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Robust RGB-D Face Recognition Using
Attribute-Aware Loss

Luo Jiang, Juyong Zhang', Member, IEEE, and Bailin Deng, Member, IEEE

Abstract—Existing convolutional neural network (CNN) based face recognition algorithms typically learn a discriminative feature
mapping, using a loss function that enforces separation of features from different classes and/or aggregation of features within the same
class. However, they may suffer from bias in the training data such as uneven sampling density, because they optimize the adjacency
relationship of the learned features without considering the proximity of the underlying faces. Moreover, since they only use facial images
for training, the learned feature mapping may not correctly indicate the relationship of other attributes such as gender and ethnicity, which
can be important for some face recognition applications. In this paper, we propose a new CNN-based face recognition approach that
incorporates such attributes into the training process. Using an attribute-aware loss function that regularizes the feature mapping using
attribute proximity, our approach learns more discriminative features that are correlated with the attributes. We train our face recognition
model on a large-scale RGB-D data set with over 100K identities captured under real application conditions. By comparing our approach
with other methods on a variety of experiments, we demonstrate that depth channel and attribute-aware loss greatly improve the accuracy

and robustness of face recognition.

Index Terms—Face Recognition, RGB-D images, uneven sampling density, attribute-aware loss.

1 INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) play a sig-
C nificant role in face analysis tasks, such as landmarks
detection [38], [52], face recognition [12], [15], [47] and 3D face
reconstruction [6], [31]. With the emergence of large public
face data sets [50] and sophisticated networks [8], [39], the
problem of face recognition has gained lots of attention and
developed rapidly. At present, some mainstream methods
already outperform humans on certain benchmark datasets
such as [12]. These methods usually map faces to discrimina-
tive feature vectors in a high-dimensional Euclidean space,
to determine whether a pair of faces belong to the same
category. For example, deep metric learning methods (such
as contrastive loss [7] or triplet loss [35]) usually train a
CNN by comparing pairs or triplets of facial images to
learn discriminative features. Later, different variants of the
softmax loss [23], [29], [40], [43], [46] are used as supervision
signals in CNNs to extract discriminative features, which
achieve excellent performance under the protocol of small
training set. These methods [23], [35], [46] utilize CNNs
to learn strong discriminative deep features, using loss
functions that enforce either intra-class compactness or inter-
class dispersion.

Although the above two categories of methods have
achieved remarkable performance, they still have their own
limitations. First, the contrastive loss and triplet loss suffer
from slow convergence due to the construction of a large
number of pairs or triplets. To accelerate convergence, [37]
proposed a (N + 1)-tuple loss that increases the number
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of negative examples. However, this loss still requires
complex recombination of training samples. In comparison,
the softmax loss and its variants have no such requirement
on the training data and converge more quickly. The center
loss [46] is the first to add soft constraints on deep features
in the softmax loss to minimize the intra-class variations,
significantly improving the performance of softmax loss.
Afterward, the angular softmax loss [23] imposed discrimi-
native constraints on a hypersphere manifold, which further
improved the performance of softmax loss. However, by
enforcing intra-class aggregation and inter-class separation
among the training data, existing variants of softmax loss
encourage the uniform distribution of feature vectors for
the training data, even though the training data may not be
sampled uniformly. As a result, the proximity between the
learned feature vectors for two test data may not correctly
indicate the proximity between their underlying faces, which
can affect the accuracy of face recognition algorithms based
on feature proximity. To address this issue, we propose an
attribute-aware loss function that regularizes the learned
feature mapping using other attributes such as gender,
ethnicity, and age. The proposed loss function imposes a
global linear relation between the feature difference and
the attribute difference between nearby training data, such
that feature vectors for facial data with similar attributes are
driven towards each other. In addition, as these attributes are
correlated with facial geometry and appearance, the attribute-
aware loss also implicitly regularizes the feature proximity
with respect to the facial proximity, which helps to account
for potential sampling bias in the training set.

In addition, although existing RGB image-based face
recognition methods have achieved great success, they rely
solely on the appearance information and may suffer from
poor lighting conditions such as dark environments. On the
other hand, the depth image captured by RGB-D sensors



such as PrimeSense sensors provides additional geometric
information that is independent of illumination, which can
help to improve the robustness of recognition. To this end,
we develop a CNN-based RGB-D face recognition approach,
by first aligning the depth map with the RGB image grid
and normalizing the depth values to the same range as the
RGB values, and then feeding the resulting RGB-D values
into CNNSs for training and testing. Unlike existing RGB-D
based deep learning approaches [20], [51] that only use small
training data sets with less than 1K identities, we train our
model on a large RGB-D data set with over 100K identities,
where the resulting model achieves more robust performance
than RGB based approaches.

Combining the RGB-D approach with the attribute-
aware loss function, our new method greatly improves the
robustness and accuracy of facial recognition. We tested
our method on several datasets, with different identities
in diverse facial expressions and lighting conditions. Our
method performs consistently better than state-of-the-art
approaches that only rely on RGB information and do not
consider additional attributes.

To summarize, this paper makes the following major
contributions:

o We propose an attribute-aware loss function for CNN-
based face recognition, which regularizes the distribu-
tion of learned feature vectors with respect to additional
attributes and improves the accuracy of recognition
results. To the best of our knowledge, this is the first
method that utilizes non-facial attributes to improve
CNN-based face recognition feature training.

o For neural network training and testing, we construct
a large-scale RGB-D face dataset including more than
100k identities mainly with the frontal pose, and a
relatively small RGB-D dataset with 952 identities with
various poses. This is the first result that verifies the
effectiveness of CNN-based RGB-D face recognition with
large training data sets.

2 RELATED WORK

Face recognition is a classical research topic in pattern
recognition and computer vision, with applications in many
areas like biometrics, surveillance system, and information
security. For a comprehensive review of 2D face recognition
and 3D face recognition methods, one may refer to [1], [27].
This section briefly reviews those techniques that are closely
related to our work.

2.1

In the past few years, deep learning based face recognition is
one of the most active research areas. In this part, we mainly
discuss the loss functions used in these methods.

