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1 Introduction 

Angiosperms, the large groups of seed plants better known as 

flowering plants, are the most successful land plants on our planet today, 

representing an estimate of 95% of all terrestrial vegetation (Simonin and 

Roddy, 2018). Their seeds germinate only during favourable growth 

conditions culminating in the development of a new generation of plants, 

which can show variable periods of vegetative growth depending on the 

species, habitat, and growth conditions. The transition of many of these 

angiosperm plants into the flowering phase is triggered by seasonal and 

environmental factors and involves a switch from vegetative growth into 

developing reproductive structures. Upon fertilisation, the embryo 

encapsulated in a seed ensures the survival of the species. The seeds of 

some flowering plant species can be stored for very long periods of time 

and retain their viability even deep in the soil. Disruption of the substrate 

by ploughing or digging changes the micro environment and disrupts seed 

dormancy (Hilhorst et al., 2010; Shen-Miller et al., 1995). A large variation 

in shape, nectar availability, volatile production, and colours exists among 

flowers. Hence most flowers are very attractive to the human eye. In 

Angiosperms successful reproduction depends on pollen grains, often 

carried by wind and insect pollinators, that land on the stigmatic surface 

and fertilise the ovules. During the relatively rapid development of flowers, 

male and female reproductive organs, anthers and pistils, respectively, are 

formed at the centre of the flower. Within anthers and pistils, sporophytic 

cells are recruited to generate the new germ line from which male and 

female gametophytes develop. The egg cell is specified inside the 

developing embryo sac, which is the female gametophyte of a plant. Two 

sperm cells (SCs) develop inside a single vegetative cell (VC) surrounded 

by several durable layers, forming and protecting the male gametophyte, 

referred to as the pollen grain. Once flowers are fully mature and ready for 

reproduction, they open and the pollen grains are released from the anthers. 



In the 320 000 different flowering plant species, many different 

mechanisms have evolved that ensure outcrossing to maximise genetic 

variability in the offspring (Lughadha et al., 2016; Fujii et al., 2016; 

Hiscock, 2011). 

After pollen lands on a stigma, a series of complex recognition 

events results in rejection of all foreign pollen by as yet unknown 

mechanisms. In addition, approximately half of all angiosperm species 

display a genetically determined mechanism, which prevents self-

fertilisation called self-incompatibility (SI). Pollen rejection can vary 

between different SI mechanisms, either by preventing pollen germination 

immediately after pollen landing by blocking water uptake from the stigma, 

or by triggering calcium signalling mediated programmed cell death in 

incompatible pollen, or by the activity of pistil produced S-RNases after 

translocation into the growing pollen tubes (Allen et al., 2010; Fujii et al., 

2016). 

All ‘own’ and compatible pollen grains rapidly hydrate, followed by 
pollen grain germination and the outgrowth of a pollen tube, driven by the 

tip growth of the VC. The pollen tube accurately delivers two SCs into one 

embryo sac deep enclosed in the ovule inside the pistil. In flowering plants, 

upon pollen tube arrival and SC release, a unique double fertilisation takes 

place in the female embryo sac. One SC fuses with the egg cell, generating 

the diploid zygote that will form a new sporophyte (embryo), whereas the 

second sperm merges with the diploid large central cell (CC) and results in 

the formation of the triploid endosperm precursor, triggering seed 

development. The endosperm functions as a nutrient source for the 

developing plant embryo, either during seed development and maturation 

before release from the mother plant, or during the early stages of plant 

development after seed dispersal and germination (de Graaf et al., 2001; 

Rousseau et al., 2008; Mizuta and Higashiyama, 2018). 

Here, we survey the critical processes for plant reproduction and 

explore this in the context of cell cycle regulation. The coordination of cell 

cycle is required to produce the gametes, synchronise the cell cycle phase 

for fertilisation as well as the creation of an embryo from a zygote. 

2 Fertilisation 

2.1 Gametophyte Development 



The developmental pathways of both male and female gametophytes 

producing both sex cell types for plant reproduction are highly conserved 

throughout angiosperms. Nevertheless, there are considerable differences in 

the timing of developmental steps, this can lead to a different number of 

cells in the pollen grain. In some species, the last mitotic division has not 

been executed and we see bicellular pollen, instead of tricellular. The total 

numbers of cells in the female gametophyte depends on the species as well 

(Yadegari and Drews, 2004). 

The final cell number in most male gametophytes (pollen) appears to 

be rigidly conserved in all higher plants, formed by a well-defined sequence 

of divisions. Meiotic rounds of division (I and II) of a single diploid 

microsporocyte (microspore mother cell) gives rise to a tetrad of four 

haploid microspores embedded in callose (β1,3 glucan). The tapetum cell 
layer in the anther, surrounding the developing microspores, is responsible 

for the degradation of callose, releasing free microspores. These 

microspores undergo a first round of mitotic and asymmetric division that 

results in the formation of a larger VC and a smaller generative cell (GC). 

At this point of development, the GC becomes invaginated by the VC 

giving rise to a cell within a cell generating a bicellular pollen grain. The 

anther tapetum and developing pollen are both responsible for the 

production and deposition of two extracellular pollen layers, the intine 

composed mainly of cellulose-pectic compounds and an exine layer – 

composed of sporopollenin, which besides its species-specific structural 

properties to optimise pollen transfer, is composed of a biochemically 

decay-resistant substance protecting the pollen once released from the 

anther upon flower opening (Borg and Twell, 2010; Twell, 2011; Gómez et 

al., 2015). 

