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ABSTRACT
BACKGROUND: The 50-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by
psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of
this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive.
METHODS: Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural
progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse
transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-
activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using
Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation.
Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic
profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the
climbing assay.
RESULTS: Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult
human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in
energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were
observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein
translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in
Drosophila was associated with drastic climbing impairment.
CONCLUSIONS: We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2,
describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells
and its association with Drosophila melanogaster motility behavior.
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The 50-nucleotidase, cytosolic II gene (NT5C2, cN-II) encodes a
phosphatase associated with disorders characterized by psychi-
atric and psychomotor disturbances, including schizophrenia
(1–4), Parkinson’s disease (5), and spastic paraplegia (6). The
NT5C2 enzyme cleaves purinergic monophosphate nucleotides
and has a particularly high affinity for adenosine monophosphate
(AMP) (7). Theseenergeticmoleculesare required for theextensive
transcriptional programming governing cell maintenance, prolif-
eration, migration, and differentiation during neurodevelopment
(8–11) and have been previously implicated in adult brain function
and psychiatric and psychomotor disturbances (12–14).
Crown Copyright ª 2019 Published by Elsevier Inc on behalf of So
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We previously showed that common psychiatric risk vari-
ants at the NT5C2 locus are associated with reduced neuro-
logical expression of this gene in population control subjects
and in the fetus (3). As a key regulator of intracellular AMP, we
hypothesize that NT5C2 modulates the AMP-activated protein
kinase (AMPK), a major energy homeostasis regulator (15,16).
AMPK signaling has been previously associated with psychi-
atric disorders (17–20), NT5C2 function in muscle fibers (21),
and highly energy consuming processes such as protein
translation (22–27) and motility behavior (17,28,29). However,
the underlying gene regulatory networks that mediate the
ciety of Biological Psychiatry. This is an open access article under the
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effect of NT5C2 on AMPK signaling in the context of psychi-
atric disorders, and the relevant cell types and developmental
time points, remain unclear.

In this study, we investigated NT5C2 expression, function,
and protein distribution in the human brain and human neural
progenitor cells (hNPCs); its role in the regulation of AMPK
signaling and protein translation; and its association with
climbing behavior in Drosophila melanogaster. First, to extend
our previous work, we identified the major cell types
expressing NT5C2 in the adult brain, which showed that
NT5C2 protein is more expressed in neurons relative to glial
cells. Second, we gathered complementary evidence that this
gene is more expressed and therefore likely to play a functional
role during neurodevelopment. Third, we investigated the ef-
fects of NT5C2 loss-of-function on the phosphorylation of
AMPK alpha (Thr172) and ribosomal protein S6 (RPS6)
(Ser235/Ser236) in hNPCs, suggesting a regulatory role in
AMPK signaling and protein translation. Finally, based on ev-
idence from genetic studies implicating NT5C2 in psychomo-
tor disturbances, we tested the effect of a loss-of-function on
climbing behavior using D. melanogaster as model organism,
confirming a role in motility behavior. The present study pro-
vides an extensive neurobiological characterization of NT5C2,
describing its hitherto unknown relationship with AMPK
signaling and protein translation in neural stem cells and a role
in motility behavior in the fly. Ultimately, these data demon-
strate biological mechanisms associated with NT5C2 that may
explain its association with psychiatric disorders.

METHODS AND MATERIALS

See Supplemental Methods and Materials for further details.

Brain Samples

To identify cell type–specific expression of NT5C2 in the adult
cortex, we obtained samples from unaffected control subjects
from the Medical Research Council London Neurodegenera-
tive Disease Brain Bank, Institute of Psychiatry, Psychology &
Neuroscience, King’s College London (UK Human Tissue
Authority license #12293).

Immunohistochemistry and Cytochemistry

Brain sections were deparaffinized and submitted to antigen
retrieval and autofluorescence removal protocols
(Supplemental Methods and Materials). hNPCs were fixed and
processed as previously described (30). The following primary
antibodies were used: NT5C2 monoclonal antibody (M02-3C1)
(Abnova, Taipei, Taiwan), ionized calcium-binding adapter
molecule 1 (IBA1) (Menarini Diagnostics Ltd., Winnersh, United
Kingdom), glial fibrillary acidic protein (GFAP) (Agilent, Santa
Clara, CA), microtubule-associated protein 2 (MAP2) (Abcam,
Cambridge, United Kingdom), parvalbumin (PARVALB)
(Abcam), and beta III tubulin (Abcam). Fluorescently labeled
secondary antibodies included goat or rabbit Alexa 488, 568,
and 633 antibodies (Thermo Fisher Scientific, Waltham, MA).