Metric Learning. Metric learning [44], [45], [49] at-
tempts to optimize a parametric notion of distance in a
fully /weakly/semi-supervised way such that the similar
objects are nearby and dissimilar objects are far apart on
a target space. In [49], the learning is done by finding
a Mahalanobis distance with a matrix parameter when
given some similar pairs of samples. In order to handle
more challenging problems, kernel tricks [13], [44] had
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been introduced in metric learning to extract nonlinear
embeddings. In recent years, more discriminative features
can be learned with advanced network architectures that
minimize some loss functions based on Euclidean distance,
such as contrastive loss [7] and triplet loss [35]. Moreover,
these loss functions can be improved by allowing joint
comparison among more than one negative example [37]
or minimizing the overall classification error [18].

Classification Losses. The most commonly used classi-
fication loss is the softmax loss that maps images to deep
features and then to predicted labels. Krizhevsky et al. [17]
first observed that CNNs trained with softmax loss can
produce discriminative feature vectors, which has also been
confirmed by other works [36]. However, softmax loss mainly
encourages inter-class dispersion, and thus cannot induce
strong discriminative features. To enhance the discrimination
power of deep features, Wen et al. [46] proposed center
loss to enforce intra-class aggregation as well as inter-class
dispersion. Meanwhile, Ranjan et al. [29] observed that the
softmax loss is biased to the sample distribution, i.e., fitting
well to high-quality faces but ignoring the low-quality faces.
Adding f>-constraints on features to the softmax loss can
make the resulting features as discriminative as those trained
with center loss. Afterward, Liu and colleagues [23], [24]
further improved the features by incorporating an angular
margin instead of the Euclidean margin into softmax loss to
enhance the inter-class margin and compressing the intra-
class angular distribution simultaneously.

2.2 Face Recognition with Attributes

Besides the feature vectors extracted from CNN, other
attributes can also be utilized in face recognition tasks. An
early study [19] trained 65 “attribute” SVM classifiers to
recognize the traits of input facial images such as gender,
age, race, and hair color, which are then fused with other
features for face recognition. In the context of deep learning,
attribute-enhanced face recognition does not gain too much
attention. One related work [33] is to exploit CNN based
attribute features for authentication on mobile devices, and
the facial attributes are trained by a multi-task, partly
based Deep Convolutional Neural Network architecture.
Hu et.al [11] systematically study the problem of how to
fuse face recognition features and facial attribute features
to enhance face recognition performance. They reformulate
feature fusion as a gated two-stream neural network, which
can be efficiently optimized by neural network learning.

Based on the assumption that attributes like gender, age
and pose could share low-level features from the represen-
tation learning perspective, some studies investigate multi-
task learning [30], [32] and show that such attributes could
help the face recognition task. In our method, different from
the above attribute fusion and multi-task learning methods,
the attributes are directly used to guide the face recognition
feature learning in the training stage, and they are not needed
during the testing stage.

2.3 RGB-D Face Recognition

In recent years, RGB-D based face recognition has attracted
increasing attention because of its robustness in an uncon-
strained environment. Hsu et al. [10] considered a scenario



in which the gallery is a pair of RGB-D images while the
probe is a single RGB image captured by a regular camera
without the depth channel. They proposed an approach
that reconstructs a 3D face from an RGB-D image for each
subject in the gallery, aligns the reconstructed 3D model to
a probe using facial landmarks, and recognizes the probe
using sparse representation based classification. Zhang et
al. [51] further considered the problem of multi-modality
matching (e.g., RGB-D probe vs. RGB-D gallery) and cross-
modality matching (e.g., RGB probe vs. RGB-D) in the same
framework. They proposed an approach for RGB-D face
recognition that is able to learn complementary features from
multiple modalities and common features between different
modalities. For the RGB-D vs. RGB-D problem, Goswami
et al. [5] proposed to compute an RGB-D image descriptor
based on entropy and based on the entropy and saliency;,
as well as geometric facial attributes from the depth map;
then the descriptor and the attributes are fused to perform
recognition. Li et al. [21] proposed a multi-channel weighted
sparse coding method on the hand-crafted features for RGB-
D face recognition.

Although it is straightforward to extend deep learning
based face recognition methods from RGB images to RGB-D
images, currently there are no large-scale public RGB-D data
sets that can be used for training, which limits the practical
applications of these approaches. For example, the model
proposed in [51] is trained on a dataset with less than 1K
identities. To handle this problem, Lee et al. [20] proposed
to first train the deep network with a color face dataset, and
then fine-tune it on depth face images for transfer learning.

3 METHOD
3.1 Revisiting the Variants of Softmax Loss

Given a training data set {x7 WY withx; € R’”X” and their
corresponding labels {y;}Y; with y; € T £ {1,...,C}, the
following classical softmax loss function is w1de1y used in
face recognition tasks

i) +by,)

log
Z f(xz)+b)

where f(-) : R™*" — ]RK *1 is the learned feature mapping
by training CNNs, K is the dimension of deep feature f(x;).
W = [wy,...,wc|] € REXC and b = [by,...,bc] € RI*XC
are the weights and biases in the last fully connected layer,
and {x;} can be color or depth images of faces. We denote
f; = f(x;) for simplicity. Typically, during the test phase
the mapping f(-) is applied on an image pair (x;,x;) to
extract two deep features (f;, f;), and the Euclidean distance
or cosine distance between the features are computed to
determine the similarity between the image pair. Separable
features can be learned using softmax loss, but they are not
discriminative enough for face recognition.

To learn more discriminative features, several variants
of softmax loss have been developed by enlarging the inter-
class margin and reducing the intra-class variation. Among
them, the center loss [46] requires the deep features of each
class to gather towards their respective centers {c;} ¥ ;:
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With the angular softmax loss [23], deep features of each
class are compressed using the angular margin 7 instead of
the Euclidean margin:

exp([|fi]| cos(78y,,:))
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where 0; ; is the angle between vectors w; and f;. There are
other variants of softmax loss [3], [42] with a similar form
as (3), where the margin and the angle are added instead of
being multiplied.

3.2 The Attribute-Aware Loss

To achieve high accuracy for face recognition, it is desirable
that the proximity between feature clusters of different
classes is consistent with the proximity between the classes
(i.e., the underlying faces). Ideally, the more dissimilar two
faces are, the further apart their corresponding feature
clusters should be. However, this is not guaranteed by the
above variants of softmax loss according to our experimental
observations (see Fig. 2 and Fig. 7). Since they minimize the
intra-class variations and maximize the inter-class margins
on the training data, the learned feature mappings tend to
produce evenly distributed feature vectors for the training
faces. On the other hand, there is no guarantee that the facial
images in the training set are evenly distributed in the full
face space. As a result, when there exist large variations
of sampling density in the training data set, the learned
feature mapping may not correctly indicate the proximity
of the underlying faces. To address this issue, we can try
to introduce a loss function term that regularizes feature
proximity with respect to face proximity. However, this
is a challenging task as a facial image only reveals the
underlying face shape from a certain view direction and can
be affected by various factors such as lighting condition and
sensor noises. As a result, it is difficult to reliably compute
the proximity between two faces by only comparing their
scanned images.

