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Abstract 

The success of phytoremediation is dependent on the exposure of plants to contaminants, 

which is controlled by root distribution, physicochemical characteristics, and 

contaminant behaviour in the soil environment. Whilst phytoremediation has been 

successful in remediating hydrocarbons and other organic contaminants; there is little 

understanding of the impact of non-aqueous phase liquids (NAPLs) on plant behaviour, 

root architecture and the resulting impact of this on phytoremediation. The ability of 

plants to phytoremediate dissolved-phase contamination is well known, but the impact 

of Light NAPLs (LNAPLs) contaminants on plant growth and subsequent contaminant 

behaviour is largely unknown.  

A review of current literature available on phytoremediation was conducted. Across the 

studies considered, sandy loam, loam, and silt loam appear to have a better organic 

contaminant removal than other soil types because of nutrient availability and water 

supply for plant growth and root development. The review shows that the NAPLs, in 

particular, have an effect, which suggests that there is a physical effect of NAPLs on 

plants rather than the chemical impact.  

In this thesis, experimental works with ryegrass (Lolium perenne) grown under both 

hydroponic conditions and planted in artificial soils are presented, exploring the impact 

of the physical presence of an LNAPL (mineral oil) on plant growth, root distribution and 

oil removal. In the presence of LNAPL, a significant increase in root biomass yields and 

distribution, a decrease in shoot biomass and significant LNAPL removal were observed. 

Roots close to LNAPL sources were able to remove dissolved-phase contamination, and 

root growth through LNAPL sources suggest that direct uptake/degradation is possible, 

but any contribution from physical and direct interaction between root and NAPL has not 

been conclusively demonstrated here. Evidence of root redistribution in the case of 

LNAPL contamination across multiple adjacent pores is also presented. Although some 

impediment to root growth was seen at low oil contamination levels in general increased 

root biomass and also deeper root structures were observed as the coverage of the oil 

layer increased. The presence of plants corresponded to significant removal of the LNAPL 

in both hydroponic conditions and planted soil, whereas without plants only minimal oil 

loss was observed. The research has demonstrated the potential for plants to tackle NAPL 

contamination and shows that the phytoremediation of organic contamination is not 

limited to tackling only the dissolved phase, but that roots interacted with the NAPL 

which resulted in a significant indirect reduction in the presence of the LNAPL. 
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NAPLs   Non-Aqueous Phase Liquids 
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 1 

     INTRODUCTION 

Phytoremediation is the treatment of environmental contamination through the use 

of plants to clean up or contain contaminants in soil in situ. It has been used in the 

treatment of numerous organic contaminants, with a number of different 

mechanisms postulated, including plant-associated direct plant uptake and 

translocation into plant shoots and metabolism of the contaminants (Gobelius et 

al., 2017, Wang et al., 2004), volatilization of contaminants (Limmer and Burken, 

2016) or directly through plant, microbe and contaminant interactions with plant’s 

rhizosphere (dos Santos and Maranho, 2018). Phytoremediation techniques are easy 

to implement and cost-effective. This strategy for removing contaminants has been 

extensively investigated, and the initial phytoremediation research showed great 

promise as a cost-effective remedial strategy (Gerhardt, 2009). However, despite a 

good knowledge of the mechanisms of remediation, and successful laboratory 

studies, efforts to transfer research to the field have been challenging (Tomlinson 

et al., 2017). Improvements in practical implementation of this technology requires 

a greater understanding than currently exists concerning plants, soils, and plant-

soil interactions involved in the degradation of organic contaminants.  With the 

actual mechanisms of the multiphase interactions of plants with contaminants 

remaining relatively ill-defined and as such pose one of the more intriguing 

challenges in phytoremediation research today (Tomlinson et al., 2017).  

A significant problem humanity is presently confronting is the degradation of our 

soils. Some disturbing facts are 24 billion tonnes of fertile or 12 million hectares 

topsoil are lost every year to contamination (Food and Nations, 2015), with greater 

consequences on food production, human and ecosystem health.   

Phytoremediation success might be limited by (i) the depth of the plant’s root 

systems, (ii) the bioavailability of the contaminants with degradation occurring 

mainly at the plant rhizosphere (Gent et al., 2007, Arslan et al., 2017) and (iii) the 

long time required for complete remediation, as a result of the toxicity effect of 

contaminants on plant growth and root development.  Nonetheless, there are many 

advantages of phytoremediation. The consistency of reported positive reductions or 

loss of contaminant across most studies shows that phytoremediation is a 

worthwhile intervention for remediating or removing most organic contaminants 

from soil. In all cases, however, the interaction between contamination and the 

plant root system is central to the success of the treatment. Many organic 
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contaminant species are relatively insoluble in water, and so are commonly refered 

to as non-aqueous phase liquids (NAPLs), a separate liquid phase to groundwater 

which is relatively immobile, difficult to remediate and a persistent and recalcitrant 

source of dissolved phase contamination which pose serious management challenges 

(Tomlinson et al., 2017). Light non-aqueous phase liquids (LNAPLs), such as fuel 

oils, are less dense than water and so are commonly present in the capillary zone 

and around the phreatic surface. They are therefore likely to interact with plant 

root systems and so could be considered targets for phytoremediation but to date 

there has been little consideration of the impact of NAPLs on plant roots, or vice 

versa. Their physical distribution may be complex, with scenarios ranging from 

larger zones of continuous NAPL contamination to small unconnected individual 

ganglia isolated in single pore spaces with the latter becoming more common as the 

contaminant source ages.  

Interaction between the plant rhizosphere and contaminants is essential for 

remediation – the potential for plants to clean up dissolved phase contamination is 

well established as these are mobile and easily taken up by roots or microorganisms. 

The ability of various species to phytoremediate oil contamination at levels where 

NAPLs would be expected has also been demonstrated (Hunt et al., 2018, Lu et al., 

2010). However, the interaction of LNAPLs with roots, and their effect on root 

development and morphology, plant growth and subsequent contaminant behaviour 

is yet to be established. For example, NAPLs may hinder root development and 

instigate root avoidance of NAPL-contaminated pores or zones, but roots in close 

proximity to NAPLs may be able to reduce dissolved-phase contamination through 

mechanisms including uptake and rhizodegradation such that non-equilibrium 

conditions arise, causing relatively rapid dissolution of the NAPL. It may even be the 

case that roots and the rhizosphere interact with the NAPL to bring about its 

removal or breakdown directly. The impact of likely NAPL-forming contaminants on 

roots has been considered previously (Vázquez-Cuevas et al., 2018b), but the impact 

of the physical form of the chemical, and therefore the presence or absence of 

NAPL, was not addressed. Roots of plants in soil mixed with heavy oil were found to 

be coarse and injured (Naidoo, 2016, Franco et al., 2011) with increased root 

diameter commonly observed. Effects of oils or similar contaminants that are known 
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or likely to impact upon root morphology include decreased hydraulic conductivity 

due to heavy oil blocking flow paths (Khamehchiyan et al., 2007a), higher soil 

temperature due to darker soil causing increased absorption of heat (Balks et al., 

2002), increased mechanical impedance (Merkl et al., 2005)*, water deficiency 

causing drought stress (Merkl et al., 2005), or increased competition for nutrients 

such as phosphorus with microorganisms biodegrading the oil (Merkl et al., 2005).  

However, the actual mechanisms of the multiphase interactions of plant, soil 

minerals, soil pore liquid and soil pore gas with NAPL contaminants in the 

rhizosphere remain ill-defined. Part of this work have been reported in Oniosun et 

al. (2018). 

 Research aims and objectives 

The overall research aim driving this project is to understand plant and NAPL 

interactions within the vadose zone. Phytoremediation of organic contaminants 

depends on the close interaction between plant and contaminant. For some 

phytoremediation treatments of contaminated soils, NAPLs may be present and 

prove detrimental to the process. A key question is whether the spatial distribution 

of roots is governed or correlated with the spatial distribution of NAPL 

contamination in the soil and what role does the form of contamination play in the 

remediation, and why this happens?. This work will explore the multiphase 

interactions of plant, soil minerals and soil pore liquid with NAPL contaminants at 

microcosm and macrocosm levels. By so doing, the investigations seek to develop 

an understanding of how phytoremediation can be employed for source zone 

treatment in the presence of NAPLs. 

In addressing the project aims, some questions are to be answered: 

• What is the performance and efficacy for current phytoremediation studies 

based on scientific findings?  

• What is the impact of NAPL on physical distribution of roots at pore scale as 

a single plant exposed to oil?  
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• What is the impact of NAPL on physical distribution of root growth on a 

planted soil? 

• How do plants impact the behavior and fate of NAPL? 

Some objectives were established to address the research questions: 

• Conduct a review of current literature available to compare a large number 

of phytoremediation studies with regards to their performance and efficacy 

of the studies. Compare broad trends in results focusing on scientific 

findings. 

• Investigate and observe the impact of contaminant spatial distribution on 

the root development in individual plants in order to understand the 

interactions of roots and non-aqueous phase liquids at the small scale.  

• Investigate and observe the spatial distribution of root development 

between contaminant spatially distributed in unsaturated, NAPL 

contaminated soils in order to understand the interactions of roots and non-

aqueous phase liquids at the larger scale.  

• Investigate and study the fate of NAPLs in order to understand whether 

plants clean up only dissolved contamination or if there is any effect on the 

NAPL itself. 

In order to address the primary aims of the thesis, two series of experimental 

laboratory works were designed and undertaken: 

Experiment 1 – Laboratory microcosm phytoremediation experiments. 

The hydroponic microcosms mimicked the soil pore structure to explore the impact 

of NAPL on individual plant root systems with single seed. The principal aim of the 

hydroponic study is to explore how root growth and distribution is affected by 

physical proximity to an LNAPL in the pore space. Quantitative and semi-

quantitative measurements for root growth, root morphology, NAPL loss, shoot 

height and root length were measured over time, and root and shoot biomass 
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determined. Preliminary results from a small part of this work have been reported 

in Oniosun et al. (2018).  

Experiment 2 – Laboratory mesoscale phytoremediation experiment. 

The larger scale mesocosms have explored phytoremediation and impact of oil on 

plants in artificial soil systems. The behaviour observed at the microcosm scale was 

explored at a larger scale in soil mesocosms to determine how the response of an 

individual plant could be extrapolated to the behaviour of a planted soil and its 

effect on LNAPL contamination. The primary aims of the mesocosms study are to 

observe the spatial distribution of root development in the presence of a spatially 

distributed contaminant in unsaturated soils and to explore how soil/plant/water 

relations are affected by direct physical contact with NAPLs. In particular, this study 

investigates the impact of an LNAPL on root growth, root distribution, and oil loss, 

in soil at the macroscopic scale. Also, preliminary results from a small part of this 

work have been reported in Oniosun et al. (2018). 

 Thesis overview 

This thesis investigated the multiphase interactions of plant, soil minerals and soil 

pore liquid with LNAPL (mineral oil) contamination on two different studies. The 

project included the characterization of two soils modeled in the laboratory. 

Preliminary growth trials were conducted in the laboratory to test all the equipment 

and materials. 

This thesis comprises of 6 chapters including chapter 1 (Introduction), dealing with 

the context and background of previous researches in the field of phytoremediation. 

Chapter 2 – Literature Review: This chapter used an elaborate review methodology 

to compare a large number of phytoremediation studies with regard to their 

performance and efficacy. The study assessed 350 experimental (laboratory and 

field-based) articles concerning the success or otherwise of phytoremediation and 

by combining outcomes from multiple studies seeks to identify patterns and 

relationships not apparent at the level of individual investigations. The study 

compared broad trends in results focusing on variables such as site-specific soil 
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conditions, plant and contaminant type, soil pH and organic matter/organic carbon, 

plant survival, contaminant reduction and the fate of pollutants.  

Chapter 3 – Materials and Methods: This chapter presents the materials used and 

the experimental methods adopted for carrying out the laboratory tests presented 

in this thesis, and the methods used to analysed and interpreted results.  

Chapter 4 – Laboratory phytoremediation experiments on the impact of NAPLs on 

root distribution and growth, and oil Loss, at the pore-scale. This chapter presents 

the results of the experimental work with ryegrass (Lolium perenne) grown under 

hydroponic conditions, exploring how plant growth, root distribution and 

development, and oil removal are affected through direct physical contact with 

mineral oil, a light non-aqueous phase liquid (LNAPL), in pore-scale 3D-printed 

rhizoboxes. The results and analysis of root distribution and growth, and oil loss in 

the hydroponic system are presented. 

Chapter 5 – Laboratory phytoremediation experiments on the impact of NAPLs on 

root distribution and growth, and oil loss, in soils at the macroscopic scale. This 

chapter presents the results of a series of experiments that studied the impact of 

NAPL contaminants on plant growth in artificial soils at the macroscopic level to 

identify how phytoremediation can be employed for source zones treatment in the 

presence of NAPLs. The results and analysis of root distribution and growth, and oil 

loss in the artificially prepared sandy loam and loam are presented. 

Chapter 6 – Implications and conclusions. This chapter applied the knowledge gained 

from the pore-scale and the macroscopic experiments to discussed how plants 

impact the behaviour and durability of NAPLs and identify how plants can be 

employed for phytoremediation of source zone contamination where NAPLs are 

present.  

Work conducted as part of this thesis has been presented at the 8th International 

Congress on Environmental Geotechnics in 2018. An article has also been submitted 

to the Journal of Environmental Management.  All papers are presented in Appendix 

2. 
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     Literature Review 

 Introduction 

This chapter presents the results of a review to compare a large number of 

phytoremediation studies. Phytoremediation is a method for cleaning up a wide 

range of environmental contaminants, a technique by which plant root exudates 

trigger microbial activities, or induce microorganisms to produce specific enzymes 

to enhance rhizodegradation or a process where plants degrade pollutants through 

plant uptake and metabolic process. However, this technology still requires a 

greater understanding than is currently available concerning plant and soil 

components and interactions involved in the degradation of organic contaminants. 

The goal of this study was to compare a large number of phytoremediation studies 

with regard to their performance and efficacy. The study assessed 350 experimental 

(laboratory and field-based) articles concerning the success or otherwise of 

phytoremediation and by combining outcomes from multiple studies seeks to 

identify patterns and relationships not apparent at the level of individual 

investigations. The study compared broad trends in results focusing on variables 

such as site-specific soil conditions, plant and contaminant type, soil pH and organic 

matter/organic carbon, plant survival, contaminant reduction and the fate of 

pollutants.  

The aim and objectives of the review undertaken here is to significantly extend 

work done in previous reviews by combining outcomes from multiple studies and 

identify patterns and relationships not apparent at the level of individual 

investigations. And to compare broad trends in results focusing on quantitative 

analysis of scientific issues. 

 Methodology 

An elaborate review methodology was used to compare a large number of 

phytoremediation studies regarding their performance and efficacy. Analysis was 

used to merge results and compare broad trends in outcomes (Antman et al., 1992). 

The methodology has been used to review large number of phytoremediation studies 

on the multiphase interactions of plant, soil minerals, soil pore liquid and soil pore 

gas with LNAPL contaminants. A key objective of the elaborate review methodology 

is to minimise bias and ensure that all reasonable efforts are made to include 
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relevant research papers and not be restricted by language or publication status. 

Such bias is minimised by adopting elaborate, review search methods that seek to 

gather research evidence which meets pre-set selection criteria to address the 

specific research questions. Such a meta-analysis procedure was used to assess 350 

experimental (laboratory & field-based) articles regarding the success or otherwise 

of phytoremediation to determined trends in outcomes.  

2.2.1 Literature search and scope 

Data sources on the effects and mechanism of phytoremediation of residual oil 

hydrocarbons on soil were collated from the scientific literature. The following 

sources which include electronic databases covering all available years were 

searched for relevant studies: Scopus, Google Advanced Scholar, Web of Science, 

Engineering Village, Intute, National and regional databases, Universities Websites, 

Dissertations and thesis databases. To enhance the search of various bibliographic 

databases a combination of search fields were used. In most of the databases, a 

search using the Regular Search Field, an Advanced Search Option or the Multi-Field 

Search Option was undertaken. The search was carried out with two or more search 

terms active, typically for each search term (loose phrase or separate words) the 

field where those terms appear was also defined (with “Title, Abstract, and 

Keywords” fields mainly used to retrieve results in the title and summary of the 

documents). The concept of phytoremediation was combined with descriptive terms 

defining the contaminant by using the ‘OR’ or ‘AND’ operator based on the database 

platform. Also, truncation was used for finding variants of search terms, e.g. phyto* 

- to find phytoremediation, phytovolatilisation, phytodegradation, etc. Truncation 

was also combined with wildcard symbols (e.g., ‘*’ or ‘?’ or ‘#’, depending on the 

database), to find terms with alternative spellings, such as “phyto*volatili#ion”. 

Proximity searching was also carried out to find relevant results if they appear in 

different order by using different operators, depending on the database platform, 

such as Scopus Pre/n and W/n. e.g., phyto Pre/2 remediation and phyto W/2 

remediation or ‘Remediation W/2 by the plant’, etc.   

The terms in Table 2–1 were searched using truncation, wildcard and proximity 

symbols depending on the database platform: 
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Table 2–1- Search terms from various bibliographic databases 

Process search terms (Loose 
phrase or Separate words) 

 The 
combine 
operators 

 The descriptive terms 

     
Phytoremediation of      Petroleum 
Plant remediation of    Contaminated soil 
Phyto* of    Residual oil 
Natural phytoremediation of    Hydrocarbon 
Phytovolatili?ion of    Bioremediation 
Rhy?odegradation of    Oil 
Rhi?oremediation of    Diesel oil 
Rhi?ostimulation of  ‘AND’ / 

‘OR’ 
 Total Petroleum Hydrocarbon 

(TPH) 
Phytorestoration of    Polycyclic Aromatic Hydrocarbon 

(PAH) 
Phytoaccumulation of    Light non-aqueous phase liquid 
Phytotransformation of    LNAPL 
Plant-assisted 
bioremediation of 

   Dense non-aqueous phase liquid 

Plant-assisted degradation 
of 

   DNAPL 

Plant-aided in situ 
biodegradation of 

   Organic contaminant 

    Chlorinated Organic 
    Chloro ethylene 

 

2.2.2 The data collected 

Data were independently obtained from the selected studies to determine broad 

trends in outcomes based on quantitative analysis of scientific issues. Data were 

extracted on the following key elements: the nature, type and concentration of the 

contaminant, the types of remediation technique used, the success or otherwise of 

technique, remediation plant(s), analyses, and results summary. The properties of 

the soil were also collated such as organic matter, pH value and soil types. 

Outcomes such as plant viability & survival, contaminant reduction and the fate of 

contaminants were also gathered as outlined in the research aims and objectives. 
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The values of the added or estimated contaminants in the soil by the studies were 

normalized arbitrarily using the ‘Dutch Values’ - Earth/sediment (mg/kg dry matter) 

‘Intervention Values’ for soil remediation (van Volkshuisvesting, 2000, Pronk, 2000).  

2.2.3 Implementation of paper selection and data collection process 

The study selection was made in the following steps: (i) merging search results and 

removing duplicate records (ii) examining title and abstracts to remove obviously 

irrelevant studies, (iii) reviewing full text reports to ensure relevance of studies, 

(iv) making final selection decision on study inclusion based on relevance of studies 

and (v) undertaking data collection. To help ensure that the decisions of which 

studies to add are reproducible, literature suggested that it is advantageous for 

more than one author to repeat parts of the selection or analysis process (Becker, 

1998, Higgins and Green, 2011). In this review, the author and the PhD supervisors 

took part in the paper selection process. The data collection process, analysis and 

graphical plots were carried out by the author. The assessments of relevant papers 

were made by people who were masked to information about the article, such as 

the journal that published it, the authors, the institution, and the scope of the 

results. The final data set contained 350 papers. The majority of the selected 

studies are laboratory experiments (75%), followed by greenhouse studies (17%), 

with 8% corresponding to field research.  

The studies have been classified using two different categories considering 

contaminant type and contaminant state. The contaminant type category defines 

studies as considering either ‘heavy oil’, ‘total petroleum hydrocarbons’ (TPH), 

‘polycyclic aromatic hydrocarbons’ (PAH) or ‘higher alkanes’ (TPH has been 

separated from higher alkanes because TPH are measure of gross quantity of amount 

of petroleum-based hydrocarbons without identification of its constituents 

(Edwards et al., 1997)). These sub-categories are based on the methods for sampling 

and analysis of environmental media for the family of petroleum hydrocarbons as 

listed by the Total Petroleum Hydrocarbon Criteria Working Group Series (TPHCWG) 

who group hydrocarbon compounds into a small number of fractions having similar 

transport properties. i.e., compounds having similar leaching factor (LF) and 

volatilization factor (VF) values ranging one order of magnitude for both aromatics 

and aliphatics (Gustafson, 1997). The range represents the fractions in equivalent 

carbon number (EC). It is a reasonable level of accuracy, given the simplifying 
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assumptions and uncertainty inherent in modelling the behaviour of hydrocarbons 

in soils and is consistent with other approaches dealing with complex mixtures 

(Bischoff et al., 1991, Peterson, 1994). The second categorisation is related to state 

of the contaminants and groups the studies as considering DNAPL, LNAPL, or 

dissolved contaminants. The sub-categories were determined based on density and 

site concentrations compared to water solubility of the petroleum hydrocarbons 

contaminants for the actual study conditions. The two categories have been chosen 

because there has not ever been any consideration of phytoremediation tackling 

free-phase contamination explicitly. Mineral oil (light and heavy or white mineral 

oil (petroleum) or saturated hydrocarbons)) have been classified under TPH (for the 

contaminant type category) and under LNAPL (for the contaminant state category). 

The breakdown of studies for each category are shown in Table 2–2.  

 

Table 2–2 - The reviewed studies contaminants grouping by the review 

Contaminant Type  Percentage of Studies (%) 

Heavy oil 44 
Total petroleum hydrocarbons (TPHs) 27 
Polycyclic aromatic hydrocarbons (PAHs) 21 
Higher alkanes 8 

Contaminant State  Percentage of Studies (%) 

Light non-aqueous phase liquids (LNAPLs) 67 
Dense non-aqueous phase liquids (DNAPLs) 26 
Dissolved (Concentration below solubility 
limit) 

7 

The analysis of the collected data has been structured to begin with the study of 

the effects of LNAPLs and residual oils on physical, mechanical and chemical 

properties of the soils and then, the impacts of LNAPLs on the plant behaviour and 

survival. This is then followed by consideration of the phytoremediation and plant 

accumulation of LNAPLs and residual oil and the implications for practical 

application.  

2.2.4 Limitations and exclusion criteria 

The review does not cover intervention techniques focusing on metals pollutants 

and mathematical models. Across studies, the depth of hydrocarbon contaminants 
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in the soil varied but the effects of contaminant depth were not analysed in the 

review. Moreover, the results of current research regarding plants used are difficult 

to interpret, and causative relationships are hard to establish because many studies 

involve plant species with many phenotypic differences. Growth conditions are not 

reported because the condition varied widely between studies. Contaminant levels 

and concentration are not reported; however, they have been used in the review 

sub-categories which were determined based on density and site concentrations 

compared to water solubility of the petroleum hydrocarbons contaminants for the 

actual study conditions. 

 

 Impact of NAPLs and residual oil on soil properties 

2.3.1 NAPLs and residual oil physical effects on soil properties 

 NAPL contaminated soil saturates more gradually when compared to similar 

uncontaminated soils because of the nonpolar characteristics of the oil which causes 

contaminated soils, especially with high viscosity contaminants to exhibit poor or 

restricted water infiltration (Boulding and Ginn, 2016, Alrumman et al., 2015). The 

clogging of the pore space restricts water from reaching the rhizosphere and blocks 

interchange of gases in the soil. Some studies observed aggregation of NAPL 

contaminated soil, while others reported soil structure disintegration and dispersion 

following contaminant release. The non-polarity of oil causes the observed effects. 

It was suggested that the non-polarity of oil further restricts the infiltration of water 

and oxygen into the soil profile (Fernandez and Quigley, 1985, Khamehchiyan et al., 

2007b). The restricted infiltration of water and oxygen can also lead to a decrease 

in the Atterberg limits in clay soil with increasing LNAPL contamination and there is 

a reduction in maximum dry density and optimum water content of the soil 

(Ghasemzadeh and Tabaiyan, 2017). Therefore, with restricted water infiltration in 

contaminated soils, the ability of the soil particles to be densely compacted is 

usually inhibited by capillary forces.  Moreover, with the increasing oil content, the 

capillary tension force will decrease, (Delage, 2013, Fernandez and Quigley, 1985) 

due to the hydrophobic nature of oil that can inhibit water from making contact 

with the soil particles, this can create a soil crust which can also restrict water and 

oxygen infiltration into the soil profile and hinder plant development. 
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Direct shear tests to investigate the impact of NAPL contamination on the strength 

properties of soil show an extreme reduction in cohesion with increasing oil 

addition, especially in fine soils (Delage, 2013, Alrumman et al., 2015). Studies 

suggested that during infiltration of an unsaturated soil only capillary forces are 

involved. Therefore, the reduction in shear strength following NAPL contamination 

is likely due to mechanical interactions caused by the viscosity of the pore fluid and 

the physical-chemical impacts caused by the reduced dielectric constant 

(Ratnaweera and Meegoda, 2005).  

It has been reported that following a release or oil application to the soil, the 

moisture content may increase or decrease depending on the soil properties (Benka-

Coker and Ekundayo, 1995, Khamehchiyan et al., 2007b). Phytoremediation studies 

suggested that residual oil will pool in poorly drained low areas in fine-grained soils, 

displacing pore gas and causing the soil to saturate (Marín-García et al., 2016). In 

contrast to clayey soils, sandy soil presented severe water repellency due to 

relatively small surface area and low organic content, and are more prone to 

develop soil water repellency than finer soil (Oostindie et al., 2017). Some well 

aerated NAPL contaminated soils have a propensity to dry out and be susceptible to 

erosion  as a result of increase in water repellency which may result in very long 

infiltration times causing more run-off, soil erosion, and a reduced capacity of the 

soil to support vegetative growth for phytoremediation (Huang et al., 2018) . 