Cell Lines

We used hNPCs from the CTX0E16 neural stem cell line (31) or
from human induced pluripotent stem cells from an unaffected
control subject (30) and human embryonic kidney 293T
Biological
(HEK293T) cells to identify the subcellular distribution and
function of NT5C2. The CTX0E16 neural cell line (31) was
obtained from ReNeuron Ltd. (Bridgend, United Kingdom)
under a Material Transfer Agreement. All lines were derived
and maintained as described in the Supplemental Methods
and Materials and elsewhere (30,31).

RNA and Protein Isolation and Quantification

To identify gene and protein expression and phosphorylation
differences in knockdown or overexpression cultures, we iso-
lated total RNA or protein using TRI Reagent or RIPA Buffer
supplemented with Halt Protease and Phosphatase Inhibitor
Cocktail (Thermo Fisher Scientific), respectively. Reverse
transcriptase quantitative polymerase chain reaction (RT-
qPCR), RNA quality control, and Western blotting details are
available in the Supplemental Methods and Materials. Primary
antibodies for Western blotting included AMPK alpha (D6) and
phospho-AMPK alpha (Thr172) (Santa Cruz Biotechnology,
Dallas, TX) and total RPS6 (54d2) and phospho-RPS6 (Ser235/
Ser236) (Cell Signaling Technology, Danvers, MA).

Fly Stocks and Climbing Assay

We used Gal4-upstream activated sequences (UAS) (32) to
knock down CG32549 in specific tissues by crossing a
CG32549-RNA interference (RNAi line) (knockdown: v30079)
with UAS lines where Gal4 expression (and thus knockdown) is
driven throughout the body (ACT5C: BL4414), in neurons and
neural progenitor cells (ELAV: BL8765), or in gut (GUT:
DGRC113094). Crosses were submitted to the negative
geotaxis assay (33), a cost-effective test that has been previ-
ously used to investigate the association between genes and
motility (34–36). Climbing success was calculated as per-
centage of flies per tube that climbed over an arbitrary mark,
and survival was determined as percentage of flies alive 17 to
20 days after emergence, out of starting flasks containing 20
flies (n = 41 flasks per condition).

Statistical Analysis

To infer statistical differences between more than two inde-
pendent groups, we used one-way analysis of variances fol-
lowed by Tukey post hoc tests (for normally distributed values)
or Kruskal-Wallis tests followed by Dunn’s tests (for non–
normally distributed values). To infer differences between
two groups, we performed two-way independent parametric t
tests. Multiple testing correction was applied as described in
Results. Microarray expression data were analyzed using
linear regressions (Supplemental Methods and Materials).
Gene overlap significance was calculated in R (R Foundation
for Statistical Computing, Vienna, Austria; https://www.R-
project.org) using Fisher’s exact test (GeneOverlap package).
Statistical analyses were performed in R and SPSS version 24
(IBM Corp., Armonk, NY).