Besides the proximity of face shapes, it is also desirable
that the learned feature mappings are related to the proximity
between other attributes such as gender, ethnicity, and age.
For example, if we compare a probe image against a database
of facial images to identify () most likely matches via feature
proximity, then it is preferable that all returned images are
from persons with the same or similar attributes. The above
variants of softmax loss cannot ensure this property either,
as they only consider the facial images during the training
process.

Motivated by these observations, we propose an attribute-
aware loss term that regularizes feature proximity with
respect to attribute proximity. Besides the label information,
other attributes of the facial images like gender, ethnicity, and
age are also given in the training data set. These attributes
can be collected during training data construction, and they
are independent of the imaging process. We represent the
augmented attributes for a facial image x; using a vector
pi € RTX1 Then our attribute-aware loss is formulated as

1
Lo=5 > G(p; — €Y
Yi <Yj
d(pi,p;)<T

(£ — £5) — p;)l3.
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Fig. 1. The face recognition features trained with only the softmax loss tend to be evenly distributed for the training data, which can become less
effective when the training data are not evenly sampled from the face space. By augmenting the loss function with the attribute-aware loss term, the
learned features have similar distribution as the attributes, which are better suited for recognition.

where G € REXH jg 3 parameter matrix to be trained,
d(pi,p;) = ||Pi — pjl|2 is the Euclidean distance between
the two attribute vectors, and 7 is a user-specified threshold.

Intuitively, this loss term can drive feature clusters with
similar attributes towards each other, via a global linear
mapping G that relates the feature difference to the attribute
difference. To the best of our knowledge, this is the first
work in face recognition that optimizes adjacency of learned
features using attribute proximity. As shown in Fig. 1, the
learned feature clusters with similar attributes become closer
after our adjacency optimization. From another perspec-
tive, regularization using additional attributes can help the
network pick up other useful cues for face recognition,
because attributes such as gender, ethnicity, and age are
highly correlated with facial shape and appearance. For
example, there can be a notable difference between the facial
appearance of two persons with different genders. Therefore,
the attribute-aware loss can improve the learned feature
mapping by implicitly utilizing the appearance variation
related to these attributes.

To better understand the attribute-aware loss, the follow-
ing proposition clarifies how the difference between p; and
p; influences the difference between f; and f; in the feature
space.

Proposition 1. Let {£;}N 3! be facial features extracted from
training samples {x;}1 o with corresponding labels {y; }1¥ "
and attribute vectors {p; } N3\, Assume that:

(i) The number of training epochs is large enough to allow all
attribute pairs (p;, p;) that satisfy constrains y; # y; and
d(pi,p;) = |lpi — Pjll2 < T to appear sufficiently many
times in training phase;

(ii) For every identity, there exists at least another identity so that

they can meet the above constraints;

(iii) The training is convergent, the parameter matrix G is
nonsingular, and ||G||o < M where M is a constant.

(iv) The value

= max
Yi<y;
d(p;,p;)<T,
i,je{0,- ,N—1}

|(fi = £;) = G(pi —pj)ll2 (5

is bounded.
Let Sy, denote the set of all facial features of the k-th identity. Then

(i) For each k, the Euclidean distance between any pair in S,
has an upper bound which is linear with threshold T;

(ii) If the Euclidean distance between the attribute vectors of
the ki-th identity and the ko-th identity is smaller than T,
then the Euclidean distance between their average features
£ = (Spes,, £)/IS0] and B2 = (S e, £)/ISk]
also has an upper bound which is linear with threshold T.

Proof. From Eq. (5), we have

(£ —£5) — G(pi —pj)ll2 <€, Yy <yj, d(pi,pj) < T,
Thus

d(fi, f;) < [|G(pi — Pj)ll2 + € < [|Gll2[lpi — pjll2 + €
<M-1+e. 6)

Let f,, and fg be an arbitrary pair of features in Sy,. Then from
assumption (ii), we can find another feature f, € S, where
k' # k, such that their corresponding attributes pq, pg, Py
satisfy d(pa,p,) < 7 and d(pg, py) < 7. Applying Eq. 6 to
the pairs (pa, Py) and (pg, p), we obtain

A(fa,£5) < d(fa, £) + d(£,£) <2(M -7 +¢).  (7)
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Fig. 2. The distribution of deeply learned features under (a) softmax loss and (b) the joint supervision of softmax loss and attribute-aware loss. There
are nine identities with three different ages. The points with different colors denote features with different ages.

According to assumptions (iii) and (iv), M is a constant and
€ is bounded. Therefore, Eq. (7) provides an upper bound
for the Euclidean distance between any pair in S;, which is
linear with 7. L n

For the average features f Tand £ of Sk, and Sy, their

Euclidean distance satisfies
—k1 ko
f . f7)< f,,f).
dif . £7) < Jax d(f;, f;)

f; €Sk,

®)

If the Euclidean distance between the attribute vectors of the
k1-th identity and the k>-th identity is smaller than 7, then by
definition d(p;, pj) < 7 for any f; € S, and f; € S,. This
implies d(f;,f;) < M - 7 + € according to Eq. (6). Applying
this relation to Eq. (8), we obtain

d(fkl,fh) <M-T+e¢,

which provides an upper bound that is linear with 7. O

Proposition. 1 implies two properties. First, the attribute-
aware loss layer can make intra-class features more compact
than using the softmax loss only, similar to the center loss [46];
the smaller the threshold 7 is, the more compact the intra-
class features may become. Sec. 4.2 evaluates the effects from
different values of 7. Second, for two identities with similar
attributes, their corresponding feature clusters will not be
far away from each other. This can be demonstrated by our
experiment in Sec. 4.3.

