩX teK(t) . (2.14)

This is equivalent to Eq. (1.46) but for the case of a purely real excitation (exciton

or trion) frequency ΩX . Guided by Sec. 2.4, we now explicitly include both

Gaussian and Lorentzian broadening terms. In the time domain, these terms

appear as a product,

P (t) = PIBM(t) exp
(

−γLt

2

)
exp


−


 γGt

4
√

ln(2)




2

 . (2.15)

Note that we have defined γG,L such that, in the frequency domain, the FWHM of a

purely Gaussian (Lorentzian) broadened ZPL is equal to γG (γL). Within Eq. (2.15),

we fix parameters ρm = 5.67×103 kg m3 and vs = 4.6×103 m/s, leaving the following

free parameters: temperature T ; in plane QD confinement length a‖ and out of plane

QD confinement length a⊥; deformation potential |Dc − Dv|; Gaussian broadening

FWHM γG; Lorentzian broadening FWHM γL; and, real excitation frequency ΩX .

2.5.2 FSS adjustment

FSS occurs as a result of the electron-hole (e-h) exchange interaction, which couples

the electron and hole spins of an exciton state. This coupling can be described in
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terms of an effective magnetic field generated by the holes (electrons), which causes

the electron (hole) spins to precess [63]. The general form of the spin Hamiltonian

for the e-h exchange interaction is given by [64–66],

Hexch = −
∑

i=x,y,z

(aiJh,iSe,i + biJ
3
h,iSe,i) , (2.16)

where Jh,i (Se,i) is the hole (electron) spin in the i-direction. Neglecting heavy-hole

and light-hole mixing, the exciton is composed of a heavy hole with Jh = 3/2,

Jh,z = ±3/2 and an electron with Se = 1/2, Se,z = ±1/2, where z labels the

growth direction [64]. The z-projection of the angular momentum of the exciton

M = Jh,z +Se,z may therefore take four possible values: M = ±1, ±2. Exciton states

with |M | = 2 are dark (do not couple to the light field), whilst states with |M | = 1

are bright (optically active). The |M | = 1 and |M | = 2 states do not mix with one

another [64] regardless of the crystallographic symmetry of the sample. However, for

ellipsoidal QDs there is mixing between the two |M | = 1 states, giving eigenstates

|FSS1〉 =
1√
2

(|+1〉 + |−1〉) , (2.17)

|FSS2〉 =
1√
2

(|+1〉 − |−1〉) , (2.18)

where |±1〉 are exciton states labelled by quantum number M . The corresponding

eigenenergies are,

EF SS1 =
1
2

(δ0 + δ1) , (2.19)

EF SS2 =
1
2

(δ0 − δ1) , (2.20)

where δ0 and δ1 are parameters that depend on the shape and symmetry of the

QD. We therefore expect an exciton to exhibit two linearly polarised transitions

aligned with the principal axis of the QD, separated in energy by the FSS δ1. FSS

measurements performed by L. Scarpelli (described briefly in Sec. 2.2.2 above),

indicate an exciton FSS of δ1 = 27.31 ± 0.14 µeV. Note that the trion (X*)

transition does not exhibit any FSS: the two electrons (holes) of the trion state

pair together to form a spin singlet, and the resulting exchange interaction with

the hole spin is quenched.
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In collecting the PL emission spectra, we measure circularly polarised σ+

polarisation. The external magnetic field Bz = 0.45 T induces Zeeman splitting,

generating two circularly polarised eigenstates |+1〉 and |−1〉 separated by energy δZ ,

measured by L. Scarpelli to be 28.84 ± 1.99 µeV and 30.20 ± 0.90 µeV for the exciton

(X) and trion (X*) respectively. The trion (X*) transition therefore appears in the

PL spectrum as a single peak at the energy of the |+1〉 Zeeman eigenstate. For the

exciton (X) transition, however, there is competition between the linearly polarised

FSS states and circularly polarised Zeeman states, giving rise to elliptical polarisation.

The eigenstates of the Hamiltonian H = HZeeman + Hexch are the following [64],

|L1〉 =
1√

1 + C2
+

(|+1〉 + C+ |−1〉) , (2.21)

|L2〉 =
1√

1 + C2
−

(|+1〉 + C− |−1〉) , (2.22)

where C± = κ ±
√

1 + κ2 and κ is the ratio of the Zeeman and fine structure

splittings: κ = δZ/δ1. The corresponding eigenenergies are [64]:

EL1 =
1
2

(
δ0 +

√
δ2

1 + δ2
Z

)
(2.23)

EL1 =
1
2

(
δ0 −

√
δ2

1 + δ2
Z

)
(2.24)

In the PL spectrum (measured in the σ+ channel), this equates to two exciton (X)

peaks separated in frequency by
√

δ2
1 + δ2

Z = 39.7 µeV, the higher energy exciton

peak having an intensity of [1 + C2
+]/[1 + C2

−] = 6.35 times that of the lower

energy exciton peak.

2.5.3 Full PL emission spectrum

As previously discussion, the double PQD samples show a low energy trion (X*)

peak and a higher energy exciton (X) peak. These peaks are separated by ∼ 4

meV, which is of the same order as the frequency width of the phonon broadband.

We must therefore fit both peaks together, summing the contribution from each

excitation in the frequency domain to give the total PL emission. The single PQD
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sample, however, shows only a trion (X*) peak,

I(ω) =





αX∗IX∗(ω) + αXIX(ω) double PQD,
αX∗IX∗(ω) single PQD,

(2.25)

where αX,X∗ are the transition intensities, and IX,X∗(ω) = Re
∫ ∞

−∞ dt PX,X∗(t) e−iωt

with PX,X∗ calculated according to Eq. (2.15). The peak intensities αX,X∗ depend

upon the excitation efficiency including the carrier relaxation from excited states

down to the band edges of the QD and are a free parameter of the fit. Finally,

taking into account the FSS of the exciton (X) transition, we arrive at the

following expression:

I(ω) =





αX∗IX∗(ω) + αX [IX(ω) + 6.35 IX(ω + 39.7 µeV)] double PQD,
αX∗IX∗(ω) single PQD.

(2.26)

Eq. (2.26) contains 12 free parameters (or 8 for the single PQD sample) to be

determined by the fit procedure: each excitation peak has associated confinement

lengths a‖, a⊥, Gaussian and Lorentzian broadening parameters γG,L, excitation

transition frequency ΩX and intensity scaling factor αX(αX∗).

2.6 Fit procedure

As previously discussed, we have a total of 19 PL spectra originating from measure-

ments of three different samples (two double PQDs and one single PQD). At the

low temperatures under consideration, T ≤ 100 K, we anticipate minimal thermal

expansion of the QD structure and therefore expect the QD confinement potentials

a‖, a⊥ to be constant for each sample. Furthermore, all samples are of the same

basic construction and therefore we expect the material-dependent deformation

potential |Dc − Dv| to be consistent across all measured PL spectra. Guided by

these principles, we implement a two-fold fit procedure.

We initially fit all 19 measured PL spectra according to the method outlined in

Sec. 2.6.1 below, with each double PQD spectrum providing 12 parameter values and

associated σ (68%) confidence intervals, and each single PQD spectrum providing

8 parameter values and associated σ confidence intervals.
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Parameter Fit Value (with σ confidence bound)

X* X

|Dc − Dv| (eV) 7.48 (0.07)
a⊥ (nm) 1.76 (0.02) 1.78 (0.06)
a‖ (nm) 5.74 (0.04) 5.81 (0.12)

Table 2.1: 1/σ2 weighted average of deformation potential |Dc − Dv|, trion (X*) and
exciton (X) confinement lengths a⊥, a‖ for double PQD sample (A).

For the single PQD sample, we take the 1/σ2 weighted average of the fit-

determined trion confinement length parameters a⊥ and a‖ across all measured

temperatures T = 5, 10, 15, 20 and 30. Similarly, for each double PQD sample we

take the 1/σ2 weighted average of the fit-determined trion and exciton confinement

length parameters a⊥, a‖ across all measured temperatures T = 5, 10, 15, 20, 30, 50

and 100 K. To fix the deformation potential |Dc − Dv|, we take the 1/σ2 weighted

average over all 19 PL spectra. The resulting parameter values for double PQD

sample (A) are given in Table 2.1, with those for double PQD sample (B) and

the single PQD sample given in Secs. C.3 and C.4 of the Appendix respectively.

In relation to the confinement lengths, it is interesting to compare our results to

the dimensions calculated from diamagnetic shift measurements undertaken on a

similar sample [39]. This comparison was carried out by E. A. Muljarov, applying

the exciton and hole wavefunctions of Eq. (2.3) to the measured diamagnetic shifts

in order to ensure consistency with our theoretical model. The diamagnetic shift

measurements suggest a‖ = 7 nm and a⊥ = 5 nm, which is in reasonable agreement

with our findings of a‖ = 5.8, 6.2, 5.3 nm and a⊥ = 1.8, 1.8, 3.1 nm for double

PQD samples (A) & (B) and the single PQD sample respectively1.

We are now in a position to constrain the deformation potential and the QD

confinement parameters according to calculated 1/σ2 weighted averages. We apply

the procedure outlined in Sec. 2.6.1 again to all PL spectra, fixing the deformation

potential and QD confinement lengths appropriately. It is the output of this second,

constrained, fitting cycle that provides our final results.
1For double PQD samples, the average of trion (X*) and exciton (X) parameter values are

quoted here.
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2.6.1 Procedure per measured PL spectrum

This section outlines the procedure applied to each measured PL spectrum in both

the initial fitting cycle (no constraints) and the subsequent fitting cycle (deformation

potential and QD confinement parameters fixed). Initially, the measured PL data

is plotted and clearly erroneous data or peaks that are not to be included in the fit

are manually masked from the fit procedure. The noise associated with each data

point σi is calculated according to Eq. (2.1) of Sec. 2.2.3 and provides a weighting

to the least squares fit procedure. We seek to minimise the quantity

∑

i

(
yi − Yi

σi

)2
, (2.27)

for measured PL intensity yi and fit PL intensity Yi. From this minimisation

procedure, we find the set of fit parameters that maximise agreement between

the theoretical spectrum of Eq. (2.26) and the experimentally observed PL data.

We also calculate σ (68%) confidence intervals for each fit parameter using the

inverse R-factor from QR decomposition of the Jacobian, the degrees of freedom

for error, and the root mean squared error (RMSE).

2.7 Results and analysis

Figs. 2.4 and 2.5 show the experimental and fitted PL spectra for double PQD

sample (A) at nominal temperatures T = 20 K and T = 30 K respectively. Also

shown are tabulated fit values and associated σ confidence bounds. All other spectra

and tabulated fit values are provided in Secs. C.2, C.3 and C.4 of the Appendix.

The figures show very good agreement between the experimental PL spectra

and the respective theoretical fit. This is a good indication that our model provides

sufficient degrees of freedom to accurately capture the true physical picture. On

the other hand, the σ confidence intervals associated with the fit parameters are, in

general, a small fraction of the respective parameter itself. This suggests that we

have no redundant degrees of freedom. These findings are particularly relevant in

relation to the broadening parameters, suggesting that a Voigt profile (convolution

of Lorentzian and Gaussian) provides a good approximation of the true lineshape.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 19.73 (0.33)
γL (µeV) 31.74 (1.57) 41.16 (2.60)
γG (µeV) 57.48 (3.12) 96.24 (4.08)

ωX − ωref (meV) -0.22 (8.85E-04) 3.27 (1.16E-03)
α 5.99E+06 (2.16E+05) 8.29E+05 (2.78E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure 2.4: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 20 K.
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(a) Experimental and fitted emission PL spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 29.23 (0.34)
γL (µeV) 36.19 (0.94) 91.28 (3.17)
γG (µeV) 62.58 (1.55) 83.00 (5.01)

ωX − ωref (meV) -0.73 (3.78E-04) 2.86 (7.55E-04)
α 1.99E+06 (3.62E+04) 1.92E+05 (3.30E+03)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure 2.5: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 30 K.
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Figure 2.6: Fit temperature (with σ error bars) as a function of nominal temperature,
shown for double PQD sample (A). Inset: excitation (exciton/trion) transition frequency
as a function of nominal temperature, shown for double PQD sample (A).

Recalling our original goal of creating a “phonon thermometer”, we now examine

whether the temperatures determined by the fit procedure are commensurate to

the nominal (cryostat-measured) temperatures of the system. Fig. 2.6 shows the

relationship between the fit temperature and the nominal temperature for double

PQD sample (A). Equivalent plots for double PQD sample (B) and the single PQD

sample can be respectively found in Secs. C.3 and C.4 of the Appendix. We see from

Fig. 2.6 that there is generally very good agreement between the fit temperature

and the nominal (cryostat-measured) temperature. This is particularly true within
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Figure 2.7: Lorentzian γL and Gaussian γG broadening parameters (with σ error bars)
as a function of nominal temperature, shown for double PQD sample (A).

the temperature range 20 ≤ T ≤ 50 K. For T < 10 K, however, the fit procedure

suggests higher temperatures than those measured by the cryostat. The picture is

similar in relation to the other samples, shown in Secs. C.3 and C.4 of the Appendix.

Clearly the low temperature discrepancies could be indicative of a flaw within

the fit procedure. One potential explanation is that the phonon broadband weight

(which carries the temperature-dependence) constitutes only a small proportion of

the total PL spectrum at such low temperatures. Non-equilibrium effects not taken

into account in the theoretical model may also influence the measured PL spectrum.

Alternatively, it is feasible that the fit temperature provides a more accurate

indication of the true sample temperature than the cryostat measurement. Further

investigation is required in order to attribute the origin of this low temperature

deviation with any degree of certainty.

Focusing now on the inset of Fig. 2.6, we see that the trion (X*) and exciton

(X) transition frequencies exhibit approximately equivalent temperature-dependent

behaviour. This behaviour is well-understood in bulk semiconductors [67], with

dot-specific influences in GaAs/InGaAs QDs expected to be small [68]. We attribute

the observed temperature-dependent bandgap reduction to (i) scattering of electrons

by phonons, and (ii) thermal expansion of the lattice [68].
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Fig. 2.7 shows the behaviour of the Lorentzian and Gaussian broadening pa-

rameters γL,G for double PQD sample (A). Equivalent plots for double PQD

sample (B) and the single PQD sample can be respectively found in Secs. C.3

and C.4 of the Appendix. With reference to Fig. 2.7, we see a weak dependence

of the broadening parameters with temperature. In general, there is an increase

in broadening with temperature, although this is not the case for the Lorentzian

broadening of the exciton transition in double PQD sample (A). We note that the

error bars, denoting the σ confidence intervals, are very large at T = 100 K. This is

understandable: the phonon broadband is significant at high temperature, which

diminishes the prominence of the Lorentzian tails, making it difficult to separate

the total broadening into Gaussian and Lorentzian components.

We tentatively attribute the Lorentzian broadening to the radiative lifetime

of the excited state (exciton or trion) and pure dephasing mechanisms, and the

Gaussian broadening to spectral diffusion due to charging and trap states. However,

the exact physical origin of the Lorentzian and Gaussian broadening profiles is not

clear and further investigation is required in order to gain a full understanding

of the temperature-dependent behaviour.

2.8 Chapter conclusion

To conclude this chapter, we have shown that the influence of the phonon envi-

ronment on QD PL emission spectra can be successfully exploited as a “phonon

thermometer”. A simple thermal ratio provides a good indication of temperature,

but this is improved by a full fit procedure. Moreover, the fit procedure enables

straightforward determination of other QD parameters that are traditionally difficult

to measure. Measurement of QD confinement lengths, for example, is typically

performed through diamagnetic shift experiments [39], whilst deformation potential

measurements require the application of hydrostatic pressure generated through

use of a diamond anvil cell [69, 70].

In order to progress this research direction further, it would be beneficial to

examine the PL spectra under resonant excitation so as to target the excitonic
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ground state and mitigate the effect of higher energy states. It would also be prudent

to perform time-resolved spectroscopy in order to gain a better understanding of the

equilibration timescales and establish whether non-equilibrium effects significantly

influence the PL spectra and hence the fit parameters. It is our vision that

the fit procedure outlined in this chapter will not only provide a phonon-based

temperature measurement but also constitute a simple method for determining

key QD parameters.
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3
Phonon-induced dephasing in a QD-cavity
system

As discussed in the introductory chapter, the task of rigorously accounting for

phonon-induced decoherence in a qubit-cavity system is a long-standing fundamental

problem within cavity quantum electrodynamics (cavity-QED). It is natural to draw

upon the JC and IB models when addressing this problem, but the combination

of the two models presents a significant challenge. Various approaches to the QD-

cavity problem have been suggested in the literature, ranging from Born-Markov

approximations [15, 16, 28] to path-integral methods [19, 21] and non-equilibrium

Green’s function techniques [22]. These approaches can be broadly divided into

perturbative and non-perturbative methods.

The weak coupling master equation is commonly employed in the regime of weak

exciton-phonon interactions. This approach relies upon a perturbative treatment

of the exciton-phonon interaction and has been applied in the Markovian [20, 71]

and non-Markovian [72, 73] regimes. For stronger exciton-phonon interactions,

the polaron master equation is more appropriate. Here, the exciton-phonon

coupling is assumed to be the dominant interaction, modifying the exciton state

to a polaron (phonon-dressed exciton) state. Formally, this modification is made

through a polaron transformation of the system Hamiltonian, with the polaron-
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cavity interaction treated perturbatively to the second order Born approximation [15,

16, 28, 29] or beyond [20, 22]. These perturbative master-equation approaches work

well if the polaron formation time is much quicker than the polariton dynamics,

but fail when these timescales become comparable [28].

Non-perturbative techniques based on a quasi-adiabatic Feynman path-integral

scheme [74] enable accurate numerical solutions but are computationally expensive

and provide little insight into the underlying physics. Nahri et al. [21] apply a

tensor multiplication scheme [74] to the case of a QD-cavity system with super-

ohmic spectral density. This technique requires a complex algorithm with an

“on-the-fly path selection” optimization [75]. Glassl et al. [19] present a real-time

path-integral scheme [76] adapted for a QD in a loss-less cavity. Cavity and QD

dampings are included in later work [77], but in this case the exciton-phonon

coupling is added phenomenologically.

We present, in this Chapter, a new method that has been developed in response

to the problem of incorporating phonon-induced dephasing within a model for the

QD-microcavity system. Our method provides an asympotically exact solution to

this longstanding problem, alongside simple analytic approximations. Central to

our approach is a Trotter decomposition of the full system Hamiltonian into two

exactly solvable parts: (i) a phonon-free JC model part and (ii) an independent

boson model part. Crucially, our approach is valid for all exciton-phonon coupling

strengths. Further, it takes the effects of the exciton-photon and exciton-phonon

coupling on equal footing, thereby providing access to regimes of comparable

polaron and polariton timescales.

3.1 Hamiltonian and linear polarisation

When phonon interactions are taken into account, the JC Hamiltonian of Eq. (1.19)

gains two extra terms, Hph and d†dV :

H = ωXd†d + ωCa†a + g(a†d + d†a) + Hph + d†dV , (3.1)
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In analogy to Sec. 1.3, Hph characterises the contribution from the phonon continuum

and V characterises the exciton-phonon coupling,

Hph =
∑

q

ωqb
†
qbq , (3.2)

V =
∑

q

λ∗
qbq + λqb

†
q , (3.3)

where, as in Sec. 1.3, b†
q (ωq) is the creation operator (frequency) of the q-th phonon

mode, and λq is the matrix element of the exciton-phonon coupling for this mode.

Note that Eqs. (3.2) and (3.3) are identical to the terms of the IB model given

in Eqs. (1.35) and (1.37) respectively.