RESULTS

Expression of NT5C2 Is Enriched in Neurons in the
Adult Brain

To extend our previous work and investigate the relationship
between NT5C2 expression and psychiatric disorders, we
Psychiatry July 15, 2019; 86:120–130 www.sobp.org/journal 121
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Figure 1. Distribution of the psychiatric risk protein NT5C2 in dorsolateral prefrontal cortex sections of postmortem unaffected individuals. Colocalization of
NT5C2 staining with (A) microtubule-associated protein 2 (MAP2) (neuronal marker), (B) parvalbumin (PARVALB) (interneuron marker), (C) glial fibrillary acidic
protein (GFAP) (glial marker), and (D) ionized calcium-binding adapter molecule 1 (IBA1) (microglia marker). Scale bars = 50 mm. (E) Quantification of the
colocalization of NT5C2 with markers from panels (A–D) revealed a cell type–specific expression profile of NT5C2 in the mature cortex (one-way analysis of
variance, Tukey pairwise comparisons: ***p , .001 for all comparisons). n.s., not significant.
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investigated which cell types express this gene in the adult
brain. We examined single-cell RNA-sequencing data from the
mouse cortex (37), which revealed cell type–specific profiles of
NT5C2 expression (Kruskal-Wallis test, H4 = 52.44, p , .001).
Post hoc analyses confirmed that NT5C2 was more frequently
observed in pyramidal neurons (95th percentile = 3 [counts])
than astrocytes (95th percentile = 1, Dunn’s post hoc test,
pcorrected , .001) and in interneurons (95th percentile = 3) than
microglia (95th percentile = 2.05, pcorrected , .01) or astrocytes
(95th percentile = 1, pcorrected , .001) (Supplemental Figure S1).

To investigate correlates with the human cortex, we per-
formed a series of immunocolocalization experiments using
postmortem brains. Initially, we investigated the specificity
of an antibody for NT5C2 by probing HEK293T cells and
CTX0E16 hNPCs overexpressing myc-NT5C2 (Supplemental
Figures S2, S4). While immunolabeling of endogenous
expression in heterologous systems may produce different
results owing to the existence of tissue-specific isoforms,
these findings corroborate the suitability of this antibody for
our aims. This antibody was used to investigate the distri-
bution of NT5C2 in the prefrontal cortex using standard
immunoperoxidase staining with 3,30-diaminobenzidine as
chromogen (Supplemental Figure S3). Preliminary analysis of
NT5C2 immunostaining using Nissl counterstain (to reveal
cell morphology) suggested that NT5C2 was present in
neurons, glia, and the surrounding neuropil. However, we
noted that not all putative glial cells expressed NT5C2 (red
arrows in Supplemental Figure S3), corroborating a previous
observation by the Human Protein Atlas that expression is
lower in these cells (38). To confirm this, we investigated the
cell type–specific expression profile of NT5C2 in the cortex
by quantifying immunocolocalization of this protein with
markers of mature neurons (MAP2), a subclass of gamma-
122 Biological Psychiatry July 15, 2019; 86:120–130 www.sobp.org/jo
aminobutyric acid interneurons (PARVALB), astrocytes
(GFAP), and microglia (IBA1) (Figure 1A–E). These cells were
selected based on the wealth of evidence implicating them
in the pathophysiology of psychiatric disorders (39–42).
Colocalization quantification was performed using a semi-
automated ImageJ (National Institute of Mental Health,
Bethesda, MD) macro (43,44) (Supplemental Methods and
Materials), which revealed cell type–specific profiles of
NT5C2 expression (one-way analysis of variance, F3,44 =
39.12, p , .001, n = 4 unaffected control individuals, 4
technical replicates each, 20 fields of view per technical
replicate). Colocalization occurred more frequently with
neuron and interneuron markers than nonneuronal markers
(Tukey post hoc tests: MAP2 [7.5% (cluster colocalization
relative to all clusters in image) 6 2.0% (SD)], PARVALB
[6.9% 6 2.1%], GFAP [3.13% 6 1.1%], IBA1 [1.4% 6
0.93%]; p , .001 for all comparisons except MAP2 vs.
PARVALB and GFAP vs. IBA1 [p . .05]) (Figure 1E). NT5C2
expression at the transcript and protein levels appeared to
be more highly expressed in neurons within the adult brain,
consistent with recent observations that risk variants impli-
cated in schizophrenia are enriched for neuronal genes (40).