To showcase the effectiveness of the attribute-aware loss,
we present a toy example on a very small RGB face dataset.
This dataset is selected from our large-scale RGB-D face
dataset presented in Section 4.1, and contains only nine
identities with the same gender and ethnicity but different
ages. Three of the identities are aged 28, another three aged
50, and the remaining aged 70. We use ResNet-10 [8] to
train two models, one with softmax loss only, the other with
both the softmax loss and the attribute-aware loss. Details of
training with the combined softmax and attribute-aware loss
are presented in Sec. 3.3. We reduce the output dimension
of the penultimate fully connected layer to two, allowing us
to directly plot the learned features in Fig. 2(a) and Fig. 2(b).
We can see that the coordinates of features in Fig. 2(a) span

a much larger range than those in Fig. 2(b). It indicates that
the two-dimensional features of each identity become more
compact through the regularization using attribute-aware
loss. We can also observe that features for identities of the
same age in Fig. 2(b) are closer to each other than in Fig. 2(a),
verifying the second property of the attribute-aware loss.

3.3 Training with the Attribute-Aware Loss

Similar to [46], our attribute-aware loss in Eq. (4) is an
auxiliary supervision signal, which can be combined with
any variant of softmax loss. For example, it can be combined
with the classical softmax to derive a loss function

L - LS + )\Lay (9)

where )\ is a user-specified weight to balance the two loss
terms. In the following, we provide the details of mini-batch
training with the loss function L. Each input mini-batch B
consists of M facial data {ka-};c\/[:l where 1 < b, < N, as
well as their identity labels {ys, ., and attributes {pp, }22 ;.
These data are fed to the CNN, the softmax loss layer, and
the attribute-aware loss layer respectively, as illustrated in
Fig. 3. The addition of an attribute-aware loss layer only
introduces a slight overhead for the model size during the
training phase, as it contains only one parameter matrix with
K x H parameters, where K and H are the dimensions of
the deep facial feature and the attribute vector, respectively.
In our implementation, K = 512 and H = 3, meaning that
we only need 1536 additional parameters. In comparison,
the backbone network that extracts deep features, which is a
28-layer ResNet [8], requires about 0.3M parameters. Thus,
the overhead from the attribute-aware loss layer is almost
negligible. Moreover, during the testing phase, the attribute-
aware loss layer is not needed and induces no overhead.

All parameters in the CNN and two loss layers can
be learned using standard stochastic gradient descent. The
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Fig. 3. The framework of our approach. Facial images stacked with normalized point clouds and fed into a deep convolutional neutral network. The
output features of the CNN are directly fed into a fully connected layer and afterwards the softmax loss layer. They are also fed into the attribute-aware

loss layer together with their corresponding attribute vectors.

gradients of L, with respect to G and fj, are computed as:

0L,
oG = Z [G(pbz - pbj) - (sz - fb]')} (pbi - pbj)T7
b; <bj
d(pov;,Pb; ) <T
0L,
o= > (B —f) =Gy, —py)]. (10
by

i#k
d(po,, ,Pv; ) <T

Algorithm 1 summarizes the learning details in the CNNs
with joint supervision.

Algorithm 1 The jointly supervised learning algorithm.

Input: Training facial data {x;} with identity labels {y;}
and attributes {p;}; initial parameters © for the CNN;
parameters W, b for the softmax loss layer and G for the
attribute-aware loss layer; balancing weight ); learning
rate o iteration count £ = 0.

Output: Trained parameters © for the CNN.

1: while not converge do

2 Compute forward by L' = L + L.
3:  Randomly choose a mini-batch B;.
4 for sample i € B; do

5: Compute backward by Zﬁ: = Zi} + A@@If?
: df

7: Ie;;da(t): W: Wit = wt — %gé{}t.

8:  Updateb: bif!=bt— aMt gﬁ%

9:  Update G: G!t! =G — aMt gé%

10:  Update ©: ©'F1 =0! — aMt é (Zﬁ'g . ggt

11: Increment iteration count ¢.
12: end while

3.4 Training with RGB-D facial data

In this paper, we use RGB-D facial images as the training data,
to improve robustness to illumination conditions compared
with RGB facial images. The RGB-D data are collected using
low-cost sensors such as PrimeSense. Using the RGB part
of a facial image, we first detect the face region and five
landmarks (the eyes, the nose, and two corners of the mouth)
using MTCNN [52]. The face is then cropped to 112 x 96 by
similarity transformation, and each RGB color component is
normalized from the range [0, 255] into [—1, 1]. Afterward,
we extract a face region from the corresponding depth image
by transferring the RGB face region. Similar to [16], [53],
we find the nose tip and crop the point cloud in the face
region within an empirically set radius of 90mm. Then we
move the center of the cropped facial scan to (0,0, zop;) and
reproject it onto a 2D image plane to generate a new depth
map of size 112 x 96. The value z,,; is chosen to enlarge
the projection of facial scans onto the image plane as much
as possible. Following [9], we compute the depth of each
pixel with bilinear interpolation. Using this depth map, we
generate a new point cloud under the camera coordinate
system. Each point (v, vy, v,) is further normalized as:

(2119; — Tmax — xmin)/(xmax - xmin)>
@y = (2vy — Ymax — ymin)/(ymax - ymin)u

v (2?)2 — Zmax — Zmin)/(zmax - Zmin)a

Ty =
11)
v, =

where (Zmin, Ymins Zmin) aNd (Zmax; Ymax, Zmax) are the mini-
mum and maximum z-, y- and z-coordinate values among
all points, respectively. Augmenting the RGB face region with
its normalized point cloud, we obtain a six-channel image
with values in [—1, 1]%, which is fed into the deep neutral
network. Some RGB facial images and their normalized point
clouds are shown in Fig. 3.

4 EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate the effective-
ness of our approach. We first test our RGB-D face recognition



Fig. 4. Samples from our large-scale RGB-D dataset. In each row, we show RGB-D data of one individual captured by PrimeSense camera at
different locations and times and under different lighting conditions.

TABLE 1
The age and gender distribution of the two training data sets we
construct, each including 60K individuals.

TRAINING-SET-I  TRAINING-SET-II

Age Group
#male #female #male #female

(0,25] 6613 6613 4000 2231
[26,35] 6613 6613 16504 6245
[36,45] 6613 6613 12558 4994
[46,55] 6612 6612 6612 3688
[56,65] 3530 1889 1648 108
[66,100] 1420 259 1325 87

approach on a large-scale private dataset (Secs. 4.2, 4.3 and
4.6) as well as some public datasets (Sec 4.8). Then we
compare our attribute-aware loss with other methods that
utilize attributes for face recognition, using some public RGB
datasets (Sec 4.9).