A key principle of the present method is a separation of the system Hamiltonian

H into two exactly solvable parts, H = HJC + HIB, described by the JC and

IB models respectively:

H = ωXd†d + ωCa†a + g(a†d + d†a)︸ ︷︷ ︸
HJC

+ Hph + d†dV
︸ ︷︷ ︸

HIB

, (3.4)

where HJC is identical to the Jaynes-Cummings Hamiltonian given in Eq. (1.19),

and HIB is equal to the independent boson model Hamiltonian Eq. (1.34) without

the term ωXd†d (which is taken into account through the JC component).

While our approach is general and suited for describing the dynamics of any

elements of the reduced density matrix of the JC sub-system, we will concentrate

on the most simple and intuitively clear quantities: the linear optical polarisation

and associated absorption. For this purpose, it is sufficient to reduce the basis

of the exciton-cavity system to the three states outlined in Sec. 1.1: the absolute

ground state |0〉, the excitonic excitation |X〉, and the cavity excitation |C〉. In

this basis, d† = |X〉 〈0| and a† = |C〉 〈0|.

In analogy with our treatment of the JC and IB systems, we take as our starting

point the standard definition of polarisation, given by Eq. (1.1). We consider the

case of a pulsed excitation of the form

V = µ(c̃† + c̃) , (3.5)
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where µ is the dipole moment and the creation operator c̃† may be either the

exciton creation operator d† or the cavity creation operator a†, depending on the

mode of excitation. We apply the excitation at time t = 0 to a fully unexcited

system described by density matrix ρ(−∞):

ρ(−∞) = |0〉 〈0| ⊗ ρ0 , ρ0 =
e−βHph

Tr {e−βHph}ph
. (3.6)

Here, β = (kBT )−1, and the trace is taken over all possible phonon states. The

density matrix immediately after excitation is therefore given by

ρ(0+) = e−iVρ(−∞)eiV , (3.7)

To evaluate Eq. (3.7), we expand the exponential terms e±iV as Taylor series and, con-

sidering the linear polarisation, take only the terms that are linear in µ. Subsequent

temporal evolution is described by the standard Lindblad master equation,

iρ̇ = [H, ρ] + iγX

(
2dρd† − d†dρ − ρd†d

)
+ iγC

(
2aρa† − a†aρ − ρa†a

)
, (3.8)

where H is the Hermitian counterpart to the full Hamiltonian given by Eq. (3.4):

H = ΩXd†d + ΩCa†a + g(a†d + d†a) + Hph + d†dV . (3.9)

Note that complex frequencies ωX,C of Eq. (3.4) have been replaced with their

respective real components ΩX,C ; the dissipative (imaginary) components gammaX,C

are accounted for separately within the Lindblad master equation. We focus on the

strong coupling regime, in which γX and γC may be treated as approximately

constant parameters.

Formally solving Eq. (3.8) (see Sec. D.1 for details) gives the linear polarisation

in terms of a 2×2 matrix P̂ (t) with the matrix elements Pjk(t)

Pjk(t) = 〈〈j| Û(t) |k〉〉ph , (3.10)

where 〈. . . 〉ph denotes the expectation value over all phonon degrees of freedom in

thermal equilibrium, j, k = X, C, and Û(t) is the time evolution operator,

Û(t) = eiHphte−iHt . (3.11)
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In Eq. (3.10), j indicates the feeding channel and k indicates the mode in which the

polarisation is measured. For example, PXX (PCC) denotes the excitonic (photonic)

polarisation under a pulsed exciton (cavity) excitation.

3.2 Trotter’s decomposition approach

Using Trotter’s decomposition theorem, the time evolution operator Û(t) of Eq. (3.11)

can be re-expressed as

Û(t) = lim
∆t→0

eiHpht
(
e−iHIB∆te−iHJC∆t

)N
, (3.12)

where ∆t = t/N . We introduce two new operators, M̂ and Ŵ , associated with

the JC and IB Hamiltonians, respectively,

M̂(tn − tn−1) = M̂(∆t) = e−iHJC∆t, (3.13)

Ŵ (tn, tn−1) = eiHphtne−iHIB∆te−iHphtn−1 , (3.14)

where tn = n∆t. Exploiting the commutivity of HJC and Hph enables us to express

the time evolution operator as a time-ordered product of pairs ŴM̂ (see Sec. D.2

of the Appendix for details):

Û(t) = T
N∏

n=1
Ŵ (tn, tn−1)M̂(tn − tn−1), (3.15)

where T is the time ordering operator. Noting that both Ŵ and M̂ are 2×2

matrices in the |X〉, |C〉 basis and that Ŵ is diagonal (with diagonal elements

Wi), the polarisation Eq. (3.10) takes the form

Pjk(t) =
∑

iN−1=X,C

. . .
∑

i1=X,C

MiN iN−1 . . . Mi2i1Mi1i0

× 〈WiN
(t, tN−1) . . . Wi2(t2, t1)Wi1(t1, 0)〉ph , (3.16)

where iN = j, i0 = k, Minim = [M̂(∆t)]inim, and

Win(tn, tn−1) = T exp
{

−iδinX

∫ tn

tn−1
V (τ)dτ

}
(3.17)
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Figure 3.1: Example realisation with N = 5. In this realisation, i1 = X, i2 = C, i3 = X,
i4 = X, i5 = C, as is clear from the step function θ̂(t).

with δij the Kronecker delta and V (τ) = eiHphτ V e−iHphτ is the interaction repre-

sentation of the exciton-phonon coupling V given by Eq. (3.3). Further details of

the derivation of Eq. (3.16) are given in Sec. D.2 of the Appendix.

It is instructive at this point to introduce the concept of a “realisation” of

the system as a particular combination of indices in within the full summation

of Eq. (3.16). We associate with each realisation a step-function θ̂(τ) being equal

to 0 over the time interval tn − tn−1 if the system is in state |C〉 (in = C) or

equal to 1 if the system is in state |X〉 (in = X). An example realisation and

associated step function θ̂(τ) is illustrated in Fig. 3.1. The product of W-operators

for a particular realisation may be written as

WiN
(t, tN−1) . . . Wi1(t1, 0) = T exp

{
−i

∫ t

0
V̄ (τ)dτ

}
, (3.18)

where V̄ (τ) = θ̂(τ)V (τ). Now, applying the linked cluster theorem [5, 6, 10], de-

scribed in Sec. 1.3, for calculating the trace of Eq. (3.18) over all phonon states, we ob-

tain

〈WiN
(t, tN−1) . . . Wi2(t2, t1)Wi1(t1, 0)〉ph = eK̄(t), (3.19)

where

K̄(t) = −1
2

∫ t

0
dτ1

∫ t

0
dτ2〈T V̄ (τ1)V̄ (τ2)〉 (3.20)

is the linear cumulant for the particular realisation. The explicit dependence of

Eq. (3.20) on the specific indices in of the realisation is given by

K̄(t) =
N∑

n=1

N∑

m=1
δinXδimX K|n−m| , (3.21)

where

K|n−m| = −1
2

∫ tn

tn−1
dτ1

∫ tm

tm−1
dτ2〈T V (τ1)V (τ2)〉. (3.22)
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Figure 3.2: Graphical representation of the use of the IB model cumulant K(t) for
finding K|n−m|, which provides examples of calculating K0 (left) and K1 (right).

Note that K|n−m| depends only on the time difference |tn − tm| = ∆t|n − m|.

Furthermore, all K|n−m| can be efficiently calculated from the standard IB model

cumulant K(t), described in Sec. 1.3. For example, inserting m = n into Eq. (3.22),

we find K0 is given by

K0 = −1
2

∫ t1

0
dτ1

∫ t1

0
dτ2〈T V (τ1)V (τ2)〉 = K(∆t) , (3.23)

where K(t) is the IB cumulant calculated in Sec. 1.3.1. Calculation of K0 therefore

simply requires evaluation of the IB cumulant K(t) at time t = ∆t.

Analogously, to find K1 we may set m = 1 and n = 2 which gives

K1 = −1
2

∫ t2

t1
dτ1

∫ t1

0
dτ2〈T V (τ1)V (τ2)〉 , (3.24)

or, by setting m = 2 and n = 1 instead, we obtain the same result:

K1 = −1
2

∫ t1

0
dτ1

∫ t2

t1
dτ2〈T V (τ1)V (τ2)〉 . (3.25)

Eqs. (3.24) and (3.25) correspond to the squares labeled as K1 in Fig. 3.2. In order

to calculate K1 from the IB cumulant, we note that

K(2∆t) = 2K0 + 2K1. (3.26)

Therefore,

K1 =
1
2

[K(2∆t) − 2K0] . (3.27)
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In general, all the integrals Kp can be found recursively:

Kp>0 =
1
2


K((p + 1)∆t) − (p + 1)K0 −

p−1∑

q=1
2(p + 1 − q)Kq


 . (3.28)

Having in mind an application of this theory to semiconductor QDs coupled to

bulk acoustic phonons, we use the conditions of the super-Ohmic coupling spectral

density and a finite phonon memory time [76]. This finite phonon memory time is

exactly τIB calculated in Sec. 1.3.2. Having a finite phonon memory time allows us

to reduce dramatically the number of terms in the double summation of Eq. (3.21).

Indeed, we need to take into account only instances in which |tm − tn| � τIB. When

selecting ∆t, we must also be mindful of the requirement imposed by the Trotter

decomposition method: ∆t → 0, which in reality corresponds to the condition

∆t � τJC. Here, τJC characterises the timescale of energy exchange between the

exciton and cavity states, and, as discussed in Sec. 1.2, is related to the polariton

splitting ∆Ω by τJC ≈ 2π/∆Ω.

We initially consider the most straightforward application of the technique,

which will be referred to as the nearest neighbour regime.

3.2.1 Nearest neighbour (NN) regime

In the NN approach, we limit our consideration to |n − m| � 1, selecting ∆t ≈ τIB

so as to best satisfy both aforementioned conditions on ∆t. This approach is

therefore only valid if the polariton timescale τJC is much longer than the phonon

memory time τIB.

In the NN case, the summation over n and m in Eq. (3.21) is simplified to

K̄(t) = δiN XK0 +
N−1∑

n=1
δinX

(
K0 + 2δin+1XK1

)
. (3.29)

Crucially, this reduction to a single summation allows us to re-express Eq. (3.16) as

Pjk(t) = eδjXK0
∑

iN−1

. . .
∑

i1

GiN iN−1 . . . Gi2i1Mi1k , (3.30)

where

Ginin−1 = Minin−1eδinX(K0+2δin−1XK1) . (3.31)
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See Sec. D.3 of the Appendix for further details in relation to Eq. (3.30), including

its application to the example realisation shown in Fig. 3.1.

Equation (3.30) can be compactly written in 2×2 matrix form in the |X〉, |C〉 ba-

sis:

P̂ (t) =
(

PXX PXC

PCX PCC

)
=

(
eK0 0
0 1

)
ĜN−1M̂ (3.32)

with Ĝ given by

Ĝ =
(

MXXeK0+2K1 MXC

MCXeK0 MCC

)
. (3.33)

It should be noted that our time step ∆t ≈ τIB is too large to capture the

initial rapid phonon-induced decay of the polarisation associated with the phonon

broadband [3, 5]. There is, however, a simple solution to this problem: For all

t < τIB, replace our fixed ∆t with a variable ∆t′ = t/2 as illustrated in Fig. 3.3.

Crucially, this ensures that no portions of the K(t) grid are neglected. We therefore

may allow ∆t′ to become arbitrarily small whilst always exactly calculating K(t).

Note that this is only valid for t < τIB: If we were to extend this approach to

t > τIB then for some values of t our time interval ∆t′ would become too large,

and the accuracy of the calculation would be degraded.

3.2.2 L-neighbour (LN) regime

We now address a general case in which the polaron and polariton time scales can

be comparable, τIB ∼ τJC, for example, in the case of very-strong exciton-cavity

coupling g. This implies that we must find a way to reduce the time-step ∆t in

the Trotter decomposition. We achieve this by going beyond the NN regime to

the LN regime, where L indicates the number of “neighbours” that we consider,

corresponding to the condition |n − m| � L in Eq. (3.21). The aforementioned

condition ∆t � τJC applies equally to the LN regime, and therefore in this regime

we are bound by the constraint L∆t � τIB. Importantly, this allows us to treat

comparable polaron and polariton timescales providing we choose L such that

the condition τIB/L � τJC is satisfied.
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K1(∆t′)

K0(∆t′)

Figure 3.3: The adaptation of the grid of Fig. 3.2 for small time: t < τIB. The grey grid
illustrates the ∆t discretisation used for t > τIB (as for Fig. 3.2), whilst the green grid
illustrates the adapted discretisation for t < τIB. In this small time regime, the time t is
always split into a 2 × 2 grid, giving ∆t′ = t/2.

In the LN approach we define a quantity F
(n)
iL...i1 which is generated via a

recursive relation

F
(n+1)
iL...i1 =

∑

l=X,C

GiL...i1lF
(n)
iL−1...i1l , (3.34)

using F
(1)
iL...i1 = Mi1k as the initial value, where M̂ is defined as before by Eq. (3.13),

while GiL...i1l is the LN analog of Eq. (3.31):

GiL...i1l = Mi1le
δlX(K0+2δi1XK1...+2δiLXKL) . (3.35)

The polarisation matrix elements are then given by

Pjk(t) = eδjXK0F
(N)
C...Cj . (3.36)

Eqs. (3.34) – (3.36) present an asymptotically exact solution for the linear polarisa-

tion. By extending the matrix size of the operators involved, it is straightforward to

generalise this result to other correlators, such as the photon indistinguishability [22,

78, 79] or to other elements of the density matrix, such as the four-wave mixing

polarisation [11, 80].
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3.2.3 Analytic approximation

From the NN result Eq. (3.32), one can extract a simple analytic expression that

describes the long-time behaviour of the linear optical response. We use the

asymptotic behaviour of the standard IB model cumulant K(t) in the long time

regime (see Sec. 1.3),

K(t) ≈ −iΩpt − S , (3.37)

where Ωp is the polaron shift and S is the Huang-Rhys factor (the explicit forms of

which are provided in Sec. 1.3). This allows us to approximate K0 ≈ −iΩp∆t − S

and K1 ≈ S/2. In the limit ∆t ≈ τIB � τJC this results in a fully analytic long-time

dependence of the polarisation (see Sec. D.4 of the Appendix for details):

P (t) ≈ e−Ŝ/2e−iH̃te−Ŝ/2 (t > τIB), (3.38)

where

H̃ =
(

ωX + Ωp ge−S/2

ge−S/2 ωC

)
, Ŝ =

(
S 0
0 0

)
. (3.39)

Comparing Eq. (3.39) with the JC Hamiltonian Eq. (??), we see that the effect

of acoustic phonons in this limit (τIB � τJC) is a reduction of the exciton-cavity

coupling strength g by a factor of eS/2 and a polaron shift of the bare exciton

frequency: ωX → ωX + Ωp. We also note that the ZPL weight of the excitonic

polarisation is surpressed by a factor of eS. These facts are consistent with the

analytic results of the IB model and are in agreement with previous experimental

and theoretical works [15, 81]. Also, the form of the modified Hamiltonian H̃

given by Eq. (3.39) is exactly the same as obtained after making the polaron

transformation of the full Hamiltonian H and then neglecting any interactions

which appear in the polaron frame [15, 20].
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Σ̂ = + + + . . .

t t′ t t2t1 t′ t t1 t2 t′

Figure 3.4: Second and fourth order diagrams contributing to the full self energy. Solid
lines with arrows (dashes lines) represent the polariton (phonon) non-interacting Green’s
functions.

3.2.4 Refined analytic approximation

The analytic solution described in Sec. 3.2.3 is suited only for describing the optical

polarisation at long times t � τIB, so that any information on the evolution at

short times, which is responsible for the phonon broadband observed in the optical

spectra of quantum dots, is missing. To improve upon this, we additionally provide

a refined purely analytic approach which properly takes into account both the short

and long time dynamics, providing a smooth transition between the two regimes.

The refined analytic approach is based on a self-energy formalism. It requires

calculation of the full phonon-dressed polariton Green’s function Ĝ(t), which is

related to the polarisation matrix via

P̂ (t) = Ŷ Ĝ(t)Ŷ −1 , (3.40)

where Ŷ and Ŷ −1 are the matrices that diagonalise the JC Hamiltonian, defined

in Eq. (1.24) – see Sec. D.5 of the Appendix for details. In order to obtain an

expression for the full phonon-dressed polariton Green’s function Ĝ(t), we must

solve Dyson’s equation,

Ĝ(t) = Ĝ(0)(t) +
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 Ĝ(0)(t − t1)Σ̂(t1 − t2)Ĝ(t2) , (3.41)

where Σ̂(t) is self energy, and Ĝ(0)(t) is the bare polariton Green’s function,

Ĝ(0)(t) = θ(t)
(

e−iω1t 0
0 e−iω2t

)
, (3.42)

with θ(t) being the Heaviside step function and ω1,2 being the eigenfrequencies

of the JC Hamiltonian, defined in Eq. (1.27). The self energy Σ̂(t) is represented

by all possible connected diagrams such as the second and fourth order diagrams
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sketched in Fig. 3.4. In the regime τJC � τIB (see Sec. D.5 of the Appendix

for details), we obtain

Σ̂(t) = Q̂

(
Σ1(t) 0

0 Σ2(t)

)
, (3.43)

where Σj(t) is the self energy of an isolated polariton state j, and Q̂ is the

polariton operator,

Q̂ = Ŷ −1
(

1 0
0 0

)
Ŷ =

(
α2 αβ
αβ β2

)
, (3.44)

where Ŷ and Ŷ −1 are the matrices that diagonalise the JC Hamiltonian (defined

in Eq. (1.24)), and α and β are defined in Eqs. (1.25) and (1.25) respectively.

The self energy of an isolated polariton state j contributes to the corresponding

IB model problem

GIB
j (t) = G

(0)
j (t) +

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 G

(0)
j (t − t1)Σj(t1 − t2)GIB

j (t2) , (3.45)

having the following exact solution:

GIB
j (t) = G

(0)
j (t)eK(t) , (3.46)

where K(t) is the IB cumulant, calculated in Sec. 1.3 and, from Eq. (3.42), G
(0)
j

is θ(t)e−iωjt. We know from the IB model that its exact solution in the form of a

cumulant includes a nonvanishing contribution of all higher-order diagrams of the

self energy series (for realistic phonon parameters of semiconductor quantum dots).

From Eq. (3.45), we may find the self energies in frequency domain:

Σj(ω) =
1

G
(0)
j (ω)

− 1
GIB

j (ω)
, (3.47)

where Σj(ω), G
(0)
j (ω), and GIB

j (ω) are the Fourier transforms of Σj(t), G
(0)
j (t), and

GIB
j (t), respectively. The full matrix Green’s function (and hence the polarisation)

is then obtained by solving Dyson’s equation (Eq. (3.41)) in the frequency domain:

Ĝ(ω) =
[
1 − Ĝ(0)(ω)Σ̂(ω)

]−1
Ĝ(0)(ω) , (3.48)

– 55 –



3. Phonon-induced dephasing in a QD-cavity system 56

where Ĝ(0) and Σ̂ are given in the time domain by Eqs. (3.42) and (3.43) re-

spectively, with self energy components provided via Eq. (3.47) by the IB model

solution Eq. (3.46).