NT5C2 Is Highly Expressed and Ubiquitously
Distributed in hNPCs

The role of NT5C2 in psychiatric disorders has been previously
hypothesized to begin during neurodevelopment, a period
underscored by complex processes implicated in major psy-
chiatric disorders (45), with this risk mechanism persisting in
the adult brain (3). The contribution of NT5C2 to neurobiology,
however, should be greater at the developmental stage when
this gene is more expressed. Thus, we investigated NT5C2
expression in the Human Brain Transcriptome atlas (46), which
urnal
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revealed that expression peaks during neurodevelopment
(Figure 2A). Considering that established cell lines are cost-
effective and easy-to-use tools to study neurodevelopment,
we tested whether the CTX0E16 hNPC line (30,31) would
constitute an appropriate model. We measured expression of
the NT5C2 main RefSeq transcripts (NM_012229 and
NM_001134373) in these cells, specifically in hNPCs and
immature neuronal cultures terminally differentiated for 28
days, which we previously showed to comprise neurons
(approximately 80%) and glial cells (approximately 10%)
(30,31). The expression of NT5C2 RefSeq transcripts
NM_012229 and NM_001134373 in hNPCs (day 0;
NM_012229: 94.22 6 5.85; NM_001134373: 85.67 6 9.77)
was 30% higher compared with neuronal cultures terminally
differentiated for 28 days (NM_012229: 45.09 6 5.59;
NM_001134373: 70.45 6 2.93; t tests: NM_012229, t6 = 12.14,
p , .001, Bonferroni corrected p , .001; NM_001134373, t6 =
2.99, p = .0245, Bonferroni corrected p = .049). These findings
are consistent with higher expression of NT5C2 at an earlier
developmental stage, with persistent expression after differ-
entiation (Figure 2B).

As subcellular protein distribution can inform gene function,
we immunolabeled hNPCs from the CTX0E16 and human
induced pluripotent stem cell lines to study NT5C2 localization.
We ectopically expressed a myc-tagged NT5C2 construct in
human induced pluripotent stem cell NPCs and labeled these
cells using myc or NT5C2 antibodies, which revealed that myc-
NT5C2 was abundantly expressed in punctate structures in the
cell soma and along neurites (Figure 2C; Supplemental
Figure S4). Similarly, endogenous NT5C2 was distributed in
punctate structures through the cell and neurites (Figure 2D, E),
suggesting that this protein is ubiquitously distributed in hNPCs,
consistent with the expected distribution of a cytosolic protein.

NT5C2 Regulates the Phosphorylation of AMPK and
RPS6

The knockdown of NT5C2 activates AMPK signaling in muscle
fibers (21), and considering the relevance of AMPK to psy-
chiatry (17–20), we tested whether this also occurred in
hNPCs. The knockdown in CTX0E16 hNPCs was performed
using two independent small interfering RNA (siRNA) se-
quences, A and B. Initially, the transfection protocol efficacy
was determined by assessing the uptake of fluorescently
labeled oligonucleotides (BLOCK-iT; Thermo Fisher Scientific),
which revealed a transfection rate of 90% 6 0.02% (n = 4
biological replicates per condition, 4 technical replicates each)
(Figure 3A). We obtained knockdown cultures and confirmed
reduced NT5C2 expression using RT-qPCR (linear regression
to identify the effect of siRNAs on NT5C2 expression con-
trolling for biological replicate: F2,5 = 13.9, p = .009, R2 = .92;
Tukey post hoc tests against scramble [3.29 (delta cycle
threshold) 6 0.23 (SD)]: siRNA A [3.79 6 0.09], fold change =
0.71, p = .005; siRNA B [3.29 6 0.23], fold change = 0.81, p =
.028) (Figure 3B). The ability of these siRNAs to knockdown
NT5C2 protein was further assessed in independent cultures
(Figure 3C, D), which revealed a significant decrease in protein
abundance in knockdown conditions (one-way analysis of
variance, F2,41 = 12.23, p , .001; Tukey post hoc tests against
scramble [100.0 6 14.7]: siRNA A [58.8 6 34.7], p , .001;
siRNA B [62.4 6 21.5], p , .001).
Biological
To test the effect of the knockdown on AMPK signaling, we
measured total abundance and relative phosphorylation of
AMPK alpha, a subunit of AMPK. We observed a significant
effect of the knockdown on AMPK alpha abundance, which
was associated with a mean 132% increase in total protein
(Kruskal-Wallis test, H3 = 12.2, p , .001; Dunn’s post hoc tests
against scramble [median (Mdn) = 100.0]: siRNA A [Mdn =
236.1], p = .002; siRNA B [Mdn = 182.8], p = .017) (Figure 3E).
Additionally, we observed a significant effect of the knock-
down on the relative phosphorylation of AMPK alpha (Thr172),
with the knockdown associated with a mean 55% increase in
phosphorylated AMPK, suggesting activation of this cascade
(Kruskal-Wallis test, H3 = 7.65, p , .013; Dunn’s post hoc tests
against scramble [Mdn = 100.0]: siRNA A [Mdn = 141.2], p =
.033; siRNA B [Mdn = 160.7], p = .033) (Figure 3E).

