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ABSTRACT  
Four six-membered cyclic sulfides, namely tetrahydrothiopyran, 3-
methyltetrahydrothiopyran, 4-methyltetrahydrothiopyran and 4,4-
dimethyltetrahyrdrothiopyran have been used as moderators in 
chlorination reactions of various phenols with sulfuryl chloride in  
the presence of aluminum or ferric chloride. On chlorination of phe-
nol, ortho-cresol and meta-cresol the para/ortho chlorination ratios  
and yields of the para-chloro isomers are higher than when no cyclic 

sulfide is used for all of the cyclic sulfides, but chlorination of meta-

xylenol is less consistent, with some cyclic sulfides producing higher 

p/o ratios and others producing lower ratios than reactions having 

no sulfide present. 

 
 
KEYWORDS  
Chlorination; cyclic sulfides; 

para/ortho ratio; phenols; 

regioselectivity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
 
Several chlorinated phenols are employed as or used in the production of herbicides, pes-

ticides, disinfectants, dyes, and pharmaceuticals [1,2]. For example, 2,4-dichlorophenol is an 

important intermediate in the production of commercial herbicides, while 4-chloro-3,5-

dimethylphenol is used as a household antiseptic. Traditional phenol chlorination 
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processes are not selective and produce significant waste [3]. Several chlorinating sys-tems 
have been reported for regioselective chlorination of phenols [4–16], including the use of 

Merrifield resin/sulfuryl chloride (SO2Cl2) [5], aluminum-pillared mont-morillonite clay or 

L type zeolites/SO2Cl2 [6], manganese(II) sulfate/hydrogen perox-ide/hydrogen chloride 

[7], ammonium chloride/1,3-dichloro-5,5-dimethylhydantoin [8], 

[bis(trifluoroacetoxy)iodo]benzene/aluminum chloride (AlCl3) [9], and Nagasawa’s bis-

thiourea catalyst/N-chlorosuccinimide [10]. However, such chlorinating systems lead to 
either limited para-selectivity, or to high ortho-selectivity, or cannot be applied on a large 
scale. Therefore, development of para-selective chlorination processes is still needed.  

Several sulfides have been used as selective catalysts for the production of para-

chlorophenols [17–21]. For example, chlorination of phenol using SO2Cl2/diphenyl 

sulfide/AlCl3 led to a para/ortho chlorophenol ratio of 10.5 [17]. Similarly, chlorination 
of o-cresol and m-cresol with such a system led to para/ortho ratios of 19.0 and 7.5,  
respectively [17]. The para-selectivity was attributed to the bulk of the active intermediate 

complex Ph2SCl
+

AlCl4
–
. Dialkyl sulfides (R–S–R’) have also been used as selective mod-

erators for production of para-chlorophenols. In this case, interesting variations were seen 

depending on the nature of the alkyl groups. In the absence of any Lewis acid, dibutyl and 

dipentyl sulfides showed greater para-selectivity for chlorination of phenol using sulfuryl 

chloride than other symmetrical dialkyl sulfides with either shorter or longer alkyl groups, 

and the para-selectivity was further enhanced in the presence of Lewis acids, especially 

AlCl3 [18]. Also, with m-cresol as substrate, it was shown that the para-selectivity dropped 

as the level of steric hindrance of the alkyl group of alkyl n-butyl sulfides was increased 

from n-butyl to tert-butyl [18]. Clearly, these results are not consistent with the simple 

notion that the selectivity depends on the bulk of the complex RR’SCl+AlCl4
–
. 