An obvious drawback of the above analytic model is that it does not shows any

phonon-induced renormalisation of the exciton-cavity coupling due to the interaction

with the phonon bath. This is a consequence of the present approach not properly

taking into account the cumulative effect of self-energy diagrams of higher order,

for which the approximate commutation of matrices Q̂ and Ĝ(0)(t) (used in the

derivation of Eq. (3.43)) is not valid. This problem can, however, be easily remedied

through use of the large time asymptotics obtained in Sec. 3.2.3. We introduce by

hand one minor correction: we replace the exciton-cavity coupling g in the bare JC

Hamiltonian by the renormalised coupling strength ge−S/2 in the following way

HJC =
(

ωX g
g ωC

)
→

(
ωX ge−S

g ωC

)
. (3.49)

As in Eq. (3.40), we may express the Fourier transform of the polarisation as

P̂ (ω) =
(

e−S/2 0
0 1

) (
ᾱ β̄

−β̄ ᾱ

)
ˆ̄G(ω)

(
ᾱ −β̄

β̄ ᾱ

) (
eS/2 0

0 1

)
, (3.50)

where the matrices containing ᾱ and β̄ diagonalise a symmetrised Hamiltonian H̄JC:

H̄JC =
(

ωX ge−S/2

ge−S/2 ωC

)
=

(
ᾱ β̄

−β̄ ᾱ

) (
ω̄1 0
0 ω̄2

) (
ᾱ −β̄

β̄ ᾱ

)
. (3.51)

Note that the first and last matrices of Eq. (3.50) arise as a result of the replacement

of the adjusted Hamiltonian in Eq. (3.49) with its symmetrised version H̄JC. We see

that ˆ̄G(ω) in Eq. (3.50) is the analog of Eq. (3.48) with a replacement α → ᾱ,

β → β̄, ω1,2 → ω̄1,2.

For PXX(ω) and PCC(ω), Eq. (3.50) gives the following simple explicit expres-

sions:

PXX(ω) =
ᾱ2Ḡ

(0)
1 (ω) + β̄2Ḡ

(0)
2 (ω)

D̄(ω)
, (3.52)

PCC(ω) =
(

ᾱ2

ḠIB
1 (ω)

+
β̄2

ḠIB
2 (ω)

)
Ḡ

(0)
1 (ω)Ḡ(0)

2 (ω)
D̄(ω)

, (3.53)
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where

D̄(ω) = ᾱ2 Ḡ
(0)
1 (ω)

ḠIB
1 (ω)

+ β̄2 Ḡ
(0)
2 (ω)

ḠIB
2 (ω)

(3.54)

and Ḡ
(0)
j (ω) and ḠIB

j (ω) are, respectively, the Fourier transform of Ḡ
(0)
j (t) =

θ(t)e−iω̄jt and ḠIB
j (t) = Ḡ

(0)
j (t)eK(t).

Unlike the NN, LN and analytic approaches described above, the refined analytic

approach calculates absorption directly. It is, however, straightforward to find the

polarisation P (t): we simply take the Fourier transform of Eqs. (3.52) and (3.53).

3.3 Results: polarisation and absorption

We consider, in this section, the polarisation as calculated by the various above-

described approaches. We find that the long-time dynamics of the polarisation

is bi-exponential,

P̂ (t) ≈
2∑

j=1
Ĉje

−i(Ωj−iΓj)t (t > τIB) , (3.55)

where Ωj (Γj) are the polariton frequencies (linewidths) and Ĉj are the amplitude

matrices. This remains true even in the very strong coupling regime.

Fig. 3.5 shows the linear excitonic polarisation |PXX(t)| calculated according to

the LN, NN and analytic approaches, Eqs. (3.32), (3.36) and (3.38) respectively.

We take the case of relatively small exciton-cavity coupling g = 50 µeV and consider

temperatures T = 0 and T = 50 K. In relation to the LN approach, we take L = 15

as our most accurate solution – which we refer to herein as exact. The reader will

appreciate that the true “exact” solution requires L → ∞; however, within the

range of exciton-cavity coupling strengths that we consider (0 < g < 1.5 meV),

L = 15 is a very good approximation. We show in Sec. 3.6 that the relative error

shows an exponential reduction with the number of neighbours L.

In this case of relatively small QD-cavity coupling, we may approximate the

Rabi splitting ∆Ω from the Hamiltonian in the analytic approximation Eq. (3.39).

Diagonalisation of this Hamiltonian gives ∆Ω = Ω2 − Ω1 = 2ge−S/2. The polariton

timescale τJC is therefore given by τJC = 2π/(2ge−S/2) ∼ 60 ps. The phonon memory
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Figure 3.5: Excitonic linear polarisation for T = 0 and 50 K, calculated in the LN
implementation Eq. (3.36) with L = 15, NN implementation Eq. (3.32), and analytic
approximation Eq. (3.38). We use the realistic parameters of InGaAs QDs studied in [5,
6] and micropillars studied in [11, 80] including g = 50 µeV, ωX = ΩX − iγX with
ΩX = 1329.6 meV and γX = 2 µeV; ωC = ΩC − iγC with ΩC = ΩX + Ωp, Ωp = −49.8 µeV
and γC = 30 µeV.

time τIB is independent of exciton-cavity coupling strength g and is ∼ 10 ps at

T = 0 K and ∼ 3.2 ps at T = 50 K (see Sec. 1.3.2 for details).

As described in Eq. (1.18), we may calculate the absorption spectra associated

with the polarisations shown in Fig. 3.5 by taking the real part of the Fourier

transform of P (t). Fig. 3.6 illustrates the excitonic absorption spectra corresponding

to the polarisations shown in Fig. 3.5. The absorption calculated according to the

refined analytic approximation, Eq. (3.52), is additionally shown.

We see from Fig. 3.6 that the absorption spectra each consist of a well-resolved

polariton doublet, described by the eigenvalues ωj = Ωj − iΓj (j = 1, 2) of the

effective Hamiltonian Eq. (3.39), superimposed with a phonon broadband. At

lower temperatures, the broadband is more asymmetric and the ZPL weight is

increased, in agreement with the IB model. As expected, the analytic calculation

Eq. (3.38) describes the long-time dynamics well but fails at short times, as it is

– 58 –



3. Phonon-induced dephasing in a QD-cavity system 59

-1 0 1 2 3
0.0

0.1

0.2

1

10

100

-0.05 0.00 0.050

10

20

30
 exact
 NN
 analytic
 refined 

 

 

 

 

-2 -1 0 1 2
0.0

0.5

1

10

100

-0.1 0.0 0.1
0

10

20
 exact
 NN
 analytic
 refined 

 

 

 

 

Figure 3.6: Absorption spectra corresponding to the excitonic linear polarisations shown
in Fig. 3.5; spectra for temperature T = 0 K (T = 50 K) shown in the upper (lower)
panel. Insets show the respective spectra within a limited frequency range, focusing on
the polariton lines. All parameters as per Fig. 3.5.
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Figure 3.7: As Fig. 3.5, but for g = 0.6 meV and only exact (15-neighbour) result shown,
for T = 0 (red lines) and 50 K (black lines). The cavity-photon polarisation and absorption
are also shown (dashed lines). Inset: the initial polarisation dynamics.

clear from Fig. 3.5. This is manifested in the absorption spectra (Fig. 3.6) as an

absence of the broadband. This, however, is not the case for the refined analytic

approach, which accounts for the full temporal behaviour and hence reproduces

the phonon broadband to good accuracy.

We now examine regimes of comparable polaron and polariton times τIB ∼τJC

(achieved by increasing the QD-cavity coupling constant to g = 0.6 meV while

keeping all other parameters the same). In such regimes, the NN, analytic and refined

analytic implementations all fail due to their reliance upon the assumption τIB � τJC.

We will therefore consider only the exact (15-neighbour) results. Both polarisations,

|PXX(t)| and |PCC(t)| are shown in Fig. 3.7. There is a clear damping of the beating

of the two exponentials, even for zero detuning (shown). This implies that the lines of

the polariton doublet now have quite different linewidths, as it is clear from Fig. 3.8.

We may understand the behaviour of the polariton linewidths in terms of real

phonon assisted transitions between the lines of the polariton doublet. Indeed,
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Figure 3.8: Absorption spectra corresponding to the linear polarisations shown in
Fig. 3.7; exciton (photon) absorption shown in the left (right) panel.

at T = 0, the high-energy polariton state (2) is significantly broader than the

low-energy state (1), due to the allowed transition 2 → 1, accompanied by emission

of an acoustic phonon. The transition from the low-energy polariton state (1) to

the higher energy state requires the absorption of an environmental phonon and is

therefore forbidden at zero temperature; the finite width of the low energy polariton

state at T = 0 is wholly due to the exciton dephasing γX and radiative decay γC

inherent in the system. At elevated temperatures both transitions 2 → 1 and 1 → 2,

with phonon emission and absorption respectively, are allowed, giving rise to more

balanced linewidths. The phonon-induced line broadening is also strongly dependent

on the exciton-cavity coupling strength g, which will be discussed further in Sec. 3.4

3.4 Analysis of polariton parameters

As discussed in the previous section, the long-time behaviour of the polarisation P (t)

is bi-exponential. Equivalently, in the frequency domain, the absorption spectrum

comprises two polariton lines. With reference to Eq. (3.55), there are three key

parameters that describe each polariton line: the (complex) amplitude Cj, the

real frequency Ωj and the Lorentzian line broadening Γj. We have seen in the

previous section that the upper and lower polariton lines have approximately equal
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Figure 3.9: Polariton amplitude coefficients C1,2 as a function of the QD-cavity coupling
strength g for T = 0 (upper panel) and T = 50 K (lower panel). Coefficients for
excitonic absorption AXX(ω) (photonic absorption ACC(ω)) are shown in black (red).
The amplitude coefficients corresponding to the lower polariton line C1 (upper polariton
line C2) are shown for the exact (15-neighbour) calculation by full squares (open circles)
and for the long-time analytic model by full (dashed) lines. Insets zoom in the region of
small g, where there is significant amplitude variation with g. We take the case of zero
effective detuning (ΩC = ΩX + Ωp), γX = 2 µeV and γC = 30 µeV.
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broadening at g = 50 µeV, but there is significant asymmetry between the lines

at g = 0.6 meV. It is natural to investigate this behaviour further and to extend

our analysis to all of the above-described key polariton parameters.

Fig. 3.9 illustrates the behaviour of the polariton amplitude coefficients C1,2 as

a function of exciton-cavity coupling strength g at zero temperature (upper panel)

and T = 50 K (lower panel). The full squares and open circles denote the exact

(15-neighbour) calculation, whilst the solid and dashed lines denote the analytic

approximation. For both temperatures, there is good agreement between the two

calculations at small exciton-cavity coupling strengths g (as expected) but significant

divergence at larger g. The sharp peak in |C1,2| at small g is a consequence of the

finite long-time ZPL dephasing γX and radiative decay γC . It is fully analogous

to the peak shown in Fig. 1.1 in relation to the JC model.

We now consider the real polariton frequencies Ω1,2 and the associated linewidths

Γ1,2. Before we examine the results of the 15-neighbour calculation, it is instructive to

consider the predictions of the analytic approximation, Eq. (3.38). Diagonalisation

of the Hamiltonian, Eq. (3.39), gives eigenfrequencies

ω1,2 =
ω̄X + ωC

2
±

√
(ge−S/2)2 + 1/4(ω̄X − ωC)2 , (3.56)

where ω̄X = ωX + Ωp. For the case of zero effective detuning (ΩC = ΩX + Ωp),

this simplifies to ω1,2 = ΩC + i/2(γX + γC) ± ge−S/2 in the strong coupling regime

g � γX , γC . Accordingly, the analytic model predicts constant polariton line

broadening Γ1,2 = i/2(γX + γC), and polariton line splitting ∆Ω = 2ge−S/2 in

agreement with the low g limit widely quoted in the literature [15, 20–22, 29, 77, 81].

The upper panel of Fig. 3.10 (Fig. 3.11) illustrates the deviation of the polariton

splitting ∆Ω (calculated in the 15-neighbour implementation) from the nominal

JC splitting 2g as a function of exciton-cavity coupling strength g for temperature

T = 0 (T = 50 K). The deviation of the analytic approximation, 2ge−S/2, from

the nominal splitting, 2g, is shown in dash. It is clear from this figure that the

widely quoted suppression of the splitting by e−S/2 is only a good approximation

at small g. In fact, the polariton Rabi splitting ∆Ω is, on average, approximately
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Figure 3.10: Variation of polariton line parameters with exciton-cavity coupling strength
g at T = 0 K. Upper panel: Rabi splitting ∆Ω as a function of g, with dotted line showing
the analytic prediction of ∆Ω = 2ge−S/2. Lower panel: broadening of lower (1) and upper
(2) polariton lines as a function of g. As in Fig. 3.9, we take the case of zero effective
detuning (ΩC = ΩX + Ωp), γX = 2 µeV and γC = 30 µeV.

equal to the phonon-free value of 2g across the full range of exciton-cavity coupling

strength g, and is even enhanced at large g.

The lower panel of Fig. 3.10 shows the broadening of the lower (Γ1) and upper (Γ2)

polariton lines at temperature T = 0, calculated in the 15-neighbour implementation.

As expected, the lower polariton line has constant broadening equal to the average

of the long-time ZPL dephasing γX and radiative decay γC . There are no phonon-

mediated transitions from the lower to the upper polariton line (which would

result in broadening of the former) due to an absence of environmental phonons

at zero temperature. The analytic approximation of Sec. 3.2.3 does not account

for phonon-mediated transitions and therefore correctly predicts Γ1 at T = 0 K.
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Figure 3.11: As Fig. 3.10, but for T = 50 K.

Conversely, transitions from the upper to the lower polariton line may occur via the

emission of a phonon, which is permitted even at zero temperature. The maximum

upper polariton line broadening occurs when the polariton splitting ∆Ω = Ω2 − Ω1

(shown in the upper panel) corresponds to the typical energy of acoustic phonons

surrounding the QD [6], which is in the range 1 – 2 meV for the QDs considered

in this work. Fermi’s golden rule (FGR) for real phonon-assisted transitions [6]

in the polariton frame very closely reproduces the behaviour of the polariton line

broadening Γ1,2, as discussed in Sec. 3.5 below.

The lower panel of Fig. 3.11 shows the broadening of the polariton lines at

T = 50 K. In this case, the transition from the lower to the upper polariton

line may occur through the absorption of a phonon and thus both polariton lines

show g-dependent broadening.
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3.5 Interpretation: the polariton picture

In view of the foregoing, it is clear that the polarisation and absorption results can

be best interpreted within the framework of the polariton model. We therefore

make a polariton transformation defined by the matrices Ŷ and Ŷ −1 that together

diagonalise the JC Hamiltonian HJC (see Eq. (1.24)). Applying this transformation

to the full Hamiltonian H = HJC + HIB, Eq. (3.1), we obtain

H → H ′ =
(

ω1 0
0 ω2

)
+

(
α β

−β α

) (
V 0
0 0

) (
α −β
β α

)
+ Hph1

=
(

ω1 + α2V αβV
αβV ω2 + β2V

)
+ Hph1 . (3.57)

We note that the Hamiltonian Eq. (3.57) can be also expressed in terms of polariton

creation p†
1,2 and annihilation p1,2 operators,

H ′ = (ω1 + α2V )p†
1p1 + (ω2 + β2V )p†

2p2 + αβV (p†
1p2 + p†

2p1) + Hph1 , (3.58)

with p1,2 being linear combinations of exciton and cavity photon annihilation opera-

tors,

p1 = αd − βa , (3.59)

p2 = βd + αa . (3.60)

The term αβV (p†
1p2 + p†

2p1) in Eq. (3.58) is of particular interest as it is responsible

for phonon-assisted transitions between polariton states 1 and 2. Concentrating

on this interaction term, the behaviour of the polariton broadening Γ1,2 can be

understood in terms of Fermi’s golden rule [6],

Γ = πN∆E/vs

∑

q

|αβλq|2δ(∆E − ωq) , (3.61)

where N∆E/vs is the Bose distribution function Nq = 1/[eβωq − 1] evaluated at

q = ∆E/vs, and ∆E = Ef − Ei is the energy difference between the initial (i)

and final (f) polariton states. This energy difference is simply the polariton Rabi

splitting ∆Ω = Ω2 − Ω1 for the 1 → 2 polariton transition, and −∆Ω for the 2 → 1

transition. The dependence of the polariton Rabi splitting on the exciton-cavity
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Figure 3.12: Polariton linewidths Γ1,2 of the lower (solid lines) and upper (dashed lines)
polariton states in Eq. (3.55) as functions of the QD-coupling strength g, calculated in
the 15-neighbour approach (thick black and red lines) and estimated according to Fermi’s
golden rule (thin faded black and red lines).

coupling strength g is shown in Fig. 3.10 for T = 0 and Fig. 3.11 for T = 50 K.

As discussed previously, we see from these figures that for zero effective detuning,

the best approximation for the splitting ∆Ω across the full range of exciton-cavity

coupling strength g is the phonon-free value of ∆Ω ≈ 2g. Noting that in the regime

of g � |ωX − ωC | we may approximate α and β for zero detuning as α ≈ β ≈ 1/
√

2,

and adding the intrinsic broadening Γ0 due to the long-time ZPL dephasing γX

and radiative decay γC , we obtain the following expressions for the lower (1) and

upper (2) polariton line broadenings,

Γ1 = Γ0 + N2g/vsΓph , Γ2 = Γ0 + (N2g/vs + 1)Γph , (3.62)

with

Γ0 =
1
2

(γX + γC) , Γph =
g3(Dc − Dv)2

2πρmv5
s

exp
(

−2g2l2

v2
s

)
. (3.63)

The linewidths Γ1,2 calculated using Fermi’s golden rule, Eqs. (3.62) and (3.63), are
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shown in Fig. 3.12 alongside the Trotter decomposition results. This comparison

demonstrates the remarkable accuracy to which Fermi’s golden rule reproduces

the behaviour of the polariton linewidth with exciton-cavity coupling strength g.

The small discrepancies may be attributed to (i) multi-phonon transitions, which

are not accounted for in FGR and (ii) approximation of the Rabi splitting as

∆Ω ≈ 2g within the FGR calculation.

3.6 Calculation accuracy

In this section we examine the accuracy of the 15-neighbour implementation of

the Trotter decomposition method. To achieve this, calculate the polarisation in

the LN implementation (Eq. (3.36)), taking L between 5 and 15. For each L, we

extract the polariton line parameters from the long-time asymptotics of P (t) and

calculate the relative error in these parameters, taking L = 15 as the exact solution.

Fig. 3.13 shows the relative error as a function of L for temperature T = 50 K

and exciton-cavity coupling strength g = 0.6 meV. It can be seen from this figure

that there is an exponential reduction of the calculation error with L. Deviation

from this exponential reduction at L � 13 is an artefact of taking the L = 15

calculation as exact when calculating the relative error; if we were to take the true

exact solution, we would anticipate a continuation of this exponential trend. We

may therefore estimate the error of the 15-neighbour calculation for each polariton

line parameter by extrapolating the exponential portion of the plot (linear in the

logarithmic scale shown) to L = 15 – giving a small relative error of ∼ 10−3 for the

broadening parameters Γ1,2 and even smaller relative errors for amplitude A1,2 and

real frequency Ω1,2 parameters. If we consider the situation at weaker exciton-cavity

coupling strengths g, for example g = 50 µeV (shown in Figs. 3.5 and 3.6), the

relative error of the L = 15 approach will be yet lower still.
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Figure 3.13: The relative error for the polariton line parameters at T = 50 K and
g = 0.6 meV, as a function of the number of neighbours L, using L = 15 as the exact
solution.

3.7 Chapter conclusion

In this chapter we have shown that the newly developed Trotter decomposition

method accurately captures the dynamics of the QD-cavity system and associated

phonon environment. We have focused on linear optical polarisation and absorption,

but the approach is general and suited for describing the dynamics of any elements

of the reduced density matrix of the JC sub-system.