2.2 Attraction to the Ovule 

Among angiosperms, there are considerable structural differences in 

the size of reproductive organs, which also confers large differences in 

distance between stigma surface of the pistil, the landing platform for 

pollen, and the ovules inside the pistil. As such, the time for pollen tubes to 

reach an ovule depends on the species. For example, it takes approximately 

five hours for the fastest growing vegetative pollen tube cell of Arabidopsis 

to grow approximately 3 mm inside the pistil to deliver the SCs and it takes 

an additional four to five hours to fertilise every ovule (Jean-Emmanuel et 

al., 2002). In maize, pollen tubes need to grow up to 25 cm in length for 

approximately 24 h, growing at an astonishing rate of almost 1.0 cm h−1 

(Dresselhaus et al., 2016; Zhou et al., 2017). In rice, it only takes 15–60 

min after pollen tube germination to reach an ovule and two to five hours to 



complete fertilisation (Lan et al., 2004; Dong and Yang, 1989). Moreover, 

pollen tube growth is affected by the structural, physical, and nutritious 

properties of the different pistil tissues. A switch in tube growth speed is 

clearly observed in bicellular pollen species, such as Nicotiana tabacum 

(see below), which was suggested to be correlated with the staging of the 

second mitotic division of the GC into two SCs while growing through the 

style transmitting tissue (TT) of the pistil. In Arabidopsis, however, a 

species with tricellular pollen upon anthesis, the tubes grow slower through 

the TT of the short style and the long septum in the centre of the ovary as 

compared to the initial stigma growth (Lennon et al., 1998; Cheung et al., 

2010). Pollen tubes show directional growth with high precision due to 

structural and biochemical clues that are provided by the different pistil 

tissues, i.e. stigma, style, ovary, and ultimately, the embryo sacs inside the 

ovules. 

During pollen–pistil interaction, specific members of a large family 

of membrane localised receptor-like kinases (RLKs) are involved in the 

guidance of the expanding pollen tube tip through the different pistil 

tissues. Both pollen tube (ANX1/2, BUPS1/2 and LIPS1/2) and ovule-

specific RLKs (STRUBBELIG) are responsible for sensing directional 

clues for micropyle entrance into an ovule and for the communication 

between pollen tube tip and the different types of embryo sac cells such as 

the synergid cells with their filiform apparatus (FERONIA), the eggs and 

CC, but also the integument cell layers surrounding, protecting and 

communicating with the embryo sac during ovule development (Muschietti 

and Wengier 2018; Wang et al., 2016). 

‘Defensin-like’ proteins, i.e. LUREs and EA1 produced by synergids 
and egg cell respectively (see below), are responsible for a species-specific 

close-range attraction and guidance of pollen tubes into the micropyle of 

the ovule (Márton et al., 2012; Okuda et al., 2013; Takeuchi and 

Higashiyama, 2012). Remarkably, the interaction between growing pollen 

tubes and female pistil tissues during the progamic phase of plant 

reproduction is essential to prime the pollen tubes to respond to the LURE 

protein attractants and to release the SCs inside the embryo sac (Okuda et 

al., 2013; Leydon and Johnson, 2013). Interestingly, an additional style TT 

produced component that triggers the competence of pollen tubes to 

respond to these LURE proteins is not a protein or peptide but is shown to 

be an arabinogalactan polysaccharide (AMOR) (Mizukami et al., 2016; 

Okuda et al., 2013). One of the two synergid cells at the entrance of the 

embryo sac collapses upon pollen tube arrival at this site, at least in 

Arabidopsis (Jean-Emmanuel et al., 2002) concomitantly triggering the 

arrest and rupture of the pollen tube tip, releasing its content including both 

SCs (Leydon and Johnson, 2013; Leydon et al., 2013). 



Curiously, an important structural characteristic of all different types 

of cells within an embryo sac (Yadegari and Drews, 2004) but also of the 

pollen tube arriving at one of the synergid cells and as well as of the two 

released SCs is the development of a cell wall. This may create a potential 

structural barrier between cells and thus prevent direct membrane–
membrane interaction and animal-like cell communication and fusion 

event(s) (Wang et al., 2010; Mori et al., 2014). Signalling between these 

cells and the communication by making use of membrane-localised 

receptors, such as the FERONIA receptor, GPI-anchored LORELEI protein 

or the SC-specific MDIS1-MIK receptor kinases, GCS1/HAP2, and GEX2 

(Mori et al., 2005, 2014; Escobar-Restrepo et al., 2007; Igawa et al., 2013; 

Liu et al., 2016; Dresselhaus and Snell, 2014; Wang et al., 2016; Berger et 

al., 2008; von Besser et al., 2006), can only occur based on the release 

(exocytosis) of highly diffusible compounds, e.g. Ca2+ and signalling 

proteins such as the group of small secreted cysteine-rich globular proteins 

(CRPs), e.g. the LURE proteins (Sprunck et al., 2012; Dresselhaus et al., 

2016; Mizuta and Higashiyama, 2018; Márton et al., 2012). However, it has 

been demonstrated that in N. tabacum, high molecular weight and 

glycosylated arabinogalactan-like proline-rich proteins from the pistil TT 

can traverse pollen tubes walls in vivo ending up against the pollen tube 

membrane (de Graaf et al., 2000). Cell wall modifying enzymes such as 

pectinases, glucanases, and expansins may play a role in changing the 

structural properties of these cell walls facilitating protein movement across 

plant cell walls, supporting cell–cell communication (de Graaf et al., 2000). 