Therefore, the adequate addition of organic residues leads to the synthesis of 

complex organic compounds that hold soil particles together which help to maintain 

a loose, open, granular condition (Meena et al., 2015, Mbuthia et al., 2015) . Water 

is then better able to infiltrate and percolate downward through the soil. Organic 

matter promotes soil granulation thus maintaining large pores through which water 

can enter and percolate downward which permit the better exchange of gases 

between soil and atmosphere and thus enhances plant growth (Senesi and Loffredo, 

2005).  

2.3.2 NAPLs and residual oil chemical effects on soil 

Studies indicate that inhibition of the nitrification of ammonium-N to nitrate-N is 

one of the key effects of NAPLs and residual oil on the soil as a result of 

contaminants depressing the activity of the microorganisms, such as low 
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temperature and a deficiency of water leading to low oxygen and unfavourable 

conditions for nitrifying bacteria (Nitrosomonas) (van Kessel et al., 2015). The 

extractable potassium and phosphorus levels in the soil may also become inhibited 

after contamination due to the reduction in nutrients availability following oil 

contamination (Inglezakis et al., 2017, Ramadass et al., 2015). Usually, there is a 

high demand for oxygen by microorganisms following LNAPL addition to soil, and 

anaerobic conditions may arise as the oxygen levels in the oil contaminated soil 

become diminished (Marshall, 2012, Norris, 2017). Literature suggests that 

increased solubility of iron and manganese in NAPL contaminated soil may also 

contribute to anaerobic or reduced nutrients conditions (Alarcón et al., 2008) that 

causes inhibition to plant developments.  

 Impact of LNAPLs and residual oil on plant behaviour and 

survival 

2.4.1 Effects of contaminants on plant growth and developments  

Organic contaminants are known to inhibit plant growth (Buss et al., 2015, Franco 

et al., 2011, Vázquez-Cuevas et al., 2018c). The primary inhibiting factors are 

considered to be the toxicity of lower molecular weight compounds and the 

hydrophobic properties of the higher molecular weight compounds limiting the 

ability of plants to absorb water by decreasing the field capacity of soils and 

nutrient contents (Inglezakis et al., 2017, Norris, 2017). 

The effect of contaminant presence on plant growth in the reviewed literature was 

categorised based on seed emergence and relative plant yield data, using the 

descriptors detailed in Table 2–3.   
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Table 2–3 – Categorisation of effects of LNAPLs and residual oil on plant growth *by 

fresh/dry weight of shoots and leaves, shoot height, root length, fresh/dry biomass of 

shoot, fresh/dry biomass of root, chlorophyll content or soluble protein content. The 

contaminant effect descriptor was based on the review statistical analysis. 

Contaminant effect 
descriptor 

Seed emergence relative to 
control (days) 

Plant yield*:  
 (%) of control 

Significantly Promotes 
Plant’s Growth 

Over 5 days early Over 120 

Moderately Promotes 
Plant’s Growth 

3-4 days early 110 - 120 

Slightly Promotes Plant’s 
Growth 

1-2 days early 100 – 110 

No Reported Inhibition 
on Plant’s Growth 
 

The same as control No apparent change 

Slightly Inhibits Plant’s 
Growth 

1-2 days delayed 70 – 99.5 

Moderately Inhibits 
Plant’s Growth 

3-4 days delayed 40 – 70 

Significantly Inhibits 
Plant’s Growth 

Over 5 days delayed 0 – 40 

 

The results of this meta-analysis are shown in Figure 2–1, subdivided by each 

contaminant state considered (as defined in Table 2–2). 
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Figure 2–1 - The effect of contaminant states on plant growth and survival 

Figure 2–1 indicates that both LNAPLs and DNAPLs have the potential to affect plant 

growth, with 81 % and 73 % of studies indicating some inhibition (i.e. this covers the 

three worst categories) of plant growth and 27 % and 43 % of studies indicating a 

significant impact from LNAPLs and DNAPLs respectively. Studies suggest that the 

disparity between solubilities of the constituents in NAPL has significant 

implications for the behaviour of these contaminants and their potential to 

contribute to plant development. First, some NAPLs compounds are toxic 

predominantly because of the relative solubility in water and volatility, e.g. 

xylenols, cresols and naphthols (Mateas et al., 2017, Malk et al., 2014). Literature 

suggests that the lower molecular weight (lighter fraction) hydrocarbons are more 

toxic than the medium and heavy fractions. For example, among the chlorinated 
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paraffins (CPs), the longer chains (LCCPs, C >17) are insoluble in water and are 

therefore metabolised slowly making them less toxic to plant growth (Parrish et al., 

2006). Moreover, the soluble aromatic compounds appear to be more toxic because 

they degrade more slowly and are more volatile, and can move quickly through the 

cell membranes, causing harm to the plant and consequentially inhibit growth 

(Vázquez-Cuevas et al., 2018b). Second, the significant inhibition in plant growth 

has also been attributed to the presence of medium and higher molecular weight 

NAPLs in the soil, and even though they were reported to be less toxic, they did 

affect soil fertility and interchange of gases by clogging pore space.  (Chen et al., 

2013, Ramadass et al., 2015). This is because with low solubility and low volatility, 

the medium and higher molecular weight NAPLs are persistent in the environment 

(Vázquez-Cuevas et al., 2018b). Moreover, the exposure of the medium and higher 

molecular weight NAPLs to sunlight will increase their toxicity through acid and 

peroxide formation (Franco et al., 2011, Wolfe, 2013a). Compounds that are less 

soluble also tend to be more recalcitrant to phytoremediation and tend to cover the 

surface of the soil particles thereby reducing the electrostatic interaction with some 

essential nutrients  (K+, Ca++, NH4
+) for the plants (Atlas and Bartha, 2012, Wolfe, 

2013a). Under these conditions, the plant will experience a metabolic imbalance 

caused by a condition of oxidative stress which hampers the ability of the cell to 

regulate the chemical processes (Romeh, 2017, Hou et al., 2015).   

However, in Figure 2–1, the presence of dissolved contaminants with concentrations 

below the solubility limit appears to be less toxic to the plants with only 25% of 

studies report any noticeable inhibition on plant growth (i.e. this covers only two 

of the worst categories). This is possibly due to the fact that they degrade more 

rapidly (Wolfe, 2013a, Wenzl et al., 2006). Therefore, the NAPLs (lower, medium 

or higher molecular weight) have potential to contribute to the adverse effect on 

the plant growth due to high toxicity of their soluble components and can form a 

hydrophobic layer around root and seed that reduce nutrients absorption and 

oxygen. The NAPLs, in particular, may have an effect on phytoremediation, the 

review has indicated that both the medium and higher molecular weight NAPLs are 

persistent in the environment which suggests that there is a physical effect of NAPLs 

on soil and plant development rather than just the chemical impact.  
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70 % of studies reported a reduction in fresh or dry weight of shoots and leaves of 

plants with increasing contaminant concentration. Palmroth et al. (2006) and Zhang 

et al. (2010) found that the presence of high levels of contaminants negatively 

affect the growth and health of plants due to the reduced permeability of solutes 

induced by the introduction of pollutants. It was noted that clogging of some inter-

particle spaces by contaminants, reducing the available inter-particle spaces for 

water seepage, is considered to be one of the reasons for this. Some physiological 

processes in plants, such as transpiration, respiration, and translocation are also 

affected adversely by oil contamination. It has been established for some time that 

heavy oils have herbicidal properties and direct effects on plants are usually very 

distinct (Baker, 1970). Leaves may display signs of phytotoxicity such as chlorotic 

or necrotic lesions and stunted growth (Adelusi Oyedeji et al., 2015, Agamuthu et 

al., 2010). Basumatary et al. (2012)  and Feng et al. (2016), studying Cyperus 

odoratus and paddy rice in the presence of organic contaminants, also reported that 

there is a reduction in growth and development in terms of height, leaves and 

biomass production, which are usually characteristics of plant stress.  

Plant roots can be directly or indirectly affected by the presence of heavy oil in the 

soil.  Studies observed that roots of plants growing in pots after the soil was mixed 

with heavy oil were coarse and injured (Merkl et al., 2005, Phillips et al., 2012), 

with the roots of Brachiaria brizantha (Hochst. ex A. Rich.), Stapf (Poaceae), and 

Cyperus aggregatus (Willd.) were severely damaged and death resulted in 

contaminated pots. Root death or injury can be related to intermediate compounds 

– alkanoic acids, phenols and aromatic acids that can potentially form when heavy 

oil is biodegraded by microorganisms in soil (Atlas and Bartha, 2012, Vázquez-

Cuevas et al., 2018b). Also, petroleum hydrocarbon-contaminated soil may become 

anaerobic and reducing conditions can result in increased solubility of iron and 

manganese to the level that the potentially phytotoxic elements are sorbed by roots 

and plants leading to growth deterioration in the form of thicker roots and 

decreased shoot height and mass  (Alarcón et al., 2008, Dodangeh et al., 2018). 

 

The results of the meta-analysis are also shown in Figure 2–2, subdivided by 

contaminant type (as defined in Table 2–2).  
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Figure 2–2 - The effect of contaminant type on plant growth and survival 

Considering Figure 2–2 it is clear that heavy oil, total petroleum hydrocarbons (TPH) 
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and 34, 32 and 18 % of studies respectively indicating moderately effects on growth 

and development of plants. The reports of significant and moderate impacts for the 

TPHs and PAHs are perhaps due to the toxicity of their soluble components on the 

plants  (Rice et al., 1976, Wolfe, 2013a, Wenzl et al., 2006). Dissolved forms of 

these groups contain components that are toxic to the plant growth as water 

solubility determines the possible routes of its entry into the plant cells (Ramadass 

et al., 2015). Moreover, low solubility and low volatility of the heavy oil 

contaminants makes them persistent in the environment and more recalcitrant to 

phytoremediation. 

From the reviewed literature, the reduced percentage growth and development for 

heavy oils, TPHs and PAHs may be due to a decrease in the soil organic carbon and 

total nitrogen after contamination (Al-Surrayai et al., 2009, Sutton et al., 2014). 

The loss of nitrogen could have resulted from the conversion of nitrate ions to 

gaseous forms of nitrogen through a series of subsequent biochemical reduction 

reactions as a result of denitrifying bacteria associated with the biodegradation 

process. Moreover, the hydrophobic nature of contaminated soil can also act as a 

physical barrier leading to a reduction in oxygen and water, and poor accessibility 

of nutrients especially nitrogen to the rhizosphere. The decrease in soil available 

organic carbon may be due to the facts that soil organic matter is capable of 

enhancing the adsorption of organic chemicals and reducing the bioavailability of 

pollutants which may lead to a decrease fraction of organic carbon available for 

microorganism degradation. (Chen et al., 2015).  

In general, the higher alkanes have no impacts as reported by 75% of studies (Figure 

2–2). These are chemicals which have been reported to be nearly non-toxic (Benelli 

et al., 2017, Esbaugh et al., 2016) and are insoluble in water and therefore 

metabolised more slowly from solution (Forth et al., 2017). 
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2.4.2 Toxicity effects of different types of LNAPLs and uptake 

mechanism  

The toxicity of LNAPL components on plants and animals has been considered in 

many studies, with aromatic hydrocarbons and then naphthenes being reported as 

the most toxic (Rice et al., 1976, Wolfe, 2013b).  Alkanes were recorded as the least 

toxic (Baker, 1971, Ottway, 1971) while pentadecane and higher alkanes are nearly 

non-toxic (Wolfe, 2013b). Moreover, the low molecular weight members of the 

alkanes are also most volatile, e.g., ethane. The interchange of the aromatic 

compounds with methyl increases their toxicity (Kauss et al., 1973, Rice et al., 

1976), but also reduces their solubility in water and volatility meaning that toxicity 

can often be inversely correlated with water solubility. Joner et al. (2004) reported 

that monocyclic aromatics are the cause of serious injury to plants, and polycyclic 

aromatics cause long-term harm. Examples of polycyclic aromatic hydrocarbons in 

crude oil are 3,4-Benzopyrene, alkylbenzanthracenes, Benzo(d,e,f)chrysene and 

1,2-Benzanthracene (Wenzl et al., 2006) and are classified as being carcinogenic by 

International Agency for Research on Cancer (IARC, 1972). Substituting nitrogen or 

oxygen in aromatic compounds in crude oil are also highly toxic and are quite 

hazardous because of the relatively high solubility in water, examples are pyridines, 

xylenols and cresols and their derivatives (Wolfe, 2013b). Toxic compounds with 

high water solubility can also occur as intermediate compounds of microbial 

degradation; examples are phenols, aromatic acids and alkanoic acids (Joner et al., 

2001). Nonetheless, the intermediate products of the degradation are rapidly 

degraded further to carbon dioxide by various microbial species in the presence of 

oxygen (Siddiqui et al., 2001). Exposure to direct sunlight may also increase the 

toxicity of NAPLs through acid and peroxide formation (Kauss et al., 1973, Wolfe, 

2013b). 

The degradation process of organic contaminants by plant enzymes occurs both in 

root and shoot tissue. Usually, the movement of organic contaminants into plants 

occurs via the liquid phase of the soil via the following pathway as  illustrated in 

Figure 2–3  (Simonich and Hites, 1995).  
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Figure 2–3 Uptake mechanism and translocation of organic contaminants 

 

The plant enzymes can catabolize organic contaminants by wholly mineralising the 

organic pollutants to inorganic compounds, e.g., water and carbon dioxide, or by 

partly degrading them to stable intermediate compounds that are accumulated and 

stored in the plant tissues (Arslan et al., 2017, Chirakkara et al., 2016). The 

reviewed studies explained that the process of contaminants being taken up into 

plant roots consist of three parts. Firstly dissolved in the aqueous solution within 

the rhizosphere; secondly, adsorbed on the root (Li et al., 2014b); and thirdly 

penetrating into root tissues (Hurtado et al., 2016).  

From the review literature, Vervaeke et al. (2003) observed a significant decrease 

of 79% in the mineral oil concentration in the planted disposal site, with the mineral 

oil degradation under willow was most pronounced in the root zone.  

 

2.4.3 NAPLs and residual oil effects on seed emergence 

In some phytoremediation studies, a delay in seed emergence and stunted growth 

was observed following oil contamination (Golan et al., 2016, Spiares et al., 2016). 

Adieze et al. (2012) suggested that contaminants can cause a film of oil to form 

around the seed which would act as a physical obstacle, prohibiting or reducing both 

water and oxygen transfer to the seed. As soil moisture conditions are affected by 

heavy oil contamination and due to hydrophobic nature of petroleum, water spreads 

inhomogeneously in the contaminated soil which can inhibit water from reaching 

the seed thereby adversely affecting seed emergence (Spiares et al., 2016, Xu et 

al., 2018).  
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2.4.4 Plant tolerance to NAPLs and residual oil contamination  

Plant tolerance to organic contaminants is dependent on plant species, and also, on 

the type and concentration of the contaminants in the soil (Wu et al., 2015, Lv et 

al., 2016). The reviewed studies have assessed seed germination and plant yield as 

a means of assessing plants tolerance to organic contaminants. Most species with 

few stomata (i.e. tiny openings that allow plants to exchange gases necessary for 

cellular processes) and a thick cuticle (i.e. the water-impervious protective layer 

that limits water loss) have been reported to be more tolerant of NAPL (Edema et 

al., 2011, Heredia‐Guerrero et al., 2018). The thick cuticle and few stomata are 

advantageous in reducing transpiration. Moreover, in extremely wet conditions, the 

few stomata and thick cuticle will prevent the excess water from leaching out 

nutrients (Fernández et al., 2017).  

Literature also suggests that perennial plants with large food reserves are more 

tolerant than plants lacking underground reserves such as most annual plants 

(Barrutia et al., 2011, Bento et al., 2012). Plants with large underground food 

reserves in root systems (stolons and rhizomes) are more likely to; first, have an 

alternative supply of water and nutrient to mitigate the toxic effects and the 

inhibited supply of solutes and nutrients following oil contamination (Helga et al., 

2018); second, plants are able to accumulate the organic contaminants into the 

storage system (Bonanno and Vymazal, 2017); third, enzymes are exuded (such as 

oxidoreductases) which may be able to metabolise organic contaminants (Hurtado 

et al., 2016); and fourth the enrichment of rhizosphere microorganisms which may 

be involved in the degradation processes (Macherius et al., 2014). Therefore, 

perennial plants survive contamination by underground rhizomes with studies 

suggesting that these species are the least sensitive when compared with annual 

vegetable crops that lack underground rhizomes or storage organs. These include 

amaranth, green pea, sorghum, maize, southern crabgrass, bermudagrass and 

alfalfa planted in oiled soil.  

Tree species can also tolerate organic contaminants in soil. It was indicated that 

tropical woody plants, kiawe, milo, and kou showed less stress to organic 

contaminants as the seeds planted in contaminated soil did not suffer any adverse 

effects, and there was even, a decrease in the germination time (Pérez-Hernández 

et al., 2013, Bento et al., 2012). Studies suggest that this is linked to an increase in 
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the adsorption of water into the seminal cover of the seeds and the endosperm that 

causes enzymatic changes at the start of the germination (Zhang, 2013). Moreover, 

upon going through stress, the trees respond to organic contaminants in the soil by 

changes in rhizosphere exudates, which causes a modification in the rhizospheric 

activities and microflora composition which then results in the degradation of the 

contaminants, hence reducing the layer of contaminants around the roots (Pérez-

Hernández et al., 2013). The tree species also tolerate organic contaminants due 

to the deep roots which can penetrate beyond contaminated layers after they are 

well established, their long life and biomass production (Rivera-Cruz et al., 2016).  

 

 Impact of soil on phytoremediation of organic contaminants 

2.5.1 Impacts of organic matter and different soil types on 

phytoremediation 

Optimal plant growth is a major factor influencing rhizodegradation of hydrocarbon 

contaminants. Soil organic matter content directly or indirectly affects the 

availability of nutrients for plants used in phytoremediation, by functioning as a 

source of N, P, S and many other substances through its mineralization by soil 

microorganisms. Organic matter promotes good soil structure, thereby improving 

tilth, aeration and retention of moisture and increasing buffering and exchange 

capacity of soils in the hydrocarbons contaminated soil rhizosphere and also, 

influencing the supply of nutrients from other sources, for example, as an energy 

source for N-fixing bacteria to reduce the adverse impacts of organic contaminants 

(He et al., 2015). 

Organic matter has a profound effect on the structure of many soils. The soil organic 

constituents favourably influence the permeability, aeration and water-holding 

capacity of soil (Zhou et al., 2018). Usually, when compared with the 

phytoremediation of the contaminated soils with low organic content, soil with a 

high organic matter will have a higher oil holding capacity. The results of a 

laboratory phytoremediation experiment by Rowell (1976) on soils with different 

organic matter contents showed the fastest rate of oil decomposition in the soil 
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with high organic matter, while decomposition of oil was slow and low in soil with 

a low organic matter content.  

 

A soil texture triangle analysis (Shirazi and Boersma, 1984) is presented in Figure 2–

4 (overlaid the results from the 350 phytoremediation review studies) to explore if 

soil texture has any bearing on contaminant removal. 

 

 

 

Figure 2–4  - The effect of soil types on contaminant removal based on the overlaid 

results from the 350-phytoremediation reviewed literature 

Moreover, Figure 2–5 shows the effect of soil texture and the study duration to 

explore if soil texture and study time have any bearing on contaminant removal. 
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Figure 2–5 – The effect of soil types and study durations on contaminant removal based 

on the reviewed literature. Error bars represent ± one standard error of the mean. 

 

It appears from Figure 2–4 that sandy loam, loam and silt loam have a better 

contaminant loss than other soil types, with 85% of studies reporting 80% or more 

oil loss having these soil types. Also, from Figure 2–5, the rate of contaminant 

removal is better for the loam soils (loamy sand, sandy loam, loam and silt loam) 

than clay soils, with 141 studies suggested that there was 100% contaminants 

removal in less than 200 days. Moreover, this also implies that remediation in clay 

is effective but slow, whilst in clay loam it’s faster but not always as effective Figure 

2–5. This observation indicates that there is better root development for the sandy 

loam, loam and silt loam soil types perhaps due to increased nutrient availability 
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and pore water supply for plant growth and root development when compared to 

more fine-grained soil. As noted by Gadi et al. (2016), optimum water retention in 

the root zone is considered to be one of the essential requirements for plant growth 

and yield. As suggested by the effects of plant root on soil-water retention curves 

(Leung et al., 2015), sandy loam and loam are at optimum suctions values, whereas 

a soil of high plasticity will only desaturate at high suctions. This implies that soil 

containing a higher percentage of fine particles will not favour the growth of the 

plant species of interest for phytoremediation. 

The reviewed studies reported reduced seed germination and low biomass (shoot 

and root) production for plants grown in contaminated sandy soils as compared to 

contaminated loamy soils indicating a loam texture is a better soil for 

phytoremediation. For example, Afzal, (2011) and Al-Sanad, (1995) reported that 

during hydrocarbons phytoremediation, loamy soil provided the best medium for 

plant growth, and sandy soil the worst. In addition to loam soils having smaller pores 

when compared with sandy soils, which favours the optimum water retention in the 

rhizosphere, differences in organic carbon content and cation exchange capacity of 

the soil also have an impact. Loam soil that is high in organic matter has a high 

cation exchange capacity (about 250 to 400 cmol kg⁻¹ ) .  H o w e v e r ,  c l a y  s o i l  h a s  a  l o w  

CEC (about 3 – 15 cmol kg⁻¹), while sand and silt soils have a negligible CEC (because 

they are not charged particles). Therefore, loam soil usually demonstrates high 

nutrient levels that were possibly leading to better plant growth (Kaakinen et al., 

2007, Sharma et al., 2015). Sandy soil texture is typically more porous, warmer, 

drier, and less fertile than soils with a medium texture thus limiting plant growth 

in phytoremediation studies (Ouzounidou et al., 2015).  

Regarding the effect of clay content on oil phytoremediation and degradation, it 

was observed that reduction in oil content was inversely correlated with clay 

content because clay content influences the properties of soil and, a high clay 

content may reduce moisture permeation and aeration and consequentially slow 

down decomposition and impede phytoremediation (Ratnaweera and Meegoda, 

2005, Nawab et al., 2016).  

Moreover, soil water content, which is affected by the organic matter content and 

clay content, can influence the amount of oil that is held in the soil pore space and 

therefore affect oil phytoremediation. NAPLs must displace the existing pore fluids 
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to enter into the pore space; the air is displaced from the vadose-zone pores and 

water from saturated zone pores (Delage, 2013). Also, soil moisture conditions are 

affected by heavy oil contamination, and due to the hydrophobic nature of 

petroleum, water spreads nonuniformly in the contaminated soil, which can inhibit 

solutes and nutrients from reaching the rhizosphere. Therefore, the stress 

experienced by plants due to lower solutes and nutrients may inhibit plant growth, 

leading to an increase in root diameter and reduced root length and consequentially 

affects phytoremediation  (Liu et al., 2014)  

Figure 2–6 presents the overlaid results from the 350 phytoremediation review 

studies relating organic matter and soil pH with contaminant loss from the 350 

reviewed studies. The Effect of NAPLs and variation between the chemicals were 

not analysed. The range of pH is found to be between 5.0 – 8.5 with 85 % of studies 

within a pH range of 6 - 8.  For studies reporting ≥ 80 % contaminant loss, 20 % of 

these studies have pH less than 6.8. These findings suggest that within acceptable 

ranges for plant growth, the soil organic matter and pH have little impact on 

contaminant removal. Some of the reviewed studies also confirmed that oil 

phytoremediation was slow under acidic soil conditions, and an increase in pH of 

soil from 6.0 to 7.8 increases the decomposition rate and plant rhizosphere 

degradation were optimal at a soil pH of 6.0 – 7.5 (Malhi, 1990, Willscher et al., 

2017). 
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Figure 2–6 - The impacts of pH and organic matter on contaminant loss 

 

 Phytoremediation and plant accumulation of NAPLs and 

residual oil. 

Phytoremediation of organic contamination in soils may arise as a result of 

contaminant uptake into plant tissues (Ucisik and Trapp, 2008, Hurtado et al., 

2016), phytovolatilization (Limmer and Burken, 2016) or biodegradation of 

contaminants by rhizosphere-associated microorganisms (Ghattas et al., 2017). Less 

than 1% of the literature explores explicitly the impact of phytoremediation on 

NAPLs, therefore NAPL phytoremediation requires much more investigations than 

currently available.  

The meta-analysis of contaminant removal by plants and microorganisms by 

contaminant state and contaminant type considered (as defined in Table 2–2) are 

shown in Figure 2–7 and Figure 2–8 respectively. In Figure 2–8, the heavy oil and TPH 

has been separated from higher alkanes because heavy oil and the TPH are measure 
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of gross quantity of amount of petroleum-based hydrocarbons without identification 

of its constituents. The heavy oil and TPH values still represent a mixture (Edwards 

et al., 1997, WHO., 1982).  

 

 

Figure 2–7 – Effects of contaminant state on LNAPLs and residual oil concentration loss 

or removal 
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Figure 2–8 - Effects of contaminant type on LNAPLs and residual oil concentration loss 

or removal 

On the above Figure 2–7 and Figure 2–8, it is fairly clear that DNAPLs and LNAPLs, 

and certain specific contaminant groups (Heavy oil, TPH and PAH) do appear to have 
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more of a spread-out profile (indicating less effective removal) than the dissolved 

contaminants and the higher alkanes. Both the higher alkanes group (100 %) and 

dissolved group (96 %) have the highest number of studies indicating a medium to 

very high contaminants loss. Moreover, Figure 2–1 and Figure 2–2, supported the 

results, with 75% of the studies indicating no reported inhibition and slightly 

promotes plant growth for the higher alkanes and the dissolved contaminants groups 

respectively. Therefore, the better plant growth and root development might have 

played a significant role in the significant phytoremediation success of the higher 

alkanes and the dissolved contaminant groups. The results suggest that the 

significant contaminant loss from the soil for these groups of contaminants may also 

be due to less toxicity. Phytoremediation studies showed that the potential for high 

phytoremediation of the organic contaminant in the soil could be due to good plant 

development and favourable root morphology such as greater root length and larger 

surface area (Franco et al., 2011, Merkl et al., 2005). It was noted that fibrous root 

systems provide a large specific surface area and root volume and a high number of 

root tips to interplay with microorganisms in the rhizosphere thereby promoting soil 

aeration by de-compacting the soil and creating new macropores  and space for the 

pores containing water and oxygen for plant respiration (Colombi et al., 2017, Al-

Kaisi et al., 2017). High root volume could enhance oxidative degradation of organic 

compounds (Liao et al., 2015), and this may also widen the way for “trapped” 

contaminants to become accessible to plant rhizosphere bacteria.  