Through the LN implementation of the Trotter method, we have accessed regimes

of very strong exciton-cavity coupling (up to g = 1.5 meV), unveiling behaviour

that has not been previously observed or predicted. To interpret the results of our

calculations, we moved away from the conventional polaron transformation and

instead performed an alternative transformation so as to move from an exciton-cavity

basis to a polariton basis (a polariton transformation). Inspection of the transformed
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Hamiltonian revealed that transitions between polariton lines are permitted through

phonon interaction operator V suppressed by a transformation factor. Application of

Fermi’s golden rule within the polariton frame enabled derivation of simple analytic

expressions for the polariton line broadenings Γ1,2 that show remarkably close

agreement to the exact results calculated via our Trotter decomposition method.
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4
Master equation approach to phonon-induced
dephasing

In this chapter we consider master equation based approaches to calculating the

dynamics of the exciton-cavity system with phonon dephasing [15, 16, 20, 22,

28, 29]. Such approaches involve a unitary transformation, known as the polaron

transformation [10, 15, 20, 22, 28]. The Hamiltonian in the transformed frame

may be split into three parts, only one of which contains both phonon and exciton-

cavity modes of freedom. It is assumed that this portion of the Hamiltonian is

small and may be treated perturbatively.

In order to implement the master equation approach, we must first define a

Hermitian Hamiltonian, which we denote by H̄,

H̄ = ΩXd†d + ΩCa†a + g(a†d + d†a) + Hph + d†dV . (4.1)

Note that this is equivalent to the Hermitian Hamiltonian defined in Eq. (3.1), but

with complex frequencies ωX,C replaced by their respective real components ΩX,C .

Applying the polaron transformation to the Hamiltonian H̄ we obtain,

H̄ → H ′ = eSHe−S , (4.2)

with transformation matrix S given by,

S = d†d
∑

q

(
λq

ωq

b†
q −

λ∗
q

ωq

bq

)
. (4.3)
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Note that the transformed Hamiltonian H ′ is also Hermitian, but we will omit

the bar notation for clarity. The transformed Hamiltonian H ′ may be expressed

as a sum of three parts,

H ′ = Hsys + Hbath + Hint , (4.4)

respectively representing the system (the modified exciton-cavity part), the bath

(phonon modes) and the interaction (coupling of the system to the phonon bath).

The three parts of the full polaron-frame Hamiltonian Eq. (4.4) have the following

forms (see Sec. E.1 of the Appendix for a detailed proof):

Hsys = (ΩX + Ωp)d†d + ΩCa†a + g〈B〉(a†d + d†a) , (4.5)

Hbath = Hph =
∑

q

ωqb
†
qbq , (4.6)

Hint =
∑

α=g,u

Xα ⊗ Bα , (4.7)

where we have defined the following,

Ωp = −
∑

q

|λq|2

ωq

, (4.8)

B± = exp
(

±
∑

q

(
λq

ωq

b†
q −

λ∗
q

ωq

bq

))
, (4.9)

Xg = g(a†d + d†a) , (4.10)

Xu = ig(d†a − a†d) , (4.11)

Bg = 1/2 (B+ + B− − 2〈B〉) , (4.12)

Bu = i/2 (B− − B+) . (4.13)

In Eq. (4.12), 〈B〉 = 〈B−〉 = 〈B+〉 characterises the expectation value of the phonon

displacement in a thermal state [10],

〈B±〉 = 〈B〉 = exp


−1

2
∑

q

∣∣∣∣∣
λq

ωq

∣∣∣∣∣

2 (
Nq +

1
2

)
 , (4.14)

where Nq = 1/[eβωq − 1] and β is the inverse temperature (kBT )−1 (see Sec. E.1

of the Appendix for derivation of Eq. (4.14)). Converting the summation over q

to an integration over ω
(∑

q → V
(2π)3v3

s

∫
d3ω

)
, where V is the sample volume, and
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expressing |λq|2 in terms of the spectral density function J(ω) =
∑

q |λq|2δ(ω − ωq),

the polaron shift Ωp and 〈B〉 may be expressed respectively as,

Ωp = −
∫ ∞

0
dω

J(ω)
ω

, (4.15)

〈B〉 = exp
(

1
2

∫ ∞

0
dω

J(ω)
ω2 coth

(
βω

2

))
. (4.16)

Note that Eq. (4.15) for the polaron shift is identical to that given in relation to the

linked-cluster expansion of the IB model in Eq. (1.54). Moreover, for superohmic

spectral density J(ω) ∝ ω3, which is the case under consideration in this instance,

〈B〉 is related to the Huang-Rhys factor S defined in Eq. (1.55),

〈B〉 = e−S/2 . (4.17)

In terms of Hilbert spaces, the total Hilbert space may be expressed as the

direct product (⊗) of the system and bath Hilbert spaces,

H = H(sys) ⊗ H(bath) . (4.18)

The interaction Hamiltonian Hint is the only part of the full polaron-frame Hamil-

tonian H ′ to contain both system (exciton-cavity) and bath (phonon) degrees of

freedom: the operators Xα act on the system, whilst the operators Bα act on

the bath. A key principle of the master equation approach is to assume that the

interaction Hamiltonian Hint may be treated as a perturbation. Accordingly, we

define the interaction representation such that a generic operator O is given by

Õ(t) = eiH0t O e−iH0t , (4.19)

where the tilde notation denotes the interaction representation and H0 = Hbath +

Hsys.

As in previous sections, we wish to calculate the temporal behaviour of the

density matrix ρ(t). In the master equation approach, this is achieved through

use of the Lindblad master equation,

dρ

dt
= −i[H ′, ρ] + D , t > 0 (4.20)
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where H ′ is the polaron-frame Hamiltonian, defined in Eq. (4.4), and D is the

Lindblad dissipator. The latter characterises the dissipation due to the radiative

decay rate of the cavity mode γC and the long-time ZPL dephasing γX ,

D = γC

(
2aρa† − a†aρ − ρa†a

)
+ γX

(
2dρd† − d†dρ − ρd†d

)
. (4.21)

This equation would be exactly solvable if we were to neglect the influence of phonons

(giving the JC model). However, if phonon interactions are included, the best that

we can achieve is an approximate solution. We apply several approximations that

will limit the range of applicability of the equation but will assist in achieving a

solution. In the first instance, it is convenient to express Eq. (4.20) in the interaction

representation. Using ρ(t) = e−iH0tρ̃(t)eiH0t we obtain,

dρ̃(t)
dt

= −i[H̃int(t), ρ̃(t)] + D̃(t) . (4.22)

Eq. (4.22) has the formal solution

ρ̃(t) = ρ̃(0) +
∫ t

0
dτ

(
−i[H̃int(τ), ρ̃(τ)] + D̃(τ)

)
. (4.23)

Inserting Eq. (4.23) for ρ̃(t) into Eq. (4.22) we find that,

dρ̃(t)
dt

= −i
[
H̃int(t), ρ(0)

]
− i

[
H̃int(t),

∫ t

0
dτ D̃(τ)

]

−
[
H̃int(t),

∫ t

0
dτ [H̃int(τ), ρ̃(τ)]

]
+ D̃(t) . (4.24)

Note that this iterative procedure could therefore be repeated ad infinitum. We

assume, however, that Hint is a small perturbation (the weak coupling limit),

thereby rendering Eq. (4.24) sufficient. This is known as the second-order Born

approximation. In the present form, we are able to make certain simplifying

approximations to Eq. (4.24) that will enable us to find a solution for ρ(t).

We are interested in the evolution of the exciton-cavity system, and thus require

an equation that characterises the behaviour of the reduced density operator ρS(t).

We therefore take the partial trace of Eq. (4.24) over all bath degrees of freedom,

dρ̃S(t)
dt

= trB

{
−i[H̃int(t), ρ̃(0)]

}
− trB

{
i

[
H̃int(t),

∫ t

0
dτ D̃(τ)

]}

−
∫ t

0
dτ trB[H̃int(t), [H̃int(τ), ρ̃(τ)]] + D̃S(t) , (4.25)

where D̃S(t) = trB{D̃(t)} and we have used ρS(t) = trB{ρ(t)}.
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4.1 Levels of approximation

In this section, we apply a number of assumptions and approximations that will

allow us to recast Eq. (4.25) in a solvable form.

We now rely upon the weak coupling approximation, assuming that Hint is a

small perturbation. Further, we assume that the bath is sufficiently large to be

unaffected by the interaction with the system. These approximations allow us to

factorise the density matrix ρ̃(t) at all times,

ρ̃(t) = ρ̃S(t) ⊗ ρ̃B , (4.26)

where the bath density matrix ρ̃B is independent of time: ρ̃B = ρ̃B(0). For reasons

discussed in Sec. E.2 of the Appendix, this approximation causes the second term

in Eq. (4.25) to vanish. Additionally, when applied at t = 0, this approximation

removes the first term of Eq. (4.25).

We therefore arrive at the following form of the master equation:

dρ̃S(t)
dt

= −
∫ t

0
dτ trB[H̃int(t), [H̃int(τ), ρ̃S(τ) ⊗ ρ̃B]] + D̃S(t) . (4.27)

At this point, our approach differs according to the level of approximation, as

outlined in Fig. 4.1. The different approximations are addressed separately in

the following sections.

4.1.1 Time convolutionless (TCL) master equation

We note that Eq. (4.27) has memory: the future evolution of the system density

matrix ρ̃S(t) depends upon the history of the density matrix through the integration

of ρ̃S(τ). We remove this memory through the Markov approximation, in which we

make the replacement ρ̃S(τ) → ρ̃S(t). This approximation is valid if the system

evolution timescale τJC is large in comparison to the bath memory time τIB. This

approximation gives a time-local form of the master equation,

dρ̃S(t)
dt

= −
∫ t

0
dτ trB[H̃ ′

int(t), [H̃ ′
int(τ), ρ̃S(t) ⊗ ρ̃B]] + D̃S(t) . (4.28)
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Master equation
in the interaction

representation:
Eq. (4.22)

Factorise density
matrix at time t = 0:
ρ(0) = ρS(0) ⊗ ρB(0)

Trotter decomposition
method for master
equation approach

Second order Born
approximation:

Eq. (4.25)

Factorise density
matrix at all times

ρ̃(t) = ρ̃S(t) ⊗ ρ̃B(0)

Markov approximation
in the interaction

representation:
ρ̃S(τ) → ρ̃S(t)

Time convolutionless
(TCL) master

equation: Sec. 4.1.1

Convert to the
Schrödinger picture

Non-Markov master
equation: Sec. 4.1.2

Figure 4.1: Diagrammatic representation of the different levels of approximation of
the master equation that are considered in the present work. Grey boxes indicate
approximations or assumptions. Also shown, for comparison, is the approximation
required for the Trotter decomposition method. Whilst the description of the Trotter
decomposition method given in Chapter 3 does not rely upon the master equation
formalism, the method is equally applicable for the master equation approach.
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We now convert Eq. (4.28) from the interaction representation to the Schrödinger

representation and make the substitution t′ = t − τ , arriving at the following form

of master equation (see Sec. E.2.1 of the Appendix for details):

dρS(t)
dt

= −i[Hsys, ρS(t)] + DS(t)

−
∫ t

0
dt′ ∑

α=g,u

〈BαB̃α(−t′)〉[Xα, X̃α(−t′)ρS(t)] + H.c. (4.29)

Equations of motion

To derive the equations of motion from Eq. (4.29), we note from Eq. (??) that the

system density matrix ρS(t) may be expressed in the {|0〉 , |X〉 , |C〉} basis. Equally,

the excitonic and cavity operators may be expressed explicitly in this three-state

basis as per Eqs. (1.21) and (1.22). Each term is considered individually in Sec. E.2.1

of the Appendix, but for the sake of brevity we will simply state the final equations of

motion in this section. Whilst a general solution is possible, the following equations

are valid only for the case of zero effective detuning (ΩC = ΩX + Ωp).

dρ̄

dt
= Q(t)ρ̄(t) , (4.30)

where ρ̄ is a vector made up of elements of the reduced system density matrix

ρ̄ =
(

ρX0
ρC0

)
, (4.31)

and Q(t) is a 2x2 matrix of the form

Q(t) = −i

(
ΩC − iγX g〈B〉

g〈B〉 ΩC − iγC

)
+

∫ t

0
dt′ I(t′) , (4.32)

with

I(t) = g2
(

I0(t) I1(t)
I1(t) I0(t)

)
, (4.33)

I0(t) = Gg(t) + cos(2g〈B〉t) Gu(t) , (4.34)

I1(t) = i sin(2g〈B〉t) Gu(t) , (4.35)

Gg(t) = 〈BgB̃g(−t)〉 = 〈B〉2 (cosh(φ(t)) − 1) , (4.36)

Gu(t) = 〈BuB̃u(−t)〉 = 〈B〉2 sinh(φ(t)) , (4.37)

φ(t) =
∫ ∞

0
dω

J(ω)
ω2

(
coth

(
βω

2

)
cos(ωt) − i sin(ωt)

)
. (4.38)
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Note that φ(t) may be related to the IB cumulant K(t): φ(t) = K(t) + iΩpt + S.

Further, the matrix composed of ΩC − iγX,C and g〈B〉 in the expression for Q(t)

is identical to the Hamiltonian of the analytic Trotter decomposition solution

Eq. (3.39). The additional integral term contained within the expression for Q(t)

is a perturbative correction to this Hamiltonian.

Polarisation and absorption

We solve Eq. (4.30) numerically to find ρ̄(t), paying close attention to the initial

condition ρ̄(0+), which is dependent upon the feeding channel, as discussed in Secs.

1.2 and 3.1. The initial density matrix must be correctly transformed into the

polaron frame, gaining a factor of B− if under excitonic feeding.

Having found an expression for ρ̄, we may then apply the standard definition

of linear optical polarisation given in Eq. (1.1), noting that we must transform

the density matrix back from the polaron frame (or equivalently transform the

operator annihilation operator c into the polaron frame),

P (t) = Tr
{
ρ′(t)eSc e−S

}
, (4.39)

where ρ′(t) is the density matrix in the polaron frame (denoted by ρ(t) in all

other instances in this Chapter for simplicity of notation). Relying on the prior

approximation ρ′(t) = ρS(t) ⊗ ρB(t) allows us to reduce Eq. (4.39) to

PXX = 〈B〉ρX0(t) , PCC = ρC0(t) , (4.40)

where we have used c = d to give PXX(t), and c = a to give PCC(t). As always,

the absorption is found by taking the real part of the inverse Fourier transform

of the polarisation, as described in Eq. (1.18).

4.1.2 Non-Markov master equation

In Sec. 4.1.1, we made the Markov approximation in the interaction picture and

subsequently transformed into the Schrödinger representation. Another option

available to us is to convert the master equation to the Schrödinger representation

without the Markov approximation i.e. without modification of the argument of
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the system density matrix ρS(τ). Such an approach leads us to the following form

of the master equation (See Sec. E.2.2 of the Appendix for full derivation):

dρS(t)
dt

= −i[Hsys, ρS(t)] + DS(t)

−
∫ t

0
dτ

∑

α=g,u

〈BαB̃α(t − τ)〉
[
Xα, e−iHsys(t−τ)XαρS(τ)eiHsys(t−τ)

]
+ H.c.

(4.41)

Note the similarities between Eq. (4.41) and Eq. (4.29).

Equations of motion

For zero effective detuning, Eq. (4.41) may be compactly expressed as

dρ̄

dt
= −i

(
ΩC − iγX g〈B〉

g〈B〉 ΩC − iγC

)
ρ̄(τ) −

∫ t

0
dτ Ŵ (t − τ)ρ̄(τ) , (4.42)

where ρ̄ is defined in Eq. (4.31) and Ŵ is given by

Ŵ (t) = e−iΩCtg2
(

cos(g〈B〉t) G+(t) −i sin(g〈B〉t) G−(t)
−i sin(g〈B〉t′) G−(t) cos(g〈B〉t) G+(t)

)
, (4.43)

with G± given by

G±(t) = Gg(t) ± Gu(t) = 〈B〉2
(
e±φ(t) − 1

)
. (4.44)

Importantly, the integral over Ŵ (t − τ)ρ̄(τ) describes a convolution, which enables

us to extract a simple solution to Eq. (4.41) in frequency space:

− ωR̄(ω) = −i

(
ΩC − iγX g〈B〉

g〈B〉 ΩC − iγC

)

︸ ︷︷ ︸
(1)

R̄(ω) +
g2

2

(
A(ω) B(ω)
B(ω) A(ω)

)

︸ ︷︷ ︸
(2)

R̄(ω) + ρ̄(0) ,

(4.45)

where ρ̄(0) contains the initial conditions, and

A(ω) = G+(ω − Ω1) + G+(ω − Ω2) (4.46)

B(ω) = −G−(ω − Ω1) + G−(ω − Ω2) , (4.47)

with G±(ω) being the Fourier transform of G±(t). In deriving Eq. (4.45), we have

used the fact that e−iΩCt cos(g〈B〉t) may be expressed as 1/2(e−iΩ1t + e−iΩ2t) where

Ω1,2 = ΩC ±g〈B〉 (and analogously for other elements of Ŵ (t)). Noting the parallels
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between matrix (1) in Eq. (4.45) and the JC Hamiltonian, Eq. (1.24), we denote

matrices that diagonalise matrix (1) by ˜̂
Y and ˜̂

Y −1, with

˜̂
Y =

(
α̃ β̃

−β̃ α̃

)
, (4.48)

α̃ =
∆√

∆̃2 + (g〈B〉)2
, (4.49)

β̃ =
g〈B〉√

∆̃2 + (g〈B〉)2
, (4.50)

where ∆̃ =
√

δ̃2 + (g〈B〉)2 − δ̃ and δ̃ = 1/2 (γC − γX). Clearly, for γX = γC we have

the simple case of α̃ = β̃ = 1/
√

2. This would allow simultaneous diagonalisation of

matrices (1) and (2) within Eq. (4.45) and would provide an analytic solution for

the linear absorption. For γX �= γC , we make the replacement γX,C → γ0, where

γ0 = 1/2(γX + γC). This is clearly an approximation; the validity of which increases

with g (as the contribution of δ̃ to α̃ and β̃ decreases). With this approximation,

we arrive at the following expressions for absorption:

AXX(ω) = Re
{

1
2

〈B〉2
(

1
λ1(ω)

+
1

λ2(ω)

)}
, (4.51)

ACC(ω) = Re
{

1
2

(
1

λ1(ω)
+

1
λ2(ω)

)}
, (4.52)

where

λ1(ω) = −i[ω − (Ω1 − iγ0)] + g2[Gg(ω − Ω1) + Gu(ω − Ω2)] , (4.53)

λ2(ω) = −i[ω − (Ω2 − iγ0)] + g2[Gu(ω − Ω1) + Gg(ω − Ω2)] . (4.54)

Note that the factor of 〈B〉2 in Eq. (4.51) is due to the action of the polaron

transformation matrix S on the excitonic excitation operator d† and the observation

operator d; S commutes with c† and c so ACC(ω) is unaffected.

4.2 Comparison of Trotter decomposition and
master equation approaches

Having discussed various levels of approximation within the master equation

approach, we now look to compare the absorption spectra calculated according to
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(i) the Trotter decomposition method of Chapter 3, (ii) the TCL master equation

of Sec. 4.1.1, and (iii) the Non-Markov master equation of Sec. 4.1.2. In relation to

the Trotter approach, we take only the LN calculation with L = 15.

Fig. 4.2 shows the excitonic absorption spectra AXX(ω) for relatively small

exciton-cavity coupling strength g = 50 µeV at T = 0 K (left panel) and T = 50 K

(right panel). It is immediately clear that the master equation approaches (TCL

and Non-Markov) do not reproduce the phonon broadband. This is an interesting

consequence given that implementation of the master equation approaches requires

calculation of φ(t), which is equivalent to the part of the IB cumulant responsible

for the broadband, KBB(t). It is, however, understood to occur as a result of

the density matrix factorisation employed within the master equation approaches:

ρ̃(t) = ρ̃S(t)⊗ ρ̃B. Iles-Smith et al. [79, 82] adopt a variation of the above-described

TCL master equation but calculate the emission spectrum under continuous wave

excitation. Following the Wiener-Khinchin theorem, the steady state spectrum is

expressed in terms of an electric field correlation function. Whilst the full form

of this correlation function is intractable, approximate factorisation is possible if

the polariton timescale is much longer than the polaron timescale (low g limit).