The CRPs and other defensin-related small peptides, including the LURE 

proteins, and especially the short RALF (rapid alkalinization factor) 

peptides (see above), may be able to traverse cell walls more easily, 

quickly, and specifically (Takeuchi and Higashiyama, 2012; Márton et al., 

2012). 

In both bicellular and tricellular pollen species, the GC and the two 

SCs are spatially, structurally, and temporally connected with the 

vegetative tube cell nucleus (VN), defined as a male germ unit (MGU). The 

GC and SCs are surrounded by a continuous vegetative membrane which 

has originated from the microspore membrane during pollen mitosis I – 

during pollen development in the anther locule – when the GC becomes 

‘endocytosed’ from the vegetative pollen cell after asymmetric division (see 
above). An intercellular matrix or ‘periplasm-like’ region, rich in pectins 
and arabinogalactan proteins (AGPs), separates both SCs from the 

vegetative tube cell. One end of the SCs forms a characteristic hook 

structure and creates an intimate contact between the VN of the tube cell 

and either the GC or SCs and is suggested to play a role in communication 

(Jiang et al., 2015; Grant-Downton et al., 2013; Slotkin et al., 2009). 



However, plasmodesmata-like cytoplasmic connections between both cell 

types appear to be absent (van Aelst and van Went, 1992; Cresti et al., 

1987; Southworth and Kwiatkowski, 1996). After pollination and pollen 

tube germination, the MGU becomes translocated into the growing tube 

where it migrates with and at a specific distance from the growing pollen 

tube apex. Importantly, once pollen tubes grow inside the female pistil, the 

interaction between the male gametophyte and maternal tissues triggers 

different gene expression in the pollen tube, compared to in vitro growing 

pollen tube cultures. This indicated that pistil pollen tube communication is 

essential for directed pollen tube growth, and indeed pollen tubes respond 

to the LURE protein attractants produced by the female gametophyte (Lin 

et al., 2014; Qin et al., 2009). In addition, maturation of the SCs in the 

tricellular pollen of Arabidopsis seems to be completed only by the time 

pollen tubes reach the embryo sacs (Friedman, 2006). An important 

question that needs to be resolved is whether SCs, when transported 

through a growing pollen tube – are indeed actively involved in pollen tube 

guidance to an ovule and fertilisation (Mori et al., 2005). When the SC 

expressed HAP2/GCS1 protein is absent, these pollen tubes are disrupted in 

their ability to find the micropyle of the ovules, and those that do arrive fail 

to initiate fertilisation (von Besser et al., 2006). Recently, however, Glöckle 

et al. (2018) demonstrated that mutant pollen – in which the second mitotic 

division of the GC into two SCs is blocked – are still capable of producing 

a pollen tube, and find their way to an ovule in vivo. These results suggest 

that SCs are not important for the function of the pollen VC, which is the 

formation, polarised and directional growth of the pollen tube (Glöckle et 

al., 2018; Zhao et al., 2012). How communication is established between all 

the different cell types needs to be resolved. 

2.3 Double Fertilisation 

Recently, it has been demonstrated that besides reactive oxygen 

species (ROS), RALF peptides specifically expressed in the pollen tubes 

and in the ovule are involved in the actual disruption of the pollen tube tip 

membrane, at least in tissue culture (Ge et al., 2017; Mecchia et al., 2017; 

Duan et al., 2014). Remarkably, reducing the level of these RALF peptides 

does not result in a ‘nonbursting’ pollen tube phenotype in plants which 

suggests that other pollen and or ovule components are involved in the 

sperm release from pollen tubes. Following the release of the SC pair in the 

embryo sac, one of the synergids degenerates. Initially, both SCs move in 

close proximity showing a Brownian-like movement inside the embryo sac, 

up to the point that they separate, and move in different directions: one 

travels to the egg cell, whereas the second one find its way to the CC to 



fuse and form the new zygote (sporophyte) and endosperm, respectively 

(Zhang et al., 1999; Huang and Russell, 1994; Kawashima et al., 2014), 

such events have now been captured by live imaging (Hamamura et al., 

2011). The SCs have a protoplast-like morphology (Jean-Emmanuel et al., 

2002), decorated with myosin, and are proposed to be guided precisely to 

the egg and CC by two actin coronas for double fertilisation to take place 

(Huang and Russell, 1994; Zhang et al., 1999; Kawashima et al., 2014; 

Ohnishi et al., 2014). At this stage, the vegetative membrane surrounding 

the two SCs and the pectic/AGP matrix must be removed to be able to 

make the contact between sperm membrane and the actin coronas and to 

achieve fusion with the egg and CC ultimately, with a lag time of eight 

minutes between sperm release and actual fusion (Hamamura et al., 2011; 

Denninger et al., 2014). Interestingly, in rice, the chalazal end of the egg 

cell does not present a proper cell wall which is suggested to be the site of 

SC fusion whereas formation of a cell wall early after sperm-egg fusion in 

Arabidopsis and maize is suggested to be important to prevent polyspermy 

(Kranz et al., 1995; Okamoto, 2010; Tekleyohans et al., 2017). 