Considering that protein translation is partly regulated by
AMPK (23) and is one of the most energy-consuming cellular
processes (47), we hypothesized that NT5C2 function could
affect the rate of protein synthesis. To test this, we assessed
the effects of the knockdown on the phosphorylation of RPS6
(Ser235/Ser236), which is routinely used as a proxy to estimate
the rate of protein translation in neurons, as it correlates with
mammalian target of rapamycin complex 1 activation (48). No
difference was observed in total RPS6 abundance (Kruskal-
Wallis test, p . .05) (Figure 3F), but we observed that the
knockdown with siRNA A was associated with a mean 23%
increase in phosphorylated RPS6 (Kruskal-Wallis test, H3 =
8.22, p = .002; Dunn’s post hoc test against scramble [Mdn =
100.0]: siRNA A, Mdn = 115.9, p = .012) (Figure 3F). The
knockdown with siRNA B elicited a mean 10% increase in
RPS6 phosphorylation, but this did not survive correction
(siRNA B, Mdn = 110.2, p = .09).

We obtained complementary evidence supporting the as-
sociation between NT5C2 and AMPK and RPS6 regulation
using HEK293T cells. Overexpression of ectopic myc-tagged
NT5C2 (NT5C2-myc) in these cells resulted in a mean 64%
decrease in phosphorylated AMPK alpha (t test, control [no
vector]: 223.00 [normalized expression] 6 76.99 [SD], over-
expression: 81.05 6 30.14, t15 = 4.88, p , .001, Bonferroni-
adjusted [four tests] p , .001), whereas no difference in total
AMPK levels was observed (p . .05) (Figure 3G). These results
are consistent with our previous data and indicate that NT5C2
is a negative regulator of AMPK signaling. Subsequently, we
observed a mean 28% decrease in total RPS6 abundance (t
test, control: 159.10 6 48.52, overexpression: 108.8 6 48.52,
t16 = 2.88, p = .011, pcorrected = .044) and a highly significant
300% increase in RPS6 phosphorylation (t test, control: 31.03
6 10.66, overexpression: 124.10 6 8.20, t16 = 20.76, p , .001,
pcorrected , .001) (Figure 3G). The effect of exogenous NT5C2
on RPS6 here was opposite to what we observed in hNPCs,
highlighting the complex nature of the intracellular cascades
governing protein translation, which are examined in the
Discussion.
NT5C2 Is Associated With Transcriptional Changes
Implicated in Protein Translation

To determine the regulatory gene networks governing the ef-
fect of NT5C2 on AMPK signaling in hNPCs, we profiled the
transcriptome of these cultures using microarrays (Figure 4A,
Psychiatry July 15, 2019; 86:120–130 www.sobp.org/journal 123
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Figure 3. Knockdown of NT5C2 in human neural progenitor cells is associated with differential phosphorylation of adenosine monophostate-activated
protein kinase (AMPK) and ribosomal protein S6 (RPS6). (A) The efficiency of the small interfering RNA (siRNA) transfection was determined by uptake of
BLOCK-iT, a fluorescently labeled oligonucleotide. (B) NT5C2 expression was significantly reduced in knockdown cultures (linear regressions covarying for
biological replicates, Tukey post hoc tests, **p , .01, *p , .05). (C, D) siRNA treatments significantly reduce NT5C2 expression in independent human neural
progenitor cell cultures at the protein level (one-way analysis of variance, Tukey post hoc tests, ***p , .001). (E) The NT5C2 knockdown was associated with
increased total AMPK alpha and phosphorylated AMPK alpha (pAMPK) (Thr172) in human neural progenitor cells (Kruskal-Wallis test, Dunn’s post hoc tests,
**p , .01, *p , .05). (F) The knockdown did not alter total RPS6 levels but was associated with increased phosphorylated RPS6 (prpS6) (Ser235/Ser236).
siRNA A was associated with a mean 23% increase in phosphorylation (Kruskal-Wallis test, Dunn’s test, *p , .05), and siRNA B was associated with a modest
10% mean increase, which was not significant after correction (p = .09). Full blots for panels (E and F) are available in Supplemental Figure S8. (G) The
overexpression of NT5C2 in human embryonic kidney 293T (HEK293T) cells causes a significant decrease in phosphorylated AMPK alpha levels and in total
RPS6, and a significant increase in phosphorylated RPS6 (t test, ***p , .001, *p , .05). Full blots are available in Supplemental Figure S9. ddCt, delta-delta
cycle threshold; ICC, immunocytochemistry; n.s., not significant; qPCR, quantitative polymerase chain reaction.