4.1 Implementation

Our RGB-D dataset. We construct an RGB-D facial dataset
that is captured by PrimeSense camera and contains more
than 1.3M RGB-D images of 110K identities, where each
identity has at least seven RGB images and their correspond-
ing depth images. Most subjects are captured in the front
of the camera with a neutral expression, and the multiple
images of each subject are captured at different times and
under different lighting conditions. Some samples from this
RGB-D facial dataset are shown in Fig. 4. We also record their
attributes including age, gender, and ethnicity. Compared
with the datasets used for RGB-D face recognition in previous
work [20], [51], our dataset contains a much larger number
of identities, enabling us to evaluate the effectiveness of our
approach in a real-world setting.

Implementation details. All CNN models are imple-
mented using the Caffe library [14] with our modifications.
Our CNN models are based on the same architecture as [46],
using a 28-layer ResNet [8]. We train the models using

stochastic gradient descent with different loss functions on
RGB data, depth data, and their combination, respectively.
All CNN models are trained with a batch size of 200
on two GPUs (TITAN XP). The learning rate begins at
0.1, and is divided by ten after 40K and 60K iterations,
respectively. The training ends at 70K iterations. The fa-
cial data are horizontally flipped for data augmentation.
During testing, we extract 512-dimensional deep features
from the output of the first fully connected layer. For each
test data, we concatenate its 512-dimensional features and
its horizontally flipped 512-dimensional features as the
final 1024-dimensional representation. In face verification
and identification, the similarity between two features is
computed using their cosine distance.

4.2 Experiments on the Parameters )\ and 7

The parameter A controls the importance of attribute-aware
loss L,, while the parameter 7 decides whether a pair of
attribute vectors are close enough to be considered in the
attribute-aware loss. Since both of them are important for our
loss function, we conduct two experiments to illustrate how
A and 7 influence the face recognition performance. We first
construct a training set and a test set by sampling the whole
dataset. This training set (TRAINING-SET-I) includes about
0.88M RGB-D images of 60K identities, with 91% Caucasians
and 9% Asians. Within the training set there are balanced
distributions of age and gender, as shown in Tab. 1. The test
set includes about 0.22M RGB-D images of 20K identities.
The first available neutral image of each identity in the test
set is placed in the gallery, and the remaining images are
used as probes. We select gender, ethnicity, and age as the
attributes for training the model. For the gender attribute,
we use 1 to indicate male and -1 for females. For ethnicity,
since our dataset only contains Asians and Caucasians, we
use 1 for Asians and -1 represents Caucasians. For age, we
first truncate the age value at 100, and then linearly map it
from the range [0, 100] into [—1, 1]. In this way, we represent
the attributes as 3-dimensional vector p; = (p?, p¢,p?) in
[—1,1]3, where the superscripts g, e and a indicate gender,
ethnicity and age, respectively.
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Fig. 5. Rank-1 face identification rates of our approach on the RGB part of our constructed test data. Left: results achieved by fixing 7 = 0.02 in
Eq. (4) and varying X in Eq. (9). Right: results by fixing A = 0.001 and varying 7.

TABLE 2
Comparison of face identification rates (%) using two training datasets with four different loss functions.

TRAINING-SET-1

Loss functions

TRAINING-SET-II

RGB  Depth RGB+ Depth RGB  Depth RGB + Depth
(a) softmax 83.12  83.83 88.93 8246  82.67 86.59
(b) softmax + attribute-aware 9224  90.70 96.26 92.00  90.32 96.16
(c) softmax + center 96.56  88.49 98.69 95.89  87.85 98.47
(d) softmax + center + attribute-aware  96.78  93.29 98.99 96.28  92.86 98.75

To demonstrate the effectiveness and sensitivity of the
two parameters, we train our models jointly supervised with
the softmax loss and the attribute-aware loss on the RGB
part of the constructed dataset. In the first experiment, we
fix 7 = 0.02 and vary A from 0 to 0.003 to learn different
models. Performance on the closed-set identification task
is the classical evaluation criteria for face recognition. We
show the rank-1 identification rates of these models on our
test set in Fig. 5(left). We can see that our attribute-aware
loss can greatly improve the face recognition performance,
especially when ) is in the range [107°,1073]. In the second
experiment, we fix A = 0.001 and vary 7 from 0 to 0.04.
The corresponding rank-1 identification rates on our test
set are shown in Fig. 5(right). It can be observed that the
identification rates remain stable for 7 € [0.01,0.04]. Within
this range, there are between 150 and 630 pairs of similar
attribute vectors with different identities in one batch. In
practice, we prefer to select a small value for 7 due to its
lower computational cost.

4.3 Experiments on Our RGB-D Dataset

Training & test sets. To better verify whether the attributes
and the depth data can improve the face recognition perfor-
mance, we construct another training set (TRAINING-SET-
II) from the whole dataset. This training set also includes
about 0.88M RGB-D images of 60K identities, with the same
distribution of ethnicity but less balanced distributions of
age and gender compared with TRAINING-SET-I (see Tab. 1).
We use the probe set and gallery set in Sec 4.2 as our test
set. In this experiment, we train and test our models on RGB,
depth and their combination, respectively.

Training CNNs. For a fair comparison, we train the
CNN model with four loss functions respectively: (a) softmax
loss; (b) softmax loss combined with attribute-aware loss; (c)
softmax loss combined with center loss [46]; (d) softmax loss
combined with center loss and attribute-aware loss. We use
models (a) and (c) as baselines, to demonstrate the effect
of adding attribute-aware loss into the overall loss function.
The weights of center loss and attribute-aware loss are set to
0.001 and 0.0001, respectively. The margin 7 used in Eq. (4) is
set to 0.01 based on the analysis in Sec. 4.2. For model (d), we
use the center loss to fine-tune the CNN model trained by the
attribute-aware loss. For fine-tuning, the learning rate begins
at 0.01, and is divided by 10 after 20K and 30K iterations,
respectively. The fine-tuning ends at 35K iterations.

Results & Analysis. The rank-1 identification rates are
shown in Tab. 2. It shows that training with both RGB and
depth can achieve better face recognition performance than
with RGB or depth alone. As the depth image captured
by the PrimeSense camera is of lower quality than the
corresponding RGB image, recognition features trained with
depth images are less discriminative than those with RGB
images. On the other hand, depth information can be a
helpful complement to RGB for improving face recognition
accuracy.