When exactly SCs are fully mature and capable to fuse with the egg 

and CC s inside the embryo sac is currently not known. In vitro egg-sperm 

fusion experiments, using tissue cultured tobacco pollen tubes for the 

isolation of the SCs and egg cell protoplasts, suggests that the sperm is 

‘more or less’ fully mature and capable of fusing with the egg cells 
immediately after division (Jean-Emmanuel et al., 2002; Khalequzzaman 

and Haq, 2005; Kranz et al., 2008). However, in tissue culture fertilisation 

assays, it has become evident that pollen tube attraction by ovules, the 

release of SCs and the fusion between sperm and egg cell is much more 

efficient when ovules, sperm, and egg cells are isolated from pre-pollinated 

pistils. Recently, it has been suggested that the small cysteine-rich EC1 

protein, secreted by the egg cell, is important for rapid SC ‘activation’ to 
fuse with the egg cell more efficiently in vivo (Dresselhaus et al., 2016). 

Although it has been clearly demonstrated that pollen tubes need the 

interaction and communication with the different pistil tissues and the 

embryo sac containing the egg cell, respectively, it is still debated whether 

within a single male gametophyte (pollen), the VC or VN communicates 

directly with one or both SCs (Zhang et al., 2017a; McCue et al., 2011; 

Slotkin et al., 2009; Grant-Downton et al., 2013; Jiang et al., 2015). 

The diploid CC inside the embryo sac fuses with one of the two SCs 

and this fusion product, the endosperm initial, develops a triploid 

endosperm, which functions as a temporary nutrient source for the actual 

developing zygote into the new embryo and seedling ultimately. The 

nutrient storage capacity and composition of endosperm tissue varies 

greatly between different species (Esau, 1962). Remarkably, in 



gymnosperms, producing naked seeds, although two SCs are being 

delivered by a single pollen tube, only a single fertilisation event takes 

place due to the absence of a CC. The second sperm degenerates during 

further seed development. 

2.4 Preventing Polytuby 

In Arabidopsis, upon pollen tube arrival and fertilisation, ovules also 

seem to become reprogrammed and either stop producing the short and – 

most probably – long distance guidance clues, or perhaps start producing 

repellent-like products preventing additional pollen tubes to grow towards 

and into an ‘unavailable’ ovule (Maruyama et al., 2015; Völz et al., 2013). 
For example, the production of LURE, a pollen tube attractant is turned off 

upon fertilisation (Palanivelu and Preuss, 2006; Maruyama et al., 2013). 

This process prevents the attraction of excess pollen tubes and the 

degeneration and fusion of the remaining synergid with the CC is key in 

this process. In Arabidopsis, this remaining synergid, the second synergid 

nuclei, degenerates after fertilisation, and this cell fuses with the CC in 

response to ethylene produced by the newly formed zygote (Maruyama et 

al., 2015; Völz et al., 2013). FIS-PRC2 is a chromatin-modifying complex 

involved in gene silencing via trimethylation of lysine 27 on histone H3 

(H3K27me) (Kohler et al., 2012), and the activity of this complex is 

required for mitosis associated degradation of the synergid's nucleus 

(Maruyama et al., 2015). The fusion of the persistent synergid with the CC 

results in the dilution of the synergid produced attractants. JAGGER, an 

AGP is required for the degeneration of the remaining synergid (Pereira et 

al., 2016a, b). Interestingly, in Oryza sativa (rice, a monocotyledon), the 

degeneration of one of the synergids starts just before anthesis, thus even 

before pollination and this seems to be developmentally regulated rather 

than by an approaching pollen tube (Dong and Yang, 1989). However, in 

Arabidopsis, mutants that do allow more than one pollen tube to enter an 

ovule, the second set of SCs released were not able to fertilise the already 

fertilised egg or CC (Scott et al., 2008). 

3 Cell Division and Fertilisation 

The formation of a gametophyte involves three basic steps, the 

recruitment of diploid germ line cells in floral tissues, meiosis to generate 

haploid cells and one or more rounds of mitosis to generate the cells that 

will populate the gametophyte, including the gametes. During the mitotic 



cell cycle, the duplication of genetic material during the S phase and 

segregation of the two copies in two different cells during M phase is 

temporally separated by two gap phases (G), G1 and G2 during which 

nutrient status and developmental signals can be integrated and DNA 

integrity control can be performed. The meiotic cell cycle is a modified cell 

cycle with a single S-phase but with two rounds of chromosome 

segregation generating haploid daughter cells. 