This factorisation separates the emission spectrum into a contribution from the

purely optical exciton recombination and a contribution from phonon-assisted

transitions. The latter, responsible for the phonon broadband, has the form

Re
∫ ∞

0 dt B2e−iΩptg0(t)(eφ(t) − 1) with g0(t) = limτ→∞〈d̃†(τ)d̃(τ + t)〉. Iles-Smith et

al. make the approximation g0(t) ≈ g0(0), rendering the phonon contribution to the

emission spectrum equivalent to the IB phonon broadband (Re
∫ ∞

0 dt eK(t) − eK∞(t))

renormalised by g0(0). This approximation may be valid in the regime of small

exciton-cavity coupling g. At high g, however, there is significant modification

to the broadband (as can be seen from Figs. 4.3 and 4.4), which would not be

accounted for in this approach.

Other than the above-described phonon broadband, there is very close agree-

ment between the TCL master equation and the Trotter decomposition approach,

particularly at T = 0. The results from the Non-Markov approach are poor at low
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Figure 4.2: Comparison of excitonic absorption spectra calculated according to the
Trotter decomposition method, the TCL master equation and the Non-Markov master
equation for g = 50 µeV, γX = 2 µeV, γC = 30 µeV. Other QD/phonon parameters as per
Section 1.3: a = 3.3 nm, Dc − Dv = −6.5 eV, vs = 4.6 × 103 m/s, and ρm = 5.65 g/cm3.
Temperature T = 0 K (T = 50 K) is shown in the left (right) panel, with insets showing
a reduced frequency range about the polariton peaks.
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Figure 4.3: As Fig. 4.2 but with g = 0.2 meV.

exciton-cavity coupling g due to the assumption that α̃ = β̃ = 1/
√

2 (equivalent

to γX , γC → γ0) required in order to simultaneously diagonalise matrices (1) and

(2) of Eq. (4.41). This accuracy of this approach would be significantly improved

for similar exciton and cavity broadenings γX ≈ γC .

We now consider the situation at increased exciton-cavity coupling strength g.

Figs. 4.3 and 4.4 show the excitonic absorption spectra AXX(ω) for g = 0.2 meV and

g = 0.6 meV respectively. At g = 0.2 meV there is generally good agreement between
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Figure 4.4: As Fig. 4.2 but with g = 0.6 meV.

all three models (again neglecting the differences due to the phonon broadband).

The agreement is particularly close between the Trotter and TCL approaches at

T = 0 K, and between the Trotter and Non-Markov approaches at T = 50 K. At

g = 0.6 meV, there remains very good agreement for zero temperature, but we see

significant discrepancies between the three approaches at T = 50 K.

To examine the situation further, it is instructive to consider the behaviour

of the polariton linewidths Γ1,2 with exciton-cavity coupling strength g. Fig. 4.5

shows the lower (1) and upper (2) polariton linewidths calculated at T = 0 K

according to the three different approaches. All three approaches exactly capture

the simple behaviour of the lower polariton linewidth Γ1. As discussed in Sec. 3.4,

the non-zero broadening of this line is a consequence of the finite long-time ZPL

dephasing γX and radiative decay γC (set to 2 µeV and 30 µeV respectively); there

is no contribution from phonon-mediated transitions and hence no dependence on

the exciton-cavity coupling strength g. This is not the case for the upper polariton

linewidth Γ2: transitions from the upper polariton state (2) to the lower state (1)

may proceed with the emission of a phonon, even at zero temperature. The upper

polariton linewidths Γ2 calculated according to the TCL and Non-Markov equations

closely match those calculated from the Trotter decomposition method at low g

and qualitatively agree thereafter. There is, however, a significant quantitative

disparity, particularly at the broadening maxima (∼ 0.75 meV).
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Figure 4.5: Linewidths Γ1,2 of the lower (1) and upper (2) polariton states as calculated
by the Trotter decomposition method (red), the TCL master equation (blue) and the Non-
Markov master equation (yellow). Linewidths are shown as functions of the exciton-cavity
coupling strength g for temperature T = 0 K.

Fig. 4.6 also shows the behaviour of the polariton linewidths Γ1,2 with exciton-

cavity coupling strength g, but at the increased temperature of T = 50 K. We

see that the agreement between approaches is generally worse at this temperature,

which is to be expected in view of the absorption spectra shown in Figs. 4.2 to 4.4.

It is interesting to note that the ratio of the upper and lower polariton linewidths

calculated according to the Non-Markov approach is approximately equal to that

calculated by the Trotter decomposition method. The Non-Markov approach,

however, does not exhibit the clear peak in linewidths that is shown at g ∼ 0.6

meV by the Trotter decomposition results. As regards the TCL approach, there

is good agreement at small exciton-cavity coupling strengths g but the results are

clearly erroneous at large g. In particular, the TCL approach does not predict a
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Figure 4.6: As Fig. 4.5 but for T = 50 K.

broadening maximum; instead indicating a general increase in broadening with

coupling strength g.

Finally, we examine the behaviour of the Rabi splitting ∆Ω = Ω2 − Ω1 with

exciton-cavity coupling strength g. Fig. 4.7 shows the polariton Rabi splitting ∆Ω

as a function of exciton-cavity strength g calculated at T = 0 K according to the

three different approaches. The TCL and Non-Markov results are qualitatively

similar to one-another across the full range of exciton-cavity coupling strengths,

but at large g this behaviour is markedly different to that predicted by the Trotter

decomposition method. Fig. 4.8 also shows the behaviour of the polariton Rabi

splitting ∆Ω, but at the higher temperature of T = 50 K. Again, there is good

agreement between all three approaches at small exciton-cavity coupling strengths

g, but significant disparity at larger g.
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Figure 4.7: Deviation of the polariton Rabi splitting ∆Ω from the nominal splitting 2g
as a function of the exciton-cavity coupling strength g, shown for temperature T = 0 K.
Also shown (black solid line) is the deviation of the phonon renormalised Rabi splitting
2ge−S/2 from the nominal Rabi splitting 2g.
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Figure 4.8: As Fig. 4.7 but for T = 50 K.
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4.3 Chapter conclusion

To conclude this chapter, we have examined the origin of the above-described

discrepancies between the Trotter decomposition method and the two master

equation approaches (TCL and Non-Markov). One of the critical assumptions of

the master equation is that the system evolution (characterised by τJC in Chapter

3) varies more slowly than the environmental relaxation timescale (characterised

by τIB in Chapter 3). The Trotter decomposition method is not limited by this

condition, and may access regimes of arbitrarily fast system evolution by increasing

the number of neighbours L. The 15-neighbour Trotter decomposition approach,

employed in all calculations in this chapter, is readily capable of accessing the full

range of exciton-cavity coupling strengths shown in the figures, whilst the master

equation approaches break down beyond g ∼ 0.2 meV.
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Conclusion

In this work we have studied many aspects of the interaction between a QD

exciton and its phonon environment. We have exploited the thermally sensitive

phonon broadband, often viewed as a unwanted feature within semiconductor QD

applications, to measure the temperature of the QD sample. We have also analysed

the role of phonons in a QD-microcavity system, developing a new method for

exact calculation of the system dynamics.

5.1 Phonon thermometer

We have explored the concept of temperature measurement from QD PL spectra,

looking at both a simple thermal ratio and a more complex fitting procedure.

In relation to the fiting procedure, we have demonstrated very good agreement

between the fit temperature and the nominal (cryostat-measured) temperature.

There are, however, slight discrepancies at low temperature (T ≤ 10 K) that merit

further investigation. Moreover, we have shown that the fit procedure enables

straightforward determination of other QD parameters such as confinement lengths

and material deformation potential that are traditionally difficult to measure.

To further progress this avenue of research it would be prudent to conduct

time-resolved spectroscopy with a view to determining the equilibration timescales,
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particularly the carrier cooling timescale. It would also be instructive to investigate

the Lorentzian and Gaussian broadening mechanisms further, which will require

additional measurements under varying conditions such as resonant excitation and

high dynamic range measurements for different excitation powers.

The general concept and associated fitting routine also has potential applications

also in other physical systems such as colloidal QDs.

5.2 Phonon-induced dephasing of cavity-QD
system

We have shown that our newly developed Trotter decomposition method enables

calculation of the linear optical polarisation of the QD-cavity system through simple

matrix product operations. In the L-neighbour implementation, the matrices are

multidimensional (size 2L), simplifying to 2 × 2 matrices for the NN (L = 1)

approximation. Furthermore, each matrix element is easily calculable from the JC

and IB models, with computation of the IB cumulant K(t) being no more complex

than the phonon propagator φ(t) required for the master equation based solutions.

Through the LN implementation of the Trotter method, we have accessed regimes

of very strong exciton-cavity coupling (up to g = 1.5 meV), unveiling behaviour that

has not been previously observed or predicted. In particular, we have found the

absorption spectrum to consist of the phonon broadband alongside two Lorentzian

broadened polariton lines. This holds true across the full range of exciton-cavity

coupling strengths that we have considered. Guided by this observation, we have

provided a physically intuitive interpretation of the above-described findings in

terms of the polariton model. We have shown that within the polariton frame,

Fermi’s Golden Rule for real phonon-assisted transitions provides a very good

description of the polariton line broadenings.

We have calculated, in Chapter 4, absorption spectra of the QD-microcavity

system according to two levels of approximation of the well-known master equa-

tion approach. We have found the TCL master equation, in which the Markov

approximation is made, provides a good description of the QD cavity system if the
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polariton dynamics are slow (small exciton-cavity coupling strength g). However,

this approach breaks down once the polariton and polaron timescales become

comparable. The Non-Markov master equation shows slightly improved accuracy

relative to the TCL approach in the regime of comparable polariton and polaron

timescales, but nonetheless significant divergence from the Trotter decomposition

predictions. We conclude that neither master equation approach is suited to exciton-

cavity coupling strengths beyond g ∼ 0.2 meV due to approximations made within

their derivation. Moreover, even at small exciton-cavity coupling strengths the

master equation approaches cannot capture the phonon broadband. This is in

contrast to the Trotter decomposition approach, which can readily capture the

phonon broadband and, through the LN implementation, is capable of accessing

regimes of arbitrarily strong exciton-cavity coupling g.

As noted previously, the Trotter decomposition method may be easily adapted

to determine the dynamics of any elements of the reduced density matrix of the

JC sub-system. The calculation of photon indistinguishability would constitute

an interesting extension to the current work.
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A
General derivations

A.1 Commutation relations

The exciton and cavity-photon operators obey the Fermi anticommutation relations,

{a, a†} = {d, d†} = 1 , (A.1)

{a, a} = {d, d} = 0 , (A.2)

{a†, a†} = {d†, d†} = 0 . (A.3)

The phonon operators obey the Bose commutation relations,

[bq, b†
q′ ] = δqq′ , (A.4)

[bq, bq′ ] = 0 , (A.5)

[b†
q, b†

q′ ] = 0 . (A.6)

A.2 Key identities

Baker-Hausdorff identity

eSBe−S = B + [S, B] +
1
2!

[S, [S, B]] + . . . , , (A.7)

for any two operators S and B.
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A.3 Representations

A.3.1 Schrödinger representation

One of the foundations of Quantum Mechanics is the Schrödinger equation, which

defines the relationship between wavefunction ψ(t) and Hamiltonian H.

i
∂

∂t
ψ(t) = Hψ(t) . (A.8)

This equation is expressed in the so-called Schrödinger representation, in which

wave-functions are time-dependent and operators are independent of time.

A.3.2 Heisenberg representation

It is possible to change the representation so that the operators are time-dependent

and the wavefunctions are independent of time. This is known as the Heisenberg rep-

resentation. In this representation, a generic operator O obeys the following relation:

i
∂

∂t
O(t) = [O(t), H] . (A.9)

This relation has the formal solution

O(t) = eiHtO(0)e−iHt . (A.10)

The representations coincide at t = 0. Crucially, calculations of all physical

observables are independent of the representation; the results are identical. Consider,

for example, the matrix element of the operator O between states ψ1 and ψ2. In

the Schrödinger representation, this is given by

〈ψ1(t)| Ô |ψ2(t)〉 = 〈ψ1| eiHtÔe−iHt |ψ2〉 . (A.11)

Alternatively, in the Heisenberg representation, this is given by

〈ψ1| Ô(t) |ψ2〉 = 〈ψ1| eiHtÔe−iHt |ψ2〉 . (A.12)
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A.3.3 Interaction representation

This representation is generally employed when the Hamiltonian H may be separated

into two parts

H = H0 + V . (A.13)

The separation is, in principle, arbitrary, but in order for the interaction represen-

tation to constitute a powerful tool, H0 is typically chosen to be exactly solvable.

For the purposes of this thesis, wavefunctions and operators in the Interaction

representation will be denoted by a tilde (̃ ).

The time-dependence of the operators is governed by the unperturbed Hamilto-

nian H0,

Õ(t) = eiH0tO(0)e−iH0t . (A.14)

The time-dependence of the wavefunctions is, on the other hand, governed by

the perturbation V ,

ψ̃(t) = eiH0tψ(t) = eiH0te−iHtψ(0) , (A.15)

hence,

i
∂ψ̃

∂t
= eiĤ0t(−H0 + H)e−iHtφ(0) (A.16)

=
(
eiH0tV (t)e−iH0t

) (
eiH0te−iHtψ(0)

)
(A.17)

= Ṽ ψ̃(t). (A.18)

Again, the wavefunctions and operators in the interaction representation coincide

with those in the the Schrödinger and Heisenberg representations at t = 0, and

calculation of any physical observable via the interaction representation yields

identical results to calculations via the Schrödinger and Heisenberg representations.

Returning to the example of the matrix element of the operator Ô between

states ψ1 and ψ2,
〈
ψ̃1(t)

∣∣∣ ˜̂
O(t)

∣∣∣ψ̃2(t)
〉

=
(
〈ψ1| eiHte−iH0t

) (
eiH0tÔe−iH0t

) (
eiH0te−iHt |ψ2〉

)
(A.19)

= 〈ψ1| eiHtÔe−iHt |ψ2〉 . (A.20)
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A.3.4 The time evolution operator Û(t)

We define the time evolution operator Û(t) such that its action produces the inter-

action representation wavefunction at time t from the wavefunction at time t = 0,

ψ̃(t) = Û(t)ψ(0) . (A.21)

Thus, from Eq. (A.15),

Û(t) = eiH0te−iHt . (A.22)

Replacing ψ̃(t) by Û(t)ψ(0) in Eq. (A.18) gives an equivalent expression for Û(t)

i
∂Û(t)

∂t
= Ṽ (t)Û(t) . (A.23)

Integrating Eq. (A.23) between 0 and t gives,

Û(t) − Û(0) = −i
∫ t

0
dt1Ṽ (t1)Û(t1) , (A.24)

where t1 is a dummy variable of integration. We note that Û(0) = 1, and further

note that this process may be repeated iteratively to give:

Û(t) = 1 − i
∫ t

0
dt1Ṽ (t1)

(
1 − i

∫ t1

0
dt2Ṽ (t2)Û(t2)

)
etc. (A.25)

= 1 − i
∫ t

0
dt1 + (−i)2

∫ t

0
dt1

∫ t1

0
dt2Ṽ (t1)Ṽ (t2) + . . . (A.26)

=
∞∑

n=0
(−i)n

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtnṼ (t1)Ṽ (t2) . . . Ṽ (tn) . (A.27)

We now introduce the time-ordering operator T , which acts upon a group of time-

dependent operators to arrange the group such that the earliest times are furthest

right. We note that in Eq. (A.27) we have tn < tn−1 . . . < t1 < t and thus the

operators are ordered in accordance with the time-ordering operation. We are

therefore able to re-express Eq. (A.27) in a form that includes the time-ordering

operator T . We use the following identity:
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtnṼ (t1)Ṽ (t2) . . .Ṽ (tn) =

1
n!

∫ t

0
dt1

∫ t

0
dt2 . . .

∫ t

0
dtnṼ (t1)Ṽ (t2) . . . Ṽ (tn) . (A.28)

– 96 –



A. General derivations 97

This factor of n! simply accounts for the change in integration limits. If we take

the example of n = 2 then on the left hand side of equation A.28 we are integrating

within a triangle defined by the lines t2 = 1, t2 = t1 and t1 = t, whereas on the

right hand side we are integrating within a rectangle defined by the lines t2 = 0,

t2 = t, t1 = 0 and t1 = t i.e. twice the area of the left hand side. Applying

Eq. (A.28) to Eq. (A.27) gives:

Û(t) =
∞∑

n=0
(−i)n

∫ t

0
dt1

∫ t

0
dt2 . . .

∫ t

0
dtnT [ ˜̂

V (t1)
˜̂
V (t2) . . .

˜̂
V (tn)] , (A.29)

which may be compactly expressed as

Û(t) = T
[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]
. (A.30)
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JC and IB models

B.1 JC model

B.1.1 Derivation of Eq. (1.23) for the JC polarisation

Taking as our starting point Eq. (1.7), with V given by Eq. (1.3),

PL(t) = iµ Tr{e−iHt (c̃ + c̃†) ρ(−∞) eiHt c}, (B.1)

We now express c̃ explicitly as |0〉 〈j| and c as |0〉 〈k|,

Pjk(t) = iµ Tr
{
e−iHt |j〉 〈0| eiHt |0〉 〈k|

}
, (B.2)

where we have used ρ(−∞) = |0〉 〈0|. Exploiting the cyclic properties of the trace

operation and neglecting the unimportant factor of iµ,

Pjk(t) = Tr
{
〈j| e−iHt |k〉 〈0| eiHt |0〉

}
. (B.3)

Noting that 〈0| eiHt |0〉 = 1, we may simplify Eq. (B.3) to give Eq. (1.23).

B.2 IB model

B.2.1 Derivation of Eq. (1.42)

From Eqs. (1.1) and (1.39)

P (t) = θ(t) Tr
{
e−iHte−iV (|0〉 〈0| ⊗ ρph) eiVeiHtd

}
, (B.4)
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where, as for the JC case, the Heaviside step function θ(t) is a consequence of the

pulsed excitation at t = 0. We may simplify Eq. (B.4) to

P (t) = θ(t) Tr
{
e−iHte−iV |0〉 〈0| ρpheiVeiHtd

}
. (B.5)

We now express e±iV as a Taylor series with V given by Eq. (1.2),

P (t) = θ(t) Tr
{
e−iHt

(
1 − iµ(d† + d) + . . .

)
|0〉 〈0| ρph

(
1 + iµ(d† + d) + . . .

)
eiHtd

}
.

(B.6)

Expressing d and d† explicitly in the {|0〉 , |X〉} basis and taking only the terms

that are linear in µ (hence considering only linear polarisation), Eq. (B.6) becomes

P (t) = −iµθ(t) Tr
{
e−iHt |X〉 〈0| ρpheiHt |0〉 〈X|

}
. (B.7)

Using the cyclic properties of the trace operation, this may be re-expressed as

P (t) = −iµθ(t)
〈

〈X| e−iHt |X〉 ρph 〈0| eiHt |0〉
〉

ph
, (B.8)

where 〈. . .〉ph indicates the trace over all phonon states.