Figure 2–7 indicates that light non-aqueous phase liquids and dense non-aqueous 

phase liquids can also be phytoremediated with 95 % and 93 % of studies suggest a 

medium to very high contaminant loss. Likewise, 88, 87 and 93% of studies for heavy 

oils, TPHs and PAHs respectively report a medium to very high contaminant loss 

which also demonstrates apparent phytoremediation of NAPL contamination, 

despite their physical state and toxicity of their dissolved components on plants. It 

was reported that the dissolved components of these groups affect plant growth 

rate through reducing photosynthetic rates and photochemical efficiency, resulting 

in significant reduction in cell size, leaf area, stem elongation and overall plant 

mass production (Fatima et al., 2018, Gerhardt et al., 2017). The abiotic stress 

effects, may further limit the survival, growth and plant phytoremediation 

potential. Since soil polluted with organic contaminants have poor water holding 

capacity and high volatility (Agnello et al., 2016), plants are subject to high degree 
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of stress effects due to lack of access to solutes and nutrients (Oostindie et al., 

2017).  

240 out of 350 studies investigated the effects of contaminants state on plant 

accumulation of the contaminant by the plants, and 206 out of 350 studies 

investigated the effects of contaminants type on plant accumulation of the 

contaminant by the plants. 189 studies (contaminant state grouping) and 145 studies 

(contaminant type grouping), suggested that plant don’t accumulate contaminant. 

Only 51 studies (contaminant state grouping) and 61 studies (contaminant type 

grouping), suggested that plant accumulate contaminant. Therefore, from 112 

studies that observed contaminant accumulation from both categories. It was 

demonstrated in experiments to determine the residual levels of organic 

contaminant concentrations in the plant that shoots and leaves have a higher 

concentration of contaminant than the roots and stems following remediation as a 

result of soil-to-root transfer of organic contaminants followed by the subsequent 

upward translocation of the contaminant in the transpiration stream to shoots and 

leaves (Atagana, 2011, Bystrzejewska-Piotrowska et al., 2008, Li et al., 2014a). 

Moreover, the root uptake has been reported as the primary pathway for organic 

contaminants accumulation in the shoots and leaves (Waqas et al., 2014). The 

process of accumulation by the plant is believed to be by the presence of roots and 

the plant enzymes secreted in exudates into the soil; then the degradation occurs 

at oil-water interfaces of soil pores where degradative organisms are located before 

the uptake of the resultant compound or enzymes within the plant tissues (Kaakinen 

et al., 2007, Molnár et al., 2002).  

The meta-analysis of contaminant accumulation by the plant as analysed by 

contaminant state and contaminant type considered are shown in Figure 2–9 and 

Figure 2–10 respectively.  
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Figure 2–9 - Plant accumulations of LNAPLs and residual oil contaminants 
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Figure 2–10 - Plant accumulations of LNAPLs and residual oil contaminants 
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the plant. Figure 2–10 illustrating contaminant types indicates that 79 % of studies 

for higher alkanes suggest plant accumulate these contaminants and the low number 

of studies for heavy oil (11 %), TPHs (11 %) and PAHs (16 %) uptake by the plants.  

The higher number of studies reporting accumulations of dissolved phase and higher 

alkanes can also be related to Figure 2–7 and Figure 2–8 which show that higher 

percentage of studies reported that the dissolved phase contaminants and the 

higher alkanes have no or little impacts on plant survival and growth because they 

have a low impact on plant. The results suggest that the extent of plant 

accumulation of contaminants is affected by contaminant toxicity. Therefore, the 

accumulation of organic contaminants could be more significant in an environmental 

condition which is characterised by the less toxic (i.e. low impact on the plant 

development) organic contaminants present in the soil.  

The low percentage of studies reporting contaminant accumulation in the plant with 

LNAPLs and DNAPLs, or with heavy oil, TPH and PAHs, is possibly due to the high 

initial concentration and the inherent toxicity of their dissolved components (Li et 

al., 2014a, Empereur-Bissonnet et al., 2013). Perhaps, it may also be that these 

groups are dissolving at such a slow rate that microbes can degrade them before 

they get to the plant rhizosphere. Literature reports that though the roots were 

exposed to high concentrations of organic contaminants, the plant did not appear 

to translocate them into the roots, shoots or leaves probably because they are not 

in the non-aqueous form (Montiel-Rozas et al., 2016, Hurtado et al., 2016). 

Moreover, the plants’ accumulation of organic contaminants was mostly reported 

with the low concentration of organic contaminants (Figure 2–9). Although most oil 

components appear to be degraded, the high molecular weight branched 

hydrocarbons, and polycyclic aromatic components are broken down quite slowly 

(Wang et al., 2012, Ma et al., 2012). The degradation of organic contaminants by 

plant enzymes occurs both in root and shoot tissue. The plant enzymes can 

catabolize organic contaminants by wholly mineralising the organic pollutants to 

inorganic compounds, e.g., water and carbon dioxide, or by partly degrading them 

to stable intermediate compounds that are accumulated and stored in the plant 

tissues (Arslan et al., 2017, Chirakkara et al., 2016). The reviewed studies explained 

that the process of contaminants being taken up into plant roots consist of three 

parts. Firstly dissolved in the aqueous solution within the rhizosphere; secondly, 
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adsorbed on the root (Li et al., 2014b); and thirdly penetrating into root tissues 

(Hurtado et al., 2016).  

 Implications for practise and conclusions 

The understanding of the impact of NAPL on soil quality from the literature review 

has inform this thesis in many ways. 

It is clear from the literature review that NAPLs and residual oil contamination can 

adversely alter the chemical and physical properties of the soil and consequently 

affect vegetation. 

Sandy loam, loam, and silt loam have a better organic contaminant removal than 

other soil types because of the optimum suction values that favour water retention, 

nutrient availability and water supply for plant growth and root development. The 

literature suggested that high organic matter content leads to good removal but it 

is not crucial that it be present as long as organic matter is within the acceptable 

range for plant growth, the soil organic matter and pH have little impact on 

contaminant removal as suggested from the analysed data.  

Laboratory studies have revealed that depending on the volume of contaminants 

released and the site properties, some of the LNAPLs or their water-soluble 

constituents will usually penetrate the surface soil and be transported as a separate 

phase in the vadose zone under the influence of gravity, capillary, and pressure 

forces. The migrating NAPLs might be leaving residual droplets such that the 

contaminated area is diffuse and comprise of many unconnected small contaminant 

sources, while others will migrate downward to the water table and coexist with 

water in the pore space. Lateral and radial migration can also occur, depending on 

the spill volume and the soil characteristics, and not only in the direction of the 

groundwater flow. As a result, the remedial action is challenging, and 

phytoremediation methods may offer the viable options for a successful cleaning; 

therefore, the potential for phytoremediation of NAPL contaminant sources needs 

to be established. For example, roots close to NAPLs may be able to reduce 

dissolved phase contamination through mechanisms including uptake and 

rhizodegradation, resulting in non-equilibrium conditions that cause relatively rapid 

dissolution of the NAPL. Moreover, it may even be the case that roots and the 
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rhizosphere interact with the NAPLs to bring about their removal or breakdown 

directly.   

Plant tolerance to organic contaminants toxicity is species dependent, and the use 

of trees and perennial plants with vast food reserves, few stomata and thick cuticle 

for phytoremediation could be advantageous because of their deep roots, food 

reserves and long life.  

Moreover, the residual NAPLs material left following the traditional ex-situ 

remediation techniques and evaporation of crude oil are toxic and contain 

potentially carcinogenic components which may, consequently, pose a public health 

hazard.  

The effects of different hydrocarbon contaminants were explored in two ways. The 

first group was based on contaminant types, and the second categorised as 

contaminant states based on the actual study conditions. Using both categories in 

assessing impacts of contaminant types on plant behaviour and plant accumulation 

of contaminants. There is a minor effect of different contaminants, with ‘dissolved’ 

and ‘higher alkanes’ contaminants having little impacts on plant, while all other 

hydrocarbons significantly inhibit plant survival.  
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     Materials and methods 

 Introduction 

This chapter presents the materials used and the experimental methods adopted 

for carrying out the laboratory tests presented in this thesis.  

Non-aqueous phase liquids (NAPLs) are persistent sources of contamination in the 

ground, providing a long-term supply of dissolved phase contamination and taking 

significant periods to dissipate naturally. Even in the long term, light NAPLs 

(LNAPLs) take the form of a separate phase within the ground, often as individual 

ganglia in pore spaces within the capillary zone such that the contaminated region 

is diffuse and comprised of many unconnected small contaminant sources. 

Consequently, remedial action is challenging and success may be limited to ex-situ 

remediation techniques. The ability of plants to phytoremediate dissolved-phase 

contamination is well known, but the impact of LNAPLs on plant growth and 

subsequent contaminant behaviour is largely unknown. 

Two series of laboratory experimental works were carried out based on the overall 

research aims and objectives as set out in Chapter 1. 

The first series of experiments were carried out to study the impact of a LNAPL on 

plant root growth and distribution, and absorption of LNAPL by plants at pore-scale 

level. The tests were carried out in small-scale 3D-printed rhizoboxes with a single 

ryegrass plant (Lolium perenne) grown in each rhizobox under a soil-free and 

hydroponic conditions. The rhizoboxes provided a simplistic model of soil 

macropores allowing control of LNAPL distribution and precise monitoring of root 

growth and contaminant loss in individual pores.  

The second series of experiments were carried out to investigate the impact of a 

LNAPL on root growth, root distribution, and oil loss, in soil at the macroscopic 

scale. The tests were carried out in a larger scale rhizoboxes with multiple ryegrass 

plants (Lolium perenne) grown in each rhizobox using laboratory prepared soils 

similar to that of naturally occurring soils. 

In section 3.2, the soils used were characterised and the details of light aqueous 

phase liquids (LNAPL) used are discussed. In section 3.3, the properties of the soils 

were discussed. Section 3.4 presents materials and methodology for the single plant 
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experiments. In section 3.5 the materials and methodology for the larger scale 

experimental works with plant are described. A summary of the materials used and 

some salient features of the test set ups are presented in section 3.6. 

 Soils and light non-aqueous phase liquid (LNAPL) used  

3.2.1 Soils used 

Two soils were prepared and used in this study, such as a sandy loam and a loam. 

The compositions of the prepared soils were similar to that of naturally occurring 

sandy loam and loam soils. The soil texture triangle (Shirazi and Boersma, 1984) 

provided guidelines for determining the percentages of sand, silt and clay for 

preparing the two soils. The soils (i.e. sandy loam and loam) were prepared by 

mixing predetermined percentages of sand, silt and clay based on the dry weight. 

A portable electric mixer was used for obtaining homogenous mixtures. The sandy 

loam was composed of 70% sand, 20% silt and 10% clay, whereas the loam was 

composed of 40% sand, 40% silt and 20% clay. The soils were selected for this 

research because it appears from 350 phytoremediation studies (Figure 2–4 and 

Figure 2–5) that sandy loam, loam and silt loam have a better contaminant loss than 

other soil types, with 198 studies reporting 80% or more oil loss having these soil 

types (Vervaeke et al., 2003, Sung et al., 2004, Reza, 2008, Mohsenzadeh, 2009). 

Moreover, from Figure 2–5, the rate of contaminant removal is better for the loam 

soils (loamy sand, sandy loam, loam and silt loam) than other soils, with more than 

140 studies indicated that there was 100% contaminants removal in less than 200 

days. However, artificial soil was used with no organic carbon for this thesis, 

ensuring that the NAPL removal will be as a result of the presence of plant, and not 

related to the impact of organic matter. A quarter-strength Hoagland’s solution was 

used for nutrient supply. The solution is essential for the growth of plants due to 

the lack of organic matter in the artificial soils. The nutrient solution contains 

nitrogen and potassium and other essential elements for plant growth (Hothem et 

al., 2003), making it best for the development of plant in low nutrient scenarios.  
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3.2.2 Light non-aqueous phase liquid (LNAPL) used 

The light non-aqueous phase liquid (LNAPL) used in this investigation was a mineral 

oil (MSDS name: mineral oil, light and heavy or white mineral oil (petroleum) or 

saturated hydrocarbons). The mineral oil was supplied by Fisher Bio-Reagents 

(Fisher Scientific UK, 2018). All the laboratory tests involving LNAPL were carried 

out using this petroleum byproduct. The mineral oil used is a non-aromatic and 

slightly toxic hydrocarbon composed of a mixture of C16-C25 carbon atoms. The 

density and viscosity of the oil are 0.83 Mg/m3 and viscosity of 33.5 x 10-3 Pa.s. The 

other characteristics of the mineral oil are very low volatility and water solubility. 

It is considered to be non-miscible with water. The boiling point range is between 

260 - 426 °C. The oil is stable at normal temperatures and pressures and has been 

used in the past in some phytoremediation investigations (Lee et al., 2008, Popp et 

al., 2006). From the literature review, Figure 2–1 and Figure 2–2, the LNAPL and the 

TPH categories (under which mineral oil was classified) do appear to have more of 

a spread-out profile indicating the negative effects of mineral oil on plants. 

Moreover, Figure 2–7 and Figure 2–8, results from literature also shows that the 

LNAPL and the TPH categories can be successfully phytoremediated. The chosen 

mineral oil has low toxicity to plants (Vervaeke et al., 2003), volatility and aqueous 

solubility, firstly to minimise the impacts of the toxicity of the NAPL on plant growth 

(ensuring the main impacts are due to physical presence), and secondly to ensure 

that any contaminant loss is down to phytoremediation and biodegradation rather 

than solubilisation or volatilisation.  

The Oil Red O colorant, also called solvent red 27 (Sigma-Aldrich) was added to the 

mineral oil before preparing the soil-mineral oil mixtures or use in the hydroponic 

conditions. ORO is a fat-soluble, lipid sensitive, diazo (R–N=N–R′) dye (i.e. it stains 

fat and lipid components in biological samples) and Its also used to stain waxes and 

oil to a red tint (MF; et al., 2005). It has a molecular weight of 408.510. The 

structural confirmations of ORO prevent it from ionizing and therefore facilitate its 

solubility in lipids (Kutt and Tsaltas, 1959). ORO absorbs radiation having 

wavelength of 518 nm and stains the item red (Beaudoin, 2004). The red stain is 

attributed to the hydroxyl auxophore (Beaudoin, 2004). Laboratory preliminary 

growth trials show that the colorant have no impact on plant growth and 

development before it was used in the research. 
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The concentration of colorant used was 50mg/L. An addition of the colorant is 

expected to enhance oil visibility which in turn allows the movement and location 

of the LNAPL within the soil samples (Page et al., 2007). The oil was stored in dry 

and cool conditions. 

 

 Properties of the soils 

The properties of the two soils were determined following British Standards Methods 

(British Standards Institution, 2009, British Standards Institution, 2010a, British 

Standards Institution, 2010b, British Standards Institution, 2010e, British Standards 

Institution, 2010d, British Standards Institution, 2010c, ASTM Standard C-1699-09, 

2009). 

3.3.1 Initial water content  

The oven-drying method was used to determine the initial water content of the soils 

(British Standards Institution, 2010a).  The initial water contents of sandy loam and 

loam were found to be similar (0.2%). 

3.3.2 Particle size distributions  

The soils used were mixtures of sand, silt and clay of various percentages. The sand 

used in the soils was a commercially available ProArena 100™ Leighton buzzard sand 

procured from Garside Sands, Leighton Buzzard, Bedfordshire, UK. Table 3–1 shows 

the size range of the particles present in the sand. The particle sizes of the sand in 

this study was controlled by carrying out dry-sieve analysis using a sieve size range 

of 2.63 to 0.063 mm. The silt-size fraction (< 0.06 mm) was derived from the sand 

by using a 63 μm sieve. The specific gravity, silica content, pH and loss on ignition 

at 100 °C of the sand fraction were found to be 2.65, 94.6 %, 7.6 and 1.04 % 

respectively. The specific gravity, silica content, pH and loss on ignition at 100 °C 

of the silt-size fraction were found to be 2.65, 94.8 %, 7.5 and 0.93 % respectively. 

Table 3–2 shows the chemical composition of the sand used. As can be seen in Table 

3–2, the silica content in the sand was about 95%. 
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Table 3–1 – Particle size distribution of Garside Washed Fine Silica Sand (WFSS) 

(Source: Leighton Buzzard, Bedfordshire) 

Sieve size (mm) Average % passing  
2.63 100  
1.18 100  
0.60 96  
0.30 80  
0.15 24  
0.063 1  

 

Table 3–2 – Chemical composition of Garside Washed Fine Silica Sand (WFSS) (Source: 

Leighton Buzzard, Bedfordshire) 

Chemicals       % 
Silica SiO2    94.6 
Alumina Al2O3    1.52 
Titania TiO2    0.33 
Iron FE2O3    1.20 
Magnesium MgO    0.11 
Calcium Cao    0.07 
Sodium Na2O    0.66 
Potassium K2O    0.61 
Loss on ignition @ 100℃ L on I    0.93 

The clay used was Speswhite kaolin. Speswhite kaolin was procured from Imerys 

Performance Minerals, Par, Cornwall, UK. Table 3–3 shows the properties of the 

Speswhite kaolin. The specific gravity and pH of Speswhite kaolin were found to be 

2.6 and 7.5 respectively. Beside the dominant kaolinite mineral, other minerals 

(about 0.2 %), such as mica, quartz, and feldspar or ilmenite were found to be 

present in the clay.  

Table 3–3 – Properties of Speswhite kaolin (Source: IMERYS®; (IMERYS, 2008)).  

Mineralogy Kaolinite (main) and other 
minerals (mica, quartz, 
and feldspar or ilmenite)  

Aspect ratio  20:1 
Specific Gravity 2.6 
Refractive Index 1.56 
MOH Hardness 2.5 
Moisture content (%) 1.5 
pH: 5 - 7.5 
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3.3.3 Specific gravity of soil solids  

The specific gravity values of the two prepared soils (sandy loam and loam) were 

determined by using pycnometer method (British Standards Institution, 2010a). The 

specific gravity of sandy loam and loam were found to be 2.68 and 2.66 respectively. 

3.3.4 Liquid limits  

The liquid limits of the soils were determined by cone penetrometer (British 

Standards Institution, 2010a). The soils were made to pass through a 425 μm sieve 

prior to performing the liquid limit tests. The values of liquid limits for sandy loam 

and loam were found to be 13 % and 15 % respectively. 

3.3.5 Plastic limits  

The plastic limits of the soils were determined by rolling method (British Standards 

Institution, 2010a). The soils were made to pass through a 425 μm sieve prior to 

performing the plastic limit tests. The values of plastic limits for sandy loam and 

loam were found to be 10.6 % and 10.3 % respectively. 

. 

3.3.6 Organic contents  

The organic contents present in the soils were determined by loss on ignition (LOI) 

method (British Standards Instituition, 1990). The samples of both soils were oven-

dried at a temperature of 440 ℃. The organic content was determined based on 

the percentage loss in weight of the soil samples. The organic content in both soils 

were found to be 0 %. 

3.3.7 pH values 

The pH of samples was measured using a Mettler Toledo SevenMulti dual meter with 

specific pH and EC electrodes. Firstly, pH 4 and pH 7 were used to calibrate the pH 

electrodes. After the calibration process, the electrodes were tested with deionized 

water blanks before sample analysis was conducted to ensure that calibration 

solutions were removed from electrodes. The equipment was calibrated for every 

pack of samples analyzed. Further, Whatman Grade 40: 8 µm (medium flow) filter 
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paper was used to screen each liquid mixture before immersing the pH probes. The 

pH values of the sandy loam and loam averaged at 7.9 ± 0.1 and 6.6 ± 0 respectively. 

3.3.8 Standard Proctor compaction tests 

The standard Proctor compaction tests (BS light compaction effort) were carried 

out using a 2.5 kg rammer falling through a height of 300 mm. The volume of the 

compaction mold used was 1000 cm3.  

Figure 3–1 shows the standard Proctor compaction curves of the soils. The maximum 

dry density of the sandy loam was 2.0 Mg/m³ at the optimum water content of 8.9 

%. Moreover, the maximum dry density of the loam was 1.96 Mg/m³ at the optimum 

water content of 9.8 %. 

 

 

Figure 3–1 - Standard Proctor compaction test results for the soils used 
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3.3.9 Permeability tests (constant and falling head methods) 

The constant head and falling head methods (British Standards Institution 2010c) 

were used to determine the coefficient of permeability of the soil.  

3.3.9.1 Procedure for Constant Head test 

The constant head test method is suitable for soils having coefficients of 

permeability in the range of 10-2 to 10-5 m/s. The method was therefore used for 

sandy loam soil specimen only. The test procedures followed are outlined in BS 

1377-5:1990 (British Standards Institution, 2010d). The flow volume of water passing 

through the soil in a known time is measured, and the hydraulic gradient is measured 

using manometer tubes. The specimen was connected through the inlet to the 

constant head reservoir. The bottom outlet was opened and a steady flow of water 

was established. The quantity of water flow for a time interval was recorded. The 

process was then repeated three times for the same interval. 

3.3.9.2 Specimen preparation method for constant head test  

The initial water content, dry density, initial void ratio and degree of saturation of 

compacted sandy loam soil specimen for the permeability test were 0.2 %, 0.98 

Mg/m³, 0.348 and 19.7 % respectively. A 2.5 kg sample was taken from a thoroughly 

mixed air-dried soil. The sample was stored in an airtight container. The required 

quantity of water was added to get the desired moisture content. The sample was 

then mixed thoroughly. The empty permeameter mould was weighed. The inside 

was greased slightly, and then the mould was clamped between the compaction 

base plate and extension collar. The assembly was placed on a solid base and filled 

with soil-water mixture and which was then compacted. Following the completion 

of compaction, the collar and excess soil were removed. The weight of mould with 

the sample was then measured. The mould with the sample was then placed in the 

permeameter, with drainage base and a cap. For observation and recording, the 

water flow was very low at the beginning, and gradually increased and then remains 

constant. Table 3–4 shows the testing details and the key information that are 

required for calculating the coefficient of permeability from constant head tests. 
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 Table 3–4 Results for Constant Head Method for sandy loam 

Experiment No.  1 2 3 

Length of specimen L (cm) 10 10 10 

Area of specimen A (cm²) 42.45 42.45 42.45 

Time t (sec) 264 624 37 

Discharge q (cm³) 50 100 10 

Height of water h (cm) 2.8 0.2 4.2 

Temperature (ºC) 25 25 25 

The coefficient of permeability for a constant head was calculated from Equation 

3—1.  

𝒌𝒌 = 𝒒𝒒𝒒𝒒
𝑨𝑨𝑨𝑨𝑨𝑨 

   ............................................................................. 3—1 

Where k = coefficient of permeability,  

q = discharge cm³/sec 

L = length of specimen in cm 

A = cross-sectional area of specimen in cm² 

H = constant head causing flow in cm 

t = time in sec 

The coefficient of permeability of sandy loam was found to be 1.5 x 10-4 m/s at 

20ºC.  

3.3.9.3 Procedure for falling head test 

The soil specimen was prepared following the procedure stated in section 3.3.9.4. 

The soil specimen was then saturated with the de-aired water. The permeameter 

was then assembled in a tank filled with water. The inlet nozzle of the mould was 

then connected to the standpipe. Some water was allowed to flow until a steady 

flow was obtained. The time interval ‘t’ for a fall of a head in the stand pipe ‘h’ 
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was recorded. This step was repeated three times to determine ‘t’ for the same 

head. 

3.3.9.4 Specimen preparation method for falling head test  

Falling head tests were carried out to measure the coefficient of permeability of 

the loam. The initial water content, dry density, initial void ratio and degree of 

saturation of the compacted sample tested were 0.2 %, 0.948 Mg/m³, 1.81 and 22.0 

% respectively. The loam sample was prepared using static compaction method. 

1000 g of representative loam soil was weighed and mixed with distilled water 

corresponding to the optimum moisture content determined by standard proctor 

compaction test. The soil-water mixture was then stored in an airtight container for 

24 hours. The permeameter was assembled for static compaction by attaching the 

3 cm collar to the bottom end of 0.3 litres mould and the 2 cm collar to the top 

end. The mould assembly was then supported over 2.5 cm end plug, with 2.5 cm 

collar resting on the split collar and kept around the 2.5 cm end plug. Then, the 

inside of the 0.3 litres mould was lightly greased. The soil-water mixture was placed 

into the mould. The top 3 cm end plug was then inserted into the top collar while 

tapping the soil with hand. The entire assembly was then kept on a compressive 

machine and the split collar was removed. The compressive force was then applied 

until the flange of both end plugs touched the corresponding collars. The load was 

maintained for 1 minute and later released. Then the top 3 cm plug and collar were 

removed, and a filter paper was then placed on a fine wire mesh on the top of the 

specimen and the perforated base plate was secured. The mould assembly was then 

turned upside down and the 2.5 cm end plug and collar were removed. The sealing 

gasket was then inserted and the perforated top plate was placed on the top of the 

soil specimen. The top cap was fixed before the commencement of the test. Table 

3–5 shows the testing details and the results obtained from the tests for calculating 

the coefficient of permeability. 
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Table 3–5 Results for Falling Head Method for loam 

Experiment No.  1 2 

Area of stand pipe ( dia. 3.75 mm) a (mm²) 11.045 11.045 

Cross sectional area of soil specimen A (mm²) 4185.39 4185.39 

Length of soil specimen L (mm) 203 203 

Initial reading of stand pipe h1 (mm) 990 990 

Final reading of stand pipe h2 (mm) 850 850 

Time t (sec) 659 659 

Test temperature (ºC) 20 20 

The coefficient of permeability from falling head test was calculated from Equation 

3—2 

 𝒌𝒌 =
𝟐𝟐.𝟑𝟑 × 𝒂𝒂 × 𝑳𝑳 (𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏

𝒉𝒉𝟏𝟏
𝒉𝒉𝟐𝟐
� )

𝑨𝑨 × 𝒕𝒕        𝒎𝒎/𝒔𝒔𝒔𝒔𝒔𝒔   ............................................. 3—2 

The coefficient of permeability of loam was found to be 1.2 x 10-7 m/s at 20 ºC. 