=

Figure 2. Neurodevelopmental expression of NT5C2 and protein distribution in human neural progenitor cells (hNPCs). (A) Neurological expression of
NT5C2 across human development, according to the Human Brain Transcriptome Atlas (46), showing that expression peaks during fetal development. (B)
Expression of NT5C2 RefSeq transcripts NM_012229 and NM_001134373 in hNPCs (day 0) and cultures differentiated for 28 days. Expression is significantly
higher at the neural progenitor state. t tests: ***p , .001, *p , .05. (C) Distribution of ectopic NT5C2 was assessed by transfecting hNPCs with plasmids
encoding NT5C2-myc and enhanced green fluorescent protein (GFP), followed by immunolabeling using antibodies raised against myc or GFP (GFP was used
as morphological marker). (D) Subcellular localization of endogenous NT5C2 in hNPCs derived from a human induced pluripotent stem cell (hiPSC) line and
from (E) the CTX0E16 cell line. NT5C2 was ubiquitously distributed in hNPCs from both models. Scale bars = 20 mm. AMY, amygdala; CBC, cerebellar cortex;
dCt, delta cycle threshold; HIP, hippocampus; MD, mediodorsal nucleus of the thalamus; NCX, neocortex; STR, striatum.
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Figure 4. Transcriptional changes associated with
the knockdown (KD) corroborate a role for NT5C2 on
protein translation. Volcano plots indicate nominally
significant transcriptomic changes elicited by (A)
small interfering RNA (siRNA) A and (B) siRNA B. (C)
Venn diagrams indicating the number of genes
differentially regulated by siRNA A and siRNA B and
the overlapping gene set, which is unlikely to occur
by chance, according to Fisher’s exact test (p ,

.001). (D) Gene ontology (GO) terms enriched within
genes concordantly, differentially expressed in both
KD conditions. The line indicates the significance
threshold (2log10 q , .05). mRNA, messenger RNA;
p-val, p value.
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B). We aimed to characterize expression differences that were
shared between both siRNA treatments to reduce off-target
effects associated with individual siRNAs (49). The concor-
dant transcriptomic changes consisted of an overlap of 69
genes (Figure 4C), which is statistically unlikely to occur by
chance (genes in microarray = 21,196; affected by siRNA A:
881 genes; siRNA B: 741 genes; Fisher’s exact test, p , .001,
Jaccard index , 0.001, odds ratio = 2.6) (gene list in
Supplemental Table S1). We observed that there was a high
correlation between samples within the same siRNA groups,
despite the modest number of overlapping, differentially
expressed genes (Pearson’s r . .99, p , .001 for all correla-
tions; siRNA A, n = 3 biological replicates; siRNA B and
scramble, n = 4). The list of overlapping gene expression
changes was subdivided by directionality of effect, and the
upregulated and downregulated gene network topologies were
constructed using GeneMANIA (50) (Supplemental Figure S5).
This analysis revealed multiple connections between genes
owing to coexpression and colocalization, corroborating their
functional association. The upregulated and downregulated
gene lists were analyzed for enrichment of gene ontology
terms (Figure 4D; Supplemental Table S2), which revealed
downregulated genes (q , .05) pertaining to the regulation of
protein translation, and of the cytoskeleton [which is highly
dependent on the transcriptional machinery (51)]. Furthermore,
ribosomal genes, including RPL15, RPL22, RPL5, and RPL6,
were downregulated, consistent with activation of AMPK
signaling and inhibition of protein translation. The top upre-
gulated gene ontology term suggested the involvement of
NT5C2 in cell adhesion, but this was not significant after
correction (q . .05).