In all eukaryotes, progression through both the meiotic and mitotic 

cell cycle is driven by the action of cyclin (CYC)/cyclin-dependent kinases 

(CDKs) complexes (De Veylder et al., 2007). These kinases phosphorylate 

key actors in cell cycle progression and directly or indirectly provide 

transcriptional and post-translational control over the core cell cycle 

machinery. The CDK/CYC kinases act in feedforward networks, wherein 

controlled destruction of cell cycle factors results in irreversible switches 

that provide direction to cell cycle progression (Zhao et al., 2012). To this 

end, cell cycle regulators are degraded by the proteasomes upon tagging by 

ubiquitin, implicating the action of ubiquitin ligases in cell cycle regulation. 

SCF (SkP, Cullin, F-box containing) complexes ubiquitinate factors 

involved in both G1/S and G2/M transitions, and the APC/C (anaphase-

promoting complex/cyclosome) controls the metaphase–anaphase transition 

during mitosis (Genschik et al., 2014). 

In higher plants, the G1/S transition of the mitotic cell cycle is driven 

by the action of CDKA/CYC kinase complexes, whereas progression 

through G2/M involves the action of both CYC/CDKA and CYC/CDKB 

kinases (Polyn et al., 2015). The activity of these CDK kinases is post-

translationally controlled by phosphorylation. Activating phosphorylations 

that stabilise the T loop of the CDK are mediated by CDK-activating 

kinases (CAKs), while WEE1 kinases reduce activity by phosphorylating 

residues in the ATP-binding pocket. Interaction with inhibitors, of which 

the Kip-related proteins (KRPs)/interactor-inhibitor of cyclin-dependant 

kinase (ICK) and SIAMESE related (SIMS) are the best documented, and 

the control of CYCLIN levels by proteolysis are important negative 

feedback mechanisms. A key target of G1/S CYCD/CDK and CYCA/CDK 

kinases is the retinoblastoma-related protein. Hyperphosphorylation of 

retinoblastoma related protein (RBR) by these kinases reduces its potential 

to interact with transcription factors and factors involved in chromatin 

structure and cell cycle progression. The action of phosphatases at the end 

of M-phase strips RBR of phosphate groups resulting in its reactivation. 

Proteolysis of the KRP inhibitors stimulated by the action of CYC/CDK via 

inactivation of RBR provides a positive feedback resulting in irreversible 

switch-like behaviour of the G1/S cell cycle transition (Zhao et al., 2012). 

However, G1/S kinases also regulate levels of RBR (Dewitte et al., 2003), 



and E2Fa-RBR complexes suppresses E2F targets genes involved in cell 

differentiation (Magyar et al., 2012). This indicates that both RBR bound 

and free E2F fractions can have a role in suppressing differentiation and 

activating cell division. Further research into the role and stoichiometry of 

these fractions is required to elucidate this mechanism. 

3.1 Gamete Formation and Cell Division 

In preparation for sexual reproduction, male and female haploid 

gametes are produced in hermaphrodite flowers containing both male and 

female reproductive organs, anthers and pistils, or in male or female 

flowers that are formed on the same plant or on separate individuals, 

termed monoecious and dioecious plants respectively (Barrett and Hough, 

2013). During flower development after the recruitment of a germ cell in 

the floral organs of the sporophyte, a series of meiotic and mitotic 

divisions, in combination with cell differentiation and programmed cell 

death, results in the formation of mature dry pollen grains and embryo sacs 

starting from diploid microsporocytes and megasporocytes, respectively. 

Cyclins have been shown to be involved in meiosis, the correct 

execution of meiosis in the male microspore mother cell requires the action 

of six CYCAs, one CYCB type cyclin and the SOLODANCERS (SDS), 

related cyclins (Bulankova et al., 2013), which are activated in different 

stages of the process. CYCA1;2 is required for timely entry and prevents 

premature exit from meiosis after the first division. Its mutant alleles are 

known as TARDY ASYNCHRONOUS MEIOSIS (d'Erfurth et al., 2010). 

CDKA;1-CYCA1;2 phosphorylates and destabilises THREE DIVISION 

MUTANT1/MALE STERILE5 (TDM1) until meiosis I is successfully 

performed. TDM1 is required for meiotic exit by stimulating the APC/C 

activity at the end of meiosis II (Cifuentes et al., 2016). OSD1 seems to be 

also involved in controlling levels of APC activity, and osd1 tam1 mutants 

even fail to enter into meiosis I (d'Erfurth et al., 2010). Several cyclins play 

a role in male meiosis. CYCA2s play an important role for the segregation 

of meiotic chromosomes. CYCB3;1 is localised to the meiotic spindles, and 

together with SDS represses the premature onset of cell wall formation 

(Bulankova et al., 2013). SDS is required for chromosome pairing. Meiotic 

exit requires the activation of TDM1 and the nonsense-mediated RNA 

decay factor encoding SMG7 genes (Bulankova et al., 2010). Male meiosis 

is sensitive to elevated temperatures, and the CDKG1-CYCLINL complex 

is involved in RNA splicing and is critical for chromosome pairing and 

recombination and the robustness of the meiotic process at ambient 

temperatures (Huang et al., 2013; Zheng et al., 2014b). 