3.3.10 Water retention behaviour of the soils 

The water retention behaviour of the soils used in this investigation was studied by 

carrying out pressure plate tests and chilled-mirror dew-point potentiameter tests 

(British Standards Institution, 2009, ASTM Standard C-1699-09, 2009). For the 

pressure plate tests, soil specimens were prepared at initial water content of 15.6 

% for sandy loam and 18 % for loam. The pressure plate tests were carried out using 

a 5-bar pressure plate extractor. The applied suctions in the pressure plate tests 

were 10, 25, 50, 100, 150, 200, 250, 300, 350 and 400 kPa. Multiple specimens were 

used for pressure plate tests. The mass of the soil specimens were monitored 

periodically until an equilibrium was reached under each applied suction. Specimens 

at each applied suction were dismantled after the equilibrium was reached and the 

water contents of the specimens were measured by oven-drying method.  
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3.3.10.1 Suction measurement by dewpoint potentiameter 

A chilled-mirror dew-point device was used to indirectly determine the total suction 

(in the range 0 to 300 MPa to an accuracy of ± 0.05 MPa from 0 to 5 MPa and 1% 

from 5 to 300 MPa) of soil specimens. The device is commercially known as WP4C 

Dewpoint PotentiaMeter. The WP4C device is made up of a sealed chamber with a 

fan, a mirror, a photodetector cell, and an infrared thermometer (Deacagon 

Devices, 2010). The WP4C is provided with a drawer to place a specimen cup. For 

most soil specimen, the representative measuring time is from 10 to 15 minutes 

while in a precise mode of measurement.   

The WP4C operating principles is by a chilled mirror measuring the dew-point of 

ambient water vapour in a sealed chamber. The measurement is recorded when the 

dew-point of the ambient water vapour is at equilibrium with water in the soil 

samples. The attached Peltier thermoelectric cool the chilled mirror. Condensation 

starts to occur on the mirror surface when the dew-point temperature is reached. 

The first dew-point at which condensation takes place is detected by a beam of 

light focusing on the mirror which reflects into a photodetector cell. A 

thermocouple records the dew-point temperature. The temperature of the soil 

specimen at which relative humidity measurement must be made is measured using 

a temperature control device that comes with the WP4C. A temperature equilibrium 

plate can also be used to bring the temperature of the specimen to the set-point 

temperature of the device. The dew-point with the set specimen temperature is 

then used to determine the relative humidity. Kelvin’s law is used to calculate the 

total suction. The device software performs the calculation. 

3.3.10.2 Sample preparation for chilled-mirror dewpoint tests 

Five soil-water mixtures were prepared corresponding to the data on the 

compaction curve of each soil type. The chosen water contents were 2, 4, 6, 8 and 

10% for both soils. Soil-water mixtures were prepared by adding predetermined 

quantities of distilled water. The mixtures were thoroughly mixed. The moist soil 

was then placed in double bags and stored in sealed plastic containers for at least 

24 hours. Using a 1000 cm³ mold, the standard Proctor compaction (BS light 

compaction effort) was carried out with a 2.5 kg rammer falling through a height of 

300 mm to compact the soil. Five specimens were obtained by trimming the initially 
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prepared compacted samples to the recommended size (half the capacity of the 

specimen cup).  

3.3.10.3 Suction measurement using chilled-mirror dewpoint 

potentiameter 

Calibrations of the WP4C device was done before each test using standard solution 

to ensure proper operation. Potassium chloride (KCl) solution was used in calibrating 

the device. The sample cup containing the soil sample was first placed on the 

thermal equilibration plate for approximately ten minutes to bring the temperature 

of the sample cup to the set-point temperature of the device. The sample was then 

moved to the WP4C sample chamber. The measured final suction of any sample was 

indicated by a blinking green LED indicator located in the device. The duration of 

each test was found to vary between 10 to 15 minutes. The oven drying method was 

used to determine the water contents of the soil samples after the total suction 

measurements. 

3.3.10.4 Suction of soil-mineral oil mixtures 

For studying the effect of mineral oil on suction of the soils, suction measurements 

were carried out on compacted soil-mineral oil mixtures. The procedure adopted 

for preparing soil-mineral oil samples for chilled mirror dewpoint tests was similar 

to that mentioned in section 3.3.10.2. In this case, six soil-mineral oil samples were 

prepared with mineral oil instead of distill water. The oil content chosen were 2, 4, 

6, 8, 10 and 12%. 

The procedure adopted for measuring suctions of compacted soil-mineral oil 

mixtures using chilled-mirror dewpoint potentiameter remained the same as that 

adopted for soil-water mixtures (see section 3.3.10.3). The duration of each test 

was found to vary between 10 to 30 minutes. The oven drying method was used to 

determine the oil contents of the soil samples after the total suction measurements. 

3.3.10.5 Influence of water and mineral oil on suction of the soils 

used 

The experimental results from the pressure plate and chilled-mirror dewpoint 

potentiameter tests are shown in Figure 3–2. Figure 3–2 shows the water content 
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versus suction plots of the soils used. Figure 3–3 shows the suction versus fluid 

content (water or mineral oil) plots of the soils.  

It can be seen from Figure 3–2 that the suction-water content plot of loam remains 

above that of the sandy loam up to a suction of about 1.0 MPa. At higher suctions 

(>1.0 MPa), the water retention behaviour of both soils are very similar. The 

experimental data presented in Figure 3–2 were analysed to determine the air entry 

values which showed that both soils desaturated at very low suctions. 

Figure 3–3 (a) and (b) show that the interaction between the soils and mineral oil 

was not very distinct. For all mineral oil contents used, the suction of the soil 

remains at about 100 MPa. A greater suction in case of loam soil mixed with mineral 

oil as compared to the sandy loam with mineral oil is attributed to a higher clay 

content in the loam soil.  

Mineral oils usually possess a very low vapour pressure. The magnitude of suction at 

a mineral content of 1% (that is, 100 MPa or higher) as compared to that of suctions 

of the soils at the same water content of 1% is due to the fact that the soils were 

oven dried prior to mixing the mineral oil. The suction of the soils at oven dried 

condition can be expected to be 1000 MPa. The suction of the soils at oven dried 

condition can be expected to be greater than 100 MPa. Additionally, mineral oil 

does not hydrate the surfaces of soil particles as that occurs in case of adding water 

to soils. The presence of LNAPL in oven-dried soils reduced the total suction from 

1000 to about 100 MPa. However, an increase in the LNAPL content (i.e., the oil 

content) did not influence the suction of the soils. For both soils, the measured 

suctions remained at about 100 MPa for a range of oil content between 2 to 12% 

indicating that the trapped air within the soil systems did not allow a reduction of 

suction of the soils when the oil content was increased. 
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Figure 3–2 Water retention curves of the soils based on pressure plate and chilled-

mirror dew-point potentiometer tests  
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Figure 3–3 Soil-water and soil-mineral oil retention of the soils used in this study based 

on pressure plate and chilled-mirror dew-point potentiometer tests  
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The properties of the soils used are summarised in Table 3–6. The sandy loam and 

loam soil have very similar plasticity properties and both soils tend to desaturate at 

a lower suction which is very important in relation to the workability and efficiency 

of growing plants.  
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Table 3–6 Properties of soils used in this investigation 

Soil type Initial 
water 

content,  
w (%) 

Specific 
gravity of 
soil solids, 

(GS) 

Liquid 
limit, wL 

(%) 

Plastic 
limit, wP 

(%) 

Initial 
total 

organic 
matter, 

(%) 

Loss on 
ignition @ 

100℃ 
(LOI) 
(%), 

Initial pH 
value 

Initial void ratio 
of compacted 

soil for 
permeability 

test (e) 
 

Permeability, 
k (m/s) 

Sandy Loam  
(70% Sand; 20% Silt; 

10% Clay) 
0.2 2.68 13 10.6 0.065 0 7.9 0.348 1.5 x 10⁻4 

Loam  
(40% Sand; 40% Silt; 

20% Clay) 
0.2 2.66 15 10.3 0.074 0 6.6 0.399 1.2 x 10⁻7 
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 Laboratory Microcosm Phytoremediation Experiments  

This section discusses the materials and methodology for the hydroponic 

experimental conditions with a single ryegrass (Lolium perenne) seed. The growth 

trial explores the impact of LNAPL (mineral oil) on root distribution and growth, and 

oil loss.  

3.4.1 Microcosm phytoremediation tests   

The response of single grass plants to oil in a soil-free, hydroponic system has been 

explored to understand the impacts on root growth and distribution, as well as oil 

removal, in a highly idealized scenario.  

3.4.2 Apparatus for microcosm phytoremediation tests 

For studying phytoremediation of LANPL with a single perennial ryegrass seed under 

hydroponic conditions, a pore-scale 3D-printed rhizobox was designed and 

fabricated in this study (Figure 3–4). The external dimensions of the box are 30 high 

x 15 long x 3 mm thick; the internal dimensions are 27.5 high x 10 wide x 2 mm 

thick; and a 19 x 5 x 2 mm thick base. These were designed using AutoCAD and 

printed from polylactic acid (PLA) on an Ultimaker 3D printer. Each box had PLA 

back and side walls, base and four equally spaced columns (1.75 mm wide by 2.0 

mm thick).  

A V-shaped seed housing was created to ensure the consistent location of seed 

germination and plant growth (Figure 3–4). To allow visual observation of plant 

development, acetate transparencies (26 x 15 x 1 mm) were bonded to the rhizobox 

front with superglue and further sealed with LS-X jointing compound and external 

leak sealer ensuring water and oil tightness (transparent front cover not shown in 

Figure 3–4 for clarity). Each transparency was placed to leave a 2mm gap at the 

base of the box, allowing nutrient solution movement to and from an external 

reservoir (Figure 3–4).  

Rhizobox materials (PLA, glues/sealants and acetate) were tested for their potential 

impacts on experimental observations through oil absorption and permeability tests. 

The trial tests showed an average absorption of 1.14% (PLA and glues/sealants) and 

0.02% (acetate). Moreover, the average permeability rate of 1.13 mg/min/m² was 

obtained for the PLA, glues/sealants and acetate. The results were found to be 
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appropriate for the test requirements. The pore-scale rhizoboxes were then 

systematically arranged in a plastic container as explained in section 3.4.7. 
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Figure 3–4 - Schematic of the pore-scale 3D-printed rhizobox 
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3.4.3 Contamination scenarios for microcosm phytoremediation tests 

Ten contamination scenarios were considered in this study. The ten scenarios were 

considered to give a practical representation of the state of LNAPL in pore spaces 

in the capillary zone and could be considered as a continuous or semi-continuous 

phase, or as unconnected ganglia which act as individual contaminant sources. 

Table 3–7 presents the details of the scenarios considered. The ten scenarios 

comprise all possible combinations of oil contamination in the four columns (note 

that combinations that are ‘reflections’ of others, e.g. oil in columns 2 and 4 rather 

than 1 and 3, are considered to be identical and so were not tested. Scenario 10 is 

deemed to be a no-oil control to which other scenarios can be compared. Five 

replicates were tested for each of the ten scenarios. In each case, a 2.9 mm thick 

contamination zone was established on the nutrient solution constant head surface.  

The water table was maintained at the base of the contamination layer in all cases 

(Figure 3–4). 

 

Table 3–7 - Mineral oil contamination scenarios inside the rhizoboxes 

Contamination 
Scenarios Column 1 Column 2 Column 3 Column 4 

     

1 Oil    

2  Oil   

3 Oil Oil   

4  Oil Oil  

5 Oil   Oil 

6 Oil  Oil  

7 Oil Oil Oil  

8 Oil Oil  Oil 

9 Oil Oil Oil Oil 

10     
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3.4.4 Light non-aqueous phase liquid (LNAPL) used 

The light non-aqueous phase liquid (LNAPL) used as a contaminant in this 

investigation was a mineral oil as discussed in section 3.2.2.  

3.4.5 Plant used  

Perennial ryegrass (LIBRONCO “Lolium perenne”) was used as a remediation plant. 

The plant was germinated in-situ from seeds obtained from Boston Seeds, UK. 

Lolium perenne was selected due to its well established capability to remediate 

organic contaminants and was found to reliably grow in the hydroponic 

experimental conditions employed (Gunther, 1996, Gurska et al., 2009, Hou, 1999, 

Kechavarzi et al., 2007, Rezek et al., 2008). The seeds were stored in a sealable 

bag and kept in a cool, dry storage.  

3.4.6 Hydroponic solution and nutrients used 

The plant growth was supported by using quarter strength Hoagland’s solution 

(prepared as 2.5 g/L Hoagland’s No.2 Basal Salt Mixture (Sigma-Aldrich, UK) in 

deionized water) as the hydroponic solution. The diluted solution was then stored 

in a fridge. 

3.4.7 Rhizobox preparation and arrangements 

The fifty rhizoboxes were affixed to the base of a 66 cm (W) x 65 cm (D) x 21 cm 

(H) plastic container with a raised back level and low front for easy access. The 

boxes were arranged in a uniform clockwise row as shown in Figure 3–5, with a 

centre-centre distance of 6 cm between adjacent boxes, and 18 cm distance 

between rows to allow monitoring and photography of root growth without 

disturbing the plant.  

The reservoir container was filled with 3500 ml of the nutrient solution (Hoagland’s 

No. 2 Basal Salt Mixture, Sigma Aldrich, UK), maintaining the height of nutrient 

solution in the rhizoboxes at 18 mm above the lowest point of the base with no oil 

present. When oil was present, the upper surface of the oil layer was at a height of 

20 mm above the lowest point of the base. A Mariotte bottle supplied nutrient 

solution to the reservoir when necessary to maintain a constant fluid level within 

the rhizoboxes and surrounding reservoir. The reservoir fluid was pumped through 
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an ultraviolet water steriliser (Vecton 120 Nano) at around 5 ml per minute (one 

volume per 11.7 hours) to control microbial growth (Figure 3–6). The pH was 

checked daily to ensure that it was maintained between the range of 5.3 – 6.5 to 

maximise nutrient solubility. Airborne microbial contamination and water loss to 

evaporation were minimized by a purpose-made plastic cloche with vents to allow 

air circulation. The container and cloche were contained within a transparent PVC 

tunnel greenhouse.   
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(a)  

(b) 

Figure 3–5 - Pore-scale rhizobox arrangement inside a plastic container. (a) plan view: 

each scenario is represented by a different colour, with white rectangles showing the 

location of the acetate film, i.e. the front of the box. (b) Physical arrangement of 

rhizoboxes. Variation in box colour is due to change in PLA batch used. 
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Ten microliters of coloured mineral oil was deposited on the nutrient solution 

surface in all the rhizobox columns designated as being contaminated by oil (Table 

3–7) with a Hamilton 701RN syringe. This gave an oil layer within the column of 

depth 2.9 mm. One seedling of perennial ryegrass was placed into the seed 

housing, along with a small amount of cotton wool moistened with quarter-

strength Hoagland’s solution.  

Figure 3–6 shows the growth trials set-up. Plant images were captured with a water 

resistant 12 MP wide-angle digital camera, placed on a small camera stand located 

15 cm from the front of the rhizobox (Figure 3–6). A Softbox Twin-Head Continuous 

lighting kit, comprising 2 x continuous single lamp heads105W (5500K Daylight 

balanced Compact Fluorescent Light bulbs) with integrated 50 cm x 70 cm softboxes 

was used as a broader light source. 

 

 

Figure 3–6 - Micro-scale rhizobox growth test set up. Plastic cloche and the transparent 

PVC greenhouse cover removed for clarity. 

Easysense Q5+ data logger 

Water pumps assembly 
Ultraviolet water steriliser 

Marriotte bottle Greenhouse 
frame 

Fluorescent tubes 
steriliser 

External probes 

Portable camera stand 
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3.4.8 Environmental conditions 

The container with the rhizoboxes were subjected to a 16-hour day length light 

exposure provided by four 58 W cool white daylight spectrum fluorescent tubes, 

placed 1500 mm above the rhizoboxes, Figure 3–6.  

An Easysense Q5+ temperature data-logger (Data Harvest Group Ltd, 2018) was used 

to record the ambient temperature for the experiments (Figure 3–6). The data 

logger was placed in the middle of the growing platform. The temperatures are 

measured by three different probes: Two external probes placed at a different 

location across the planting platform and one internal thermometer within the 

logger (Figure 3–6). The logger also measured and recorded the humidity and air 

pressure, taking readings at every hour. All climatic data logged information can be 

found in Appendix 2.  

3.4.9 Plant and mineral oil analysis 

The microcosm phytoremediation experiments lasted four weeks, with day 0 

defined as the time of seeding. At 7, 14, 21 and 28 days, images were taken and 

observations made of root and shoot growth patterns and oil levels in all rhizoboxes. 

Semi-quantitative measurements of root growth and distribution and oil loss were 

made during the experiment as fully quantitative and accurate data could not be 

obtained without disturbing the specimen.  

The presence of roots in each column of each rhizobox was assessed as established 

(score = 1, where the root was observed to reach a depth of at least 14 mm below 

the seed housing (8 mm below the surface of the oil layer where present), limited 

(score = 0.5, where the root has penetrated the oil layer and/or water beneath but 

where the depth is less than 14 mm below the seed housing), and none (score = 0, 

where there is no root, or the root has not yet penetrated the oil and/or water 

layer); whilst oil loss was categorized as full (score = 1, where there was no visible 

oil left), partial (score = 0.5, where oil was visible but clearly reduced in thickness) 

or none (score = 0, where the oil has remained at or near its initial volume, i.e. 

approximately 2.9mm using the box side ruler as a reference).  

The main shoot (vegetative parent tiller) height and main (primary seminal) root 

length were also measured over time. The root and shoot biomass were determined 
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at the end of the experimental growth trial by carefully washing the seedlings with 

de-ionized water and separating them into shoots and roots at the crown (growing 

point). The fresh root and shoot samples were dried at 75ºC for 24 hours in 

accordance with British Standards Instituition (2007) and then weighed to determine 

the biomass production. Total root and shoot lengths were determined by summing 

the total length of all roots or shoots in a replicate. 

The oil and root scoring data were statistically between scenarios and columns 

examined using non-parametric t-tests and the quantitative shoot and root data was 

statistically examined using an independent-sample t-tests (SPSS v25) at P<0.05 

confidence level to compare the differences in the means. 

 

 

 Laboratory Mesoscale Phytoremediation Experiments  

This section presents the materials and methodology for experimental work with 

ryegrass (Lolium perenne) grown in two prepared soils for exploring the impacts of 

LNAPL (mineral oil) on root distribution and growth, and oil loss in soil at the 

macroscopic scale.  

3.5.1 Mesoscale phytoremediation tests  

The behaviour observed at the microcosm scale was explored at a larger scale in 

soil mesocosms to determine how the response of an individual plant could be 

extrapolated to the behaviour of a planted soil and its effect on LNAPL 

contamination.  

As with the microcosm experiments, mineral oil (coloured with Oil Red O) was used 

as a model LNAPL contaminant (section 3.2.2), perennial ryegrass (Lolium perenne) 

was used as the model plant (section 3.4.5) and quarter-strength Hoagland’s 

solution was used for nutrient supply (section 3.4.6). The solution is essential for 

the growth of plants due to the lack of organic matter in the artificial soils used, as 

the nutrient solution contains nitrogen and potassium (Hothem et al., 2003), making 

it best for the development of plant in low nutrient scenarios.  
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3.5.2 Apparatus for mesoscale phytoremediation tests 

For studying phytoremediation of LANPL with multiple plant perennial ryegrass 

seeds using artificially prepared soils, a specially constructed large-scale acrylic 

plant growth rhizobox was designed and fabricated in this study. The box internal 

dimensions are 350 high x 250 wide x 25 mm deep as shown in Figure 3–7.  

This transparent box was constructed from 12 mm thick clear acrylic material on all 

sides to enable visual inspection of both contaminant transport and root growth 

during the experiment. The front plate of the box (not shown in Figure 3–7 for clarity 

purpose) was fixed in place using sealant and screws to allow removal after the test 

and to allow the sample extraction for post-test analysis. Some space was left at 

the top of the box for tolerance.  

A 3mm acrylic sheet central partition separated the chamber into two segments, 

although the number of columns vary according to the experimental scenarios. A 40 

mm gravel layer was placed at the bottom of the rhizobox interior to allow free 

drainage of the top layers of soil. This gravel fraction was prepared from thoroughly 

washed gravel passing the 12 mm test sieve but retained on 4 mm test sieve and 

covered with a layer of Whatman filter paper to prevent mixing with the soil.  

Water levels within the chamber were controlled using an external, movable, plastic 

tube connected by flexible tubing to a port located in the gravel layer. The water 

level in this was maintained at a constant height, maintaining the ‘groundwater’ 

level within the soil. 
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Figure 3–7 - A Schematic view of rhizobox section 

 

3.5.3 Sample preparation and soil placement 

Two soils (sandy loam and loam) were prepared as discussed in section 3.2.1. The 

properties of materials used in this investigation are summarised in Table 3–6. 

For each test either sandy loam or loam was placed in four layers: a 230 mm thick 

soil layer, a 10 mm thick contamination layer, a 20 mm soil layer and a final 10 mm 

soil layer.   

Required amounts of sandy loam or loam sample were taken from a thoroughly 

mixed air-dried sample. The samples were then stored in an airtight container. The 

sandy loam or loam soil was prepared in plant growth rhizoboxes by first of all wet-

packing a 230 mm thick layer of soil at a water content equal to the plastic limit to 

a target density of 1.748 Mg/m³ and 1.549 Mg/m³ for sandy loam and loam 

respectively. The sample was mixed thoroughly and placed into the rhizobox before 
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compacted on a mechanical shaker for 2 seconds. The chosen initial water contents 

of the soils were corresponding to the plastic limits of the soils and for full 

saturation condition. Following the completion of compaction, the soil sample was 

then saturated via the external plastic tube (i.e. from the base of the soil) with 

quarter-strength Hoagland’s solution to the top of the soil.  

A 10 mm thick layer of soil was placed on top. In some scenarios’ plant growth 

rhizobox, this had a moisture content equivalent to the plastic limit as before. In 

the other, the soil was mixed with mineral oil (coloured with Oil Red O) instead of 

water, to an oil content equivalent to the plastic limit. The placed soil was then 

compacted by gently tapping the box to the same target densities as before to 

produce a layer of a constant horizontal thickness of 10 mm. 

Further, a 20 mm layer of uncontaminated moistened soil was prepared which had 

a moisture content equivalent to the plastic limit as before and placed above the 

10 mm layer. Subsequently, the ryegrass seeds were spread on top of the 20 mm 

layer of uncontaminated soil to a density of 50 g/m². Finally, the seeds were then 

covered by a further 10 mm layer of moistened soil. 

 

3.5.4 Contamination scenarios for mesoscale phytoremediation tests 

Five contamination scenarios were considered in this study for the mesoscale 

phytoremediation tests. The five scenarios have been arranged to explore the 

response of plants to oil in artificial soils, as well as oil removal in persistent sources 

of contamination in the ground which probably may provide a long-term supply of 

dissolved phase contamination and taking significant periods to dissipate naturally. 

Figure 3–8 presents the details of the scenarios considered. In each case a 10 mm 

thick contamination zone was established 30 mm below the soil surface (termed 

hereafter as the contamination layer) and depending on the scenario this is either 

made up of contaminated or clean soil in each of the partitioned columns.  The 

water table was maintained at the base of the contamination layer in all cases 

(Figure 3–7).  

Control scenario 1 for sandy loam or loam were control experiments which had two 

equal columns (12.35 mm) with LNAPL contaminated soil placed in the 
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contamination layer of the right-hand column but with no seed planted (Figure 3–

8a). Scenario 2, also was a control experiment for the two prepared soils with seeds 

planted evenly across (Figure 3–8b). Scenario 3 was a contaminated setup which had 

a continuous LNAPL contaminated soil placed in the contamination layers and seeds 

planted evenly across (Figure 3–8c). Scenario 4 was an experimental setup which 

had two equal columns (12.35 mm) with LNAPL contaminated soil placed in the 

contamination layer of the right-hand column and clean soil in the left-hand column 

with seed evenly planted across (Figure 3–8d). Scenario 5 had two main equal 

columns (12.35 mm), where the left side was entirely uncontaminated, and the right 

side was subdivided into five alternately contaminated and uncontaminated sub-

columns with seeds evenly planted across (Figure 3–8e). In total there were 20 

rhizoboxes with each scenario replicated twice for both soils. Two replicates were 

used for the soil experiments because the analytical work required was considerable 

for each specimen, and it was determined that two replicates was a manageable 

number. Using averaging across more than two replicates may increase the precision 

of root, shoot and oil loss measurements and permits minor changes to be 

distinguished.  
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(a) Scenario 1 – Oil in column 2 (No plant) 

   
(b) Scenario 2 – Plant only (No Oil) 

 
(c) Scenario 3 – Oil in column 1 and 2 (with plant) 

     
(d) Scenario 4 – Oil in column 2 (with 
plant) 

  
 

                                         
 
 
 
 
 
 
 
 
 
                                       
                               (e) Scenario 5 – Oil in columns A, C and E (with plant) 

Figure 3–8 - Schematic of the five rhizoboxes treatments. (All Dimensions in ‘mm’) 
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3.5.5 Watering and environmental conditions for mesoscale tests 

Over the ten weeks of testing period, quarter-strength Hoagland’s solution was 

added via the supply tube every day to maintain the water table at the same 

position. The plant growth chambers were wrapped with aluminium foil to protect 

roots from light and subjected to lighting and environmental conditions as that 

occurred for the microscale experiments, Figure 3–9.  