The benefit of incorporating depth information into face
recognition is further shown in Fig. 6, where we show
some probes that cannot be identified correctly at rank one
using the model trained with softmax loss on RGB data,
but can be identified correctly when the model is trained
with the same loss on RGB-D data. This is due to the very
different lighting conditions between the probes and their
corresponding sample in the gallery, which makes it difficult
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Fig. 6. RGB-D data of two individuals in our gallery and their corre-
sponding three RGB-D images in our probe set. These probes cannot
be identified correctly at rank one without depth data. On top of each
RGB probe, we show its ranking (r) in RGB-only probing and the cosine
distance (d) between the features extracted from the RGB probe and its
gallery sample. Below each depth probe, we show the ranking in RGB-D
probing and the cosine distance between features extracted from the
RGB-D probe and its gallery sample.

to perform face recognition using only RGB data. On the
other hand, depth data is more robust to lighting than RGB
data, which helps to refine the learned recognition features.
Indeed, the use of depth data improves the ranking of the
probes and reduces the cosine distance between the features
of each probe and its gallery sample.

In Fig. 7, we show ten clusters of features trained on RGB
data with softmax loss (see Fig. 7(a)) and with the combined
softmax and attribute-aware loss (see Fig. 7(b)), respectively.
The results are visualized in 2D using dimensionality reduc-
tion. Without the attribute-aware loss, the five male feature
clusters are interlaced with the female feature clusters. In
comparison, with an attribute-aware loss there is a more clear
separation between male and female feature clusters, and
the features within each cluster are closer to each other. In
particular, there is one photo of a female subject with large
head pose, which looks significantly different from other
photos of the same subject. Without attribute-aware loss,
this photo is mapped to a feature far away from the feature
cluster of the subject (shown as red circles) and becomes an
outlier. Using attribute-aware loss, all photo of this female
subject is mapped to a tight cluster.

TABLE 3
Comparison of face identification rates (%) using TRAINING-SET-I and
TRAINING-SET-1l with detected attribute features.

Training set RGB  Depth  RGB + Depth

TRAINING-SET-I 8740  88.14 92.84

TRAINING-SET-II  87.04  89.97 9242
TABLE 4

Comparison of face identification rates (%) by training on the RGB-D
data of TRAINING-SET-I with three controlled attributes. Here “a”, “e”,
and “g” indicate age, ethnicity, and gender, respectively.

Loss function e+a

95.52

g+a
96.05

g+e
94.16

softmax + attribute-aware

Tab. 2 also shows that the addition of attribute-aware
loss into the overall loss function results in more accurate
face identification results compared with the two baseline
models without attribute-aware loss. Especially, the model
with combined softmax and attribute-aware loss outperforms
the model with only softmax loss by a significant margin.
Moreover, by comparing the results on TRAINING-SET-I
and TRAINING-SET-II, we can observe that the attribute-
aware loss improves the robustness of the results when the
training datasets are not evenly sampled, because it uses the
difference of attributes as a proxy to take the sampling bias
into account.

4.4 Experiments on Our RGB-D Dataset with Detected
Attribute Features

Since our RGB-D facial dataset records three non-facial
attributes for each subject, we can use this dataset to train
a network that detects attribute features from facial images.
We also evaluate the effectiveness of our approach with such
detected attributes, by replacing the ground-truth attributes
with detected attribute features in the attribute-aware loss
layer. Following [11], we adopt the architecture of Lighten
CNN [48] as the attribute detection network. We train this
CNN model with a multi-task loss function MOON [32]
on the RGB data of TRAINING-SET-I. The learning rate
begins at 0.01, and is divided by ten after 40K and 60K
iterations, respectively. The training ends at 70K iterations.
We then extract 256-dimensional deep attribute features
from the penultimate fully connected layer of the attribute
detection network, to feed into the attribute-aware loss layer.
Using these detected attribute features, we retrain our face
recognition network jointly supervised with softmax loss and
attribute-aware loss on both TRAINING-SET-I and TRAINING-
SET-II. The training details are the same as in Sec. 4.3. The
rank-1 identification rates are shown in Tab 3. We can see that
using the attribute-ware loss layer with detected attribute
features also improve the face recognition accuracy, although
not as much as the ground-truth attributes. It shows that
our approach can also be applied in scenarios where ground-
truth attributes are not available in the training data.

4.5 Experiments on Our RGB-D Dataset with Controlled
Attributes

In Sec. 4.3, we use three attributes in the attribute-ware loss
layer to achieve good performance in the test phase. To
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Fig. 7. The distribution of learned features supervised by softmax loss (a) and supervised jointly by softmax loss and attribute-aware loss (b) in
two-dimensional space after dimension reduction using t-SNE [26]. There are ten feature clusters with different color, five males (pentacle) and five
females (circle). All of color images of the first female (red circle) are shown under the learned features.

further understand the importance of each individual at-
tribute, three new kinds of controlled attributes are designed
respectively: (a) ethnicity and age (p§, pf); (b) gender and
age (pJ,p?); (c) gender and ethnicity (pf,pS). We ignore
one of the ground-truth attributes, in turn, to observe
its corresponding performance change. The dimension of
attribute vectors becomes two in the attribute-aware loss
layer now. We train the CNN model with the three kinds
of controlled attributes on the RGB-D data of TRAINING-
SET-I respectively. The training details are the same as in
Sec. 4.3. The margin 7 in Eq. (4) is still set to 0.01 for the
three cases. Since most identities in TRAINING-SET-I are
Caucasians, case (a) and case (c) can have more selected
pairs in every mini-batch than case (b) when training the
CNN models. For the sake of fairness, we also require that
the number of selected pairs should not exceed a given
threshold in every mini-batch. We set this threshold to 350,
which makes sure that the three cases can have a similar
number of pairs. The rank-1 identification rates are shown in
Tab. 4. We can see the performance of case (c) drops the most,
followed by the case (a) and case (b). The result indicates
that age is more important than gender in learning strong
discriminative features. This may be due to the fact that age
is a variable with a larger range of values, which potentially
provides more information.

4.6 Experiments on RGB-D Fusion Schemes

In Sec 4.3, we concatenate RGB and depth into a six-channel
data as input to the 28-layer ResNet, which is a signal-level
fusion scheme for RGB-D face recognition (see Fig. 8(a)).

[ Network J [ Network )
v
Fusion * ¢
pixel-wise concatenation Feature Feature
v ‘

Feature

Fusion
element-wise concatenation

v

Feature

(a) signal level fusion (b) feature level fusion

Fig. 8. The diagrams of the two representative fusion schemes for RGB-D
face recognition: (a) signal level fusion, (b) feature level fusion.