High para/ortho ratios have also been achieved in chlorination of phenols in the pres-

ence of dithiaalkanes [R–S–(CH2)n–S–R]. In chlorination of m-cresol, compounds with  
longer spacer groups and with R groups around butyl in length provided the highest ratios 

(para/ortho ratio of 20.7 for n = 12 and R group n-butyl in the presence of AlCl3) [19]. A  
more extensive study revealed that 1,ω-bis(methylthio)alkanes with longer spacer groups (ω 

= 6 or 9) showed greatest para-selectivity in chlorination of m-cresol (para/ortho ratio = 

18.0) and m-xylenol (para/ortho ratio = 19.6), while 1,ω-bis(methylthio)alkanes  
with shorter spacer groups (ω = 2 or 3) showed greater para-selectivity in chlorination of 

phenol (para/ortho ratio = 11.4) and o-cresol (para/ortho ratio = 20.0) [20]. DFT calcu- 
 
lations suggested that dithiaalkanes with shorter and longer spacer groups adopt different 

intermediate structures, with short spacer intermediates involving a S–Cl
+–S arrangement of 

heteroatoms, while longer spacer intermediates involve a S–S
+–Cl arrangement. How-  

ever, use of disulfides as the moderators did not always follow the same pattern. For exam-

ple, 1,2-dithiocane (hexamethylene disulfide) showed a higher para-selectivity (para/ortho  
ratio = 20.6) than 1,2-dithiolane (trimethylene disulfide) in chlorination of o-cresol, while 

1,2-dithiolane was the more selective in para-chlorination of m-xylenol (para/ortho  
ratio = 19.1) [21]. On the other hand, para-selectivity in chlorination of both o-cresol 

and m-xylenol was higher with poly(trimethylene disulfide) than with 

poly(hexamethylene disulfide) [21]. Therefore, the factors influencing the levels of 

selectivity provided by different sulfur compounds as moderators are still unclear.  
As part of our continuing contribution to the field of regioselective aromatic substi-

tution reactions [22–39], in the current work we report the chlorination of a number 



 
 

 

of commercially important phenols using SO2Cl2 in presence of various tetrahy-

drothiopyran derivatives and a Lewis acid. The four tetrahydrothiopyrans chosen for the 

study were the parent tetrahydrothiopyran (1), 3-methyltetrahydrothiopyran (2), 4-

methyltetrahydrothiopyran (3) and 4,4-dimethyltetrahydrothiopyran (4). Since earlier 

work had indicated that α-branching in the alkyl group of alkyl n-butyl sulfides caused 

significant diminution of the para-selectivity when used as the moderator in phenol 

chlo-rination reactions [18], 2-methyltetrahydrothiopyran was not included in the study. 

Com-pounds 2 and 3 offer alternative configurational/conformational arrangements 

between the active chlorine and the distal methyl group in the presumed 

chlorosulfonium inter-mediates, whereas compounds 1 and 4, which will have different 

steric interactions at a distance from the active chlorine in the intermediate, would not 

show configurational differences. It was hoped, therefore, that some meaningful insight 

might be gained into the subtle effects that influence the selectivity induced by sulfur-

containing activators in phenol chlorination reactions. 
 

 

2. Results and discussion 
 
The four tetrahydrothiopyrans 1–4 were synthesized by reactions of the appropriately 

sub-stituted 1,5-dibromopentanes with sodium sulfide nonahydrate at 170°C for 7 h 

(Scheme 1). The crude products obtained were purified by Kugelrohr distillation to give 

the pure cyclic sulfides 1−4 in 58–80% yield (Table 1) as colorless oils.  
First, we attempted chlorination of phenol (5, R = H; 50 mmol) using freshly dis-tilled 

SO2Cl2 (55 mmol) in the presence of 1−4 (0.28 mmol) and AlCl 3 (50 mg) at room 

temperature (RT; Scheme 2). Also, the reaction was attempted in the absence of cyclic 

sulfides both with and without AlCl3 to provide a baseline. The results are presented in 

Table 2. Clearly, the presence of any one of the cyclic sulfides 1−4 led to production of  
4-chlorophenol (6, R = H) in a better yield (83.2–89.0%) and with higher para-selectivity 

(para/ortho ratio = 12.7–18.2) than when no catalyst was used (yield 63.7–70.1% and 

 
 
 
 
 
 
 
 
 

 
Scheme 1. Synthesis of tetrahydrothiopyrans 1−4. 
 

 

Table 1. Yields of tetrahydrothiopyrans 1−4 
according to Scheme 1.   

Sulfide R1 R2 R3 
Yield (%) 

1 H H H 80 
2 Me H H 75 
3 H Me H 79 
4 H Me Me 58 
     



.  
 