 

 

  

Figure 3–9 – Mesoscale phytoremediation growth test set up 
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3.5.6 Plant analysis 

During the growth trials, the shoot growth was monitored by using the surface of 

the soil as a datum and the digital images of the plants were documented. The shoot 

growth was monitored on alternate days and for the entire duration of the tests, At 

the end of the experiment, the shoots were cut for each of the ten columns (A-E, 

left and right sides) for analysis using the soil surface as a cutting reference. The 

rhizoboxes were then stored in upright positions in a freezer at -20 ºC to allow the 

soil to freeze. The front plate of the rhizobox was removed and the frozen soil was 

extracted to allow it to be cut along the predetermined vertical and horizontal 

boundaries. Samples were taken up to a depth of 10 cm from the soil surface 

because the analytical work required was considerable for each specimen, and it 

was determined that combining two specimens was a manageable number (Figure 

3–10).  

Figure 3–10 shows the individual sample cut boundaries.  The frozen soil grid cutting 

was carried out using a 2mm tooth pitch Starrett high performance welded band 

saw blade. In Figure 3–10 the dashed lines indicate band saw blade cut centres and 

the redline boundaries show combined samples for analysis. The volumes of the 

samples within the rhizobox as indicated in Figure 3–10 are: Sample (i) – 3.2 cm3; 

Sample (ii) – 6.4 cm3; Sample (iii) – 10.97 cm3; Sample (iv) – 21.94 cm3. The samples 

were kept in individual resealed bags in a freezer at -20 ºC prior to analysis. 

The mineral oil in the frozen sawn soil cubes (samples) was extracted by dissolving 

the frozen soil samples in distilled water. Each sawn soil sample was mixed with 

distilled water at a ratio of approximately 1 to 4 by volume in Fisherbrand™ sterilin 

polystyrene petri dishes. The root was then separated from the soil by placing the 

mixed soil in a 200-micron sieve (with base). The sieve base was filled with distilled 

water, and the floating ryegrass roots above the water were collected with the aid 

of a wire mesh scoop. The plant materials (shoot and root) were dried at 75 ºC for 

24 hours in accordance with British Standards Instituition (2007) to avoid excessive 

drying. The root biomass content is expressed in mg/cm³ of soil and shoot biomass 

expressed in mg. Sealed bags were used to store all dried plant materials in a cool 

and dry place in the laboratory. 
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The quantitative shoot and root data was statistically examined using an 

independent-sample t-tests (SPSS v25) at P<0.05 confidence level to compare the 

differences in the means. 

 

 

 

Figure 3–10 – Samples taken up to the depth of 10 cm from the soil surface. Individual 

sample cut boundaries (dashed line) and combined samples (red line). * (i) - represents 

3.2 cm³ sample volume, (ii) - represents 6.4 cm³ sample volume, (iii) - represents 

10.97 cm³ sample volume and (iv) - represents 21.94 cm³ sample volume – *L/H – Left 

Hand Side; R/H – Right Hand Side. All dimensions in millimetres (mm) 

 

3.5.7 Oil Analysis 

The mineral oil content was measured at the end of the experiment using the ‘Oil 

Mat’ method (Al-Ansary and Al-Tabbaa, 2007). Polypropylene oil absorbent mats 

(MAT440, New Pig Ltd) were used which had an absorption capacity of 0.043 L/cm2 

and exhibited 80 % and 99 % recovery at oil concentrations (by weight in soil) of 
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0.01 and 20% respectively in the preliminary tests (see appendix 4, calibration data 

for oil analysis). The concentration of mineral oil was determined by adding 40 g of 

distilled water to the already sawn frozen contaminated soil cubes in a petri dish (a 

ratio of approximately 1 to 4 by volume). An oil mat cut to the size of the inner 

diameter of the petri dish was then placed over the mixture of oil, soil, and water 

and covered to avoid evaporation. The petri dish container was then placed on an 

orbital shaker for 24 hours to dislodge trapped oil. The mat was taken out after 24 

hours and weighed. The difference in weight of the matting over this period was 

reported as the mass of oil present in the sample. 

The quantitative oil data was statistically examined using an independent-sample 

t-tests (SPSS v25) at P<0.05 confidence level to compare the differences in the 

means. 

 

 

  Summary 

This chapter presents the materials used and the methods adopted in case of a 

series of experiments that studied the impact of LNAPL contaminant on plant growth 

in hydroponic conditions (microscale) and specially prepared soils (mesoscale).  

The properties of the sandy loam used in this investigation were 2.68, 13 %, 10.6 %, 

0.348, 7.9 and 1.5 x 10⁻⁴ m/s for the specific gravity of soil solid, liquid limit, plastic 

limit, the initial void ratio of compacted soil for permeability, pH and permeability 

respectively. The specific gravity of soil solid, liquid limit, plastic limit, the initial 

void ratio of compacted soil for permeability, pH and permeability for loam were 

found to be 2.66, 15 %, 10.3 %, 0.399, 6.6 and 1.2 x 10⁻⁷ m/s respectively.  

The maximum dry density for sandy loam was 2.0 Mg/m³ at the optimum water 

content of 8.9 %, while 1.96 Mg/m³ maximum dry density was recorded for loam at 

the optimum water content of 9.8 %. The water content versus suction plots showed 

that both soils desaturated at lower suction. The chilled-mirror dew-point tests for 

soil-mineral oil mixtures showed very high value of suction (100 MPa) in the presence 



Chapter 3: Materials and methods 

 

76 

of oil, however, varying the oil content in the soil has less impact on the suctions 

measured. 

A pore-scale 3D-printed rhizobox was designed and fabricated for studying 

phytoremediation of LANPL with a single perennial ryegrass seed under hydroponic 

conditions. The boxes were designed to give a realistic representation of the effects 

of LNAPL contaminants spatially located in individual ganglia on the physical 

distribution of the root growth. Mineral oil (coloured with Oil Red O) was used as a 

model LNAPL contaminant, perennial ryegrass (Lolium perenne) was used as the 

model plant, and quarter-strength Hoagland’s solution was employed for nutrient 

supply. Following four weeks of growth, the remaining oil levels were monitored 

and scored as the oil layer was not sufficiently thick to allow accurate 

measurement. Similarly, root growth in each of the four columns was observed and 

scored. Subsequently, the microcosms were dismantled before roots and shoots 

were separated and total weight and length recorded.  

For the mesoscale phytoremediation study. A specially constructed large-scale 

rhizobox was designed and fabricated. The boxes were designed to give a highly 

idealised scenario to study the response of plants to oil in artificial soils, as well as 

oil removal in persistent sources of contamination in the ground. Similar to the 

microcosm experiments, mineral oil (with Oil Red O), perennial ryegrass (Lolium 

perenne), and quarter-strength Hoagland’s solution was employed. Following the 

ten week growth period the shoot material was cut and divided into samples for 

each of the ten columns (left and right sides) and stored before freezing of the plant 

growth rhizobox. After removal of the front cover of the rhizobox the frozen soil 

was cut into the sections with a Starrett band saw blade. Individual samples were 

frozen in resealable bags prior to analysis. The mineral oil content of each sample 

was determined using hydrophobic oil-absorbent matting (MAT440, New Pig Ltd).  
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     Laboratory Phytoremediation Experiments 

on the Impact of NAPLs on Root Distribution and Growth, 

and Oil Loss, at the Pore-Scale 

 

This chapter presents the results of the experimental work with ryegrass (Lolium 

perenne) grown under hydroponic conditions, exploring how plant growth, root 

distribution and development, and oil removal are affected through direct physical 

contact with mineral oil, a light non-aqueous phase liquid (LNAPL), in small-scale 

3D-printed rhizoboxes. These rhizoboxes provided a simplistic model of soil 

macropores allowing control of oil distribution and accurate monitoring of root 

growth and oil loss in individual ‘pores’. The main aim of the experiment was to 

explore the multi-phase interactions of plant, water, and LNAPL contaminants at 

the pore-scale level to identify how phytoremediation can be employed for source 

zone treatment in the presence of NAPLs. The research questions, the aims and the 

purpose of the growth trial are further explained in section 1.1. Growth trials were 

conducted in a series of small-scale 3D-printed rhizoboxes to study oil loss, root 

mass, root length, shoot growth, the biomass of roots and shoots as described in 

sections 3.5.2 to 3.5.7. 

The light non-aqueous phase liquid (LNAPL) used is a mineral oil and was selected 

so that the experiment could be conducted with just one well defined petroleum 

by-product component as described in section 3.2.2. The oil and root scoring data 

were statistically examined using non-parametric t-tests and the quantitative shoot 

and root data was statistically examined using an independent-sample t-tests (SPSS 

v25) at P<0.05 confidence level to compare the differences in the means.  

The results and analysis of root distribution and growth, and oil loss in the 

hydroponic system for the ten scenarios considered in this research are presented 

in the following sections: (4.1) the impacts of a NAPL location on the plant growth. 

(4.2) the plant effects and oil loss in a hydroponic system. (4.3) the general analysis, 

discussions and summary. 
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 Impact of a NAPL zone on plant growth 

Seedling germination and growth was found to be consistently good across all 

replicates in all scenarios, at least 80% of control as per OECD tests (Reuschenbach 

et al., 2003). There were no germination failures in any rhizobox. Examples of plant 

images to illustrate root growth and oil loss are shown in Figure 4–1. 

     

Figure 4–1. Rhizobox images illustrating examples of plant growth and oil loss for (from 

left): scenario 2 (day 14), scenario 4 (day 14), scenario 2 (day 28) and scenario 4 (day 28). 

Figure 4–3, Figure 4–4 and Figure 4–5 show stacked root growth and oil loss scores – 

each ‘stack’ includes the scores from all five replicates, presented for each of the 

4 columns in all ten scenarios, for days 14, 21 and 28 respectively. For example, if 

full root growth or complete oil loss (i.e. score = 1) was observed in a particular 

column in all five replicates, the bar will have a total index of 5. Stacked root 

growth bars are presented (in these and later figures) in order to graphically show 

the distribution of growth across all replicates as it was not found to be sufficiently 

informative to present data as, for example, averages with error bars given the 

limited number of possible scores in the raw data.  
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No significant growth was observed on day 7, nor was any oil loss observed as any 

roots were aerial and had not yet contacted the contaminant, and hence no results 

are presented for this time. At all three other times and in all scenarios, it is 

apparent that roots were spatially located primarily in the two middle columns 

(columns 2 and 3) regardless of contaminant location, indicating that roots tend to 

grow vertically downwards with little lateral spread initially, and that this is largely 

unaffected by the presence of individual oil ‘ganglia’ in these columns. The roots 

appear to coexist with the contaminants in oil-contaminated columns rather than 

avoiding them. Nonetheless, from day 21 onwards (Figure 4–4 and Figure 4–5), there 

was an apparent effect of mineral oil on root growth in the experimental scenarios 

7, 8 and 9 where three or four columns had oil, with root growth being considerably 

more evenly distributed across the columns. In Figure 4–2, the standard deviation 

of the root growth score across each rhizobox was determined as a measure of root 

growth distribution across the different columns. For scenarios 1-6 and 10, at 28 

days, this value was typically between 0.4 and 0.6 (n = 35, with one outlier at 0.3), 

which may be expected given the preponderance of growth in columns 2 and 3. For 

scenarios 7-9, this measure of root growth distribution was typically between 0 and 

0.3 (n = 15, with two outliers at 0.48), demonstrating much more even growth.  
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Figure 4–2 – The standard deviation of the root growth score across each rhizobox in 

different scenarios (Day 28). For each column, root growth is scored for all five 

replicates and all scenarios and the average of the standard deviation for these scores 

presented as a scatter plot (established root = 1; limited root growth = 0.5; no root 

growth = 0). Error bars represent ± one standard error of the mean. 

 

However, it is not simply the presence of oil in columns 2 and 3 which subsequently 

caused the plant to seek out new routes to the nutrient medium, as scenario 4 had 

oil only in these columns and no diversion or spreading of roots was observed. 

Instead, it is hypothesized that the larger oil presence in scenarios 7 to 9 may 

probably led to higher levels of dissolved mineral oil (though dissolved mineral not 

measured in the study), at least transiently, and that it might be this that limited 

growth in columns 2 and 3 and therefore caused root spreading. There is some 

evidence for this in that the root growth in columns 2 and 3 of scenario 4 was found 

to be consistently higher than that in scenarios 7 to 9. 
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Figure 4–3. Root growth and oil loss in individual columns for all ten scenarios (Day 14) 

(blue – column 1; orange – column 2; yellow – column 3; green – column 4). For each 

column, root growth and oil loss are scored for all five replicates and these scores 

presented as a stacked bar (established root / full oil loss = 1; limited root growth / 

partial oil loss = 0.5; no root growth / no oil loss = 0). 
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Figure 4–4. Root growth and oil loss in individual columns for all ten scenarios (Day 21) 

(blue – column 1; orange – column 2; yellow – column 3; green – column 4). For each 

column, root growth and oil loss are scored for all five replicates and these scores 

presented as a stacked bar (established root / full oil loss = 1; limited root growth / 

partial oil loss = 0.5; no root growth / no oil loss = 0). 
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Figure 4–5.  Root growth and oil loss in individual columns for all ten scenarios (Day 28) 

(blue – column 1; orange – column 2; yellow – column 3; green – column 4). For each 

column, root growth and oil loss are scored for all five replicates and these scores 

presented as a stacked bar (established root / full oil loss = 1; limited root growth / 

partial oil loss = 0.5; no root growth / no oil loss = 0). 
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 Plant effects and oil loss in a hydroponic system 

In oil contaminated columns, the presence of a root led to substantial oil loss as 

time progressed (Figure 4–3 – Figure 4–5) whereas in plant-free experiments little or 

no oil loss was observed (see section 5.1). Even where little or no root growth was 

observed in an oil-contaminated column, the oil still disappeared, albeit much more 

slowly than when a plant root was present. This suggests that oil removal was 

possible through the actions of roots in adjacent columns, potentially due to 

phytoremediation of the dissolved fraction of oil leading to increased rates of oil 

dissolution. Greater oil loss was generally observed in scenarios with less 

contamination overall, similar to the outcomes in other studies (Terzaghi et al., 

2018, Vázquez-Cuevas et al., 2018a). This may also be related to the possible 

phytoremediation of dissolved phase oil, as if all roots contribute to remediation of 

all columns, a smaller amount of oil will generally be remediated more quickly.  

 

     General analysis and discussions 

The effect of the presence of oil on the extent of root growth in individual columns 

across all scenarios is demonstrated in Figure 4–6. The average of the observed root 

growth indices for a given column with or without oil for all five replicates and all 

ten scenarios are scored and presented as a bar chart in Figure 4–6. The average 

root growth scores were presented because the total number of columns with and 

without oil are different and so a stacked plot (as in Figures 4-2, 4-3 and 4-4) would 

not suffice (e.g. there are more column 3s and 4s without oil than with it). Although 

the effect of oil is small, in columns 2 and 3 there is apparently a small negative 

effect of the presence of oil on root growth in individual columns. This was only 

statistically significant in column 2 however (p = 0.008, p = 0.034 and p = 0.007 for 

days 14, 21 and 28 respectively). It may be that the thickness of the oil layer was 

insufficient to affect the root growth significantly, and that greater amounts of oil 

would have a larger effect. In addition, ryegrass has some tolerance to mineral oil 

contamination (Zhu et al., 2018).  
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Figure 4–6.  Effect of presence of oil on average root growth score in individual 

columns at days 14, 21 and 28. For each column, root growth is scored for all five 

replicates and all scenarios and the average of these scores presented as a column bar 

(established root = 1; limited root growth = 0.5; no root growth = 0). The numbers of 

each column with and without oil (i.e. the number of readings used to calculate the 

averages) are presented on the figure. Error bars represent ± one standard error of the 

mean. 
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Figure 4–7 illustrates how the root growth scores for all columns and all replicates 

in a given scenario (stacked bars including the growth scores from all four columns 

from all five replicates for each scenario – i.e. maximum score of 20) are affected 

by increasing oil coverage (represented by the number of columns with oil present). 

At day 14, the presence of oil had a negative effect on root growth, but the situation 

was slightly worse at the lowest oil coverage, but over time this effect decreased 

and may even reversed by day 28, with the highest oil coverage having slightly 

higher root growth than without any oil. It was observed that, in the oil-

contaminated columns, plant roots were coarse and crooked, while those in 

uncontaminated columns were long, fine and smooth. Slightly increased root growth 

with increasing oil levels was observed in scenario 7 and 9 (oil in three or four 

columns), compared to the uncontaminated scenario 10, and this may be a response 

of the plants to environmental stress, increasing the spread of roots in an effort to 

find an uncontaminated route to nutrient supply. The mass increase was partially 

caused by an observed thickening of roots. Root injuries and changes in root 

architecture (length, thickness and branching) are commonly observed as a result 

of abiotic stresses such as drought, salinity or metal contamination (Franco et al., 

2011) although the actual impact is highly species dependent.  
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Figure 4–7. Effect of oil coverage (number of columns with oil present) on root growth 

(Days 14, 21 and 28). Root growth scores for all 4 columns in all 5 replicates are 

stacked for a given scenario (established root = 1; limited root growth = 0.5; no root 

growth = 0).  
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Figure 4–8 combines the root growth and oil loss data for columns where oil was 

present, for each time point, and shows that root growth appears to be correlated 

to oil loss at days 14 and 21 – increased root growth in columns 2 and 3 is matched 

by increasing levels of oil loss. It should be noted that there is overlap of data points 

on this figure, because of the limited number of possible values for both 

parameters. However, as time progressed there was some root growth and 

concomitant oil loss in columns 1 and 4, though the oil loss was large for relatively 

small root growth and in certain cases, oil was lost without any root growth in a 

column. This indicates that there is another mechanism of oil loss – as noted above, 

it is suggested that enhanced removal of the low levels of dissolved phase mineral 

oil by established roots in columns 2 and 3 disrupts the equilibrium causing further 

mineral oil in all columns to dissolve, which in turn is removed by the action of the 

roots and possibly attendant microorganisms. 
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Figure 4–8.  Relationship between root growth and oil loss in individual columns for all 

ten scenarios, (Days 14, 21 and 28). Shape outlines indicate the plotted points for each 

column to account for some points overlapping. (blue – column 1; orange – column 2; 

yellow – column 3; green – column 4). For each column, root growth and oil loss are 

scored for all five replicates and the total counts of these scores presented as a scatter 

plot (established root / full oil loss = 1; limited root growth / partial oil loss = 0.5; no 

root growth / no oil loss = 0). 
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Figure 4–9 shows the total root and shoot length for each scenario, averaged across 

all replicates, whilst Figure 4–10 shows root and shoot biomass in a similar manner. 

There are trends in the average values in each scenario which may be of relevance 

but these must be viewed with caution given the high variability. Scenario 10, 

without any contamination, had the highest average total shoot length and mass as 

might be expected, whilst the average values from scenarios 4, 7 and 9 were 

significantly lower (shoot length: scenario 4 - p = 0.042; scenario 7 - 0.041; scenario 

9 - 0.030. Shoot mass: scenario 4 - p = 0.032; scenario 7 - 0.0026; scenario 8 - 0.038; 

scenario 9 - 0.005). The largest average root masses (Figure 4–10) were also found 

in these scenarios, which are the ones with oil present in both central columns, so 

given the prevalence of root growth in these columns it is perhaps not surprising 

that this has impacted upon plant shoot development. With roots, the average total 

length in scenarios 7, 8 and 9 approached that of largest values in scenario 10 whilst 

others were lower, which is indicative of the greater distribution of root growth 

across all columns in these scenarios as noted earlier. It is in these scenarios also 

that the root mass (Figure 4–10,) was significantly larger than in scenario 10 

(scenario 7 - p = 0.041; scenario 8 - p = 0.0025; scenario 9 - p = 0.019) due to a 

combination of the thickening noted previously and increased root spread. It is 

perhaps surprising that the greatest root growth was observed with either no oil or 

the highest levels of oil contamination, similar to the earlier root growth scoring in 

Figure 4–6 – the greatest inhibition was seen with low oil contamination. The 

observed effects could be related to the reported results from the literature on the 

mechanisms of plant toxicity (Simonich and Hites, 1995) and the physical impacts 

of NAPL. It was suggested that the contaminants will first dissolved in the aqueous 

solution within the rhizosphere (dissolved phase not measured in the thesis)  and 

secondly adsorbed on the root (Li et al., 2014b); and thirdly penetrating into root 

tissues (Hurtado et al., 2016), causing harm to the plant and consequentially inhibit 

growth (Vázquez-Cuevas et al., 2018b). The significant inhibition in plant growth 

has also been attributed to the presence of NAPLs in the soil. They did affect soil 

fertility and interchange of gases by clogging pore space. (Chen et al., 2013, 

Ramadass et al., 2015), thereby reducing the electrostatic interaction with some 

essential nutrients  (K+, Ca++, NH4
+) for the plants (Atlas and Bartha, 2012, Wolfe, 

2013a). Under these conditions, the plant will experience a metabolic imbalance 

caused by a condition of oxidative stress which hampers the ability of the cell to 
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regulate the chemical processes (Romeh, 2017, Hou et al., 2015). This has impacted 

upon plant shoot development and thickening and the increased root spread noted.  

 

The increase in root biomass, compared to the corresponding decrease in shoot 

biomass, in response to increasing mineral oil might suggest the plants put more 

energy into root growth than shoot growth due to stress induced by oil 

contamination. Oil can not only reduce the amount of water and oxygen available 

for plant growth (Kaur et al., 2017) but also can interfere with plant-water relations 

by direct physical contact (coating of root tissues) thus negatively affecting shoot 

growth (Razmjoo and Adavi, 2012). Such phenomena affect the local 

biogeochemistry, for example changing nutrient dynamics (Xu and Johnson, 1997) 

which in turn cause changes in root morphology similar to those observed here 

(Franco et al., 2011, Hermans et al., 2006). 

It has previously been found that mineral oil negatively affects plant root 

architecture (thickness, length and branching) as a result of injuries caused by 

contamination (Vervaeke et al., 2003). Studies have observed increased root 

biomass in mineral oil-treated soil, attributed to a typical plant response to the 

reduced rhizosphere mycorrhiza and nutrient deficiency due to oil contamination 

(Heinonsalo et al., 2000). Poorter and Nagel (2000) concluded that plants respond 

to a decrease in below ground nutrients with increased allocation of biomass to 

roots and a reduction in above-ground resources (e.g. sunlight) with increased 

allocation of biomass to shoots. This effect resulted in coarser roots, expressed in 

increased average root diameter with a reduction in specific root length, but a 

larger surface area. Greater phytodegradation of organic contaminants has 

previously been related to higher specific root surface area (Ahmad et al., 2012, 

Merkl et al., 2005). 
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Figure 4–9 - Effect of the presence of oil on root and shoot length for all scenarios. For 

each scenario, root and shoot lengths are measured and totalled for each replicate, 

and the average of this total for all five replicates is presented for all ten scenarios. 

Error bars represent ± one standard error of the mean. 
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Figure 4–10 - Effect of the presence of oil on root and shoot biomass for all scenarios. 

For each scenario, root and shoot mass are totalled for each replicate, and the average 

of this total for all five replicates is presented for all ten scenarios. Error bars 

represent ± one standard error of the mean. 

 

4.3.1 Limitations 

Only plant control hydroponic scenario has been used, and it was determined that 

the oil-free plant control specimen was sufficient. Moreover, a plant-free control 

was planned for the mesoscale experiment. The specific column where the seminal 

root was located has not been ascertained due to the small scale rhizobox. 

Moreover, quantitative root length and root biomass can only be measured for the 

whole box (not in the columns) after the rhizobox has been dismantled due to the 

small size of the rhizobox. Scenarios have been arranged together for ease of data 

collection rather than using a randomised block design to allow statistical 

comparison across treatments. No characterisation tests performed on the mineral 

oil on the composition and properties such as solubility in water tests before and 

after the experiments as the analytical work required was considerable for each 
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specimen, Therefore, the dissolution of mineral oil in the hydroponic setup could 

not ascertained. 

 

4.3.2 Summary 

A laboratory experiment to provide a simplified simulation of the scenario believed 

to be familiar at many contaminated sites where the non-aqueous phase liquids are 

persistent sources of contamination was performed. Light NAPLs may be present in 

pore spaces in the capillary zone as a continuous or semi-continuous phase, or as 

unconnected ganglia which act as individual contaminant sources, providing a long-

term supply of dissolved phase contamination. The degradation of the source zone 

and the root growth was monitored on a regular basis, and the resulting contaminant 

loss, root morphology, root, and shoot biomass analyzed. These pore-scale 

experiments have demonstrated consistent effects of LNAPLs on the growth and 

development of ryegrass, and also the removal of mineral oil by the plant. The root 

growth patterns recorded and observed indicate that physical presence of the root 

does not correlate to the individual contaminant ganglia degradation which suggests 

that the removal of the oil due to plants may be due to the removal of dissolved 

phase contamination, which in turn causes more oil to dissolve and be taken up by 

the plant. The presence of the plant resulted in an increased amount of oil loss over 

time from the system, and more loss was observed where there is less oil.  

The root development and patterns for all the scenarios are consistent, regardless 

of contaminant locations. The same pattern of root distribution was also observed 

for the control scenarios. Therefore, the presence of oil does not prevent the roots 

from growing directly downward into the oil layers. Hence, the roots coexist with 

the contaminants within these columns rather than avoiding the contaminants which 

suggest that the thickness of the contaminant layers might be insufficient to affect 

root growth. There is, however, a substantial lateral spread of root in all four 

columns in the experimental scenarios where three or all four columns had oil 

suggesting that high oil contamination may cause root diversion whereby the plant 

increased the spread of roots in an effort to find an uncontaminated route to 

nutrient supply.  
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The impact of NAPL on root architecture is clear, with greater distribution with 

more extensive NAPL (thought to be caused by increased access to dissolved phase 

oil) and changes to individual root morphology. There was evidence of negative 

impacts on root development regarding changes to root architecture within the 

contaminated layers which may be attributed to the toxicity of mineral oil and a 

reduced supply of moisture and nutrients, which will stress root development. Root 

death or injury has been linked to oil toxicity. Hence, increased root biomass 

observed in the presence of oil contamination, indicating that the plant was putting 

more energy into root growth to mitigate the oil toxicity effects and degrade the 

mineral oil contaminant. The presence of oil is also associated with reduced shoot 

biomass production as compared to the uncontaminated controls with much more 

significant shoot biomass due to its inherent toxicity. This suggests that the stress 

induced by oil toxicity causes the plant to exert more drive into root growth than 

shoot growth.   