We used RT-qPCR to validate a panel of gene expression
changes observed in the microarray analysis (Supplemental
Figure S6), which were related to protein translation and
AMPK signaling, including the heterogeneous nuclear ribonu-
cleoprotein A1 (HNRNPA1), the proteasome 26S subunit,
ATPase 4 (PSMC4), and the autophagy-related cysteine
peptidase gene (ATG4B). HNRNPA1 is involved in protein
translation (52), whereas ATG4B regulates AMPK signaling and
energy homeostasis (53), and PSMC4 physically interacts with
126 Biological Psychiatry July 15, 2019; 86:120–130 www.sobp.org/jo
AMPK (54) and is involved in Parkinson’s disease (55).
Considering the effects of NT5C2 in AMPK and RPS6 regula-
tion, the transcriptional changes observed here corroborate a
role for NT5C2 in protein translation, providing evidence of the
gene networks involved.
Knockdown of CG32549 in D. melanogaster Is
Associated With Impaired Climbing

Considering the genetic link between NT5C2 and disorders
associated with psychiatric and psychomotor disturbances
and the importance of AMPK in energy-consuming tasks such
as motility (19,56), we investigated a potential role of the
NT5C2 homologue of Drosophila in climbing. The human
NT5C2 protein shares 60.5% sequence identity and 80.2%
sequence similarity with CG32549 (Supplemental Figure S7),
suggesting that these proteins exert the same or similar
function. To investigate the role of CG32549 in motility while
controlling for potential confounding effects in muscles, we
generated flies using the Gal4-UAS system to obtain crosses
with reduced expression of this gene ubiquitously (driven by
ACT5C promoter), in neurons and neural progenitor cells
(ELAV), or in gut as a control (GUT) (Figure 5A). The ubiquitous
knockdown was associated with reduced CG32549 expres-
sion in the brain (UAS line [control, no RNAi cassette] = 0.042
[delta cycle threshold] 6 0.027; UAS-KD [knockdown] flies =
0.007 6 0.004; fold change = 0.88; t test: t6 = 2.6, p = .043, n =
4) (Figure 5B). No difference in survival was observed across
genotypes (UAS vs. UAS-KD lines, t tests, p . .05, n = 5 flasks
on average) (Figure 5C). We observed a significant impairment
in climbing success associated with the knockdown using the
ELAV promoter (UAS = 96.9% 6 2.2%, UAS-KD = 85.2% 6
8.5%; t11 = 3.53, p = .005, adjusted p = .014, n = 7 per con-
dition on average) (Figure 5D). There was also a nominally
significant reduction in climbing success on knockdown of
CG32549 using the ACT5C promoter (UAS = 90.6% 6 9.7%,
UAS-KD = 77.7% 6 13.4%, t test: t17 = 2.4, p = .029, n = 10
per condition on average, Bonferroni (adjusted for three com-
parisons) p . .05). This impairment was not observed in flies
with the knockdown in gut (UAS = 98.5% 6 2.3%, UAS-KD =
urnal
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Figure 5. Knockdown of CG32549 (NT5C2 homologue) in Drosophila melanogaster using the Gal4-upstream activated sequences (UAS) system. CG32549-
RNA interference (RNAi) was induced ubiquitously (ACT5C promoter), in gut (GUT), or in neural progenitor cells and neurons (ELAV). (A) Experimental design of
the knockdown. (B) CG32549 was less expressed in the brain of knockdown flies (t test, *p , .05). (C) There was no difference in survival percentage between
UAS lines and UAS-knockdown lines 17–20 days after emergence (t tests, p . .05). (D) Climbing success observed in UAS lines vs. UAS-knockdown lines
highlight the effect of the ubiquitous and neuron-specific knockdowns on motility (t tests, *p , .05, **p , .01), an effect that was not observed in the gut-
specific condition (p . .05). ddCt, delta-delta cycle threshold; n.s., not significant; qPCR, quantitative polymerase chain reaction.
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97.4% 6 2.3%, t test, p . .05, n = 8 per condition on average).
These findings suggest there is an effect of neuronal CG32549
in D. melanogaster motility and provide an insight into the
function of NT5C2 at a systems level.
DISCUSSION