Secondly, after meiosis, several rounds of mitosis provide the 

appropriate cell number in the gametophyte. The male gametophyte 

contains three cells at the time of fertilisation. The pollen grain contains the 

SCs enveloped in the VC. This acquisition of new daughter cells fates 

involves RBR action as rbr mutant VCs retain aspects of the microspore 

whilst reiterating these unequal divisions (Chen et al., 2009). A second 

mitotic division of the GC generates the two SCs. Whilst this process is 

strictly conserved among all flowering plants, the timing of these divisions 

with respect to pollination and fertilisation seems to be variable in different 

species (Friedman, 1999). Degradation of KRP inhibitors by the SKP1-

Cullin1-F-box protein (SCF) mediated by the FBL17 F-box protein is 

required to trigger the symmetrical division of the GC in order to produce 

two SCs (Kim et al., 2008), and CDKA;1 activity is required for their 

timely division (Nowack et al., 2006; Iwakawa et al., 2006; Aw et al., 

2010). Cell cycle arrest of the VC requires the action of RBR, as well as 

suppression of CDKA;1 activity by the KRP inhibitors (KRP6 and KRP7 in 

Arabidopsis). SAMBA-mediated APC/C activity destabilisation of 

CYCA2;3 is required for progression through mitosis I (Eloy et al., 2012). 

The activation of CDKs by the combined action of the CDKD CAK kinases 

has proved to be essential for pollen mitosis I and II (Takatsuka et al., 

2015). 

The coordination of the final mitotic cell division and fate adoption 

during SC formation is intriguing. In gymnosperm male gametophytes, we 

also see a mitotic cycle that produces two SCs, even if this is unnecessary 

as only a single sperm is required for fertilisation, suggesting that cell cycle 

progression is not only necessary to generate the correct cell number but 

also a requirement for cell fate acquisition. However, cell division and 

sperm fate acquisition can be uncoupled in mutants impaired in the 

chromatin assembly factor 1 pathways in which single fertile SCs are 

formed (Chen et al., 2008), suggesting that defects in histone deposition 

might overcome the requirement of normal cell cycle progression to adopt a 

new cell fate. This in combination with the observation that in mutants of 

ARID1, which physically interacts with histone deacetylase, histone 

acetylation expands which is normally a feature of the SC, also expands 

into the VCs chromatin (Zheng et al., 2014a), suggest that regulation of 

histone deposition and activity is key in the process of SC specification. 

The coordination of fate acquisition and cell division during sperm 

formation requires the action of DUO1, a germline-specific Myb protein 

and a positive regulator of CYCB1;1 amongst other targets. DUO1 is itself 

a target of the ARID1 transcription factor. Both duo1 and arid1 mutant 

alleles display a high proportion of blocked divisions in the GCs (Durbarry 

et al., 2005; Brownfield et al., 2009). The expression of a subset of DUO1 



targets requires the action of DUO3, a homeobox-related factor 

(Brownfield et al., 2009), which acts independently of CYCB1;1, but has a 

wider role in sporophytic cell division and embryo patterning. 

In order to ensure an ovule produces a single seed, it is essential that 

only a single cell inside the female ovule primordium enters the meiotic 

programme. Several key factors in this process have been discovered. Entry 

into meiosis requires the action of SWITCH/AMEIOTIC 1 (Mercier et al., 

2001; Pawlowski et al., 2009). Furthermore, RBR plays a key dual role in 

this and suppresses WUSCHEL, a factor controlling stem cell identity 

involved in meiocytes specification, and limits the number of mitotic 

divisions to trigger meiosis in a single cell (Zhao et al., 2017). During 

evolution, the development of the female gametophyte has evolved from a 

four nucleate, four-celled gametophyte created by two mitotic divisions of 

the megaspore into seven-celled, eight nuclei-containing structures by 

nuclear migration followed by the duplication of modules (Friedman and 

Ryerson, 2009). Additional variations in the pattern of division led to a 

wide flexibility of the cell (and nuclei) number in the female gametophyte 

(Schmid et al., 2015). The plant retinoblastoma-related protein is a key 

factor to limit the divisions in the female gametophyte (Ebel et al., 2004), 

and local elevated expression of a D-type cyclin can prevent the arrest of 

the CC (Sornay et al., 2015). The current working hypothesis for cell fate 

acquisition in the female gametophyte is that this is mediated through an 

auxin gradient in combination with accurate nuclear migration and 

positioning (Sprunck and Gross-Hardt, 2011). 

Maintenance of DNA integrity is essential in the context of gamete 

production and integral to cell cycle progression. Hence, it is worth noting 

that cell cycle machinery and DNA repair are closely linked. E2F activity is 

suppressed by the conserved DNA damage protein SNI, and they act in a 

negative feedback loop, linking the G1/S checkpoint with DNA repair 

(Magyar et al., 2012). E2Fa-RBR complexes are recruited to sites of DNA 

damage and interact with AtBRCA1, a conserved DNA repair-associated 

protein. Furthermore, RBR is required to recruit RAD51 to sites of DNA 

damage, suggesting a central role for RBR in complexes involved in DNA 

repair (Horvath et al., 2017; Biedermann et al., 2017). Specific CDK 

activity is essential for DNA repair to overcome mitotic arrest, CYCB1;1 is 

rapidly induced upon DNA damage, the attraction of RBR and RAD51 to 

damaged loci is dependent on cycb1;1/CDKB kinase action and RAD51 is 

a substrate of CYCB1/CDKB1 kinases (Weimer et al., 2016; Schnittger and 

de Veylder, 2018). The WEE1 kinase arrests the cell cycle by 

phosphorylation of CDK interfering with ATP binding, and its action is 

essential to block the cell cycle in case of replication defects (De Schutter et 

al., 2007). 