This hydroponic microcosm experiment has provided evidence of the impact of the 

presence of an LNAPL (mineral oil) on plant growth, root distribution and oil 

removal. The study has demonstrated the potential for plants to tackle NAPL 

contamination and shows that the phytoremediation of the contaminant is not 

limited to the dissolved phase but that roots and the rhizosphere interacted with 

the NAPL which resulted in significant indirect reduction in the presence of the 

LNAPL. Apart from direct root contact with NAPL, roots close to NAPLs were able to 

remove dissolved-phase contamination through uptake and rhizodegradation 

resulting in the rapid dissolution of NAPL source. The study indicates the potential 

for phytoremediation of LNAPLs by perennial ryegrass in a hydroponic system, and 

in soils that are accessible by plant root systems.   
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     Laboratory Phytoremediation Experiments 

on the Impact of NAPLs on Root Distribution and Growth, 

and Oil Loss, in Soils at the Macroscopic Scale  

This chapter presents the results of a series of experiments that studied the impact 

of NAPL contaminants on plant growth in an artificial soil at the macroscopic level 

to identify how phytoremediation can be employed for source zones treatment in 

the presence of NAPLs. The main aim of the experiment was to explore the impact 

of LNAPLs on plant growth and subsequent contaminant behaviour at macroscopic 

levels. By so doing, an understanding of how phytoremediation can be employed for 

source zone treatment in the presence of NAPLs would be developed. The research 

questions, the aims and the purpose of the growth trial are further explained in 

section 1.1. Growth trials were conducted in a series of rhizoboxes to study root 

mass, root length, shoot growth, the biomass of roots and shoots as described in 

sections 3.5.1 to 3.5.7.  

The light non-aqueous phase liquid (LNAPL) used is a mineral oil and was selected 

so that the experiment could be conducted with just one well defined petroleum 

by-product component as described in section 3.2.2. The oil loss, shoot and root 

data were statistically examined using an independent-sample t-tests (SPSS v25) at 

the P < 0.05 confidence level to compare the differences in the means. 

The results and analysis of root distribution and growth, and oil loss in the artificially 

prepared sandy loam and loam for the five scenarios considered in this research are 

presented in the following sections: (5.1) control scenario 1, plant-free oil 

contaminated soils. (5.2) control scenario 2, the response of grass plants to oil-free 

soils. (5.3) scenario 3, the response of grass plants to continuous zones of oil 

contamination in soils. (5.4) scenario 4, the response of grass plants to a 

discontinuous zone of oil contamination in soils. (5.5) scenario 5, the response of 

grass plants to small unconnected zones of oil contamination in soils. (5.6) the 

general analysis, discussions and summary.    
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  Control scenario 1 – Oil and water interaction with artificial 

soils  

Scenario 1 tests were control experiments for sandy loam and loam. The 

experimental setups had two equal columns with LNAPL contaminated soil placed 

in the contamination layer of the right-hand column but with no seed planted in 

either (Figure 5–1). There are two replicates for each soil. The results for scenario 

1 tests which considered oil and water interaction with artificial soils are presented 

and discussed. 

 

 
(a) – Sandy loam 

 
(b) - Loam 

Figure 5–1 - Control scenarios 1 - LNAPL contaminated soil placed in the contamination 

layer of the right-hand column but with no seed planted. 

The scenario 1 tests recorded low oil loss at the end of the experiment with total 

average oil loss for sandy loam and loam measured at 5.19 % and 3.59 % respectively, 

which suggested that there is little oil loss in the absence of plants for both soils. 

The results also provide confidence in the experimental protocols by recovering the 

majority of the oil present. Studies have shown that higher level of contaminant 

degradation in the planted soil may be explained by the rhizosphere effects 

supported by root system (Afzal et al., 2011, Alrumman et al., 2015). The presence 

of plants may favourably enrich the rhizosphere microbial flora by providing 

enzymes, exudates, and oxygen through its roots. The plant roots and mycelium can 

also create pores in the structure of the soil which can improve connectivity and 
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diffusion (Colombi et al., 2017). Therefore, the oil loss in the unplanted controls 

could take place by volatilization, photooxidation or the activity of microflora in 

the soil as a result of nutrient additions (Peng et al., 2009). Under this experimental 

condition, it would be expected that the natural breakdown would occur very 

slowly. In the soil that was supplied with nutrient solution, but without plants, the 

addition of nutrients and water may stimulate microbial activity, resulting in some 

crude oil breakdown compared to what can occur in the treatments without plant 

nutrients. The results from the analysed samples from the uncontaminated left side 

columns show zero oil recovery as measured at the end of the experiment using the 

‘Oil Mat’ method.  

  Control scenario 2 – Plants and water interaction with 

artificial soils 

 Scenario 2 tests were control experiments for the two artificial soils with seeds 

planted evenly across (Figure 5–2). There are two replicates for each soil. 

 

 
(a) – Sandy loam 

 
(b) - Loam 

Figure 5–2 - Control scenarios 2 - Clean soil placed in both columns with seeds planted 

evenly across at a depth of 1 cm 

Results of scenario 2 tests, which acted as a control experiment exploring plant and 

water interaction with uncontaminated sandy loam or loam, are shown in Figure 5–

3, Figure 5–4 and Figure 5–5. Figure 5–3 and Figure 5–4 present root biomass with 

depth data for sandy loam and loam respectively, while Figure 5–5 presents shoot 
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and root biomass data for sandy loam and loam soils. Data are presented for both 

the left hand and right side of the central partition. Each side was further 

subdivided into five columns A - E (‘A’ closest to partition on both sides). The 

subdivision was done to study the difference in root development in different zones.  

Root biomass decreases with depth in all samples. The discrepancy between the A 

samples and the B - E samples is because the former were taken every centimetre 

rather than every two centimetres as the remainder were. However, from Figure 5–

3 and Figure 5–4 plots of root mass with depth, and Figure 5–5 plots of total root 

and shoot biomass for each of the columns, it is clear that there is a very uniform 

growth across all columns. The average total root biomass production for the whole 

box (across all sampling columns A – E) between a depth of 0 - 10 cm are similar for 

both sandy loam (600 mg) and loam (580 mg). Figure 5–3 shows the root biomass 

dropped below 2 cm depth in both columns. Also, in Figure 5–3, the average overall 

shoot biomass production is similar for both soils, with an average total of 3990 mg 

for sandy loam and 4100 mg for loam for the whole box. Though plant growth is 

dependent on many factors, the observed similarity in average root and shoot 

biomass for both soils may be due to the fact that sandy loam and loam soil have an 

almost identical initial water content of 10.6% and 10.3% respectively, and both 

desaturate easily at a lower suction as shown in section 3.3.10.5, Figure 3–2. 

Typically, at lower air entry value, soil with a lower proportion of fine soils will 

start desaturating, whereas soil with a high proportion of fine soils will desaturate 

at an air entry value of several hundreds of kPa (Barbour, 1998). Therefore, it may 

be that sandy loam and loam which contain almost similar lower percentages of fine 

particles induce lower suction which favours plant growth.  
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Scenario 2 – Replicate 1 - Root biomass with depth for sandy loam 

 
Scenario 2 – Replicate 2 - Root biomass with depth for sandy loam 

Figure 5–3 - Control Scenario 2 – Replicates 1 and 2 - Sandy loam root biomass with 

depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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Scenario 2 – Replicate 1 - Root biomass with depth for loam 

 
Scenario 2 – Replicate 2 - Root biomass with depth for loam 

Figure 5–4 - Control Scenario 2 – Replicates 1 and 2 - Loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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Figure 5–5 - Control Scenario 2 – Sandy loam and loam soils root and shoot biomass 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side 

 

 

Scenario 2 – Root and shoot biomass for Sandy loam  

 

 

Scenario 2 – Root and shoot biomass for loam  
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 Contamination scenario 3 – Impact of a continuous NAPL 

zone on plant growth 

Scenario 3 experiments were contaminated setups for sandy loam and loam. These 

had a continuous LNAPL contaminated soil placed in the contamination layers and 

seeds planted evenly across (Figure 5–6). Scenario 3 was arranged to explore the 

response of plants to oil in artificial soils, to understand the impacts on root growth 

and distribution, as well as oil removal in persistent sources of contamination in the 

ground which provide a long-term supply of dissolved phase contamination and 

taking significant periods to dissipate naturally. There are two replicates for each 

soil.  

 

 
(a) – Sandy loam 

 
(b) - Loam 

Figure 5–6 - Scenarios 3 - LNAPL contaminated soil placed in the contamination layers 

of both columns with seeds evenly planted in both at a depth of 1 cm.  

The biomass present in the contaminated scenarios 3 for sandy loam and loam after 

10 weeks are shown in Figure 5–7 and Figure 5–8. The figures are presented in a 

similar way to Scenario 2, although here the grey bar in Figure 5–7 and Figure 5–8 

show the location of the contaminated zone. Again, there is generally uniform 

growth across the mesocosm, both above and below the soil surface.  

 

 



Chapter 5: Laboratory Phytoremediation Experiments on the Impact of NAPLs on Root 

Distribution and Growth, and Oil Loss, in Soils at the Macroscopic Scale 

 

104 

 

 
Scenario 3 – Replicate 1 - Root biomass with depth for sandy loam 

 
Scenario 3 – Replicate 2 - Root biomass with depth for sandy loam 

Figure 5–7 - Scenario 3 – Replicates 1 and 2 - Sandy loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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Scenario 3 – Replicate 1 - Root biomass with depth for loam 

 
Scenario 3 – Replicate 2 - Root biomass with depth for loam 

Figure 5–8 - Scenario 3 – Replicates 1 and 2 - Loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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5.3.1 Scenario 3 - Impact of NAPL on shoot growth 

Comparing the shoot mass in the control scenario 2 with scenario 3 for both soils, 

there is a significant difference in shoot growth in both soils as shown in Figure 5–

9.  

 

 

Figure 5–9 Scenarios 2 and 3 – Shoot biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

The scenario 2 sandy loam shoot mass is significantly higher compared to scenario 

3 (p = 0.0005), and also scenario 2 loam shoot mass is significantly higher compared 

to scenario 3 (P = 0.0003). The decreased shoot biomass in both soils in scenario 3 

suggests the presence of oil inhibits shoot growth as a result of the physical 

exclusion of moisture and nutrients, and the oil toxicity. Therefore, these results 
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indicate that mineral oil does have an effect on shoot growth. As with the 

microcosm experiments (section 4.1), there is a decrease in the overall mass of 

shoots in the presence of oil, but there is a significant increase in the mass of roots, 

although this is particularly clearly illustrated with sandy loam (Figure 5–9). This 

latter effect was observed at all depths where roots were found, and root mass was 

also discovered at slightly greater depth.  

5.3.2 Scenario 3 - Impact of NAPL on root growth 

The comparison of root growth in the control scenario 2 and scenario 3 for sandy 

loam and loam shows there is a significant difference in root growth in both soils as 

indicated in Figure 5–10.  

 

 

Figure 5–10 - Scenarios 2 and 3 – Root biomass for sandy loam and loam soils. Error 

bars represent ± one standard error of the mean. 
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The scenario 3 sandy loam root mass is significantly higher compared with scenario 

2 (p = 0.0006), and also scenario 3 loam root mass is significantly higher compared 

with scenario 2 (P = 0.0005), perhaps because of the oil presence clogging the pore 

space thereby preventing oxygen and nutrients from reaching the rhizosphere which 

can lead to the observed injury to the roots. 

The increased root growth may be a response of the plants to environmental stress, 

increasing the spread of roots in an effort to find an uncontaminated route to 

nutrient supply, as was observed in the microcosms, see section 4.3. The mass 

increase was partially caused by an observed thickening of roots (again also 

observed in microcosms), see section 4.1. Comparison of the results shows that the 

root biomass production for sandy loam is 36% greater than in the loam soil whose 

biomass production 15% higher than both samples of the uncontaminated controls 

(scenario 2). The higher root biomass for sandy loam might be because of an impact 

of the oil, which apparently has more effect in the sandy loam, perhaps because 

sandy loam has 30% less fine particles than loam. NAPL more easily displaces water 

to occupy the pores in sandy soil which holds water less tightly. Fine soil holds water 

more tightly making the movement of NAPL into and out of water-saturated soil 

pores difficult, which can lead to a decrease in their bioavailability and transport 

in the ground (Eibes et al., 2006, El-Tarabily, 2002) , this might give plants greater 

accessibility to larger pores meaning accessibility to nutrients and moisture. In the 

sandy loam, the contaminants are not bound up in the soil material and can clog 

the pore space leading to a decrease in solutes and pore water availability compared 

to more fine-grained soil. Hence, the reduced access to nutrients and moisture and 

the toxic oil compounds will affect the plants (Mitton et al., 2014). In the sandy 

loam soil, the ratio of the shoot to root mass is 3:1 in comparison to 6:1 for the 

control (scenario 2). The loam soil shoot to root mass ratio is 3:1 in comparison to 

7:1 for the control (scenario 2), indicating the plant put more energy into root 

rather than shoot growth. The stress on root development may be because of the 

presence of high concentrations of mineral oil, which leads to increased toxicity 

and reduced access to moisture and nutrients.  
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5.3.3 Scenario 3 - Impact of plants on oil loss 

Between 55 % and 60 % (sandy loam) and 45 % and 57 % (loam) of the oil was removed 

across all columns, when compared with scenario 1 where the total average oil loss 

for sandy loam and loam measured at 5.19% and 3.59% respectively (Figure 5–11). 

The results demonstrate the phytoremediation effect of ryegrass in non-aqueous 

phase contamination.  

 

 

Figure 5–11 - Scenarios 1 and 3 – Oil loss for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

In Scenario 3, sandy loam where greater amounts of root biomass were observed 

has a higher contaminant loss. The increased mineral oil loss in sandy loam, might 

suggest an increase in contaminant bioavailability and transport in the sandy loam. 

NAPLs will preferentially enter larger pores (easier to move water out of the larger 

pore in the sandy loam) resulting in higher residual saturation in the pores. 

Therefore, this might give plant roots greater accessibility to degrade the 

contaminants. 
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 Contamination scenario 4 – Impact of a discontinuous NAPL 

zone on plant growth 

Scenario 4 tests were experimental setups for both artificial soils. The scenarios 

had two equal columns with LNAPL contaminated soil placed in the contamination 

layer of the right-hand column and clean soil in the left-hand column with seed 

evenly planted across both (Figure 5–12). Scenario 4 arrangements had been tested 

to understand the response of root growth and distribution to discontinuous zones 

of oil contamination as well as oil removal. The physical distribution of NAPLs may 

be complex, with scenarios ranging from larger zones of continuous NAPL 

contamination to small unconnected individual ganglia. This scenario explored 

whether the plants may increase the spread of roots in an effort to avoid toxicity 

effects and environmental stress from oil contamination. Perhaps, the plants may 

increase the spread of roots in an effort to find an uncontaminated channel to 

nutrient supply in response to the toxicity effects and environmental stress from oil 

contamination. Again, there are two replicates for each soil.  

 

 
(a) – Sandy loam 

 
(b) - Loam 

Figure 5–12 - Scenarios 4 - LNAPL contaminated soil placed in the contamination layer 

of the right-hand column and clean soil in the left-hand column with seed evenly 

planted across both at a depth of 1 cm. 
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Figure 5–13 and Figure 5–14 are presented in a similar way to both Scenario 2 and 

Scenario 3, although here the grey bar also shows the location of the contaminated 

zone on the right-hand side. Also, data are presented for both the left hand and 

right side of the central partition. Each side is further subdivided into five columns 

A - E. There are differences in growth between the right-hand and the left-hand 

columns, both above and below the soil surface for all the replicates. Comparing 

the overall total for the whole box for scenario 4 and scenario 2 shows that the root 

mass and shoot mass difference are statistically significant for both soils (Figure 5–

15, Figure 5–16, Figure 5–17 and Figure 5–18). 
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Scenario 4 – Replicate 1 - Root biomass with depth for sandy loam 

 
Scenario 4 – Replicate 2 - Root biomass with depth for sandy loam 

Figure 5–13 - Scenario 4 – Replicates 1 and 2 - Sandy loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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Scenario 4 – Replicate 1 - Root biomass with depth for loam 

 
Scenario 4 – Replicate 2 - Root biomass with depth for loam 

Figure 5–14 - Scenario 4 – Replicates 1 and 2 - Loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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5.4.1 Scenario 4 - Impact of NAPL on shoot growth  

The scenario 3 sandy loam shoot mass is significantly lower than scenario 4 (p = 

0.015), and also scenario 3 loam shoot mass is significantly lower than scenario 4 (p 

= 0.017) as shown in Figure 5–15.  

 

 

 

Figure 5–15 Scenarios 3 and 4 – Shoot biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

The higher shoot mass in scenario 4 also suggests the adverse effects of high levels 

of contaminant in scenario 3 which affects shoot growth when compared with 
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scenario 4. The results further confirmed that the presence of contaminant does 

affect plant root and shoot growth in both soils. 

The scenario 4 sandy loam shoot mass is significantly lower compared with scenario 

2 (p = 0.005), and also scenario 4 loam shoot mass is significantly lower compared 

with scenario 2 (p = 0.0002) as illustrated in Figure 5–16, the reduced shoot mass 

was also observed in scenario 3 as a result of the presence of oil (Figure 5–9).  

 

 

 

Figure 5–16 Scenarios 2 and 4 – Shoot biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 
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Also, comparing shoot mass in scenario 4 right-hand with scenario 2 right side 

(Figure 5–16), as with the scenario 3, there is a decrease in the overall mass of 

shoots in scenario 4 right-hand column in the presence of oil, but there is a very 

significant increase in the mass of roots (Figure 5–16 and Figure 5–17).  

Moreover, the combination of contaminated and uncontaminated zones within the 

same box has had an effect. The plant growth is affected by adjacent NAPL 

contamination. In scenario 4, the average total shoot mass for the right hand is 1657 

mg and left hand 1908 mg. Therefore, comparison of scenarios 4 and 2 left side 

total shoot mass (1908 mg) is lower compared with scenario 2 (1945 mg) as shown 

in Figure 5–16. Moreover, comparison of scenarios 4 and 3 right side total shoot mass 

shows that scenario 4 right side shoot mass (1657 mg) is similar to scenario 3 (1661 

mg), Figure 5–15. The results suggest that the fact that the contaminated and 

uncontaminated zones were in the same box has led to a decrease in the overall 

mass of shoots in scenario 4 compared with scenario 2, perhaps because of oil and 

reduced access to nutrients. 
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5.4.2 Scenario 4 - Impact of NAPL on root growth 

Moreover, comparing the overall experiment total for scenario 3 and scenario 4 

shows that the root mass difference is significant for sandy loam and loam (Figure 

5–17). 

 

 

 

Figure 5–17 Scenarios 3 and 4 – Root biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

 



Chapter 5: Laboratory Phytoremediation Experiments on the Impact of NAPLs on Root 

Distribution and Growth, and Oil Loss, in Soils at the Macroscopic Scale 

 

118 

The scenario 3 sandy loam root mass is significantly higher compared with scenario 

4 (p = 0.0005), and also scenario 3 loam root mass is significantly higher compared 

with scenario 4 (p = 0.0033) as illustrated in Figure 5–17. The increased root mass 

observed in scenario 3 in both soils may be because of the high levels (continuous 

zones) of oil contamination in scenario 3 resulting in more damaged roots as plant 

increased the spread of roots in an effort to find an uncontaminated route to 

nutrient supply.  

Comparison of the results for the scenario 4 right side with scenario 3 also shows 

that the root biomass production for scenario 4 sandy loam is 25 % greater than in 

the loam, an effect that was also observed in the scenario 3 results. The increase 

in root biomass for the sandy loam soil might be as result of damaged roots in 

response to the increased contaminant bioavailability and transport in the sandy 

loam larger pores, resulting in less accessibility to oxygen, nutrients and moisture.  

The scenario 4 sandy loam root mass is significantly higher compared with scenario 

2 (p = 0.016), Figure 5–18 and also scenario 4 loam root mass is significantly higher 

when compared with scenario 2 (p = 0.005), Figure 5–18, the increased root also 

shows the adverse effects of oil on the root growth.  
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Figure 5–18 Scenarios 2 and 4 – Root biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

Also, comparing root mass in scenario 4 right-hand with scenario 2 right side, as 

with the scenario 3, there is a decrease in the overall mass of shoots in scenario 4 

right-hand column in the presence of oil, but there is a very significant increase in 

the mass of roots (Figure 5–18). This is particularly clearly indicated in the scenario 

4 sandy loam (Figure 5–18), where root biomass was increased at all depths 

compared to the scenario 2 control in locations where an oil layer was present. 
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Moreover, higher root biomass was recorded in the scenario 4 left side columns 

when compared to the control scenario 2 left side, as illustrated in Figure 5–18. It 

is probable that the roots responded to the diffusion of the dissolved phase 

contamination diffusing to the left, hence the changes in the root architecture. 

Moreover, the combination of contaminated and uncontaminated zones within the 

same box has had an effect. The plant growth is affected by adjacent NAPL 

contamination. In scenario 4, the total root mass for the right hand is 560 mg and 

left hand is 366 mg. Therefore, comparison of scenarios 4 and 2 left side total root 

mass indicates that scenario 4 left side root mass (366 mg) is higher compared with 

scenario 2 (270 mg), Figure 5–18. Moreover, comparison of scenarios 4 and 3 right 

side total root mass shows that scenario 4 right side root mass (560 mg) is similar to 

scenario 3 (558 mg), Figure 5–17. The results suggest that the fact that the 

contaminated and uncontaminated zones were in the same box has led to a decrease 

in the overall mass of shoots in scenario 4 and a very significant increase in the mass 

of roots (Figure 5–17, Figure 5–18) when compared with scenario 2, perhaps because 

of oil and reduced access to nutrients. 

5.4.3 Scenario 4 - Impact of plants on oil loss 

Comparing oil loss in scenario 4 with scenario 3 as shown in Figure 5–19, between 

67 % - 76 % (sandy loam) and 58 % - 66 % (loam) of the oil were removed on the 

right-hand of scenario 4, while between 55 % – 60 % (sandy loam) and 45 % – 57 % 

(loam) of oil were lost across all columns (totals for the whole box) of scenario 3 

(Figure 5–11).  
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Figure 5–19 - Scenarios 3 and 4 – Oil loss for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

This demonstrates apparent phytoremediation of NAPL contamination and the 

adverse effects of persistence sources of dissolved phase contamination. The total 

average oil loss for sandy loam is higher compared with loam in scenario 4, Figure 

5–19. The lower overall percentage of contaminant loss in scenario 3, when 

compared to scenario 4 contaminated right-hand, might be because of the high 

levels (continuous zones) of oil in scenario 3 (Figure 5–19). The removal or loss of 

organic contaminants by the plant generally depends on the volume or its 

concentration in the soil (Zengel et al., 2016, Lim et al., 2016). The results suggest 

that more contamination might mean less contaminant loss due to the high oil 

content clogging the pore space, thereby reducing the supply of oxygen, moisture 

and nutrients which may be responsible for shoot growth inhibition and the observed 

injury to the roots and the subsequence less contaminant loss. The analysed samples 

from the scenario 4 left side show zero oil recovery. 
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 Contamination scenario 5 – Impact of small unconnected 

NAPL zones on plant growth  

Scenario 5 tests had two main equal columns, where the left side was entirely 

uncontaminated, and the right side was subdivided into five alternately 

contaminated and uncontaminated sub-columns with seeds evenly planted across 

both. (Figure 5–20). The five sub-columns represent small unconnected contaminant 

sources which is more common as the contaminant source ages. There are two 

replicates for each soil. 

 

 
a – Sandy loam 

 
b – Loam 

Figure 5–20 - Scenarios 5 – LNAPL contaminated soil placed in the contamination layer 

of the right-hand column (further subdivided) and clean soil in the left-hand column 

with seed evenly planted across both at a depth of 1 cm. 

Results for scenario 5 are shown in Figure 5–21 and Figure 5–22, that show the root 

biomass with depth for the two soils as recorded at the end of the experiment. The 

effects observed in Scenario 4 right-hand column (Figure 5–13 and Figure 5–14) are 

replicated here but in smaller alternate unconnected zones. However, the 

introduction of five sub-columns has a negative effects of plant shoot and root 

biomass production.  
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Scenario 5 – Replicate 1 - Root biomass with depth for sandy loam 

 
Scenario 5 – Replicate 2 - Root biomass with depth for sandy loam 

Figure 5–21 - Scenario 5 – Replicates 1 and 2 - Sandy loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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Scenario 5 – Replicate 1 - Root biomass with depth for loam 

 
Scenario 5 – Replicate 2 - Root biomass with depth for loam 

Figure 5–22 - Scenario 5 – Replicates 1 and 2 - Loam root biomass with depth. 

Note: Refer to Figure 3–10 for samples’ sizes and volumes. * L/H – Left Hand Side; 

R/H – Right Hand Side. 
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5.5.1 Scenario 5 - Impact of NAPL on shoot growth 

In Figure 5–23, the comparison of the total root mass and shoot mass for the whole 

box for scenario 4, and scenario 5 shows that the scenario 4 root mass is significantly 

higher for sandy loam (p = 0.006) and loam (p = 0.0061) compared with scenario 5 

as a result of root damage caused by the increased oil contamination.  

 

 

 

Figure 5–23 Scenarios 4 and 5 – Shoot biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

 



Chapter 5: Laboratory Phytoremediation Experiments on the Impact of NAPLs on Root 

Distribution and Growth, and Oil Loss, in Soils at the Macroscopic Scale 

 

126 

The increased oil contamination also leads to a significant reduction in the shoot 

mass in the loam for scenario 4 (p = 0.0068), Figure 5–23.  