 
 
 
 
 
 
 
 
 
 

 

Scheme 2. Chlorination of phenols in the presence of cyclic sulfides 1−4 and AlCl3 or FeCl3. 

 

Table 2. Chlorination of phenol (5, R = H) according to Scheme 2.
a 

 
   Yield (%)

b    

Sulfide 5 (R = H) 6 (R = H) 7 (R = H) Other p/o ratio Mass balance (%)
c 

— 10.7(8.2) 70.1 (63.7) 17.1 (21.1) 1.0 (0.7)
d 

4.1 (3.0) 98.8 (93.8) 
1 5.8 89.0 5.0 — 17.8 99.8 
2 10.8 83.2 5.6 — 14.7 99.6 
3 2.3 88.1 6.9 — 12.7 97.3 
4 6.7 87.8 4.8 — 18.2 99.3  
a SO2Cl2 (4.44 ml, 55.0 mmol) was slowly added to a mixture of 5 (R = H; 4.71 g, 50.0 mmol), AlCl3 (50 mg) and 1−4 (0.28 mmol) 

at RT over 2 h.  
b Yield (%) based on quantitative GC and the yields in parentheses are for the reaction conducted without 

AlCl3. cTotal yield (%) for all identified products, as a check for losses due to unidentified materials. 

d
2,4-Dichlorophenol. 

 

para/ortho ratio = 3.0–4.1). The unsubstituted tetrahydrothiopyran (1) led to the high-

est yield (89.0%) of 4-chlorophenol, while 4,4-dimethyltetrahyrdrothiopyran 4 provided 

the highest para/ortho ratio (18.2), but differences between the various moderators were 

not great and it is difficult to draw any general conclusions from such small differences, 

especially since significantly different quantities (2.3–10.8%) of unreacted phenol (5; R 

= H) were present in the different reaction mixtures.  
Next, we investigated the chlorination of o-cresol (5, R = 2-Me; 50 mmol) under the 

same conditions that were used for phenol, in the absence and presence of cyclic 

sulfides (Scheme 2). The results obtained are recorded in Table 3. The yield of 4-chloro-

2-methylphenol (6, R = 2-Me) was only 75.1% when the reaction was carried out in the 

presence of AlCl3 without any of the cyclic sulfides 1−4. In the presence of catalysts 

 

Table 3. Chlorination of o-cresol (5, R = 2-Me) according to Scheme 2.
a 

 
  Yield (%)

b    

Sulfide 5 (R = 2-Me) 6 (R = 2-Me) 7 (R = 2-Me) p/o ratio Mass  balance (%)
c 

— 9.6 (2.0) 75.1 (78.2) 11.9 (15.4) 7.8 (5.1) 99.0 (99.8) 
1 — 96.4 2.1 45.7 98.5 
2 4.6 93.6 2.3 40.0 100.5 
3 — 96.6 2.4 40.4 99.0 
4 4.0 90.0 2.7 33.2 96.7  
a SO2Cl2 (4.44 ml, 55.0 mmol) was slowly added to a mixture of 5 (R = 2-Me; 5.41 g, 50.0 mmol), AlCl3 (50 mg) and 1−4

 
  

(0.28 mmol) at RT over 2 h. 
b,c

See footnotes b and c to Table 1. 



 

 

1−4, the yield of 6 (R = 2-Me) was very high (90.0–96.6%) and the para/ortho ratio 

was improved from 7.8, when no sulfide was used, to 33.2–45.7. Such results highlight 

the importance of the sulfur atom within the cyclic sulfides for the para-selectivity of 

the chlo-rination reaction. Tetrahydrothiopyran (1) was the most para-selective catalyst 

and led to the highest para/ortho ratio (45.7) and yield of 6 (96.4%). Again, however, 

the differences between the different cyclic sulfides were not great.  