It is worth noting that there are other ways to fuse RGB
and depth information. Similar to [2], we also explore a
feature-level fusion scheme (see Fig. 8(b)), which fuses the
features extracted separately from RGB and depth modality
networks and then feeds them into the classification layers.
We use the same 28-layer ResNet architecture for both the



Fig. 9. Samples from our small-scale RGB-D dataset under different poses. In each row, we show RGB-D data of one individual captured by

PrimeSense under the pose with yaw ranging from left 90° to right 90°.

TABLE 5
Comparison of face identification rates (%) and training time (hours)
using the RGB-D data of TRAINING-SET-1 with different loss functions
and fusion schemes. Here “front”, “mid” and “back” indicate fusion
operations ahead of the fourth convolution layer, the eighth convolution
layer and the first fully connected layer of ResNet-28 [8], respectively.

. feature-level
signal-level

front mid back

softmax 88.93 88.67 89.44  82.67

softmax + attribute-aware 96.26 95.70 9647 94.90
training time ~10h ~14h ~14h ~14h

RGB and depth data and test three different types of the
feature-level fusion schemes, which are implemented at the
front, the middle and the back of ResNet-28 respectively.
More concretely, their fusion operation is performed ahead
of the fourth convolution layer, the eighth convolution layer
and the first fully connected layer of ResNet-28, respectively.
The performance of these feature-level fusion schemes is
then compared with the signal-level fusion scheme. Since
the feature-level fusion schemes involve more parameters,
we need to set a smaller batch size for training, which in
turn requires more training iterations. In our experiments,
we set the batch size to 100, and train for 180K iterations.
Each feature-level fusion scheme takes about 14 hours to
train, whereas the signal-level fusion scheme takes only
about 10 hours. Tab. 5 compares the performance of different
fusion schemes. It can be observed that only the feature-
level scheme implemented at the middle outperforms the
signal-level scheme by a small margin, although with a
40% increase of training time. The feature-level scheme
implemented at the back performs much worse than all
other schemes, especially for the softmax loss. One possible
reason is that the features are concatenated using a fully
connected layer followed by a loss function, which is not
enough for feature fusion. As pointed out in [2], the fusion
of multiple feature descriptors can improve face recognition
rates. However, we need to carefully design fusion schemes
to achieve better performance.

4.7 Experiments on a Small-Scale RGB-D Dataset Un-
der Pose Variation

Most identities of the RGB-D dataset in Sec. 4.1 are with a
frontal pose. To demonstrate the robustness of our method
for larger poses, we construct another small-scale RGB-
D facial dataset that is captured by PrimeSense camera

in the same indoor scene and contains about 25k RGB-
D images of 952 identities, where each identity also has
corresponding attributes including gender, ethnicity, and
age. The new dataset contains only young Asians with 30%
male and 70% female, and covers pose with yaw ranging
from left 90° to right 90°. Some samples from this new
dataset are shown in Fig. 9. This dataset is available at
http:/ /staff.ustc.edu.cn/~juyong/RGBD_dataset.html. We
use the first 852 identities to construct a training set and the
remaining 100 identities for testing. Similar to [11], the first
frontal image of each identity is placed in the gallery, with
the remaining images used as probes.

We train the CNN model jointly supervised with softmax
loss and attribute-aware loss on the RGB-D data of the
training set. The architecture of the CNN model is the same
as in Sec. 4.3. The weight of the attribute-aware loss is set to
0.0001 and the distance margin 7 is set to 0.001. The learning
rate begins at 0.1, and is divided by ten after 1.1k and 1.7k
iterations. The training ends at 2k iterations. The rank-1
identification rates are shown in Tab 6. We can see that the
model with the combined softmax and attribute-ware loss
outperforms the model with only the softmax loss across the
whole range of pose variation, with greater improvements
for more extreme poses. This example shows that attribute-
aware loss can enhance the robustness of facial features with
respect to pose variation.

4.8 Experiments on Public RGB-D Datasets

Although our RGB-D face recognition model is trained with
data captured by PrimeSense cameras, it can also be applied
to other RGB-D data with good generalization ability. In the
following, we test our RGB-D face recognition model trained
using TRAINING-SET-I on some public RGB-D datasets, and
compare it with other RGB-D face recognition methods.

Performance on FRGCv2. The FRGCv2 dataset [28]
contains 4,950 scans and texture images of 557 identities
captured across multiple sessions and with two kinds of
expressions (e.g., neutral and smile). To test face identification
performance, we place the first available neutral scan and
the texture image of each identity in the gallery, and use the
remaining RGB-D images as probes. Tab. 7 reports the rank-
1 identification rates of different methods, while Fig. 10(a)
shows the cumulative match characteristic (CMC) curves.
Our method performs the best under all three data modalities
(RGB, Depth, and RGB + Depth).

Performance on Bosphorus. The Bosphorus dataset [34]
contains 4,666 scans including color and depth images from
105 identities with rich expression variations, poses, and
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TABLE 6
Comparison of face identification rates (%) using the RGB-D data of the small-scale training set under different poses.

Loss functions —90°  (—90°,—45°) (—45°,+45°)  (+45°,490°) +90°
softmax 62.65 88.36 98.59 88.38 50.12
softmax + attribute-aware  81.15 93.97 99.65 92.96 65.88
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Fig. 10. Evaluation of our method on three public data sets: FRGC v2 [28], Bosphorus [34] and 3D-TEC [41]. For each test data set, we show
cumulative match characteristic (CMC) curves of three models trained using RGB, depth, and RGB-D of TRAINING-SET-| respectively.

occlusions. There are 743 scans that only include expression
variations. In our experiment, 105 first neutral depth and
color images from each identity are used as the gallery set,
and 638 non-neutral scans are used as the probe set. We
report the rank-1 identification rate in Tab. 7 and show the
CMC curves in Fig. 10(b). Although our training data does
not include the public data sets and our trained model is not
fine-tuned on any gallery of public test data sets, our model
can still achieve the best results on Bosphorus dataset.

Performance on 3D-TEC. The 3D-TEC dataset [41] con-
tains 107 pairs of twins acquired using a Minolta VIVID 910
3D scanner under controlled illumination and background.
We use the standard protocol for 3D-TEC (four scenarios:
Case LILIII, and IV) described in [41]. We show the rank-1
identification rate in Tab. 7 and the CMC curves in Figs. 10(c)-
(f). Cases IIl and IV are challenging scenarios where the
system does not control the expressions of the subject in a
gallery set of twins. Since the depth image of the training data
for our models is captured by PrimeSense cameras and of
low quality, our models do not work well for these scenarios
that require a distinction between subtle differences in the
depth data. This also explains why our RGB model performs
even better than our RGB-D model.