Moreover, the scenario 5 shoot mass is also statistically significantly lower (p = 

0.0013, sandy loam; p = 0.0016, loam) compared with scenario 2, Figure 5–24. The 

results suggest that low contamination levels with the presence of non-continuous 

contamination reduce root mass as well as shoot mass. Perhaps, the smaller extent 

of the contamination regions in scenario 5 may have caused a fluctuation in nutrient 

availability, with small regions providing a very different condition of nutrient input 

and root competition which will negatively affect plant growth. 

The inhibition to shoot growth and root growth was also observed with either no oil 

or the highest levels of oil contamination with multiple partitions in the microcosm 

experiments. This is similar to the earlier root growth scoring in Figure 4–6, 

microcosm experiments – the greatest inhibition was seen with low oil 

contamination and a significant root damage with higher levels of oil contamination. 

The observed effects could be related to the reported results from the literature 

on the mechanisms of plant toxicity (Simonich and Hites, 1995, Lim et al., 2016) 

and the physical impacts of NAPL. The contaminants will dissolved in the aqueous 

solution (not measured in the thesis)  and adsorbed on the root (Li et al., 2014b); 

before penetrating into root tissues (Hurtado et al., 2016), causing harm to the 

plant and consequentially inhibit growth (Vázquez-Cuevas et al., 2018b). The 

significant inhibition in plant growth has also been attributed to the presence of 

NAPLs in the soil. They did affect soil fertility and interchange of gases by clogging 

pore space. (Chen et al., 2013, Ramadass et al., 2015), thereby reducing the 

electrostatic interaction with some essential nutrients for the plants (Atlas and 

Bartha, 2012, Wolfe, 2013a). The plant can experience a metabolic discrepancy 

caused by a condition of oxidative stress which impedes the ability of the cell to 

regulate the chemical processes (Romeh, 2017, Hou et al., 2015). This has impacted 

upon plant shoot development noted.   
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Figure 5–24 Scenarios 2 and 5 – Shoot biomass for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

 

5.5.2 Scenario 5 - Impact of NAPL on root growth 

The scenario 5 left side root biomass seems to be quite low when compared with 

the control scenario 2 left side, as clearly shown in sandy loam (Figure 5–25).  
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Figure 5–25 Scenarios 2 and 5 – Root biomass for sandy loam and loam soils. Error 

bars represent ± one standard error of the mean. 

Although the root architecture for both scenario 5 and scenario 2 left side are similar 

(roots were fine, long and smooth), the lower root mass in scenario 5 left side 

suggests that there is a significant inhibition on the root growth in the low oil 

contamination, while injury to root was observed with high oil concentration as seen 

in all high-level oil contaminated layers. Moreover, the combination of alternate 

contaminated and uncontaminated zones within the same box has had an effect. 

Overall, root biomass for the whole box seems to be quite low in scenario 5, also 

particularly clearly illustrated in the sandy loam (Figure 5–25) when compared with 

the control scenario 2.  
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Therefore, the combination of alternate contaminated and uncontaminated zones 

within the same box has had an effect. These results show that the scenario 5 root 

mass is significantly lower (p = 0.0051, sandy loam; p = 0.0023, loam) compared 

with scenario 2. Moreover, the scenario 5 shoot mass is also statistically significantly 

lower compared with scenario 2, Figure 5–24. The results suggest that low 

contamination levels with the presence of non-continuous contamination reduce 

root mass as well as shoot mass. Perhaps, the smaller extent of the contamination 

regions in scenario 5 may have caused a fluctuation in nutrient availability, with 

small regions providing a very different condition of nutrient input and root 

competition which will negatively affect plant growth (McConnaughay and Coleman, 

1998, Lavorel et al., 1997). Moreover, the significant inhibition in plant growth has 

also been reported at low oil concentration in the soil, and even though low 

contamination levels were considered to be less toxic, contaminants can affect soil 

fertility and interchange of gases by clogging pore space (Chen et al., 2013, 

Ramadass et al., 2015).  

 

5.5.3 Scenario 5 - Impact of plants on oil loss 

A higher proportion oil loss was observed in scenario 5 probably because of the 

reduced extent of contamination in the contamination layer, compared to other 

contaminated scenarios (Scenario 1 – R/H, Scenario 3, and Scenario 4 – R/H), Figure 

5–11, Figure 5–19, Figure 5–26, and Figure 5–27. The sandy loam columns exhibited 

more oil loss compared to loam columns as shown in Figure 5–26 and Figure 5–27. 

Figure 5–26 and Figure 5–27, decreasing amounts of oil loss were observed as the 

coverage of the oil layer increased. Although the improved performance is largest 

at low contaminant levels (as seen in scenario 5), as oil contamination increases, 

the oil recovery from the two soils becomes similar. The observed reduced oil loss 

with increasing oil levels might be because the removal of oil by the plant will 

generally depends on the levels in the soil (Zengel et al., 2016, Lim et al., 2016). 

The observed results might be because of the damaged root in the high-level 

contaminated scenarios, Figure 5–26, Figure 5–27  (Naidoo, 2016, Merkl et al., 2005) 

or the plant root branching and avoidance of contaminated zones in an effort to 
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find an uncontaminated route to nutrient supply as seen in the microcosm (section 

4.2).  

 

 

Figure 5–26 - Scenarios 3 and 5 – Oil loss for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 

 

 

Figure 5–27 - Scenarios 4 and 5 – Oil loss for sandy loam and loam soils. Error bars 

represent ± one standard error of the mean. 
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 General analysis and discussions 

5.6.1 Plant root and shoot biomass production relative to oil coverage 

The behaviour observed at the microcosm scale was explored at a larger size in soil 

mesocosms to determine how the response of an individual plant could be 

extrapolated to the behaviour of a planted soil and its effect on NAPL 

contamination. Plant root biomass was measured for each experimental setup to 

verify the impact of spatially distributed mineral oil on physical distribution of root 

growth and at the interface between plant root and oil. Similar to the microcosm 

experimental design (section 3.4.1), in all scenarios, the 3 cm uncontaminated 

surface soil layer allows germination and initial establishment of ryegrass which has 

been reported to be affected by phytotoxicity of mineral oil (Adam and Duncan, 

2002). The presence of deeper contaminated layers has been found to result in 

enhanced initial root density and longer root system from preliminary investigations 

(Kechavarzi et al., 2007). In the reported tests, the introduction of the mineral oil 

contaminant in planted experiments corresponds to a decrease in the overall mass 

of shoots in the presence of oil, but there is a very significant increase in the 

biomass of roots (Figure 5–28).  
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Figure 5–28 - Effect of the presence of oil on root and shoot biomass for all scenarios 

with plants. For each scenario, root and shoot dry mass are totalled up for each 

replicate, and the average of this total for the two replicates is presented for scenarios 

2, 3, 4 and 5. Error bars represent ± one standard deviation. 
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The latter effect was observed at all depths where roots were found, and root mass 

was also observed at slightly greater depth (Figure 5–3, Figure 5–4, Figure 5–7, Figure 

5–8, Figure 5–13, Figure 5–14, Figure 5–21, Figure 5–22). In particular, there appears 

to be an increase in root mass in all contaminated zones. Moreover, Increased root 

biomass was observed as the coverage of the oil layer increased (Figure 5–28), hence 

there is a decrease in root biomass across scenarios 3 - 5 for both soils as oil 

contamination levels reduced, this is particularly clearly illustrated in the sandy 

loam (Figure 5–28). The decrease root mass across scenarios 3 - 5 demonstrates the 

adverse effects of high sources of dissolved phase contamination and possibly the 

presence of non-continuous contamination layer which might have played a role in 

impact on the plants. The result, therefore, suggests that the response of plant root 

to environmental stress, in the form of changes to the root architecture by the plant 

may be dependent on the contaminant volume or its concentration in the soil and 

restrictions or non-continuous contamination layer. The non-continuous 

contamination layer may cause a variability in root development, as partitions 

provide a very different condition for root competition which will negatively affect 

plant growth. Moreover, high oil content will clog the pore space, thereby reducing 

the supply of oxygen, moisture and nutrients, especially in the sandy loam with low 

fine-grained contents. In the contaminated scenarios 3 and 4 with high oil contents, 

the root biomass production for sandy loam is greater than loam soil but the reverse 

is the case in the low oil contents scenario 5 with loam having a higher root mass 

than sandy loam, however, in the uncontaminated controls (scenario 2), the biomass 

production is similar for both samples (Figure 5–28). The higher root mass for loam 

in scenario 5 might be because the low oil content is bind up in the fine soil material, 

which can lead to a decrease in their bioavailability and transport in the ground, 

this might give plants greater accessibility to larger pores meaning accessibility to 

nutrients and moisture. The higher root biomass for sandy loam in the scenarios 3 

and 4 might be because of an impact of the oil, which apparently has more effect 

in the sandy loam, perhaps because sandy loam has 30% less fine particles than 

loam. There is an increase contaminant bioavailability and transport in the sandy 

loam larger pores when compared with soils with high clay contents; therefore the 

toxic compounds can migrate in the soil and inhibit water and nutrients from 

reaching the rhizosphere which will affect the plants (Mitton et al., 2014). 
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Also, 50% and 36% more root biomass for sandy loam and loam respectively were 

recorded at all depth in the high contaminated scenarios 3 and 4 as a result of root 

damage. However, 65% and 55% less root biomass was recorded for the sandy loam 

and loam respectively at all depth in the lower contaminated scenario 5 when 

compared with the control scenario 2, suggesting that the greatest impediment to 

root growth was seen with high oil contamination levels (or possibly the presence 

of smaller non-continuous contamination layer) reduces root mass as well as shoot 

mass, but without non-continuous contamination layer or as the levels of NAPL 

increase, there is a threshold at which root mass starts to increase. The negative 

impact of NAPL and non-continuous contamination layer is of greater magnitude in 

the sandy loam. However, the higher root mass observed for loam might be because 

the low oil content having low inhibitory impacts on plant growth due to a decrease 

in their bioavailability in the rhizosphere. The higher root biomass recorded 

compared to the uncontaminated control is likely due to the toxicity of the inert or 

immobile mineral oil clogging the pore space and the physical exclusion of oxygen, 

moisture and nutrients required by the plant for growth and developments. The 

environmental stress effect on root development as a result of the contamination 

may be attributed to the presence of high concentrations of mineral oil; leading to 

increased toxicity and reduced access to moisture and nutrients, which will strain 

root development in the contaminated scenarios. The increased root growth may 

be a response of the plants to environmental stress, increasing the spread of roots 

in an effort to find an uncontaminated route to nutrient supply, as was observed in 

the microcosms. The mass increase was partially caused by an observed thickening 

of roots (again also observed in microcosms). Changes in root architecture such as 

length, thickness and branching (branching has been seen  previously in the 

microcosms, see section 4.1 but not observed or measured in this experiment) are 

commonly observed as a result of abiotic stresses such as drought, salinity or metal 

contamination (Franco et al., 2011) although the actual impact is highly species 

dependent. In the presence of oil, plant roots were coarse and looked injured, while 

the uncontaminated control plant roots were longer, fine and smooth (Figure 5–29). 
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(a) Root image in uncontaminated 

clean soil scenarios 

 
(b) Root image in mineral oil 

contaminated scenarios 

Figure 5–29 Root images in contaminated and uncontaminated soils scenarios 

Plant roots can be directly or indirectly affected by the presence of oil in the soil. 

Merkl et al. (2005). Merkl et al. (2005) observed that roots of plants growing in pots 

after the soil mixed with heavy oil were coarse and injured, as roots of Brachiaria 

brizantha (Hochst. ex A. Rich.) Stapf (Poaceae), and Cyperus aggregatus (Wild.) 

were severely damaged, and death resulted in contaminated pots. Root death or 

injury can be related to intermediate compounds like aromatic acids, phenols and 

alkanoic acids that can form when oil is biodegraded by microorganisms in soil 

(Hutchinson and Freedman, 1978). Nonetheless, oil contamination affects soil 

moisture conditions, and due to the hydrophobic nature of petroleum, water 

spreads in-homogeneously in the contaminated soil which can inhibit water from 

reaching the rhizosphere. Therefore, the stress experienced by the plants due to 

less permeability may lead to an increase in root diameter and reduced root length 

(Zhang et al., 2003) .  

As with the microcosm experiments, there is a decrease in the overall mass of shoots 

in the presence of oil (Figure 5–28). Contaminated scenarios relative masses of shoot 

and root is 8:3 when compared to the 10:1 for the control scenario 2. Scenarios 3 - 
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5, with LNAPL contaminants recorded the reduced shoot biomass when compared 

with control scenario 2. These results suggest that mineral oil does have an effect 

on shoot growth.  

There is a decrease in the overall mass of shoots in the presence of oil (Figure 5–28) 

with scenarios 3 - 5 recording reduced shoot biomass when compared with control 

scenario 2. In particular, there appears to be a decrease in shoot mass in all 

contaminated zones when compared with control scenario 2 (Figure 5–28). 

Moreover, there is an increase in shoot biomass across scenarios 3 - 5 for both soils 

as oil contamination levels reduced, clearly illustrated in the loam soil (Figure 5–

28). Lower shoot biomass was recorded in scenario 4 left-hand columns when 

compared to the control scenario 2 left hand especially in the loam soils, see Figure 

5–18. It is probable that the roots responded to the diffusion of the dissolved phase 

contamination diffusing to the left, hence the changes in the shoot growth. The 

results also confirm that the presence of contaminant in adjacent zones does affect 

plant shoot growth in both soils. It may be because the plant put more energy into 

root growth than shoot growth due to stress induced by oil contamination. The 

adverse impacts on plant shoots might be because of high oil concentrations in the 

soil. This will not only reduce the amount of water and oxygen available for plant 

growth (Kaur et al., 2017) but also can interfere with soil-plant-water interactions 

by direct physical contact (coating of root tissues) thus negatively affecting shoot 

growth (Razmjoo and Adavi, 2012).  

5.6.2 Plant effects and oil loss in artificial sandy loam or loam soils   

The presence of plants corresponded to significant oil loss (between the average of 

60 – 80 % for sandy loam and 50 – 70 % for loam), whereas without plants only 

minimal oil loss was noted (5.19% and 3.59% for sandy loam and loam respectively) 

as shown in Figure 5–30. 
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Figure 5–30 – Scenarios 1, 3, 4 and 5 – sandy loam and loam - Total average oil loss. 

Error bars represent ± one standard error of the mean.  

Within planted experiments, decreasing amounts of oil loss were observed as the 

coverage of the oil layer increased. Although the improved performance is largest 

at low contaminant levels, as oil contamination increases, the oil recovery from the 

two soils becomes similar. Therefore, the results show that the success of 

phytoremediation is because of the presence of the plant which resulted in an 

increased amount of oil loss from the system (Figure 5–30). The observed reduced 

oil loss with increasing oil levels is because the removal of oil by the plant generally 

depends on the volume or its concentration in the soil (Zengel et al., 2016, Lim et 

al., 2016). The observed results might be because of the damaged root in the high-

level contaminated scenarios (Naidoo, 2016, Merkl et al., 2005) or the plant root 

branching and avoidance of contaminated zones in an effort to find an 

uncontaminated route to nutrient supply as seen in the microcosm (section 4.2.10) 

and plant growth and root morphology in an oil polluted soil experiment by Langer 

et al. (2010). Perhaps, it may also be because all scenarios have the same mass of 

plants, and they can only deal with oil at a fixed rate, thereby taking longer to 

remove a similar percentage.  
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The sandy loam which produced higher amounts of root biomass has a higher 

contaminant loss, and it is perhaps not surprising that this has affected the plant 

shoot development. The increase in root biomass (the observed injury to roots) in 

response to increasing mineral oil loss, might suggest an increase in contaminant 

bioavailability and transport in the sandy loam. Oil will preferentially enter sandy 

loam larger pores, thereby resulting in higher residual saturation in the pores. Under 

these conditions, plant roots will have greater accessibility to degrade the 

contaminants; however, high oil content in the pore space will result in less 

accessibility to oxygen, nutrients and moisture and the consequential damaged 

roots. Loam soil with high fine-grained content holds water more tightly making the 

movement of oil into and out of water-saturated soil pores difficult, which can lead 

to a decrease in the oil bioavailability and transport in the ground and the resulting 

lower loss.    

 

5.6.1 Limitations 

Samples up to a depth of 10 cm has been analysed. It is possible that there was an 

impact of oil on root growth deeper than 10 cm, but the evidence presented in the 

results section suggests this will be minimal. There is a lack of oil free control for 

scenario 5, because the analytical work required was considerable for each 

specimen, and it was determined that two specimens was a manageable number. 

The uptake mechanism for LNAPL loss was not tested.  

 

 

 

 

 



Chapter 5: Laboratory Phytoremediation Experiments on the Impact of NAPLs on Root 

Distribution and Growth, and Oil Loss, in Soils at the Macroscopic Scale 

 

139 

5.6.2 Summary 

Phytoremediation of organic contaminants depends on the close interaction 

between plant and contaminant. For some scenarios, non-aqueous phase liquids 

(NAPLs) may be present and prove detrimental to the process. This work explores 

the impact of NAPL contaminant on plant growth in an artificial soil at the 

macroscopic scale to identify how phytoremediation can be employed for source 

zones treatment in the presence of NAPLs.  

The multiple plant systems grown in artificial sandy loam and loam soils 

demonstrate the effects of the presence of an LNAPL (mineral oil) on the 

development of perennial ryegrass, and subsequently the removal of the oil by the 

plant. Plant growth and metabolism resulted in the removal of significant quantities 

of oil from the system, indicating that perennial ryegrass, and potentially other 

plant species too, is capable of the phytoremediation of non-aqueous phase liquids.   

In conclusion, the introduction of the contaminant in planted experiments was 

found to significantly impact upon vertical root biomass distribution, including 

zones of increased root growth compared to uncontaminated controls, with 

increased root biomass observed as the coverage of the oil layer increased. The 

increase in root biomass is seen through increased root thickening as a result of 

exposure to the LNAPL. There were injuries on root development in terms of 

changes to root thickness within the contaminated layers which may be attributed 

to the toxicity of mineral oil and a reduced supply of moisture and nutrients, which 

will stress root development in this zone. Root death or injury has been linked to 

oil toxicity in soil and reduced access of the plant to moisture and nutrients which 

strain plant growth. The effect on the root system architecture is consistent with 

effects observed in other species due to various environmental stresses. 

The presence of oil is also associated with reduced shoot biomass production as 

compared to the uncontaminated controls with much more significant shoot biomass 

than contaminated soils due to its inherent toxicity. This suggests that the stress 

induced by oil toxicity causes the plant to exert more drive into root growth than 

shoot growth.   
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Significant removal of LNAPL was recorded in the planted soil, but minimal oil loss 

was noted in unplanted soils. Although sandy loam with greater root biomass 

removed 80% - 90% oil at lower concentrations, the improved removal was similar 

for both soils as concentration increases.  
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     Implications and conclusions 

 Introduction 

This chapter discusses the outcomes of a review of current literature available on 

phytoremediation and two sets of experiments with ryegrass (Lolium perenne) 

grown in hydroponic conditions as well as planted soil that are presented in this 

thesis. The goal of the literature review was to use an elaborate review to compare 

a large number of phytoremediation studies with regard to their performance and 

efficacy. The study assessed 350 experimental (laboratory and field-based) articles 

concerning the success or otherwise of phytoremediation and by combining 

outcomes from multiple studies seeks to identify patterns and relationships not 

apparent at the level of individual investigations. The two sets of experiments 

explored the impact of the physical presence of an LNAPL (mineral oil) on plant 

growth, root distribution and oil removal. The use of hydroponic systems has 

investigated the response of single grass plant to oil in a soil-free, hydroponic 

system to understand the impacts on root growth and distribution, as well as oil 

removal, in a highly idealized scenario, whilst larger scale experiments (mesocosms) 

have investigated phytoremediation and effects of oil on plants in artificial soil 

systems. The knowledge gained has been used to discuss how plants impact the 

behaviour and durability of NAPLs. This thesis aimed to understand plant and NAPL 

interactions within the vadose zone. Phytoremediation of organic contaminants 

depends on the close interaction between plant and contaminant. For some 

phytoremediation treatments of contaminated soils. A key question is whether the 

spatial distribution of roots is governed or correlated with the spatial distribution 

of NAPL contamination in the soil and what role does the form or state of 

contamination play, and why this happens?. This work aimed to investigate the 

multiphase interactions of plant, soil minerals and soil pore liquid with NAPL 

contaminants at microcosm and macrocosm levels. By so doing, the investigations 

seek to develop an understanding of how phytoremediation can be employed for 

source zone treatment in the presence of NAPLs.  

Based on the research questions in section 1.1, the elaborate review has given the 

research into phytoremediation an opportunity of a higher chance of detecting an 

effect and improve precision in the application of phytoremediation techniques by 

identifying patterns and relationships not apparent at the level of individual 
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investigations. Moreover, this has also allowed the degree of conflict to be assessed, 

and reasons for different results explored and explained. Also, the smaller scale 

hydroponic and the larger scale soils experiments that explored how plant growth, 

root distribution and development, and oil removal are affected through direct 

physical contact with LNAPL in pore-scale has established that LNAPLs may hinder 

root development and instigate root spread of NAPL-contaminated pores or zones 

and roots in close proximity to NAPLs may be able to reduce dissolved-phase 

contamination through mechanisms including uptake and rhizodegradation such that 

non-equilibrium conditions arise, causing relatively rapid dissolution of the NAPL.  

This research has added to the understanding of the use of plants for remediating 

NAPL contaminants in many ways based on the initial aims and objectives in section 

1.1. In particular, from the literature review, the study has: 

• established from the review that sandy loam, loam, and silty loam have a 

better organic contaminant removal than other soil types because they 

favour water retention, nutrient availability and water supply for plant 

growth and root development. 

• identified from the review that high organic matter leads to good removal 

but its presence is not crucial, and that within acceptable ranges for plant 

growth, the soil organic matter and pH have little impact on contaminant 

removal. 

• indicated from the review that the physical presence of NAPLs, in particular, 

may have an effect, which suggests that there is a physical effect of NAPLs 

on plant rather than just chemical effects. The uptake mechanism indicates 

that the contaminants will dissolve in the aqueous solution within the 

rhizosphere and then adsorbed on the root before penetrating into root 

tissues. 

• observed a reduction in the concentration of contaminants after 

intervention with plant species. Longer-term studies from the review showed 

that these positive trends were either maintained or improved with time. 
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Moreover, from the microcosms and mesocosms experiments, the study has: 

• identified from the experiments that spatial distribution of NAPL 

contamination loss is related to the spatial distribution of roots. 

• suggested, from interpretation of the experiments data, that 

phytoremediation of dissolved phase contamination accelerates the 

dissolution of LNAPLs into adjacent groundwater and thus can indirectly 

destroy these persistent contaminant sources considerably more rapidly than 

by natural attenuation alone. 

• established from the experiments that the presence of NAPL does not 

prevent the growth of a root within a pore, allowing co-existence and 

therefore more rapid NAPL removal (either directly, indirectly or both) than 

might otherwise be the case.  

• identified from the experiments that the impact of NAPL on root 

architecture is clear; it is not merely the presence of oil which subsequently 

caused the plant to seek out new routes to the nutrient medium. However, 

there was greater root distribution and spreading with more extensive NAPL 

(thought to be caused by increased access to dissolved phase oil) and 

changes to individual root morphology. 

• suggested from the experiments that any contribution from direct 

interaction between root and NAPL has not been conclusively demonstrated 

but direct uptake of hydrocarbons is known to be possible (Hunt et al., 2018) 

although likely to be slower than dissolved phase effects. 

• shown from the experiments that NAPL impact on the plant as a whole was 

detrimental, with considerably reduced above ground biomass (shoots) as 

well as the changes to the roots. 

• indicated significant removal of LNAPL was recorded in the planted 

experimental scenarios, but minimal oil loss was noted in unplanted 

scenarios. 
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• identified from the experiments that the adverse effects of high sources of 

dissolved phase contamination and the presence of non-continuous 

contamination layer in the contamination layer played a role in variations in 

the impact of contamination on plant growth. 

• established that soil type influenced the water retention characteristic 

curves of the soils from the experiments. Due to the presence of significant 

percentages of sand, both soils desaturated at suction less than 1.0 kPa. The 

loam (clay-size = 20%) was found to have higher water holding capacity than 

the sandy loam (clay-size = 10%) for suctions less than 1.0 MPa. At higher 

suctions, both soils had similar water retention characteristics, which may 

be one of the factors that lead to a similar average overall root and shoot 

biomass production for both uncontaminated soils. 

• identified that the presence of LNAPL in oven-dried soils reduced the total 

suction from 1000 to about 100 MPa. However, an increase in the LNAPL 

content (i.e., the oil content) did not influence the suction of the soils. For 

both soils, the measured suctions remained at about 100 MPa for a range of 

oil content between 2 to 12% indicating that the trapped air within the soil 

systems did not allow a reduction of suction of the soils when the oil content 

was increased. Although plant growth is dependent on many factors, the fact 

that sandy loam and loam soils desaturate relatively easily at lower suctions 

would favor plant growth (Ni et al., 2016).  

• established from the experiments that, of the soils considered, plants grown 

in sandy loam removed the most significant amounts of LNAPL, which suggest 

an increase in contaminant bioavailability and transport in the sandy loam. 

However, the improved contaminant removal was similar for sandy loam and 

loam soils as the concentration of contaminant increases.  

 Impact of NAPL on root growth.  

Organic contaminants are known to inhibit plant growth (Buss et al., 2015, Franco 

et al., 2011, Vázquez-Cuevas et al., 2017). The primary inhibiting factors from many 

studies are considered to be the toxicity of low molecular weight compounds and 

the hydrophobic properties of the higher molecular weight compounds limiting the 
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ability of plants to absorb water by decreasing the field capacity of soils and 

nutrient contents (Inglezakis et al., 2017, Norris, 2017). 