With reference to the form of the Hamiltonian H given in Eq. (1.34), we note

that 〈0| eiHt |0〉 = 〈X| eiHpht |X〉. We may therefore re-express Eq. (B.8) as

P (t) = −iµθ(t)
〈

〈X| e−iHteiHpht |X〉
〉

ph
. (B.9)

Omitting the unimportant factor of iµ gives Eq. (1.42).

B.2.2 Solution to Eq. (1.43) via the linked cluster
expansion

Expanding Eq. (1.43),

〈
T

[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]〉

=
∞∑

n=0

(−i)n

n!

∫ t

0
dt1

∫ t

0
dt2 . . .

∫ t

0
dtn

〈
T Ṽ (t1)Ṽ (t2) . . . Ṽ (tn)

〉
, (B.10)

where 〈. . .〉 denotes the expectation value over all phonon states. We wish to

consider V of the form of Eq. (1.37). We will initially derive the result for a single
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phonon state of wave vector q and will subsequently sum over all wave vectors.

We define our V for a single phonon state as Vq:

Vq = λ∗
qbq + λqb

†
q . (B.11)

Since Ṽq consists of phonon creation and destruction operators b†
q and bq, there must

be an even number of Ṽ operators acting on state | 〉 in order to give a non-zero

result. Also, Wick’s theorem [10] states that when making all of the possible pairings

between creation and destruction operators, each pairing should be time ordered,

and the time ordering of each pair gives the proper time ordering of the full result.

Upon application of these principles, equation (B.10) becomes
〈

T
[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]〉

single q

= 1 − 1
2

∫ t

0
dt1

∫ t

0
dt2

〈
T Ṽq(t1)Ṽq(t2)

〉
+

1
24

∫ t

0
dt1

∫ t

0
dt2

∫ t

0
dt3

∫ t

0
dt4

( 〈
T Ṽq(t1)Ṽq(t2)

〉 〈
T Ṽq(t3)Ṽq(t4)

〉
+

〈
T Ṽq(t1)Ṽq(t3)

〉 〈
T Ṽq(t2)Ṽq(t4)

〉

+
〈
T Ṽq(t1)Ṽq(t4)

〉 〈
T Ṽq(t2)Ṽq(t3)

〉 )
+ . . . (B.12)

We define a function Kq(t):

Kq(t) = −1
2

∫ t

0
dt1

∫ t

0
dt2

〈
T Ṽq(t1)Ṽq(t2)

〉
. (B.13)

Noting that Kq is a function of t only, we can write
〈

T
[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]〉

single q
= 1 + Kq(t) +

1
2

K2
q (t) + . . . (B.14)

We now sum over all q, giving the cumulant K(t),

K(t) = −1
2

∫ t

0
dt1

∫ t

0
dt2

〈
T Ṽ (t1)Ṽ (t2)

〉
(B.15)

We therefore have
〈

T
[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]〉
= 1 + K(t) +

1
2

K(t)2 + . . . (B.16)

Considering the (2n)th order term of Eq. (B.12):

(−i)2n

(2n)!

∫ t

0
dt1

∫ t

0
dt2 . . .

∫ t

0
dt2n

〈
T Ṽ (t1)Ṽ (t2)Ṽ (t2n)

〉
=

(−i)2n

(2n)!

∫ t

0
dt1

∫ t

0
dt2 . . .

∫ t

0
dt2n

〈
T Ṽ (t1)Ṽ (t2)

〉 〈
T Ṽ (t3)Ṽ (t4)

〉
. . .

〈
T Ṽ (t2n−1)Ṽ (t2n)

〉

+ all other permutations (B.17)
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If we always place Ṽ (t1) first then we have a choice of (2n − 1) variables to place

second i.e. to pair with Ṽ (t1). Whichever variable we choose to place third, we

will have a choice of (2n − 3) variables to pair it with. Continuing in this vein,

the total number of permutations is given by

(2n − 1)(2n − 3)(2n − 5) . . . (3)(1) =
(2n)(2n − 1)(2n − 2)(2n − 3) . . . (2)(1)

(2n)(2n − 2)(2n − 4) . . . (4)(2)

=
(2n)!

(2[n])(2[n − 1])(2[n − 2]) . . . (2[2])(2[1])

=
(2n)!
2nn!

. (B.18)

We therefore have the following expression for the (2n)th order term:

(−i)2n

(2n)!
(2n)!
2nn!

[−2K(t)]n =
[K(t)]n

n!
. (B.19)

This is the nth order term in the expansion of eK(t). Hence,
〈

T
[
exp

(
−i

∫ t

0
dt1Ṽ (t1)

)]〉
= eK(t) . (B.20)

B.2.3 Note on computing the rapidly decaying part of the
cumulant KBB(t)

Returning to our definition N(ω) = 1/[eβω − 1], we note that

N(−ω) =
1

e−βω − 1
= −[N(ω) + 1] . (B.21)

We now define function g(ω),

g(ω) = ω e
− ω2

ω2
0 N(ω)eiωt . (B.22)

Noting that g(−ω) = ω e
− ω2

ω2
0 [N(ω) + 1]e−iωt, we may express Eq. (1.68) as

KBB(t) = J0

∫ ∞

0
dω g(ω) + g(−ω) (B.23)

= J0

∫ ∞

−∞
dω g(ω) (B.24)

= F
{

J0 ω N(ω) e
− ω2

ω2
0

}
, (B.25)

where F denotes the inverse Fourier transform. Expressing KBB(t) in this way is

of particular value when numerical calculation is required since calculation may

be achieved through fast Fourier transform (FFT) algorithms.
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C.1 IB cumulant for ellipsoidal confinement
potential: calculation of KBB(t)

Returning to our definition N(ω) = 1/[eβω − 1], we note that

N(−ω) =
1

e−βω − 1
= −[N(ω) + 1] . (C.1)

We now define function g(ω),

g(ω) = N(ω) e
−

a2
‖ω2

2v2
s erfi

(
ω√
2vs

√
a2

‖ − a2
⊥

)
eiωt . (C.2)

We may express the rapidly decaying part of Eq. (2.6) as

KBB(t) =
J0vs

√
π

√
2

√
a2

‖ − a2
⊥

∫ ∞

0
dω [g(ω) + g(−ω)] (C.3)

= F





J0vs

√
π

√
2

√
a2

‖ − a2
⊥

N(ω) e
−

a2
‖ω2

2v2
s erfi

(
ω√
2vs

√
a2

‖ − a2
⊥

)

 , (C.4)

where F denotes the inverse Fourier transform. Expressing KBB(t) in this way is of

particular value as it allows the use of Fourier transform (FFT) algorithms.

C.2 Double PQD - sample (A)

In addition to Figs. 2.4 and 2.5, experimental and fit PL spectra are shown in

Figs. C.1 to C.5.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 9.19 (0.61)
γL (µeV) 60.44 (5.73) 15.49 (3.30)
γG (µeV) 38.48 (19.85) 88.97 (7.73)

ωX − ωref (meV) 0.00 (3.08E-03) 3.62 (2.31E-03)
α 3.96E+06 (5.80E+05) 3.69E+05 (3.69E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure C.1: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 5 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 11.46 (0.40)
γL (µeV) 49.63 (3.20) 23.56 (2.51)
γG (µeV) 34.46 (10.24) 73.98 (4.61)

ωX − ωref (meV) -0.04 (1.73E-03) 3.57 (1.57E-03)
α 2.41E+06 (2.15E+05) 2.71E+05 (1.75E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure C.2: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 10 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 13.03 (0.73)
γL (µeV) 31.77 (3.84) 37.57 (5.91)
γG (µeV) 48.24 (8.74) 74.87 (10.83)

ωX − ωref (meV) -0.10 (2.34E-03) 3.51 (3.06E-03)
α 1.09E+06 (1.20E+05) 1.46E+05 (1.62E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure C.3: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 15 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 49.19 (0.43)
γL (µeV) 31.21 (1.54) 83.06 (3.71)
γG (µeV) 70.26 (2.24) 111.55 (5.23)

ωX − ωref (meV) -2.66 (5.95E-04) 0.95 (9.65E-04)
α 1.66E+06 (3.51E+04) 4.66E+05 (8.94E+03)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure C.4: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 50 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 93.83 (6.67)
γL (µeV) 347.80 (90.68) 309.39 (52.82)
γG (µeV) 128.87(222.71) 217.25 (85.05)

ωX − ωref (meV) -12.36 (1.91E-02) -8.72 (1.08E-02)
α 1.89E+02 (1.94E+01) 1.56E+03 (1.14E+02)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table 2.1. Reference frequency ωref = 1, 396.64 meV

Figure C.5: PL spectrum and fit for double PQD sample (A) with nominal temperature
T = 100 K.
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C.3 Double PQD - sample (B)

Table C.1 provides the deformation potential |Dc −Dv| and QD confinement lengths

a‖, a⊥ calculated from the first fitting cycle and fixed for the second fitting cycle.

Experimental and fit PL spectra are shown in Figs. C.6 to C.12, alongside tabulated

fit values and associated σ confidence bounds.

Fig. C.13 shows the relationship between the fit temperature and the nominal

temperature, as well as the behaviour of the exciton and trion transition frequencies

with temperature. Finally, Fig. C.14 illustrates the temperature-dependence of the

Gaussian and Lorentzian broadening parameters.

Parameter Fit Value (with σ confidence bound)

X* X

|Dc − Dv| (eV) 7.48 (0.07)
a⊥ (nm) 1.75 (0.03) 2.25 (0.15)
a‖ (nm) 6.13 (0.06) 6.261 (0.23)

Table C.1: 1/σ2 weighted average of deformation potential |Dc − Dv|, trion (X*) and
exciton (X) confinement lengths a⊥, a‖ for double PQD sample (B).
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 10.14 (0.52)
γL (µeV) 19.62 (3.61) 76.11 (11.58)
γG (µeV) 86.88 (10.24) 295.35 (24.61)

ωX − ωref (meV) 0.00 (3.16E-03) 3.07 (6.56E-03)
α 6.00E+06 (4.74E+05) 9.91E+04 (8.20E+03)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.1. Reference frequency ωref = 1, 401.5 meV

Figure C.6: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 5 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 14.75 (0.68)
γL (µeV) 20.43 (3.30) 98.31 (13.00)
γG (µeV) 91.43 (5.96) 277.83 (16.98)

ωX − ωref (meV) -0.05 (2.36E-03) 3.03 (5.14E-03)
α 1.84E+06 (1.29E+05) 3.91E+04 (2.36E+03)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.1. Reference frequency ωref = 1, 401.5 meV

Figure C.7: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 10 K.
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(a) Experimental and fitted PL emission spectra. No data manually excluded from this
fit.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 20.40 (0.68)
γL (µeV) 19.15 (3.13) 53.90 (8.76)
γG (µeV) 102.24 (6.93) 315.45 (15.01)

ωX − ωref (meV) -0.11 (2.07E-03) 2.96 (3.92E-03)
α 7.93E+06 (4.34E+05) 2.89E+05 (1.31E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.1. Reference frequency ωref = 1, 401.5 meV

Figure C.8: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 15 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 22.73 (0.92)
γL (µeV) 17.29 (3.00) 86.57 (11.87)
γG (µeV) 96.53 (4.91) 232.02 (13.72)

ωX − ωref (meV) -0.25 (1.81E-03) 2.85 (3.71E-03)
α 1.37E+06 (8.48E+04) 7.47E+04 (3.69E+03)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.1. Reference frequency ωref = 1, 401.5 meV

Figure C.9: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 20 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 34.51 (0.89)
γL (µeV) 23.07 (3.25) 97.95 (10.14)
γG (µeV) 106.48 (4.56) 303.19 (11.68)

ωX − ωref (meV) -0.75 (1.58E-03) 2.33 (3.34E-03)
α 4.68E+06 (2.21E+05) 2.22E+05 (7.20E+03)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.1. Reference frequency ωref = 1, 401.5 meV

Figure C.10: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 30 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 56.17 (0.98)
γL (µeV) 32.72 (4.09) 119.13 (9.23)
γG (µeV) 111.10 (5.09) 255.41 (10.94)

ωX − ωref (meV) -2.69 (1.37E-03) 0.42 (2.66E-03)
α 3.24E+06 (1.17E+05) 5.43E+05 (1.39E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.1. Reference frequency ωref = 1, 401.5 meV

Figure C.11: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 50 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

X* X

T (K) 113.97 (3.08)
γL (µeV) 397.63 (30.84) 439.12 (19.92)
γG (µeV) 25.08 (365.47) 236.88 (42.34)

ωX − ωref (meV) -12.55 (6.48E-03) -9.52 (4.50E-03)
α 1.05E+03 (3.65E+01) 2.88E+03 (6.04E+01)

(b) ωref = 1, 401.5 meV

Figure C.12: PL spectrum and fit for double PQD sample (B) with nominal temperature
T = 100 K.
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Figure C.13: Fit temperature (with σ error bars) as a function of nominal temperature,
shown for double PQD sample (B). Inset: excitation (exciton/trion) transition frequency
as a function of nominal temperature, shown for double PQD sample (B).
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Figure C.14: Lorentzian γL and Gaussian γG broadening parameters (with σ error bars)
as a function of nominal temperature, shown for double PQD sample (B).
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C.4 Single PQD sample

Table C.2 provides the deformation potential |Dc − Dv| and QD confinement

lengths a‖, a⊥ calculated from the first fitting cycle and fixed for the second fitting

cycle. Experimental and fit PL spectra are shown in Figs. C.15 to C.19, alongside

tabulated fit values and associated σ confidence bounds.

Fig. C.20 shows the relationship between the fit temperature and the nominal

temperature, as well as the behaviour of the trion transition frequency with

temperature. Finally, Fig. C.21 illustrates the temperature-dependence of the

Gaussian and Lorentzian broadening parameters.

Parameter Fit Value (with σ confidence bound)

|Dc − Dv| (eV) 7.48 (0.07)
a⊥ (nm) 3.11 (0.53)
a‖ (nm) 5.28 (0.46)

Table C.2: 1/σ2 weighted average of deformation potential |Dc − Dv| and trion (X*)
confinement lengths a⊥, a‖ for single PQD sample.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

T (K) 13.81 (1.90)
γL (µeV) 42.98 (32.51)
γG (µeV) 141.47 (20.81)

ωX − ωref (meV) 0.33 (7.89E-03)
α 1.11E+06 (2.23E+05)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.2. Reference frequency ωref = 1, 427.6 meV

Figure C.15: PL spectrum and fit for single PQD sample with nominal temperature
T = 5 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

T (K) 13.64 (1.50)
γL (µeV) 63.28 (54.66)
γG (µeV) 113.65 (21.53)

ωX − ωref (meV) 0.28 (7.04E-03)
α 2.49E+06 (4.40E+05)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.2. Reference frequency ωref = 1, 427.6 meV

Figure C.16: PL spectrum and fit for single PQD sample with nominal temperature
T = 10 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

T (K) 12.87 (1.66)
γL (µeV) 132.78 (119.33)
γG (µeV) 14.63 (199.21)

ωX − ωref (meV) 0.21 (7.32E-03)
α 2.38E+06 (6.06E+05)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.2. Reference frequency ωref = 1, 427.6 meV

Figure C.17: PL spectrum and fit for single PQD sample with nominal temperature
T = 15 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

T (K) 17.68 (1.70)
γL (µeV) 155.39 (143.31)
γG (µeV) 66.84 (49.28)

ωX − ωref (meV) 0.06 (6.21E-03)
α 1.45E+06 (2.27E+05)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.2. Reference frequency ωref = 1, 427.6 meV

Figure C.18: PL spectrum and fit for single PQD sample with nominal temperature
T = 20 K.
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(a) Experimental and fitted PL emission spectra, showing data manually excluded from
fit in red.

Parameter Fit Value (with σ confidence bound)

T (K) 32.82 (3.21)
γL (µeV) 141.93 (126.18)
γG (µeV) 179.78 (41.15)

ωX − ωref (meV) -0.57 (9.84E-03)
α 6.21E+05 (9.46E+04)

(b) Tabulated fit values, with deformation potential and QD confinement lengths fixed to
the values detailed in Table C.2. Reference frequency ωref = 1, 427.6 meV

Figure C.19: PL spectrum and fit for single PQD sample with nominal temperature
T = 30 K.
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Figure C.20: Fit temperature (with σ error bars) as a function of nominal temperature,
shown for single QD sample. Inset: trion transition frequency as a function of nominal
temperature, shown for single PQD sample.
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Figure C.21: Lorentzian γL and Gaussian γG broadening parameters (with σ error bars)
as a function of nominal temperature, shown for single PQD sample.
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D
Trotter decomposition method

D.1 Derivation of Eq. (3.10) for the linear
polarisation

We take Eq. (3.8) as a starting point and note that

[H, ρ] = Hρ − ρH∗ + iγX(d†dρ + ρd†d) + iγC(a†aρ + ρa†a) , (D.1)

where H is the full complex Hamiltonian defined in Eq. (3.4) and H∗ is its complex

conjugate. We may therefore re-express the Lindblad master equation (Eq. (3.8)) as

iρ̇ = Hρ − ρH∗ + 2iγXdρd† + 2iγCaρa† . (D.2)

In the linear polarisation, we keep in the full polarisation only the terms which

are linear in α. Looking closer, this implies keeping only |X〉 〈0| and |C〉 〈0| elements

of the density matrix. When the density matrix is reduced to only |X〉 〈0| and |C〉 〈0|

elements, the last two terms in Eq. (D.2) vanish, which yields an explicit solution:

ρ(t) = e−iHtρ(0+)eiH∗t , (D.3)

The linear polarisation then takes the form

PL(t) = −iαTr
{
e−iHtc̃† |0〉 〈0| ρ0e

iHphtc
}

, (D.4)
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where we have replaced H∗ with Hph since it acts on the |0〉 associated with

annihilation operator c and hence retains only the Hph term.

Now, dropping the unimportant constant factor −iα and introducing indices

j, k = X, C to replace the operators c̃† and c, we arrive at Eq. (3.10).

D.2 Trotter decomposition of the evolution
operator

Using the Trotter decomposition, the evolution operator is presented in Eq. (3.12)

as Û(t) = limN→∞ ÛN(t), where

ÛN(t) = eiHphte−iHIB(t−tN−1)e−iHJC(t−tN−1) . . . e−iHIB(tn−tn−1)e−iHJC(tn−tn−1)

× . . . e−iHIBt1e−iHJCt1

= eiHphte−iHIB(t−tN−1)e−iHphtN−1e−iHJC(t−tN−1) . . .

×eiHphtne−iHIB(tn−tn−1)e−iHphtn−1e−iHJC(tn−tn−1) . . . eiHpht1e−iHIBt1e−iHJCt1

= Ŵ (t, tN−1)M̂(t − tN−1) . . . Ŵ (tn, tn−1)M̂(tn − tn−1) . . . Ŵ (t1, 0)M̂(t1) ,

(D.5)

where we have used the fact that the operators Hph and HJC commute. From

the definition of HIB we note that

Ŵ (tn, tn−1) = eiHphtne−iHIB(tn−tn−1)e−iHphtn−1 (D.6)

is a diagonal operator in the 2-basis state matrix representation in terms of |X〉 and

|C〉:

Ŵ (tn, tn−1) =
(

WX(tn, tn−1) 0
0 WC(tn, tn−1)

)
(D.7)

with

WX(tn, tn−1) = eiHphtne−i(Hph+V )(tn−tn−1)e−iHphtn−1 , (D.8)

WC(tn, tn−1) = 1. (D.9)

Using the time ordering operator T , Eq. (D.8) for WX(tn, tn−1) can be written as

WX(tn, tn−1) = T exp
{

−i
∫ tn

tn−1
V (τ)dτ

}
, (D.10)

– 127 –



D. Trotter decomposition method 128

where V (τ) = eiHphτ V e−iHphτ is the interaction representation of the exciton-

phonon coupling V .