Chlorination of m-cresol (5, R = 3-Me; 50 mmol) with SO2Cl2 (55 mmol) and AlCl3 

gave the results recorded in Table 4. The yields of 4-chloro-3-methylphenol (6, R = 3-Me) 

obtained when cyclic sulfides were present were broadly comparable to that obtained when 

no sulfide was used (87.2%), but the para/ortho ratios were significantly increased from 9.2 

in the absence of sulfide to 15.6–19.2 in the presence of 1–4 because the reaction mixtures 

contained significantly lower quantities of the ortho-isomer 7 (R = 3-Me) and significantly 

larger quantities of unreacted m-cresol (4.5–15.4%). 4,4-Dimethyltetrahydrothiopyran (4) 

provided the highest para/ortho ratio (19.2) and yield of 6 (R = 3-Me; 90.4%), although the 

differences with the different sulfides were again not large.  
Finally, chlorination of m-xylenol (5, R = 2,3-di-Me; 50 mmol) was attempted under 

conditions similar to those used for the chlorination of other phenols. However, since m-

xylenol is solid at RT and unlike the other phenols cannot be melted and then retain its 

liquid form in the presence of the other reaction components, a solvent (per-

chloroethylene) had to be used. Also, AlCl3 was replaced by ferric chloride (FeCl3) as 

the activator, since in order to be consistent with the requirements for use of the prod-uct 

6 (R = 2,3-di-Me) as a commercial household antiseptic the product would have to 

contain a very low proportion of Al. The results (Table 5) are in contrast with those 

obtained for other phenols. Cyclic sulfides 1 and 2 provided higher proportions of 4-

chloro-3,5-dimethylphenol (para/ortho ratio = 9.0–13.5 compared with a para/ortho 

ratio of 6.9–7.0 when no sulfide was used), but sulfides 3 and 4 provided very low 

propor-tions of 4-chloro-3,5-dimethylphenol (para/ortho ratio = 1.9–3.7). Such results 

clearly indicate that steric hindrance within the moderator is not the only driving force 

for the regioselectivity of these reactions. Clearly, the sulfur atom within the cyclic sul-

fides has a significant effect on the regioselectivity of the chlorination reaction of phe-

nols using SO2Cl2, but the wider structure of the sulfur-containing molecule is also 

important. 
 

 

Table 4. Chlorination of m-cresol (5, R = 3-Me) according to Scheme 2.
a 

 
  Yield (%)

b     

Sulfide 5  (R = 3-Me) 6 (R = 3-Me)
c 

7 (R = 3-Me) p/o ratio Mass balance (%)
d 

— 2.5 (3.2) 87.2 (86.0) 9.5 (10.0)  9.2 (8.6) 99.2 (99.2) 
1 4.3 89.6 5.7  15.6 99.6 
2 7.9 82.9 5.2  15.9 96.0 
3 15.4 78.4 4.5  17.3 98.3 
4 4.7 90.4 4.7  19.2 99.8  
a SO2Cl2 (4.44 ml, 55.0 mmol) was slowly added to a mixture of 5 (R = 3-Me; 5.41 g, 50.0 mmol), AlCl3 (0.25 g) and 1−4 (0.40 

mmol) at RT over 2 h.  
bSee footnote b to Table 1.  
c Sum total of mixture of 2-chloro-3-methylphenol and 6-chloro-3-methylphenol (the two ortho-chlorinated products), which were 

not fully resolved by the GC system used.
 

 
d See footnote c to Table 1. 



 
. 

 

Table 5. Chlorination of m-xylenol (5, R = 3,5-di-Me) according to Scheme 2.
a 

 
  Yield (%)

b     

Sulfide 5  (R = 3,5-di-Me) 6 (R = 3,5-di-Me) 7  (R = 3,5-di-Me) Other
d 

p/o  ratio Mass balance (%)
c 

— 15.4 (13.4) 71.1 (68.6) 10.3 (9.8) — (—) 6.9 (7.0) 96.8 (91.8) 
1 2.8 89.1 6.6 0.7 13.5 99.2 
2 7.1 78.1 8.7 2.9 9.0 96.8 
3 15.4 53.8 27.7 — 1.9 96.9 
4 5.8 73.6 19.7 — 3.7 99.1  
a SO2Cl2 (4.44 ml, 55.0 mmol) was slowly added to a mixture of 6 (R = 3,5-di-Me; 6.11 g, 50.0 mmol), FeCl3 (25 mg) and 1−4 

(0.05 mmol) in tetrachloroethylene (TCE; 25 ml) at RT over 2 h.  
bYield (%) based on quantitative GC and the yields in parentheses are for the reaction conducted without 

FeCl3. cSee footnote c to Table 1. 
d
2,4-Dichloro-3,5-dimethylphenol. 

