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Six potential diketide substrates for the squalestatin tetraketide 

synthase (SQTKS) dehydratase (DH) domain were synthesised as N-

acetyl cysteamine thiolesters (SNAC) and tested in kinetic assays as 

substrates with an isolated DH domain. 3R-3-hydroxybutyryl SNAC 

3R-16 was turned over by the enzyme, but its enantiomer was not. Of 

the four 2-methyl substrates only 2R,3R-2-methyl-3-hydroxybutyryl 

SNAC 2R,3R-8 was a substrate. Combined with stereochemical 

information from the isolated SQTKS enoyl reductase (ER) domain, 

our results provide a near complete stereochemical description of the 

first cycle of beta-modification reactions of a fungal highly reducing 

polyketide synthase (HR-PKS). The results emphasise the close 

relationship between fungal HR-PKS and vertebrate fatty acid 

synthases (vFAS). 

 
Iterative fungal polyketide synthases (PKS) are responsible for the 

biosynthesis of complex and often biologically active natural 

products such as squalestatin S1 1 a potent inhibitor of squalene 

synthase,
1,2

 and lovastatin 2,
3
 an inhibitor of human HMG-CoA 

reductase. These PKS are Type I systems in which several individual 

catalytic domains are covalently linked to form a mega-complex of 

ca 4200 KDa.
4,5

 Understanding the selectivity and programming of 

these systems is important because repro-gramming them could lead 

to the systematic creation of new bioactive materials. In order to 

achieve this an understanding of the individual catalytic domains 

and their intrinsic selectivities is required. 

 

The C10 side-chain of 1, known as squalestatin tetraketide 3, is 

synthesised by a highly reducing (HR) iterative PKS called 

squalestatin tetraketide synthase (SQTKS).
6,7

 It consists of an acyl 

carrier protein (ACP) which holds the growing polyketide chain, a b-

ketoacyl ACP synthase (KS) which catalyses a Claisen  

 
 

 

condensation between malonyl ACP and acyl-KS and an acyl 

transferase (AT) which loads acetyl starter and malonyl extender 

units from CoA onto the PKS. In addition, SQTKS contains: b-

ketoacyl ACP ketoreductase (KR); b-hydroxy acyl ACP dehydratase 

(DH); and enoyl ACP reductase (ER) domains which process the b-

carbonyl formed by the KS. Finally, a C-methyl transferase (C-MeT) 

domain is responsible for adding a methyl group derived from S-

adenosyl methionine. SQTKS thus contains a full set of active HR-

PKS domains.  
SQTKS shows sequence homology to vertebrate FAS (vFAS, 

Fig. 1).
8
 This similarity even extends to the position of a C-MeT 

domain which is inactive in vFAS, but which acts during the first 

and second rounds of chain processing by SQTKS.
9
 vFAS produces 

fully saturated linear 16–18 carbon chains, whereas SQTKS 

produces the dimethylated and unsaturated 8-carbon chain 3. SQTKS 

thus displays a complex programme in which the activities of the 

individual catalytic domains can be varied (Scheme 1). Our approach 

to study the programming mechanisms of fungal HR-PKS is to 

examine intrinsic selectivities of isolated catalytic domains. For 

example, we recently reported on the  
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Scheme 1 The chemical reactions catalysed by SQTKS.   

 

 
 

 

chemo- and stereo-selectivity of the isolated SQTKS ER domain.
10

 

Here we describe work to extend this study to the isolated DH 

domain of SQTKS.  
SQTKS is a megacomplex of 284.4 KDa encoded by the phpks1 

gene. We have been unable to obtain it as a single soluble protein. 

However, by systematic variation of possible start and stop positions 

for PCR from an intron-free phpks1 template, we were able to create 

an open reading frame which reliably produces soluble SQTKS DH 

protein when expressed in E. coli BL21 with an N-terminal his6 tag. 

The DH protein of the expected 38.0 kDa was purified to homo-

geneity by nickel affinity and gel-filtration chromatography. 