3.2 Coordination of Cell Cycle for 
Fertilisation 

Fertilisation is the result of plasmogamy followed by karyogamy, the 

fusion of cells followed by the fusion of nuclei. In angiosperms, double 

fertilisation requires two mature SCs to physically interact and fuse with 

the egg cell and CC to form the zygote and endosperm precursors (see 

above). 

Angiosperms can be divided into two groups based on pollen 

morphology: one group, comprising approximately 70% of the total number 

of species, releases pollen at anthesis at the bicellular stage after pollen 

dehydration and anther locule degeneration. In the second group of 

angiosperms (±30%), pollen will continue their development following a 

second mitotic step of the GC into two SC before pollen dehydration and 

anthesis, which is called tricellular pollen (McCue et al., 2011). 

Friedman and colleagues established that there are three options for 

karyogamy in seed plants (Carmichael and Friedman, 1995). G1 

karyogamy, whereby the zygote undergoes DNA replication, or S-phase 

where karyogamy is initiated in G1 but nuclei pass through S-phase before 

completing fusion, or G2 karyogamy where nuclei fuse after S-phase and 

once completed enter M-phase. The sperm nuclei are guided towards the 

egg cell by interaction with the actin cytoskeleton, and once in close 

proximity, the egg cell chromatin moves into the sperm nucleus (Ohnishi et 

al., 2014). The synchrony of gametes required for karyogamy is a challenge 

from the point of view of cell cycle regulation. Male SCs have to reach the 

correct cell cycle phase, and the egg cell has to remain quiescent until 

karyogamy. It implies that core cell cycle regulators are involved that 

blocks gamete cells either in G1 or in G2, especially in the waiting or 

quiescent egg cell, and that in both the male and female gametophyte key 

regulatory pathways ensure this coordination. Progress in gamete isolation 

(Englhart et al., 2017; Schoft et al., 2015; Santos et al., 2017) and 

developments in transcriptomics and proteomics (Zhang et al., 2017b) are 

anticipated to put us in a position to identify the key core cell cycle 

regulators in this process. Although our knowledge is still fragmented due 

to our limits of detection, the emerging data on sperm (Table 1) and egg 

cells are in line with our knowledge about the cell cycle regulators involved 

in the key cell cycle transitions. Rice gametes fuse in G1, and transcripts for 

key factors such as KRPs, CDKB1;1, WEE1, and KRP2 were detected by 

RT PCR (Sukawa and Okamoto, 2018). An array-based analysis revealed 

significant levels of transcripts encoding for CDKB1;1, CYCB1-2, and 

KRP1 whereas proteomics detected only CDKA;1. This suggests that rice 



SCs, while still in G1 express a number of cell cycle genes, which have 

been implicated in DNA repair and G2/M transition. In the egg cell, on the 

other hand, mainly transcripts encoding for KRP1 and CDKA;1 were 

detected (Sukawa and Okamoto, 2018). One can speculate that DNA repair 

mechanism are activated in SCs given that pollen are more exposed to 

environmental factors compared to the female gametophyte deep inside the 

ovary, alternatively, the paternal genome could be the main source of G2/M 

factor encoding transcripts. 

Table 1 Transcriptomics and Proteomics in Male Gametes 
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In Arabidopsis pollen CYCLIND, CDKA and CDKB transcripts and 

the proteins they encode were detected. Whilst some KRP transcripts were 

detected their levels were relatively low, suggesting that if they are 

involved in the S-phase arrest of the SCs, the SCs are preloaded with KRP 

proteins after the last division. The localisation of CYCD7;1 in the SCs is 

intriguing given that CYCD7;1-GFP accumulates in the precursor of 

stomatal guard cells, an unrelated cell type (Weimer et al., 2018). 

3.3 Fertilisation and Activation of Cell 
Division in the Zygote 



Fertilisation of both the egg and the CC forms the zygote (2n) and 

endosperm precursor, which is the starting point for development of the 

new sporophyte and the endosperm inside the developing seed. The origin 

of the double fertilisation mechanism and the gain of fitness associated with 

this development is an intriguing problem in developmental biology. The 

requirement for the contribution of paternal gene expression to sustain 

proliferation of the endosperm is ensured by genomic imprinting. The need 

for the paternal contribution can be bypassed in mutants in the FIS-class 

genes (Nowack et al., 2007). 

Sperm and CC plasmogamy is sufficient to trigger the first divisions 

of the endosperm precursor, evidenced by the pollination with cdka;1 

mutant sperm which prevents karyogamy of the homodiploid CC and the 

sperm nucleus but does trigger the first rounds of mitosis (Aw et al., 2010). 

This suggests that the contribution of the second sperm for the fertilisation 

of the CC is more involved in the timing of the division, rather than a strict 

requirement for the division mechanism. In combination with the 

autonomous endosperm development in some mutant backgrounds, this 

observation supports the hypothesis of a gametophytic origin of the 

endosperm (Strassburger, 1900; Nowack et al., 2007), and that the 

fertilisation by the second sperm, in combination with imprinting provides 

a mechanism to synchronise the proliferation of the endosperm with the 

formation of the zygote. 