4.9 Comparison with Other Methods that Utilize At-
tributes

To demonstrate the effectiveness of our attribute-aware
loss, we also compare our method with GTNN [11], a
state-of-the-art face recognition method utilizing attributes.
GTNN fuses the facial recognition features (FRFs) and facial
attribute features (FAFs) together via a nonlinear tensor-
based fusion method, and the fused features are used for
the final face recognition. Different from GTNN, our method
needs attribute information only for the training stage but
not the testing stage.

Training & test sets. We train GTNN and our model
on publicly available web-collected RGB datasets, includ-
ing CASIA-Webface [50] and CelebA [25]. CASIA-Webface
includes about 494K facial RGB images of 10,575 identities
without facial attributes. CelebA is a large-scale facial at-
tributes dataset with more than 200K celebrity RGB images
of 10,177 identities, each with 40 attribute annotations. Same
as [11], we remove attributes that do not characterize a
specific person and retain 13 attributes. The results are tested
on the LFW dataset [12], which contains 13,233 RGB images
of 5,749 identities. During testing, LFW is divided into
ten predefined subsets for cross-validation. We follow the
standard Unrestricted, Labeled Outside Data Results protocol
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TABLE 7
Comparison of Rank-1 identification rates (%) with state-of-the-art methods on public data sets. Except for our method, the result data are taken from
the respective papers [4], [5], [16], [21], [22], [53]. The best result for each data set is highlighted in bold font.

Method Training data Modality FRGC  Bosphorus SDTEC
Casel Casell Caselll CaselV
GoogleNet [39] Private [53] RGB 21.51 63.44 - - - -
VGG-Face [27] Private [53] RGB 87.92 96.39 - - - -
Ours TRAINING-SET-I RGB 95.69 96.08 95.79 98.13 84.11 84.11
" Faltemieretal. [4] ~  FRGC[28] 1 Depth - - 9440 9350 7240 7290
Li et al. [22] Part of Bosphorus [34] Depth 96.30 95.40 93.90 96.30 90.70 91.60
Kim et al. [16] FRGC [28] Depth - 99.20 94.80 94.80 81.30 79.90
FR3DNet [53] Private [53] Depth 97.06 96.18 - - - -
Ours TRAINING-SET-I Depth 97.45 99.37 93.46 95.33 73.83 75.23
" Goswamietal. [5] 1 None ~ RGB+Depth - - 9580 9430  90.10 9240
Li et al. [21] Part of FRGC [28] RGB+Depth ~ 95.20 99.40 - - - -
Ours TRAINING-SET-I RGB+Depth ~ 98.52 99.52 96.73 97.66 84.58 83.18
for testing. TABLE 8

Training CNNs. The input for GTNN consists of pre-
extracted FRFs and FAFs. We train a CNN model (MODEL-A)
with softmax loss on CASIA-Webface to extract FRFs. We
also train a CNN model (MODEL-B) with the loss function
MOON [32] on CelebA to extract FAFs. Then we use MODEL-
A and MODEL-B to extract FRFs and FAFs on CASIA-
Webface respectively. Therefore, we can train the GTNN
(MODEL-C) with the softmax loss on those FRFs and FAFs.
In order to compare with GTNN, we regard those FAFs
as the attributes and train a CNN model (MODEL-D) with
the combined softmax and attribute-aware loss on CASIA-
Webface. MODEL-A, MODEL-B and MODEL-C are trained
according to the details given in [11], [32], [46]. For training
MODEL-D, the learning rate begins at 0.1, and is divided by
ten after 16K and 24K iterations, respectively. The training
ends at 28K iterations. The weight of the attribute-aware loss
is 0.001 and the margin 7 is set to 0.58, such that there are
about 300 pairs of similar attribute vectors with different
identities in one batch.

Results & Analysis. The face verification rates of four
models on the LFW dataset are reported in Tab. 8. The
GTNN [11] fusion method improves the verification rate
compared with training with FRFs or FAFs alone, while our
attribute-aware achieves the best accuracy among the four
approaches. Another thing to note is the greater efficiency of
our approach. Training with our attribute-aware loss layer
improves the accuracy of the resulting FRFs, with an almost
negligible increase in the number of training parameters.
In the testing phase, the attribute-aware loss layer is not
needed and incurs no overhead. In comparison, GTNN fuses
FRFs and FAFs into high-dimensional features via a tensor-
based approach that involves a large number of training
parameters. Although the number of parameters can be
reduced by Tucker decomposition as shown in [11], the
rank of the tensor must be carefully chosen to achieve a good
balance between accuracy and efficiency. Moreover, GTNN
requires training the FRF model, the FAF model and the
fusion model, whereas our approach only requires training a
single FRF model.

Comparison with fusion method GTNN [11] on LFW data set.

Models Descriptions Acc.(%)
MODEL-A FRFs 97.43
MODEL-B FAFs 73.92
MODEL-C  GTNN [11] fusion 97.78
MODEL-D Our method 98.42

5 DiIScUSSION & CONCLUSION

We have presented an attribute-aware loss function for CNN-
based face recognition, which regularizes the distribution
of learned recognition features with respect to additional
attributes. The novel attribute-aware loss could help resolve
the problem of uneven sampling in the training dataset,
and improves the face recognition accuracy. Besides, we
train an RGB-D based face recognition model using a large
data set with over 100K identities. The experimental results
demonstrate the effectiveness of our novel attribute-aware
loss, and the good generalization ability of our trained RGB-
D face recognition model.

Our work is the first method on using non-facial attributes
which are invariant to the capture environments to regu-
larize the face recognition feature mapping. In this work,
although we only use gender, age, and ethnicity attribute
for regularization, the experimental results still demonstrate
big improvements. Other attributes could also be added
for further study. Another point that needs to be further
investigated is how the transformation formulation between
recognition feature and attribute feature influences the final
recognition performance. For example, we could consider
replacing the linear transformation G with nonlinear trans-
formation. Currently, we add the attribute-aware loss term
to classification loss like softmax. How to combine it with
metric learning algorithms like triplet loss used in [35] is an
interesting research problem.
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