Substituting the evolution operator Eq. (D.5) into Eq. (3.10) for the polarization

Pjk(t) and explicitly expressing the matrix products gives

Pjk(t) =
∑

iN−1=X,C

. . .
∑

i1=X,C

〈WiN
MiN iN−1WiN−1MiN−1iN−2 . . . Min+1inWinMinin−1

. . . Wi1Mi1i0〉ph (D.11)

with iN = j and i0 = k. From here, we note that only W elements contain the phonon

interaction and through a simple rearrangement of Eq. (D.11) we arrive at Eq. (3.16).

D.3 Linear polarisation in the NN
approximation

The single summation in the cumulant Eq. (3.29) allows us to express, for each

realisation, the expectation value in Eq. (3.16) as a product

〈WiN
(t, tN−1) . . . Win(tn, tn−1) . . . Wi2(t2, t1)Wi1(t1, 0)〉ph

= eδiN XK0eδiN−1X(K0+2δiN XK1) . . . eδin−1X(K0+2δinXK1) . . . eδi1X(K0+2δi2XK1). (D.12)

It is convenient to introduce

Rinin−1 = eδin−1X(K0+2δinXK1), (D.13)

enabling us to express the expectation values of the product of W-operators for

a given realisation as

〈WiN
(t, tN−1) . . . Wi2(t2, t1)Wi1(t1, 0)〉ph = eδiN XK0RiN iN−1 . . . Ri2i1 . (D.14)

Substituting Eq. (D.14) into Eq. (3.16) for Pjk, we find

Pjk(t) = eδiN XK0
∑

iN−1=X,C

. . .
∑

i1=X,C

(
MiN iN−1 . . . Mi2i1Mi1i0

) (
RiN iN−1 . . . Ri2i1

)
.

(D.15)

We then join together corresponding Minin−1 and Rinin−1 elements through the

definition of a matrix

Ginin−1 = Minin−1Rinin−1 , (D.16)
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Figure D.1: Example realisation for the NN implementation with N = 5. We use the
same realisation as shown in Fig. 3.1: i1 = X, i2 = C, i3 = X, i4 = X, i5 = C, as is clear
from the step function θ̂(t) shown an the top of the figure.

which transforms Eq. (D.15) to

Pjk(t) = eδiN XK0
∑

iN−1=X,C

. . .
∑

in−1=X,C

. . .
∑

i1=X,C

GiN iN−1 . . . Ginin−1 . . . Gi2i1Mi1i0 .

(D.17)

Using the fact that iN = j and i0 = k, we arrive at Eq. (3.30) which is compactly

represented in Eq. (3.32) as a product of matrices.

To illustrate this idea by way of an example, we return to the example realisation

shown in Fig. 3.1. Fig. D.1 illustrates the time grid associated with the calculation

of the cumulant for this particular realisation. Each exponential eδin−1X(K0+2δinXK1)

in Eq. (D.12) can be visualised as an L-shaped portion of the time grid (colour

coded in the figure). In the illustrated realisation we have i1 = X, i2 = C,
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i3 = X, i4 = X, i5 = C, giving

Ri2i1 = eδi1X(K0+2δi2XK1) = eK0 ,

Ri3i2 = eδi2X(K0+2δi3XK1) = e0 = 1 ,

Ri4i3 = eδi3X(K0+2δi4XK1) = eK0+2K1 ,

Ri5i4 = eδi4X(K0+2δi5XK1) = eK0 ,

eδi5XK0 = e0 = 1 .

We then find

Gi2i1 = GCX = MCXeK0 ,

Gi3i2 = GXC = MXC ,

Gi4i3 = GXX = MXXeK0+2K1 ,

Gi5i4 = GCX = MCXeK0 ,

which contributes to the total polarisation Eq. (D.17).

Note that the condition for the NN approximation to be valid is also illustrated

in Fig. D.1: All the time moments of integration for which |τ2 − τ1| < τIB should

be located within the coloured squares, which are taken into account in the NN

calculation of the cumulant.

D.4 Analytic approximation from NN result

In this section, we derive the approximate analytic result Eqs. (3.38) and (3.39) for

the linear polarisation P̂ (t) in the long-time limit. This approximation is valid for

small values of the exciton-cavity coupling strength g, which guarantees that the

polariton timescale is much longer than the phonon memory time, τJC � τIB. As

a starting point, we take the result for P̂ (t) in the NN approach, Eqs. (3.32) and

(3.33), and use it for ∆t � τIB. This condition implies that we can take both K0

and K1 in the long-time limit, using the asymptotic formula Eq. (3.37):

K0 = K(∆t) ≈ −iΩp∆t − S, (D.18)

K1 =
1
2

(K(2∆t) − 2K(∆t)) ≈ S

2
. (D.19)
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We would now like to replace the product of N matrices in Eq. (3.32) by an

approximate analytic expression, taking the Trotter limit N → ∞. To do so,

we initially derive explicit expressions for M̂ and Ĝ in the two-state basis of |X〉

and |C〉. From Eq. (3.13) we obtain
(

MXX MXC

MCX MCC

)
= e−iHJC∆t

=
(

α β
−β α

) (
e−iω1∆t 0

0 e−iω2∆t

) (
α −β
β α

)

= e−iω1∆t

(
1 − β2δ −αβδ
−αβδ 1 − α2δ

)
, (D.20)

where ω1,2 are the eigenvalues of the Jaynes-Cummings Hamiltonian HJC (given

by Eq. (1.27)), δ = 1 − e−i(ω2−ω1)∆t, and α and β make up the unitary matrices

that diagonalise HJC (given by Eqs. (1.25) and (1.26)).

HJC =
(

ωX g
g ωC

)
=

(
α β

−β α

) (
ω1 0
0 ω2

) (
α −β
β α

)
. (D.21)

Substituting the expression for M̂ given by Eq. (D.20) into Eq. (3.33), and using

Eqs. (D.18) and (D.19), we find

Ĝ =
(

MXXeK0+2K1 MXC

MCXeK0 MCC

)
≈ e−iω1∆t

(
e−iΩp∆t(1 − β2δ) −αβδ
−e−iΩp∆t−Sαβδ 1 − α2δ

)
. (D.22)

Now we use the fact that ∆t � τJC (which is equivalent to |ω2 − ω1|∆t � 1).

We also assume that the polaron shift Ωp is small, so that |Ωp|∆t � 1. Working

within these limits is equivalent to taking the Trotter limit ∆t = t/N → 0. Keeping

only the terms linear in ∆t in the matrix elements, we obtain

Ĝ ≈ e−iω1∆t

(
1 − i∆t(Ωp + β2(ω2 − ω1)) −i∆t αβ(ω2 − ω1)

−i∆t αβ(ω2 − ω1)e−S 1 − i∆t α2(ω2 − ω1)

)
. (D.23)

From Eq. (D.21) and the fact that α2 + β2 = 1 we find

β2(ω2 − ω1) = ωX − ω1, (D.24)

α2(ω2 − ω1) = ωC − ω1, (D.25)

αβ(ω2 − ω1) = g. (D.26)
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This allows us to re-write Eq. (D.23) in the following way

Ĝ = e−iω1∆t

[
1(1 + iω1∆t) − i∆t

(
ωX + Ωp g

ge−S ωC

)]
, (D.27)

where 1 is a 2 × 2 identity matrix. Now, we diagonalise Ĝ:

Ĝ = Ŷ Λ̂Ŷ −1 , (D.28)

where the transformation matrix has the form

Ŷ =
(

eS/2 0
0 1

) (
α̃ β̃

−β̃ α̃

)
, (D.29)

in which the second matrix diagonalises a phonon-renormalised JC Hamiltonian

H̃ [see Eq. (3.39)]:

H̃ =
(

ωX + Ωp ge−S/2

ge−S/2 ωC

)
=

(
α̃ β̃

−β̃ α̃

) (
ω̃1 0
0 ω̃2

) (
α̃ −β̃

β̃ α̃

)
. (D.30)

The matrix of the eigenvalues Λ̂ in Eq. (D.28) then takes the form

Λ̂ = e−iω1∆t

(
1 − i∆t(ω̃1 − ω1) 0

0 1 − i∆t(ω̃2 − ω1)

)
. (D.31)

Coming back to the NN expression for the polarisation Eq. (3.32),

P̂ (t) =
(

eK0 0
0 1

)
ĜNĜ−1M̂, (D.32)

we note that Ĝ−1 ≈ 1 and M̂ ≈ 1 in the limit ∆t → 0, and also eK0 ≈ e−S (still

keeping the condition ∆t � τIB). We then obtain in the long-time limit t � τIB:

P̂ (t) = e−iω1t

(
e−S 0
0 1

)
Ŷ Λ̂N Ŷ −1 . (D.33)

Finally, we take the limit N → ∞ in the expression Λ̂N , using an algebraic formula

lim
N→∞

(
1 +

x

N

)N

= ex . (D.34)

Introducing

x = −i(ω̃1 − ω1)t , (D.35)

y = −i(ω̃2 − ω1)t , (D.36)
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we find

lim
N→∞

Λ̂N = lim
N→∞

(
1 + x

N
0

0 1 + y
N

)N

= eiω1t

(
e−iω̃1t 0

0 e−iω̃2t

)
. (D.37)

So finally,

P̂ (t) =
(

e−S 0
0 1

) (
eS/2 0

0 1

) (
α̃ β̃

−β̃ α̃

) (
e−iω̃1t 0

0 e−iω̃2t

) (
α̃ −β̃

β̃ α̃

) (
e−S/2 0

0 1

)

(D.38)

=
(

e−S/2 0
0 1

)
e−iH̃t

(
e−S/2 0

0 1

)
, (D.39)

which is Eq. (3.38).

D.5 Refined analytic approximation

D.5.1 Derivation of Eq. (3.40)

We take as our starting point Eq. (3.10) for the linear polarisation, writing it in

a matrix form using the two basis states |X〉 and |C〉:

P̂ (t) = 〈Û(t)〉ph , (D.40)

where 〈. . .〉ph indicates the trace over all phonon states. The 2 × 2 evolution

matrix operator Û(t) has the form

Û(t) = eiHphte−iHt = e−iHJCteiH1te−iHt , (D.41)

where HJC is the JC Hamiltonian defined in Eq. (??), and H and H1 have the

following forms:

H1 = HJC + Hph1, H = H1 +
(

1 0
0 0

)
V , (D.42)

with Hph and V being defined in Eqs. (3.2) and (3.3) respectively. We now take

Eq. (D.41) and express HJC as its diagonalised form HJC = Ŷ λ̂JCŶ −1 (with matrix

λ̂JC being the diagonal matrix of JC eigenfrequencies ω1,2), to give

Û(t) = Ŷ e−iH0teiH̄1te−iH̄tŶ −1 (D.43)
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where

H̄1 = Ŷ −1H1Ŷ = λ̂JC + Hph1 , (D.44)

H̄ = Ŷ −1HŶ = λ̂JC + Hph1 + Q̂V , (D.45)

with Q̂ being the polariton operator,

Q̂ = Ŷ −1
(

1 0
0 0

)
Ŷ =

(
α2 αβ
αβ β2

)
. (D.46)

We now introduce a reduced evolution operator Ū(t), which we define such that

Eq. (D.43) becomes

Û(t) = Ŷ e−iλ̂JCtŪ(t)Ŷ −1 . (D.47)

The reduced evolution operator Ū(t) can then be written as an exponential series

Ū(t) = eiH̄1te−iH̄t = T exp
{

−i
∫ t

0
Hint(t′)dt′

}
, (D.48)

where

Hint(t) = eiH̄1t(H̄ − H̄1)e−iH̄1t = Q̂(t)V (t) , (D.49)

with individual interaction representations of the polariton and phonon operators:

Q̂(t) = eiλ̂JCtQ̂e−iλ̂JCt and V (t) = eiHphtV e−iHpht. The expectation value of Ū(t)

becomes an infinite perturbation series:

〈Ū(t)〉 = 1 + (−i)2
∫ t

0
dt1

∫ t1

0
dt2Q̂(t1)Q̂(t2)〈V (t1)V (t2)〉

+(−i)4
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4Q̂(t1)Q̂(t2)Q̂(t3)Q̂(t4)

×〈V (t1)V (t2)V (t3)V (t4)〉 . . . (D.50)

We apply Wick’s theorem in an analogous manner to the linked cluster expansion

(Sec. B.2.2). For example,

〈V (t1)V (t2)V (t3)V (t4)〉 = 〈V (t1)V (t2)〉〈V (t3)V (t4)〉 + 〈V (t1)V (t3)〉〈V (t2)V (t4)〉

+〈V (t1)V (t4)〉〈V (t2)V (t3)〉

= D(t1 − t2)D(t3 − t4) + D(t1 − t3)D(t2 − t4)

+D(t1 − t4)D(t2 − t3) , (D.51)
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where

D(t − t′) = 〈V (t)V (t′)〉 =
∑

q

|λq|2iDq(t − t′) (D.52)

is the full phonon propagator, from which the IB model cumulant K(t) may

be defined (K(t) = − i
2

∫ t
0 dτ1

∫ t
0 dτ2

∑
q |λq|2Dq(τ1 − τ2)). It is convenient to now

introduce Dyson’s equation – Eq. (3.41) – which is equivalent to the perturbation

series Eq. (D.50) multiplied by e−iλ̂JCt. Accordingly, from Eqs. (D.40) and (D.47),

we arrive at Eq. (3.40).

D.5.2 Derivation of Eq. (3.43)

As mentioned in the main text, the self energy Σ̂ is represented by all possible

connected diagrams such as the second and fourth order diagrams sketched in

Fig. 3.4, which are given by the following expressions:

Σ̂(t − t′) = Q̂ Ĝ(0)(t − t′)Q̂D(t − t′) +
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Q̂Ĝ(0)(t − t1)Q̂Ĝ(0)(t1 − t2)Q̂Ĝ(0)(t2 − t′)Q̂

×[D(t − t2)D(t1 − t′) + D(t − t′)D(t1 − t2)] + . . . (D.53)

Eq. (D.53) are Dyson’s equation (3.41) are exact provided that all the connected

diagrams are included in the self energy. No approximations have been used thus far.

In the case of isolated (phonon-decoupled) polariton states, all of the matrices are

diagonal and the problem reduces to the IB model for each polariton level, having an

exact analytic solution which we exploit in our approximation. For the two phonon-

coupled polariton states treated here, the exact solvability is hindered by the fact

that the matrices Q̂ and Ĝ(0)(t) do not commute for any finite time t. However, in the

timescale |ω1 − ω2|t � 1, Eq. (3.42) may be approximated as Ĝ(0)(t) ≈ θ(t)e−iω1t1

and thus Ĝ(0)(t) approximately commutes with Q̂, so for example,

Q̂Ĝ(0)(t− t1)Q̂Ĝ(0)(t1 − t2)Q̂Ĝ(0)(t2 − t′)Q̂ ≈ Q̂Ĝ(0)(t− t′)θ(t− t1)θ(t1 − t2)θ(t2 − t′) ,

(D.54)

using Q̂2 = Q̂. Clearly, this approximation is valid if τJC � τIB. In this case

we obtain Eq. (3.43).
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E.1 Polaron transformation

The following elements of the Hermitian Hamiltonian H̄ are unchanged following

the polaron transformation defined in Eqs. (4.3) and (E.1):

ωXd†d → ωXd†d , (E.1)

ωCa†a → ωCa†a , (E.2)

The other elements of the Hermitian Hamiltonian H̄ transform as follows:

1) d†dV

Splitting V into
∑

q λ∗
qbq and

∑
q λqb

†
q and using the Baker-Hausdorff identity

(Eq. (A.7)) gives

eS

(
d†d

∑

q

λ∗
qbq

)
e−S = d†d

∑

q

λ∗
qbq +


d†d

∑

q′

(
λq′

ωq′
b†

q′ −
λ∗

q′

ωq′
bq′

)
, d†d

∑

q

λ∗
qbq


+. . . .

(E.3)

Using (d†d)n = d†d for integer n and the phonon commutation relations Eq. (A.4)

and Eq. (A.5),

eS

(
d†d

∑

q

λ∗
qbq

)
e−S = d†d

∑

q

λ∗
qbq − d†d

∑

q

|λq|2

ωq

. (E.4)

Note that the third term in the Taylor series expansion of eSBe−S is given by
1
2! [S, [S, B]], which for the present case is 1

2! [d
†d

∑
q′

(
λq′

ωq′
b†

q′ −
λ∗

q′

ωq′
bq′

)
, −d†d

∑
q

|λq |2
ωq

] =
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0. The series therefore terminates after the second term i.e. Eq. (E.4) is exact.

Looking now at d†d
∑

q λqb
†
q,

eS

(
d†d

∑

q

λqb
†
q

)
e−S = d†d

∑

q

λ∗
qb

†
q +


d†d

∑

q′

(
λq′

ωq′
b†

q′ −
λ∗

q′

ωq′
bq′

)
, d†d

∑

q

λqb
†
q


 + . . .

(E.5)

= d†d
∑

q

λqb
†
q − d†d

∑

q

|λq|2

ωq

. (E.6)

Again, the series terminates after the second term, rendering Eq. (E.6) exact. Thus,

eS

(
d†d

∑

q

(
λ∗

qbq + λqb
†
q

))
e−S = d†d

∑

q

(
λ∗

qbq + λqb
†
q

)
− 2d†d

∑

q

|λq|2

ωq

. (E.7)

3)
∑

q ωqb
†
qbq

eS

(∑

q

ωqb
†
qbq

)
e−S =

∑

q

ωqb
†
qbq +


d†d

∑

q′

(
λq′

ωq′
b†

q′ −
λ∗

q′

ωq′
bq′

)
,
∑

q

ωqb
†
qbq


 + . . .

(E.8)

Looking at the individual parts:

d†d

∑

q′

λq′

ωq′
b†

q′ ,
∑

q

ωqb
†
qbq


 = d†d

∑

q

λq[b†
q, b†

qbq] (E.9)

= d†d
∑

q

λqb
†
q[b†

q, bq] (E.10)

= −d†d
∑

q

λqb
†
q , (E.11)

and,

−d†d

∑

q′

λ∗
q′

ωq′
bq′ ,

∑

q

ωqb
†
qbq


 = −d†d

∑

q

λ∗
q[bq, b†

qbq] (E.12)

= d†d
∑

q

λ∗
q[bq, b†

q]bq (E.13)

= −d†d
∑

q

λ∗
qbq . (E.14)

Thus,

eS

(∑

q

ωqb
†
qbq

)
e−S =

∑

q

ωqb
†
qbq − d†d

∑

q

(
λ∗

qbq + λqb
†
q

)
+ . . . (E.15)
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The third term of the Taylor expansion of eSBe−S is given by 1
2! [S, [S, B]], which for

the present case is 1
2! [d

†d
∑

q′

(
λq′

ωq′
b†

q′ −
λ∗

q′

ωq′
bq′

)
, −d†d

∑
q

(
λ∗

qbq + λqb
†
q

)
]. We note that

this commutator [d†d
∑

q′

(
λq′

ωq′
b†

q′ −
λ∗

q′

ωq′
bq′

)
, d†d

∑
q

(
λ∗

qbq + λqb
†
q

)
] was previously cal-

culated when evaluating the second term of Eq. (E.7). Exploiting this result yields

eS

(∑

q

ωqb
†
qbq

)
e−S =

∑

q

ωqb
†
qbq − d†d

∑

q

(
λ∗

qbq + λqb
†
q

)
+ d†d

∑

q

|λq|2

ωq

. (E.16)

4) ga†d

Express the exponential e±S as a Taylor series,

e±S = 1 ± S +
S2

2!
+ . . . (E.17)

Substituting for S from Eq. (4.3) and using (d†d)n = d†d for integer n,

e±S = 1 + d†d

(
A± +

A2
±

2!
+

A3
±

3!
+ . . .