Upon the division of the egg cell, the two daughters not only differ 

in size but also in developmental fate, hence the first division of the zygote 

is asymmetric and differential, generating a smaller terminal cell and a 

larger basal cell. This division establishes the apical–basal axis of the future 

embryo. Proliferation of the apical cell will develop all the embryonic 

structures apart from the quiescent centre and root cap. Proliferation of the 

basal cell will form the quiescent centre and root cap and the suspensor (ten 

Hove et al., 2015). De novo transcription of cell-type specific homeobox 

genes in both cell types guarantees the polarised development of the 

embryo proper and suspensor cells (Ueda et al., 2011; Armenta-Medina et 

al., 2017). This first asymmetric division of the zygote requires extensive 

reorganisation of the cytoskeleton (Kimata et al., 2016). Upon fertilisation, 

microtubules form a transverse ring to drive apical cell growth. Actin 

filaments reorganise to position the nucleus in the apical end of the zygote 

before the asymmetric division takes place. Furthermore, the anaphase-

promoting complex ubiquitin ligase has to be active to target CYCB1;1 for 

destruction for proper formation of the new cell wall (Guo et al., 2016). 

From a cell cycle perspective, this poses several questions. How 

does successful karyogamy triggers cell cycle progression, and how is an 

asymmetric division established? 



One of the key players during the whole process of sexual 

reproduction in plants, as in animals and humans, is calcium (Fan et al., 

2008; Edel et al., 2017). This universal signalling component is important 

in many – if not all – intracellular plant cell signalling events. Calcium as 

second messenger functions either at the ion level or by highly cell type-

specific changes in free cytoplasmic concentrations or changes in stored 

calcium in various intracellular compartments. These so-called ‘calcium 

signatures’ can be triggered by intracellular and extracellular stimuli (Edel 
et al., 2017). Pollen development in the anther requires Ca influx from the 

surrounding sporophytic tissue, and upon landing on the stigma, pollen tube 

growth through the pistil tissues towards and into the ovule is highly 

dependent on calcium. Upon entering the micropyle, the entrance site of the 

ovule near the egg and synergid cells, the growing pollen tube first 

encounters one of the two synergid cells (SY). The physical interaction 

between growing pollen tube tip and this SY cell initiates a calcium 

response of continuous oscillations in the SY, leading to programmed cell 

death (PCD) and collapse of only this particular SY cell and the release of 

stored calcium into the cavity where the pollen tube resides (Denninger et 

al., 2014). This localised increase of free calcium may coincide with 

slowing down pollen tube growth (Holdaway-Clarke et al., 2003; Hill et al., 

2012). 

A distinctive short calcium spike response is observed in the egg cell 

upon SC release whereas upon the arrival of the sperm at the egg cell, 

which shows a distinctive deformation, a second transient rise in 

intracellular calcium is detected in the egg cell upon fertilisation, but only 

after successful karyogamy (Denninger et al., 2014). This second, longer 

lasting rise in calcium trigger de novo cell wall synthesis of the fertilised 

egg and prevents the unlikely event of polyspermy. Once fertilisation has 

occurred, the production of the LURE protein, which is the pollen tube 

attractant, is turned off (Palanivelu and Preuss, 2006; Maruyama et al., 

2013). 

The second calcium signature, a transient broader spike, detected 

upon successful karyogamy (Denninger et al., 2014; Palanivelu and Preuss, 

2006), besides preventing polyspermy, may also be the intrinsic 

autonomous and decisive signal in the fertilised egg cell to re-start the cell 

cycle, and thus early embryogenesis. Importantly, immediately after 

karyogamy, the first division of the single-celled zygote is asymmetric, 

producing a small apical cell that will develop further into the embryo and 

new sporophyte ultimately, whereas a much larger basal cell is responsible 

for the formation of the suspensor (Yadegari and Drews, 2004). It is 

tempting to propose a role for various Ca2+/calmodulin-dependent protein 

kinases in this process. Also, of particular interest in this process is the 



ZAR1 receptor kinase. Zygotic arrest 1 was identified as a mutant in which 

the asymmetric division and the daughter cell fate acquisition was 

perturbed ZAR1 encodes a receptor-like kinase/Pelle kinase (Gish and 

Clark, 2011) that interacts with calmodulin and the heterotrimeric G protein 

Gβ. In zar1 the basal cell is short and the apical cell has basal cell fate (Yu 

et al., 2016). 

De novo transcription of cell-type specific homeobox genes and 

miRNA biosynthesis in both cell types guarantees the polarised 

development of the embryo proper and suspensor cells (Ueda et al., 2011; 

Armenta-Medina et al., 2017). 

4 Concluding Remarks 

The complexity of the interactions required for the coordination of 

fertilisation in seed plants is emerging and advanced live imaging is 

revealing new features. In this process, the control of the cell cycle is vital 

to generate the gametes, instigate cell cycle synchrony for gamete fusion 

and trigger cell division upon successful germination. The identification of 

cell cycle factors involved has started, and links with coordinating 

pathways discovered. This research has the potential to provide us with new 

breeding strategies to enable fertilisation and thus seed setting under 

challenging conditions. 
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