 
 

3. Conclusion 
 
Four cyclic sulfides have been synthesized and used as potential moderators for chlori-  
nation of phenols with freshly distilled sulfuryl chloride and a Lewis acid promoter. For 

three of the phenols tested (phenol, ortho-cresol and meta-cresol) the para-isomers were  
produced more regioselectively and usually in (often substantially) higher yields than in 

corresponding reactions carried out in the absence of cyclic sulfide, regardless of the cyclic 

sulfide used. However, the situation with meta-xylenol was different, with two of the sul-

fides (1 and 2) giving an increased proportion of para-chlorinated product and two (3 and 4) 

giving a higher proportion of ortho-chlorinated product than in the absence of any sulfide. 

Since the methyl group(s) in these latter sulfides are further away from the active sulfur atom 

than the methyl group in 2 it does not appear that the only driving force for the selectivity 

changes is steric hindrance, providing further support for the idea that the effects of sulfur 

compounds on such chlorination reactions are more subtle. 

 

4. Experimental Section 
 
4.1. General 
 
Chemicals purchased from Aldrich and Lancaster Chemicals were mostly used as pur-

chased. Sulfuryl chloride was distilled under an inert atmosphere at atmospheric pressure. 

Gas chromatography (GC) was carried out using a Shimadzu GC-2014 instrument with a 

capillary ZB Carbowax column (30 m, 0.32 mm ID) and temperature programed (40°C for 3 

min, then ramped at 10°C/min to 220°C, then held for 8 min) with an injection tempera-ture 

of 300°C and a detection temperature 250°C. To allow quantification, tetradecane was added 

as a standard. Commercial samples of expected phenol chlorination products were used to 

determine retention times and response factors for each product. 
1
H (400 MHz) and 

13
C 

NMR (100 MHz) spectra were recorded on a Bruker AV400 spectrometer. Chemi-cal shifts 

δ are reported in parts per million (ppm) relative to TMS and coupling constants J in Hz 

have been rounded to the nearest integer. DEPT spectra were used to determine 
13

C 

multiplicities. Assignments of NMR signals are based on expected chemical shifts, integra-

tion values and coupling patterns and have not been rigorously confirmed. Low-resolution 

mass spectra were recorded on a Quattro II spectrometer at 70 eV. High-resolution mass 

spectra data were obtained on a MAT900 instrument. 



 

 

4.2. Typical procedure for the preparation of cyclic sulfides 1−4 
 
A mixture of the appropriately substituted 1,5-dibromopentane and sodium sulfide non-

ahydrate (for quantities, see individual compound sections) was heated at 170°C for 7 h in an 

oil bath. After cooling, water (20 ml) and dichloromethane (DCM, 20 ml) were added. The 

phases were separated and the aqueous layer was re-extracted with DCM (3 × 20 ml). The 

combined organic phases were washed with H2O (30 ml) and dried over anhydrous MgSO4. 

Removal of the solvent under reduced pressure gave the crude product, which was purified 

by Kugelrohr distillation to give the pure cyclic sulfides 1−4. 
 
4.2.1. Tetrahydrothiopyran (1)  
Yield 1.60 g (80%) from 1,5-dibromopentane (4.00 g, 17.4 mmol) and sodium sulfide 
non-ahydrate (6.27 g, 26.1 mmol) as a colorless oil (Bp 50−55°C at 15 mmHg; lit. 

140−141°C at RT [40]). 
1
H-NMR (CDCl3) δ (ppm): 1.60 (m, 2 H), 1.85 (m, 4 H), 2.65 

(m, 4 H); 
13

C-NMR (CDCl3) δ (ppm): 26.8, 28.1, 29.4; MS- EI
+

 m/z (%) 102 ([M]
+

, 

100), 87 (95), 67 (60), 46 (75), 39 (80). 