)
(E.18)

= 1 + d†d
(
eA± − 1

)
, (E.19)

where A± = ± ∑
q

(
λq

ωq
b†

q − λ∗
q

ωq
bq

)
. Using Eq. (E.19) in the transformation of ga†d

gives

eSga†de−S = g
(
1 + d†d

(
eA+ − 1

))
a†d

(
1 + d†d

(
eA− − 1

))
(E.20)

= ga†d + ga†
(
d†dd{eA+ − 1} + dd†d{eA− − 1}

+d†ddd†d{eA+ − 1}{eA− − 1}
)

. (E.21)

Using d†dd = 0 and dd†d = d,

eS
(
ga†d

)
e−S = ga†d eA− . (E.22)

5) gd†a

Employing an analogous method to step (4) above gives,

eS
(
gd†a

)
e−S = gd†a eA+ . (E.23)
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Drawing together Eqns Eqs. (E.1), (E.2), (E.7), (E.16), (E.22) and (E.23), we arrive

at the following expression for the transformed Hamiltonian H ′:

H ′ = (ωX + Ωp) d†d + ωCa†a + g
(
a†dB− + d†aB+

)
+

∑

q

ωqb
†
qbq , (E.24)

where we have defined,

Ωp = −
∑

q

|λq|2

ωq

, (E.25)

B± = eA± = e
±

∑
q

(
λq
ωq

b†
q−

λ∗
q

ωq
bq

)
. (E.26)

The transformed Hamiltonian H ′ described by Eq. (E.24) contains non-Hermitian

operators B±. Following [83], we separate the average of B± from the fluctuations.

We denote the average as follows,

〈B〉 = 〈B+〉 = 〈B−〉 . (E.27)

We then choose Hermitian combinations of the fluctuations,

Bg =
1
2

(B+ + B− − 2〈B〉) , (E.28)

Bu =
i

2
(B− − B+) , (E.29)

from which we arrive at Eqns Eqs. (4.4) to (4.7).

To find an explicit expression for the average 〈B〉, we consider a single q within

the expression for B±,

B±,q = e
±

(
λq
ωq

b†
q−

λ∗
q

ωq
bq

)
. (E.30)

Using the commutation relation [b†
q, bq] = 1, we note that [[b†

q, bq], bq] = [[b†
q, bq], b†

q] =

0. We may therefore apply the identity eA+B = eAeBe− 1
2 [A,B], giving

B±,q = e
− 1

2

∣∣∣ λq
ωq

∣∣∣
2

e
± λq

ωq
b†

qe
∓

λ∗
q

ωq
bq . (E.31)
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Taking the expectation value,

〈B±,q〉 = e
− 1

2

∣∣∣ λq
ωq

∣∣∣
2 〈

e
± λq

ωq
b†

qe
∓

λ∗
q

ωq
bq

〉
(E.32)

= e
− 1

2

∣∣∣ λq
ωq

∣∣∣
2 〈(

1 ± λq

ωq

b†
q + . . .

) (
1 ∓

λ∗
q

ωq

bq + . . .

)〉
(E.33)

= e
− 1

2

∣∣∣ λq
ωq

∣∣∣
2 

1 −
∣∣∣∣∣
λq

ωq

∣∣∣∣∣

2 〈
b†

qbq

〉
+ . . .


 . (E.34)

Noting that 〈b†
qbq〉 = Nq = 1

eβωq −1 where β is the inverse temperature (kBT )−1,

Eq. (E.34) may be expressed as

〈B±,q〉 = exp



−

∣∣∣∣∣
λq

ωq

∣∣∣∣∣

2 (
Nq +

1
2

)

 (E.35)

= exp



−1

2

∣∣∣∣∣
λq

ωq

∣∣∣∣∣

2

coth
(

βωq

2

)

 . (E.36)

Returning now to the full expression for B±,

B± = e
±

∑
q

(
λq
ωq

b†
q−

λ∗
q

ωq
bq

)
(E.37)

=
∏

q

B±(q) . (E.38)

Hence,

〈B±〉 = exp



−1

2
∑

q

∣∣∣∣∣
λq

ωq

∣∣∣∣∣

2

coth
(

βωq

2

)

 . (E.39)

Finally, converting the summation over q to an integration over ω:
∑

q → V
(2π)3v3

s

∫
d3ω,

Eq. (E.39) becomes,

〈B±〉 = exp
{

−1
2

∫ ∞

0
dω

J(ω)
ω2 coth

(
βω

2

)}
. (E.40)

E.2 Levels of approximation

Factorisation of initial density matrix

Factorisation of the initial density matrix ρ̃(0) as ρ̃(0) = ρ̃S(0) ⊗ ρ̃B(0) allows us

to express the first term of Eq. (4.25) as,

trB

{
−i[H̃int(t), ρ̃(0)]

}
= trB

{
−i

[ ∑

α=g,u

X̃α(t) ⊗ B̃α(t), ρS(0) ⊗ ρB(0)
]}

, (E.41)
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where we have replaced Hint with the expression given in used Eq. (4.7). We note

that X̃α(t) = eiH0tXαeiH0t = eiHsyst, Xα eiHsyst due to the commutivity of Hbath and

Xα. Similarly, B̃α(t) = eiHbatht Bα eiHbatht. Given that X̃α(t) and ρS act only on the

system Hilbert space H(sys), whilst B̃α(t) and ρB act only on the bath Hilbert space

H(bath), we may separate the commutator of Eq. (E.41) as follows,

trB

{
−i[H̃int(t), ρ̃(0)]

}
= trB

{
−i

∑

α=g,u

(
[X̃α(t), ρS(0)] ⊗ [B̃α(t), ρB(0)]

)}

= −i
∑

α=g,u

[X̃α(t), ρS(0)] ⊗ trB

{[
B̃α(t), ρB(0)

]}
. (E.42)

All operators within the partial trace are now solely operative within the bath

Hilbert space H(bath), thereby allowing us to replace the partial trace over bath

states with a full trace. Exploiting the cyclic properties of the trace operation,

we note that tr
{
B̃α(t)ρB(0)

}
= tr

{
ρB(0)B̃α(t)

}
and therefore tr

{
[B̃α, ρB(0)]

}
= 0.

The first term of Eq. (4.25) accordingly vanishes.

Factorisation of density matrix at all times

Applying the density matrix factorisation ρ̃(t) = ρ̃S(t) ⊗ ρ̃B and treating the second

term of Eq. (4.25) analogously to the first term,

trB

{
i

[
H̃ ′

int(t),
∫ t

0
dτ D̃(τ)

]}
=

i
∫ t

0
dτ trB

{[ ∑

α=g,u

X̃α(t) ⊗ B̃α(t), γC 2ã(τ)ρ̃S(τ) ⊗ ρ̃B(τ)ã†(τ) + . . .

]}
, (E.43)

where we have explicitly included only the first term of the Lindblad dissipator D̃(τ)

for clarity. We note that ρ̃S(τ) = eiHsyst ρS e−iHsyst due to the commutivity of ρS and

Hbath. Similarly, ρ̃B(τ) = eiHbatht ρB e−iHbatht due to the commutivity of ρB and Hsys.

Accordingly, as for the first term of Eq. (4.25), we may separate the commutator

and obtain terms such as i
∫ t

0 dτ
∑

α 2γC [X̃α(t), ã(τ)ρ̃S(τ)ã†(τ)]⊗trB{[B̃α(t), ρ̃B(τ)]}.

All terms within Eq. (E.43) include a direct product (⊗) with trB{[B̃α(t), ρ̃B(τ)]}

and therefore equate to zero for the reasons outlined above.
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E.2.1 Markov approximation in the interaction
representation

Expressing the interaction picture density matrix ρ̃S(t) in terms of the Schrödinger

picture system density matrix ρS(t), we have

dρ̃S(t)
dt

=
d

dt

(
eiH0tρS(t)e−iH0t

)
= eiH0t dρS(t)

dt
e−iH0t + i[H0, ρ̃S(t)] . (E.44)

Replacing the LHS of Eq. (4.27) with Eq. (E.44) and noting that e−iH0tH0e
iH0t = H0,

dρS(t)
dt

= −i[H0, ρS(t)]−
∫ t

0
dτ trB[Hint(t), [H̃int(τ −t), ρS(t)⊗ρB]]+DS(t) . (E.45)

We note that H0 = Hsys + Hbath and that [Hbath, ρS(t)] = 0. Making a change

of variables t′ = t − τ , we can write

dρS(t)
dt

= −i[Hsys, ρS(t)] −
∫ t

0
dt′ trB[Hint(t), [H̃int(−t′), ρS(t) ⊗ ρB]]

︸ ︷︷ ︸
(�)

+DS(t) .

(E.46)

As a final step, we consider term (�) in isolation. Substituting for Hint from

Eq. (4.7) yields

∫ t

0
dt′ trB[Hint(t), [H̃int(−t′), ρS(t)ρB]]

=
∫ t

0
dt′ trB


 ∑

α=g,u

Xα ⊗ Bα,


 ∑

α′=g,u

X̃α′(−t′) ⊗ B̃α′(−t′), ρS(t) ⊗ ρB





 .

(E.47)

Looking initially at the α = α′ = g term within Eq. (E.47),

∫ t

0
dt′ trB[Xg ⊗ Bg, [X̃g(−t′) ⊗ B̃g(−t′), ρS(t) ⊗ ρB]]

=
∫ t

0
dt′〈BgB̃g(−t′)〉

(
[Xg, X̃g(−t′)ρS(t)] − [Xg, ρS(t)X̃g(−t′)]

)
, (E.48)

where 〈. . .〉 represents the expectation value over the phonon bath. Applying

the same procedure to the α = α′ = u term within Eq. (E.47), noting that

the second term in Eq. (E.48) is the Hermitian conjugate (H.c) of the first, and

further noting that 〈BαB̃α′(−t′)〉 = 0 for α �= α′ (see Eqs. (E.54) and (E.55)),

we arrive at Eq. (4.29).
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Equations of motion

We consider each term in Eq. (4.29) in isolation, noting that in analogy to the case

without phonons, the only matrix elements of interest are the |X〉 〈0| and |C〉 〈0|

elements.

−i[Hsys, ρS(t)]

Substituting for H ′
sys from Eq. (4.5) gives the following,

−i[Hsys, ρS(t)] =
(

− i(Ωp + ΩX)ρX0 − ig〈B〉ρC0

)
|X〉 〈0|

+
(

− iΩCρC0 − ig〈B〉ρX0

)
|C〉 〈0| + o.t. (E.49)

where o.t. denotes matrix elements other than |X〉 〈0| and |C〉 〈0|.

DS(t)

Substituting for DS(t) from Eq. (4.21) gives,

DS(t) = −γXρX0 |X〉 〈0| − γCρC0 |C〉 〈0| + o.t. (E.50)

Combining Eq. (E.49) and Eq. (E.50), we find

− i[Hsys, ρS(t)] + DS(t) = −i

(
ωX + Ωp g〈B〉

g〈B〉 ωc

) (
ρX0
ρC0

)
, (E.51)

where ωX,C = ωX,C − iγX,C , as defined in Eq. (1.20).

〈BgB̃g(−t′)〉

Substituting for Bg from Eq. (4.12),

〈BgB̃g(−t′)〉 =
1
4

〈
(B+ + B− − 2〈B〉)

(
B̃+(−t′) + B̃−(−t′) − 2〈B〉

)〉
(E.52)

=
1
4

(
〈B+B̃+(−t′)〉 + 〈B−B̃−(−t′)〉

+〈B+B̃−(−t′)〉 + 〈B−B̃+(−t′)〉 − 4〈B〉2
)

, (E.53)

where we have used the fact that 〈B̃±(−t′)〉 = 〈B±〉 = 〈B〉. Evaluating each

term, we find,

〈B±B̃±(−t′)〉 = 〈B〉2e−φ(t′) , (E.54)

〈B±B̃∓(−t′)〉 = 〈B〉2eφ(t′) , (E.55)
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where φ(t′) is the phonon propagator evaluated at time t′,

φ(t′) =
∫ ∞

0
dω

J(ω)
ω2

(
coth

(
βω

2

)
cos(ωt′) − i sin(ωt′)

)
. (E.56)

(Note that φ(t) may be related to the IB cumulant K(t): φ(t) = K(t) + iΩpt + S.)

Thus,

〈BgB̃g(−t′)〉 =
〈B〉2

2
(
eφ(t′) + e−φ(t′) − 2

)
(E.57)

= 〈B〉2 (cosh(φ(t′)) − 1) . (E.58)

Herein, we will denote this term by Gg:

Gg(t) = 〈BgB̃g(−t)〉 = 〈B〉2 (cosh(φ(t)) − 1) . (E.59)

〈BuB̃u(−t′)〉

Substituting for Bu from Eq. (4.13) and in analogy with the above step,

〈BuB̃u(−t′)〉 =
1
4

(
−〈B+B̃+(−t′)〉 − 〈B−B̃−(−t′)〉

+〈B+B̃−(−t′)〉 + 〈B−B̃+(−t′)〉
)

(E.60)

=
〈B〉2

2
(
eφ(t′) − e−φ(t′)

)
(E.61)

= 〈B〉2 sinh(φ(t′)) . (E.62)

Herein, we will denote this term by Gu:

Gu(t) = 〈BuB̃u(−t)〉 = 〈B〉2 sinh(φ(t)) . (E.63)

[Xg, X̃g(−t′)ρS(t)]

In evaluating this term, we use the Baker-Hausdorff identity [Eq. (A.7)] to ex-

press X̃g(−t′) as,

X̃g(−t′) = X + [Hsys, Xg] +
1
2

[Hsys, [[Hsys, Xg]] + . . . , (E.64)

where we have made use of the commutivity of Hbath and Xg. Owing to the form

of Hsys and Xg, Eq. (E.64) is, in general, an infinite series that cannot be reduced

to a compact analytic form. We therefore take the limiting case of zero effective
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detuning i.e. ΩC = ΩX + Ωp. In this case, [Hsys, Xg] = 0 and thus X̃g(−t′) = Xg.

Substituting for Xg from Eq. (4.10),

[Xg, X̃g(−t′)ρS(t)] = [Xg, XgρS(t)] (E.65)

= g2ρX0 |X〉 〈0| + g2ρC0 |C〉 〈0| + o.t. (E.66)

Note that whilst we have chosen the case of zero effective detuning, one may equally

evaluate this term for non-zero detuning ΩC �= ΩX + Ωp by calculating the X̃g(−t′)

as a matrix product in the {|X〉 , |C〉} basis,

X̃g(−t′) = W

(
e−iΩ1t′ 0

0 e−iΩ2t′

)
W −1

(
0 g
g 0

)
W

(
eiΩ1t′ 0

0 eiΩ2t′

)
W −1 , (E.67)

where Ω1,2 are the eigenvalues of Hsys and W is a matrix composed of the right

eigenvectors of Hsys. Having calculated X̃g(−t′), one may proceed to calculate the

commutator [Xg, X̃g(−t′)ρS(t)] through matrix algebra.

[Xu, X̃u(−t′)ρS(t)]

Again, we make use of the Baker-Hausdorff identity [Eq. (A.7)], noting that,

Xu = ig (|X〉 〈C| − |C〉 〈X|) , (E.68)

[Hsys, Xu] = ig(−2g〈B〉it′) (|C〉 〈C| − |X〉 〈X|) , (E.69)

[Hsys, [Hsys, Xu]] = ig(−2g〈B〉it′)2 (|X〉 〈C| − |C〉 〈X|) , (E.70)

where we have again taken the limiting case of ΩC = ΩX + Ωp. Continuing in this

vein, we arrive at the following expression for X̃u(−t′)

X̃u(−t′) = ig
(

1 − 1
2

(2g〈B〉t′)2 + . . .
)

(|X〉 〈C| − |C〉 〈X|)

+ g
(

(2g〈B〉t′) − 1
3!

(2g〈B〉t′)3 + . . .
)

(|C〉 〈C| − |X〉 〈X|) (E.71)

= ig cos(2g〈B〉t′) (|X〉 〈C| − |C〉 〈X|)

+ g sin(2g〈B〉t′) (|C〉 〈C| − |X〉 〈X|) . (E.72)
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Thus,

[Xu, X̃u(−t′)ρS(t)] =
(
g2 cos(2g〈B〉t′)ρX0 + ig2 sin(2g〈B〉t′)ρC0

)
|X〉 〈0|

+
(
g2 cos(2g〈B〉t′)ρC0 + ig2 sin(2g〈B〉t′)ρX0

)
|C〉 〈0|

+ o.t. (E.73)

Again, whilst we focus on the case of zero effective detuning, one may equally

evaluate this term for ΩC �= ΩX + Ωp in a manner analogous to that described for

the term [Xg, X̃g(−t′)ρS(t)].

Combining all of the above and noting that the Hermitian conjugate of [Xα, X̃α(−t′)ρS(t)]

for α = g, u does not contribute any |X〉 〈0| or |C〉 〈0| terms, we arrive at Eq. (4.30).

E.2.2 Non-Markov

Taking Eq. (4.27) as our starting point and converting from the interaction rep-

resentation to the Schrödinger representation yields,

dρS(t)
dt

= − i[H0, ρS(t)] + DS(t)

−
∫ t

0
dτ e−iH0t trB

{
[H̃int(t), [H̃int(τ), ρ̃S(τ) ⊗ ρ̃B]]

}
eiH0t

︸ ︷︷ ︸
(�)

. (E.74)

We note that the difference between Eq. (E.46) and Eq. (E.74) is contained within

term (�) of both equations. Considering term (�) in isolation and substituting

for Hint from Eq. (4.7) yields

∫ t

0
dτ e−iH0t trB

{
[H̃int(t), [H̃int(τ), ρ̃S(τ) ⊗ ρB]]

}
eiH0t

=
∫ t

0
dτ trB


 ∑

α=g,u

Xα(t) ⊗ Bα(t), e−iH0t


 ∑

α′=g,u

X̃α′(τ) ⊗ B̃α′(τ), ρ̃S(τ) ⊗ ρ̃B


 e−iH0t


 .

(E.75)
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Looking initially at the α = α′ = g term within Eq. (E.75) and separating the

system and bath Hilbert spaces,
∫ t

0
dτ trB[Xg ⊗ Bg, e−iH0t[X̃g(τ) ⊗ B̃g(τ), ρ̃S(τ) ⊗ ρ̃B]eiH0t]

=
∫ t

0
dτ trB

{[
Bg, e−iHbatht[B̃g(τ), ρ̃B]eiHbatht

]}
⊗

[
Xg, e−iHsyst[X̃g(τ), ρ̃S(τ)]eiHsyst

]

(E.76)

=
∫ t

0
dτ

(
〈BgB̃g(τ − t)〉

[
Xg, e−iHsystX̃g(τ) ρ̃S(τ)eiHsyst

]

+ 〈B̃g(τ − t)Bg〉
[
Xg, e−iHsystρ̃S(τ)X̃g(τ)eiHsyst

] )
(E.77)

where 〈. . .〉 represents the expectation value over the phonon bath. Noting that

ρ̃S(τ) = eiHsysτ ρS(τ)e−iHsysτ and X̃g(τ) = eiHsysτ Xge−iHsysτ (converting from the

interaction representation to the Schrödinger representation), we may express

Eq. (E.77) as
∫ t

0
dτ trB[Xg ⊗ Bg, e−iH0t[X̃g(τ) ⊗ B̃g(τ), ρ̃S(τ) ⊗ ρ̃B]eiH0t]

=
∫ t

0
dτ〈BgB̃g(τ − t)〉

[
Xg, eiHsys(τ−t)[Xg, ρS(τ)]e−iHsys(τ−t)

]
. (E.78)

Expanding the inner commutator, we arrive at Eq. (4.41).
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