Generally, root matter decreases with depth across the mesocosms (Figure 5–3, 

Figure 5–4, Figure 5–7, Figure 5–8, Figure 5–13, Figure 5–14, Figure 5–21, Figure 5–

22). This is because perennial grasses are fibrous-rooted (Schenk and Jackson, 2002) 

and root profiles of grass communities tend to be as shallow as possible and as deep 

as required to meet the evapotranspiration (ET) demand, also factors related to 

reduced probability of oxygen deficiency, and high water and nutrient availability 

in the upper soil layers (Schenk, 2008) are at play. At the mesoscale, it is clear that 

there is varying root growth across all sampling columns from the plots of root dry 

weight with depth, and also the plots of total shoot mass and root mass for each 

column. At least 80% of control as per OECD tests (Reuschenbach et al., 2003). 

Seedling germination and growth was found to be good and dense in all replicates 

in all scenarios in the mesocosms (example images in Figure 5–2, Figure 5–6, Figure 

5–12 and Figure 5–20). Moreover, in the microcosm experiments, seedling 

germination and growth was found to be consistently good across all replicates in 

all scenarios (example images in Figure 4–1). Germination occurred in all pore-scale 

rhizoboxes.  

In this investigation, there was an apparent effect of LNAPL on root growth in the 

microcosm experiments, it is hypothesized that high oil concentrations were leading 

to high levels of dissolved mineral oil contents that caused root growth to be evenly 

distributed across the columns. Moreover, in the planted larger scale experiments 

(mesocosm), high oil concentrations lead to changes in the root architecture. 

Mineral oil has been shown to have an adverse effect on the plants (Zhu et al., 

2018). Furthermore, increased root mass (as a result of root damage) at high oil 

concentrations suggests environmental stress experienced by the plant. The 

environmental stress effect on root development as a result of the contamination 

may be attributed to the presence of high concentrations of mineral oil; leading to 

increased toxicity and reduced access to oxygen, moisture and nutrients, which will 

strain root development in the contaminated scenarios.  

Moreover, root growth occurs at deeper locations (below the NAPL contamination) 

compared to uncontaminated samples resulting in changes in both root biomass 

quantity and location. More root biomass was recorded at all depths in the highly 
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contaminated scenarios as a result of root damage for sandy loam and loam soils. 

However, reduced root biomass was recorded for the sandy loam and loam at all 

depths in the lower contaminated compared with the uncontaminated control 

scenario, suggesting that the most significant impediment to root growth was seen 

with more damaged root mass. The increased root growth may be a response of the 

plants to environmental stress, increasing the spread of roots to find an 

uncontaminated route to nutrient supply, as was observed in both microcosm and 

mesoscale experiments. Marked thickening of roots partially caused the mass 

increase. In the presence of oil, in both microcosm and mesoscale experiments, 

plant roots were visibly damaged and injured, while the uncontaminated control 

plant roots were longer, fine and smooth (Figure 5–29). 

 Impact of NAPL on shoot growth.  

Some of the functions of the root are to absorb moisture, nutrients and firmly hold 

the plant in the ground. The root development and metabolism can directly affect 

the growth of the plant parts above the ground (Davies and Zhang, 1991). In some 

studies, it is evident that under environmental stress, and during seed imbibition, 

a decrease in water and nutrients uptake takes place which causes a reduction in 

germination ability of seeds (Pirasteh-Anosheh et al., 2011, Ashraf et al., 2008). 

Environmental stress can cause a permanent loss in shoot yield potential because it 

inhibits seed germination (Ashraf et al., 2013, Sharif et al., 2007). The microcosm 

recorded an overall decrease in the mass of shoots (Figure 4–3, Figure 4–4 and Figure 

4–5) at high oil levels. Moreover, in the presence of oil in the mesocosms, there was 

an overall decrease in the mass of shoots.  Therefore, the behaviour observed at 

the microcosm scale and the larger size experiments in soils (sandy loam or loam) 

mesocosms shows there is a very significant increase in the mass of roots and a 

decrease in the overall mass of shoots in the presence of oil (Figure 5–28). 

Both experiments suggest that due to stress induced by oil contamination, the plants 

put more energy into root growth than shoot growth. Therefore, the decrease in 

overall mass and length of the shoot after oil contamination suggests environmental 

stress experienced by the plant as a result of some physiological process in plants 

such as respiration, translocation and transpiration being affected adversely by 

LNAPL contamination. 
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 Impact of spatial NAPL location on plant growth.  

Plant growth is affected in areas adjacent to LNAPL contamination in all scenarios 

that combined contaminated and uncontaminated zones when compared to 

uncontaminated experiments without oil and the experiments with complete oil 

coverage. Hence, the combinations of contaminated and uncontaminated zones 

(separated by partitions) in the same box has led to a decrease in the overall mass 

of shoots and a very significant increase in the mass of roots for both microcosm 

and mesocosm experiments (see microcosm Figure 4–7 and mesoscale). The 

decreased shoot biomass and the increased root growth in all scenarios that 

combined contaminated and uncontaminated zones suggest the presence of oil and 

perhaps, the presence of the different zones (separated by partitions) inhibits shoot 

growth and causes root damage. The observed adverse effects suggest physical 

exclusion of moisture and nutrients as a result of oil toxicity and the presence of 

partitions. There was observed injury, characterized by a thicker and reduced 

length, to the roots. Specifically, there is an increase in the root mass in all 

locations. It is probable that the oil presence in adjacent columns led to dissolved 

mineral oil and that it might be this that inhibited root growth in the 

uncontaminated columns and therefore caused root damage. There is some 

evidence for this in that the root growth in contaminated columns soils was found 

to be consistently higher than the uncontaminated columns. See Figures 4-5, 4-6, 

5-9, 5-10, 5-12 and 5-13. 

However, the adverse effects of alternating contaminant locations on the plant 

growth are most significant as oil concentration levels increase (Figure 5–28, 

scenarios 3 - 5), indicating that the highest levels of LNAPL contamination and 

partitions have the most significant adverse impact on the root architecture. The 

increased in root mass as oil contamination levels increased also explains the 

adverse effects of high sources of dissolved phase contamination transport from the 

adjacent LNAPL zones and the presence of partitions which might have played a 

part in impact on the plants. The combinations of contaminated and 

uncontaminated zones (separated by partitions) may cause root competition with 

each other for space which will affect the plant. The result, therefore, suggests 

that the response of plant root to environmental stress, in the form of changes to 

the root architecture by the plant may be dependent on the contaminant 
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concentration levels in the soil and the physical restrictions imposed by the 

partitions.  

 Impact of root location on NAPL removal 

In this study, it is apparent that the presence of NAPL does not prevent the growth 

of a root within a pore in the early stages regardless of contaminant location, 

indicating that roots tend to grow vertically downwards with little lateral spread 

initially and that this is mostly unaffected by the presence of individual oil ‘ganglia’. 

The roots appear to coexist with the contaminants within the NAPL contaminated 

layers and therefore more rapid NAPL removal (either by direct interaction between 

root and LNAPL, indirectly by dissolved phase effects or both) than might otherwise 

be the case. In all oil-contaminated scenarios, the presence of a root led to 

substantial LNAPL loss (Figure 4–5) whereas in plant-free experiments little or no oil 

loss was observed (Figure 5–30). Even where little or no root growth was observed 

in an oil-contaminated pore, the oil was still removed, although more slowly than 

when a plant root was present. The analysed data from microcosm experiments 

show that root growth appears to be correlated to oil loss as increased root growth 

is matched by increasing levels of oil loss (Figure 4–8). Though, in some instances, 

the oil loss was substantial for relatively small root growth and oil was lost without 

any root growth. This suggests that enhanced removal of the low levels of dissolved 

phase mineral oil by established roots in the adjacent pores disrupts the equilibrium 

causing further mineral oil in all pores to dissolve, which in turn is removed by the 

action of the roots. Also, in the mesocosm experiments, this led to a decrease in 

the overall mass of shoots and a very significant increase in the mass of roots in the 

adjacent columns when compared with the oil-free experiments. The result suggests 

the probability of the roots responding to dissolved phase contamination diffusing 

to the adjacent uncontaminated columns causing LNAPL phytoremediation and 

changes in the root architecture, see Figure 5–17 and Figure 5–18.  

 Impact of different levels of LNAPL on plant growth 

Studies reported a reduction in fresh or dry weight of shoots and leaves of plants 

with increasing contaminant levels. Palmroth et al. (2006) and Zhang et al. (2010) 

found that the presence of high levels of contaminants negatively affects the growth 

and health of plants due to the reduced permeability induced by the introduction 
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of pollutants. As soil moisture conditions are affected by heavy oil contamination 

and due to hydrophobic nature of petroleum, water spreads inhomogeneously in the 

contaminated soil which can inhibit water from reaching the rhizosphere thereby 

adversely affecting plant growth (Spiares et al., 2016, Xu et al., 2018).  

In this investigation, scenarios without any contamination had the highest average 

total shoot mass and length as might be anticipated. In the microcosm experiments, 

it is not merely the presence of NAPL contamination (oil) which caused the plant to 

seek out new routes to the nutrient medium. It is postulated that the high oil 

presence led to higher levels of dissolved mineral oil, and that it was this that 

limited growth which subsequently caused the plant to seek out new routes to the 

nutrient medium. 

In the higher oil content contamination scenarios, there was an increase in root 

mass as a result of root damage (Figure 5–29) for both soils and a decrease in shoot 

mass. The adverse effect of high oil contents on the root and shoot biomass is of 

greater magnitude in the sandy loam. It is expected that this is because of lower 

clay content in the sandy loam mixed with mineral oil. Oil displaces water more 

easily to occupy the pores in sandy loam soil which holds water less tightly when 

compare with loam soil. This means the contaminant can clog the pore space more 

easily in the sandy loam because the oil is not bound up in the soil material, leading 

to a decrease in nutrients and pore water availability compared to more fine-

grained soil. Hence, the reduced access to solutes and moisture and the toxic oil 

compounds as a result of oil clogging the pore space in sandy loam will significantly 

affect the plants (Mitton et al., 2014).  

For lower oil levels, loam soil had a higher root mass than sandy loam (Figure 5–25). 

There is higher suction in the case of contaminated loam soil when compared with 

sandy loam soil, Figure 3–3 (a) and (b). The higher root mass for loam in the lower 

oil level might be because loam soil holds water more tightly making the movement 

of oil into and out of water-saturated soil pores difficult. The low oil content is 

bound up in the fine soil material, which leads to a decrease in their bioavailability 

and transport in the ground, this might give plants greater accessibility to larger 

pores meaning accessibility to nutrients and moisture (oil recovered from loam soil 

is lower than sandy loam, Figure 5–30). However, with the increase in levels of oil 

concentrations, there appears to be a threshold at which root mass starts to 



Chapter 6: Implications and conclusions 

 

150 

increase in both soils as a form of environmental stress (Figure 5–28). In the 

mesocosm experiments, the small unconnected oil contaminated zones scenarios 

average total root mass was lower when compared with the oil-free scenarios 

(clearly illustrated in the sandy loam, Figure 5–28). However, as the layer of 

contamination starts to increase, as shown in the discontinuous and continuous 

LNAPL zones scenarios, the root mass starts to increase for both soils in proportion 

to the contamination levels (Figure 5–28).  

Moreover, there was a reduced oil loss (by proportion) as the levels of contamination 

increased. The observed reduced oil loss with increasing oil levels in both microcosm 

and mesoscale experiments might be because of the damaged root in the high-level 

contaminated scenarios. Also, the reduced oil loss may be because of plant root 

branching and avoidance of contaminated zones to find an uncontaminated route 

to nutrient supply. Perhaps, it may also be because all scenarios have the same 

number of plants, and they can only deal with oil at a fixed rate, thereby taking 

longer to remove a similar percentage. 
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 Implications for phytoremediation 

The hydroponic microcosm and mesocosm experiments have provided evidence of 

the impact of the presence of an LNAPL (mineral oil) on plant growth, root 

distribution and oil removal. The research has demonstrated the potential for plants 

to tackle NAPL contamination and shows that the phytoremediation of organic 

contamination is not limited to tackling only the dissolved phase, but that roots 

interacted with the NAPL which resulted in a significant indirect reduction in the 

presence of the LNAPL. It has been shown that roots close to NAPLs can remove 

dissolved-phase contamination through uptake and rhizodegradation resulting in the 

rapid dissolution of NAPL source, and that roots are able to tolerate direct contact 

with NAPLs, although whether LNAPL removal took place as a result of this direct 

contact is unclear. The study indicates the potential for phytoremediation of LNAPLs 

in a hydroponic system, and soils accessible by plant root systems. Although the 

grass species may only be suitable for shallow depth NAPL contamination, however, 

the successful phytoremediation of dissolved phase contamination that accelerates 

the dissolution of LNAPLs source suggests that other plants too may be employed. 

Studies have shown that deep-rooted tree species can also tolerate organic 

contaminants due to their deep roots (Pérez-Hernández et al., 2013, Rivera-Cruz et 

al., 2016). 

The general limitation of the techniques is that plants have to be alive with water, 

nutrients and oxygen adequately available to the roots. Moreover, the soil texture 

(organic matter content, pH and clay content), contaminant levels and 

concentrations and other toxic elements must be within the limits of plant 

tolerance. NAPL contaminants may leach outside the rhizosphere and require 

containment if they have higher water solubility. The technique also may need to 

be considered as a remediation strategy in the long-term because of the time it 

takes the plants to be well established. However, despite these limitations, the 

technique may be appropriate in situations where significant surface areas of 

relatively NAPL contaminants exist in the surface soils. For example, in remediation 

of aged NAPLs, with scenarios ranging from larger zones of continuous NAPL 

contamination to small unconnected individual ganglia which act as individual 

contaminant sources. It has been shown that the plants may increase the spread of 

roots to find an uncontaminated channel to nutrient supply in response to the 
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toxicity effects and environmental stress from oil contamination. The research has 

demonstrated the phytoremediation effect of aged NAPLs contamination with 

complex physical distribution. In the case of different contaminants, the success of 

phytoremediation requires the bioavailability of the pollutants for uptake or 

absorption to, and metabolism by the plant or associated plant microbial systems. 

 Further work 

The experimental design, materials and methods generated data that demonstrates 

the impact of non-aqueous phase liquids (NAPLs) on plant behavior, root 

architecture and the resulting impact of this on phytoremediation. While 

phytoremediation of mineral oil by ryegrass has been successful in this investigation, 

the robustness of the technique requires exploration, for example, changes to NAPL 

constituents and degree of contamination may adversely affect ryegrass to the 

extent that phytoremediation may not be possible. Only one well-defined petroleum 

by-product component (mineral oil) has been used as LNAPL. It is possible that a 

mixture of organic chemicals may result in only some of the compounds being 

removed or that the combination of chemicals might cause difficulties in plant 

growth or the soil structure. Thus, research into mixed organic contaminants is 

required. Similarly, while ryegrass is appropriate for shallow contamination, deeper 

contamination problems would require more deep-rooted plants, with different root 

architectures and densities, for example, hybrid poplars and willow trees (Reilley 

et al., 1996, Limmer et al., 2018), Cedrela odprata and Tabreburia rosea (Pérez-

Hernández et al., 2013) and Acacia species (Bento et al., 2012). 

Moreover, the contaminant level or concentration has not been phytotoxic; 

therefore, experimental work with extensive NAPL spill would have to be conducted 

to supplement the findings of this study. Although roots are able to tolerate direct 

contact with NAPLs, direct LNAPL removal as a result of this direct contact should 

further be investigated. Moreover, further investigations into whether the 

phytoremediation of dissolved phase contamination accelerates the dissolution of 

LNAPL source into adjacent groundwater should also be considered. Nonetheless, 

this study has highlighted the effect of LNAPL on root distribution and spreading 

with more extensive NAPL as a result of increased access to dissolved phase oil. 

While the fundamental underpinning science of the multi-phase interactions of 
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plant, soil minerals, soil pore liquid with NAPL contaminant has been investigated 

in part, further work is required to establish source zone phytoremediation of NAPLs 

and long-term predictive NAPL remediation models. 

Additionally, in the microcosm experiments, semi-quantitative measurements of 

root growth and distribution and oil loss were made during the experiment as fully 

quantitative and accurate data could not be obtained for either measurement 

without disturbing the specimen. Thus, future experimental setup and equipment 

could be improved to allow fully quantitative and accurate data measurement. Also, 

in the mesocosm experiments, the set up could be improved so that the root growth 

can be physically monitored and measured over time. Additionally, the study only 

investigated soil properties before the experiment, so changes in soil conditions 

concerning the impact of NAPL and plant were not monitored. Therefore, the soil 

characteristics after NAPL phytoremediation will require more investigations. 

Ultimately, the underpinning science and attention to soil chemistry could improve 

the techniques of NAPL phytoremediation. 

Phytoremediation is a technology that seeks to exploit the growth habits and 

metabolic abilities of the plants. There is a significant need to pursue both 

fundamental and applied research to understand the limiting factors in plant 

tolerance, increasing uptake and translocation of soils and groundwater 

contaminants. Moreover, the fate of many contaminants and the mechanisms of 

sequestration within the plant is not well understood. It will be difficult to exploit 

many of the recent advances in plant assisted remediation without this basic 

understanding. There is a need to provide research tools, for example by grouping 

plants that are different in only a single trait, such as a specific metabolic pathway 

or root morphology. The results of current research are difficult to interpret, and 

causative relationships are hard to establish because many studies involve plant 

species with many phenotypic differences. Also, research cooperation between the 

engineering, agronomic and chemical-remediation professionals to produce 

integrated hybrid technologies is needed, e.g. applied research into plants with 

higher biomass hyperaccumulators and higher translocation rates. Exploring the 

cooperation between various disciplines may eventually provide low-impact and 

environmentally sound remediation technologies. 
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APPENDIX 3: OIL ADSORPTION TESTS 

1. Acetate Transparency Absorption Analysis by Sample Weight Gained 

The absorption ability of acetate material was tested in the laboratory. Acetate 

film is a clear and flexible plastic sheet that will accept printing ink. It is also known 

for its wrinkle resistance, grease-proofness, water resistance, dimensional stability, 

high gas permeability, good electrical insulation properties, resistance to fogging 

and medium water vapor transmission (online ref., 

www.lairdplastics.com/product/materials/acetate).  

The absorption ability was tested with a flat 2.3cm long x 3.0cm wide x 0.1cm thick 

cut out acetate materials fully immersed in mineral oil for 24hrs. The size was 

chosen to represents the front cover for the small rhi-box design for the plant root 

observation experiments. The sample was then taken out after 24hrs, thoroughly 

wiped out of oil and weigh. The process was repeated four times and the results are 

shown in table 1 below. The average mineral oil absorption to reach equilibrium is 

0.02%. 

 

 

 

 

Fig. 1 – Acetate cut-outs fully immersed in 

mineral oil 
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Table 1: Acetate Transparency Material Oil Absorption Test 

  1st 

Reading 

2nd 

Reading 

3rd 

Reading 

4th 

Reading 

   

Material 

Sample  

Sampl

e 

Weigh

t (g) 

Sample + 

Oil (after 

24hrs). 

Weight 

(g) 

Sample + 

Oil 

(after 

24hrs). 

Weight 

(g) 

Sample + 

Oil (after 

24hrs). 

Weight (g) 

Sample + 

Oil (after 

24hrs). 

Weight 

(g) 

Average Sample 

Oil 

Absorpt

ion / 

Weight 

Gained 

(g) 

Percent

age 

Absorpt

ion (%) 

1 
0.220

1 
0.2201 0.2201 0.2201 0.2201 0.2201 0.0000 0.00 

2 
0.197

6 
0.1976 0.1976 0.1976 0.1977 0.1976 0.0000 0.01 

3 
0.211

3 
0.2114 0.2114 0.2114 0.2113 0.2114 0.0001 0.04 

4 
0.198

5 
0.1986 0.1985 0.1986 0.1985 0.1986 0.0000 0.03 

5 
0.193

2 
0.1932 0.1933 0.1933 0.1933 0.1933 0.0001 0.04 

        0.02 
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2. 3D Printing - PLA Filament Mineral Oil Permeability & Absorption Analysis 

by Rhizo-box Weight Loss 

This is a non-standard procedure that has been used to measure the permeation of 

mineral oil through PLA material between 0.1cm – 0.45cm thick. The rhizo-box 

exposed areas are 1.35cm high x 1.5cm long x 0.1cm thick, back cover; 1.35cm high 

x 0.2cm wide x 2.5mm thick, sides and 1.5cm long x 0.2cm wide x 0.45cm thick 

base. The acetate transparency is cut to shape and bonded to the rhizo-box front 

with super glue and further sealed with LS-X jointing compound, an external leak 

sealer to make it water and oil tight. The test method then involves filling the 3D 

rhizo-box with mineral oil. The test sample is then sealed by placing it an air tight 

container to prevent evaporation. The 

weight loss was then measured over time (in 

this case 24hrs). Permeation rates are then 

calculated from the rate of weight loss and 

the total areas of the four exposed sides of 

the PLA in (mg/min/m2). The average 

permeation rate is 1.13mg/min/m2 as shown 

in table 2. 

(a)                                 (b) 

Figure 2 – (a) Rhizo-box Sample, (b) Sample in air tight container 
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3D Printing - PLA Filament Mineral Oil Absorption Analysis by Weight 

Table 2: 3D Printing PLA Plastic Material Oil Permeability Test 1 

3D 

Rhizo-

box   

3D Rhizo-

box Weight 

(g) 

3D Rizo-box + 

Oil (Before) 

Weight (g) 

3D Container 

+ Oil (after 

24hrs). 

Weight (g) 

3D Container 

+ Oil (After 

24hrs) 

Weight Loss 

(g) 

Permeati

on Rates 

(mg/min

/m2) 

1 1.625 1.9739 1.9721 0.0018 1.1990 

2 1.6496 1.9959 1.9945 0.0014 0.9326 

3 1.5682 1.9293 1.9267 0.0026 1.7319 

4 1.655 2.0029 2.0011 0.0018 1.1990 

5 1.6302 1.9841 1.9822 0.0019 1.2657 

    Average 1.2657 

 

Table 3: 3D Printing PLA Plastic Material Oil Permeability Test 2  

3D Rhizo-

box   

3D Rhizo-

box 

Weight (g) 

3D Rizo-

box + Oil 

(Before) 

Weight (g) 

3D Container 

+ Oil (after 

24hrs). 

Weight (g) 

3D Container + 

Oil (After 

24hrs) Weight 

Loss (g) 

Permeati

on Rates 

(mg/min

/m2) 

1 1.6627 2.0031 2.0011 0.0020 1.3323 

2 1.7092 2.0468 2.0449 0.0019 1.2657 

3 1.687 2.0172 2.0152 0.0020 1.3323 

4 1.6903 2.0111 2.0101 0.0010 0.6661 

5 1.7906 2.1414 2.1398 0.0016 1.0658 

    Average 1.1324 
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APPENDIX 4: CALIBRATION DATA FOR OIL ANALYSIS 

The extraction ability of oil mat technique on mineral oil was measured. The oil 

mat used was the ‘New Pig Ltd’. Oil-Only Mat; product number MAT440, which is 

made of 100% polypropylene which absorbs and retains oils and oil-based liquids 

without taking in a drop of water. The mat floats to clean up oil on water with 

absorption capacity of 0.043L/cm2. The technique was tested with known mineral 

oil concentrations ranging between 0.01% and 20% by weight. The range was chosen 

because 10.6% and 10.3% of mineral oil were added to the rhizo-box growth 

experiments for sandy loam and loam respectively. 

20g of dry soil was mixed thoroughly with known mineral oil concentration by weight 

and placed in a petri dish container. 40g of water was then added to the mixture of 

mineral oil and soil and stir with spatula.  Oil mat cut to the size of the inner 

diameter of the petri dish was then placed over the mixtures of oil, soil and water 

and covered to avoid evaporation. The container was then placed on orbital shaker 

for 24hrs to dislodge probable trapped oil. The mat was then taken out after 24hrs 

and weigh.  

The recovery level of this technique is shown in the tables below, the result is 

consistence with the test result observed by ((Al-Ansary and Al-Tabbaa, 2007).  
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Table 1: Oil Mat Technique Test – Sandy Loam Soil 

% Oil 

Concentration 

added to 20g of 

Soil (Sandy Loam) 

Oil 

Concentration 

by Weight (g) 

Oil Mat 

Weight 

(g) 

Oil Mat 

+ Oil 

(g) 

Extracted 

Oil (g) 

% 

Extracted 

0.01 0.002 2.1404 2.1421 0.0017 85 

0.05 0.01 2.0556 2.0643 0.0087 87 

0.1 0.02 2.1872 2.2054 0.0182 91 

0.5 0.1 2.0818 2.1764 0.0946 94.6 

1.0 0.2 2.1453 2.3364 0.1911 95.55 

5.0 1.0 2.0558 3.0170 0.9612 96.12 

10.0 2.0 2.2950 4.2434 1.9484 97.42 

15.0 3.0 2.0105 4.9573 2.9468 98.23 

20.0 4.0 2.0417 6.0242 3.9825 99.56 

 

Table 2: Oil Mat Technique Test – Loam Soil 

% Oil 

Concentration 

added to 20g 

of Soil (Loam) 

Oil 

Concentration 

by Weight (g) 

Oil Mat 

Weight 

(g) 

Oil Mat 

+ Oil (g) 

Extracted 

Oil (g) 

% 

Extracted 

0.01 0.002 2.1199 2.1215 0.0016 80 

0.05 0.01 2.1591 2.1676 0.0085 85 

0.1 0.02 2.1021 2.12 0.0179 89.5 

0.5 0.1 2.2478 2.3398 0.092 92 

1.0 0.2 2.1446 2.3335 0.1889 94.45 

5.0 1.0 2.2190 3.1756 0.9566 95.66 

10.0 2.0 2.1878 4.1304 1.9426 97.13 

15.0 3.0 2.2281 5.1702 2.9421 98.07 

20.0 4.0 2.2920 6.2342 3.9422 98.555 
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APPENDIX 5: COMPLETE DATA SETS  

 

Electronic copy, available from author. 
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