Calibrated gel filtration indicated that the DH exists primarily as a 

monomer (see ESI†). The isolated DH was unstable in unmodified 

buff ers, precipitating rapidly even at low temperatures. However, 

rapid removal of imidazole used for the nickel ion chromatography 

and use of a buff er containing 10% glycerol, 50 mM Tris pH 8.0,  
150 mM NaCl and 100 mM L-arginine and L-glutamic acid 

dramatically improved protein solubility and stability.  
N-Acetyl cysteamine (NAC) is a truncated form of the phos-

phopantetheine (PP) cofactor which attaches acyl PKS inter-  
mediates to the ACP domain, and SNAC thiolesters are often used as 

PP surrogates for in vitro studies of PKS enzymes,
11,12

 including 

DH domains.
13,14

 We thus selected SNACs as targets for substrate 

synthesis (Scheme 2).  
The anti diketide SNAC 2R,3R-8 was made by a route involving 

Fra´ter-Seebach methylation
15

 of commercially available 

enantiopure 3-hydroxy butyrate 4 (Scheme 2A) to give 5. This was 

O-protected with TBDMS to give 6, which was in-turn hydrolysed 

to its corresponding acid and coupled to HSNAC to give the 

protected diketide 7. Acidic deprotection then yielded 2R,3R-8.  
The syn diketide SNAC 2R,3S-13 was made using Evans asymmetric 

aldol chemistry
16

 to give the known syn aldol product 2R,3S,4
0

R-10 

(Scheme 2B). This was again O-protected with TBDMS to give 11, 

which was hydrolysed and processed to the protected SNAC 2R,3S-12. 

Acidic deprotection then yielded 2R,3S-13.  
The non-methylated diketide 3R-16 was made from 4 by a 

similar protection, thiolesterification and deprotection route (Scheme 

2C). The enantiomers of all the diketides were made from 

enantiomeric starting materials using identical methods.  
DH activity was assayed using LCMS (see ESI†) to measure 

substrate consumption and product formation. Assays were set 

 
 
 
 
 
 
 
 

 
 

 

 

Scheme 2 Synthesis of potential SNAC substrates for the SQTKS DH 

domain: (a) LDA (2 eq.), 78 1C, then MeI; (b) TBDMSOTf, pyridine, 0 1C;  
(c) aq. LiOH, 60 1C, then HSNAC, EDCI, DMAP, 0 1C; (d) THF/H2O/HOAc, 

RT, 5 days; (e) Bu2BOTf, CH2Cl2, Et3N, 78 1C, then CH3CHO; (f) 

TBDMSCl, CH2Cl2, DMAP, imidazole, RT; (g) LiOOH, H2O, RT, then 

HSNAC, EDCI, DMAP, 0 1C. TBDMS = (Si(Me2)CMe3).  
 

 

up to include DH protein, substrate and buff er at 30 1C in  
100 mL assay volume, and 20 mL aliquots were taken at time points 

and quenched in CH3CN (60 mL). Protein was precipitated by 

centrifugation and the supernatant was examined directly by LCMS. 

 

In order to maximise sensitivity, single ion monitoring was 

applied for substrate and product peaks and peak areas were 

integrated. The peak integrals were calibrated vs. known con-

centrations of substrate and product. Initial rates were deter-mined 

by plotting product concentration vs. assay times, and variation of 

initial substrate concentrations allowed the estima-tion of kinetic 

parameters (Fig. 2). The diketide 2R,3R-8 was dehydrated by the DH 

to give exclusively the E-olefin product tigloyl SNAC 17, but none 

of the other 2-methyl diketides showed any turn-over. Of the non-

methylated diketides, only 3R-16 was a substrate, although much 

slower than 2R,3R-8. The ability of the non-substrates 2S,3S-8 and 

the enantiomers of 13 to act as inhibitors of the DH was investigated. 

However, addition of each of these compounds to assays containing 

the substrate 2R,3R-8 showed no appreciable decrease in rate when 

added in mM concentrations (see ESI†). 

 

Despite having access to soluble protein we were unable to grow 

satisfactory crystals of the isolated DH domain. In lieu of other 

structural information we built a model of SQTKS DH based on the 

known crystal structures of DH proteins from other Type I systems 

reported in the literature. These form 

 

 
 



 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Key modelled interactions between the substrate 2R,3R-7b (cyan) 

and the DH (green).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Kinetic data for SQTKS DH reactions. (A) Raw time course data 

showing increase in tigloyl SNAC 17 concentration; (B) comparison of DH 

reaction rate for the 4 diketide stereoisomers.  
 

 

distinctive double hot-dog folds.
17

 In particular the DH domain from 

CurF,
18

 a modular Type I PKS, formed an appropriate template for 

the assembly of a model by the SwissModel threading server.
19

 