The NT5C2 gene is implicated in risk for psychiatric and
neurological conditions (1–3,5,6), and it has been recently
classified as a high confidence schizophrenia risk gene by
PsychENCODE (4), but the biological mechanisms responsible
for these associations remain elusive. We previously showed
that psychiatric risk alleles at the NT5C2 locus are associated
with reduced expression of this gene in the adult and developing
brain (3). In this study, we observe that reduced NT5C2
expression is associated with differential regulation of AMPK
signaling and RPS6 in hNPCs, suggesting a regulatory role in
Biological
energy homeostasis and protein translation. We also observe
that neurological expression of NT5C2 peaks during neuro-
development but persists at later developmental stages,
corroborating our previous hypothesis that the NT5C2 risk
mechanism is an ongoing process that starts from embryonic
development (3). The cell type–specific NT5C2 expression
profile observed in the adult brain further revealed an enrich-
ment for neuronal expression, suggesting that reduced NT5C2
expression in themature cortex could be particularly detrimental
to neurons. These findings are consistent with recent studies
showing that schizophrenia risk variants are enriched for genes
implicated in neurodevelopment and neuronal function (40,57).

The manipulation of NT5C2 expression in hNPCs and
HEK293T cells corroborates the existence of a complex reg-
ulatory network governing protein translation, with observa-
tions suggesting, at first glance, opposing effects of AMPK on
the rate of protein synthesis. However, on closer inspection,
Psychiatry July 15, 2019; 86:120–130 www.sobp.org/journal 127
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we observed that our findings with HEK cells corroborate that
AMPK activation inhibits protein translation by repressing the
mammalian target of rapamycin complex 1 and the eukaryotic
translation elongation factor 2 (23,24,58,59). Our findings with
the hNPC model, in turn, corroborate AMPK activation leading
to increased rates of protein synthesis over time, despite an
initial period in which translation is halted, likely owing to a
negative feedback loop (60). As a result, we observed
increased abundance of AMPK alpha in the neural progenitor
cell cultures, whereas no differences in expression of AMPK
transcripts were detected.

We also observed that a knockdown of the NT5C2 homo-
logue CG32549 in D. melanogaster was associated with
abnormal climbing behavior, more specifically, when driven by
a neuronal promoter, supporting a role for NT5C2 in motility. It
is unrealistic to correlate fly motility with complex psychomotor
disturbances experienced by human patients, but our results
corroborate previous genetic associations between NT5C2
and diseases associated with motor symptoms (1–6). The ef-
fect of CG32549 could be mediated by regulation of AMPK
signaling and RPS6 activation, which are implicated in
Drosophila motility (61,62). A study showed that CG32549 is
downregulated in a Drosophila model of seizure (28), and work
by another group demonstrated that distance moved during
seizure-like activity can be reduced (rescued) upon AMPK
activation using the drug metformin (29).

Limitations of our study should be acknowledged. First, we
obtained a modest knockdown of NT5C2 in hNPCs, which we
hypothesize to be due to the proliferative nature of these cells.
To support the link between NT5C2, AMPK signaling, and
RPS6 activation, we overexpressed NT5C2 in HEK293T cells
and confirmed the differential regulation of AMPK and RPS6.
Second, we observed a modest overlap of differentially
expressed genes between siRNA treatments, which we hy-
pothesize to be due to the low specificity associated with the
siRNAs. This could be overcome by using a more effective
gene silencing method, such as clustered regularly interspaced
short palindromic repeats (CRISPR) interference (63). Third, we
quantified the rate of protein translation using relative abun-
dance of phosphorylated RPS6, but we did not investigate
overall protein synthesis using methods such as the surface
sensing of translation (SUnSET) (64). We have, however, pro-
vided support for the role of NT5C2 in protein translation at the
transcriptional level using our microarray and RT-qPCR data.

By exploring the role of NT5C2 in neurobiology, we observe
that the study of individual risk factors for complex disorders
has the potential to advance our understanding of common
biological pathways contributing to disease. Functional studies
using model organisms or cell culture may not entirely capture
the heterogeneity and complexity of psychiatric disorders but
may provide insights to accelerate the identification of novel
drug targets and biomarkers for psychiatric disorders.
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