 

4.2.2. 3-Methyltetrahydrothiopyran (2)  
Yield 1.44 g (75%) from 1,5-dibromo-2-methylpentane (4.01 g, 16.4 mmol) and sodium 
sulfide nonahydrate (7.88 g, 32.8 mmol) as a colorless oil (Bp 70°C at 20 mmHg; lit. 

158°C at RT [41]). 
1
H-NMR (CDCl3) δ (ppm): 0.89 (d, J = 7.5 Hz, 3 H), 1.61−2.00 (m, 

5 H), 2.22−2.53 (m, 4 H); 
13

C-NMR (CDCl3) δ (ppm): 23.1, 28.1, 28.8, 33.5, 35.2, 

36.1; MS EI
+

 m/z (%) 116 ([M
+

] 90), 101 (100). 
 
4.2.3. 4-Methyltetrahydrothiopyran (3)  
Yield 0.38 g (79%) from 1,5-dibromo-3-methylpentane (1.00 g, 4.1 mmol) and sodium 
sul-fide nonahydrate (1.48 g, 6.1 mmol) as a colorless oil (Bp 50−55°C at 20 mmHg; lit. 

54°C at 22 mmHg [41]). 
1
H-NMR (CDCl3) δ (ppm): 0.85 (d, J = 6 Hz, 3 H), 1.10 

−1.40 (m, 4 H), 1.90 (m, 1 H), 2.45−2.55 (m, 4 H). 
13

C-NMR (CDCl3) δ 23.4, 29.2, 

32.6, 36.3; MS EI m/z (%) 116 ([M]
+

, 100), 101 (95), 67 (90), 41 (85). 
 
4.2.4. 4,4-Dimethyltetrahyrdrothiopyran (4)  
Yield 0.26 g (58%) from 1,5-dibromo-3,3-dimethylpentane (1.00 g, 3.87 mmol) and 
sodium sulfide nonahydrate (1.40 g, 5.81 mmol) as a colorless oil (Bp 60−65°C at 15 

mmHg; lit. 57−58°C at 15 mmHg [42]). 
1
H-NMR (CDCl3) δ (ppm): 0.75 (s, 6 H), 

1.40−1.60 (m, 4 H) 2.50−2.60 (m, 4 H); 
13

C-NMR (CDCl3) δ (ppm): 24.8, 26.9, 28.8, 

40.2; MS EI
+

 m/z (%) 130 ([M]
+

, 90), 115 (95), 69 (70), 41 (80). 
 

4.3. Chlorination of phenol, o-cresol and m-cresol 
 

Phenol (melted), o-cresol (melted) or m-cresol (50.0 mmol), AlCl3 (25−50 mg) and the 

appropriate cyclic sulfide 1−4 (0.28−0.40 mmol; see Tables 1–4 for details) were placed in a 

dried round bottomed flask (50 ml). The mixture was stirred as sulfuryl chloride (4.44 ml, 

55.0 mmol) was added slowly over 2 h via a pressure equalizing dropping funnel and for 2 h 

further. The reaction was quenched with water (20 ml) and the organic components were 

then extracted with diethyl ether (3 × 30 ml). The combined ether layers were dried over 



 
 

MgSO4, which was removed by filtration. The solvent was removed under reduced 

pressure to give the crude product, which was weighed. Quantitative GC analysis was 

conducted on a weighed aliquot of the product with a known quantity of tetradecane. 
 
 

4.4. Chlorination of m-xylenol 
 

m-Xylenol (6.11 g, 50.0 mmol), FeCl3 (25 mg), tetrachloroethylene (25 ml) and the 

appro-priate cyclic sulfide 1−4 (0.05 mmol) were placed in a dried round bottom flask 

(50 ml). The mixture was stirred as freshly distilled sulfuryl chloride (4.44 ml, 55.0 

mmol) was added slowly over 2 h via a pressure equalizing dropping funnel and then for 

another 2 h. The work-up and analysis of the products by GC were as previously 

described for other phenols. 
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