Comparison of the results showed that the backbone atoms of the 

SQTKS DH model and CurF-DH had only 1.4 Å root mean square 

deviation (RMSD). Almost all of the observed deviation was 

concentrated on the periphery of the model structure, and 

examination of the conserved active site aspartic acid (D1225) and 

histidine (H1034) residues showed that these amino acids are located 

in the same positions in the CurF DH and the model (see ESI†). In 

addition a highly conserved Y/FP motif (Y/F1041-P1042) is also 

preserved in the model.  
The diketide substrate 2R,3R-8 was then docked into the DH 

active site using a combination of manual positioning (PyMol)
20

 and 

optimisation and energy minimisation using the YASARA force 

field.
21

 For 2R,3R-8, the docked model shows that the thiolester 

carbonyl oxygen is within hydrogen bonding distance of the 

backbone NH of G1043 (2.9 Å), and aligns with the dipole of the 

helix between G1043 and M1055 of the DH model. The SNAC NH 

is positioned within hydrogen bonding distance of the backbone 

carbonyl of conserved Y1041 (2.0 Å); while the SNAC carbonyl is 

2.8 Å from backbone NH of M1083. These interactions locate the 

SNAC in the entrance to the reaction cavity and would presumably 

perform a similar role with the pantetheinyl-ACP-bound 

 
substrate in the native complex. The two methyl groups of 2R,3R-8 

occupy open space and allow the a-proton and b-hydroxyl to 

approach the conserved histidine and aspartate residues. The closest 

distance between the a-proton and the nearest nitrogen of H1034 is 

3.6 Å, while the distance between the b-hydroxyl and the oxygen of 

D1225 is 3.0 Å. The geometry of the interactions is consistent with a 

syn abstraction of water to give the observed E-2-methylbut-2-enoyl 

(tigloyl) SNAC product 17. Attempts to dock the other stereoisomers 

of the diketide did not give satisfactory results (Fig. 3). 

 
Our experiments report the first in vitro studies of the 

stereoselectivity of an isolated DH domain from an iterative Type I 

PKS. Using a kinetic assay we measured the KM (4.5 mM) and kcat 

values (0.063 min 
1
). While these values have little absolute 

meaning, they are comparable with values measured for other DH 

proteins. For example Aldrich, Smith and coworkers reported KM 

values in the same range for a KR-DH didomain from module 2 of 

the pikromycin modular PKS (pikKR2-DH2) acting on triketide 

mimics, although their kcat values are ten-fold higher.
13 

 
Only one 2-methylated diketide, 2R,3R-8, is accepted as a 

substrate for SQTKS DH, with no dehydration activity observed for 

its enantiomer 2S,3S-8 or either of the syn diastereomers 13. Since 

these stereoisomers show no measurable substrate or inhibition 

activity it seems unlikely that they can be bound at the DH active 

site, also supported by the failure to generate satisfactory docked 

models of these isomers. However the non-methylated diketide 3R-

16 is a substrate.  
In the active SQTKS the ACP-bound 2R,3R-diketide 20 is 

created by reduction of a 3-oxo diketide 19 by the KR domain using 

NADPH as the cofactor (Scheme 3). Our results strongly suggest 

that the SQTKS KR releases 3R substrates, and thus it must reduce 

the 3-oxo group of its substrate 19 by 3-Si addition of hydride. Since 

racemisation at the 2-position of the diketide is strongly disfavoured 

after reduction of the 3-oxo group, this observation also suggests that 

the KR accepts and releases 2R-methylated diketides (e.g. 2R-19, 

Scheme 3). However, because facile epimerisation of 2-methyl-3-

oxo substrates such as 19 is likely, it is not yet possible to infer the 

stereochemical preference of the C-MeT without further 

experiments. Our previous results 

 

 
 



 
 
 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Scheme 3 Stereochemical course of KR, DH and ER domains of SQTKS.  
 
 
have shown that the SQTKS ER domain can process both Z 22 and 

E 23 substrates. However since the DH can only provide E-diketides 

it appears that the ER’s ability to accept Z-olefins is merely 

adventitious.
10 

In our earlier study of the stereoselectivity of the ER domain we 

showed that the stereochemical preferences at the b-carbon are 

identical for SQTKS ER and vFAS ER, in terms of both the cofactor 

itself (transfer of 4
0
-pro-R Hydrogen) and the substrate (addition of 

hydride to the 3-Re face).
10

 The results of this study also show that 

the SQTKS DH has exactly the same stereochemical selectivity as 

the vFAS DH which dehydrates 2R,3R substrates 20 to give E-

products 23 by syn elimination.
22

 Even though the SQTKS substrate 

is methylated at the 2-position, the 2R stereochemistry ensures that 

the 2-pro-S proton is removed during reaction. Our model structure 

shows that the 2R,3R substrate aligns with the active site residues 

such that syn elimination gives the observed E-product. The active 

site residues involved, H1034, D1225, Y1041 and P1042 are 

conserved between the SQTKS and vFAS sequences.  
Finally, the SQTKS KR domain also operates with the same 

stereochemical preference as the vFAS KR.
22

 Although we have not 

yet been able to show which of the cofactor 4
0
-hydrides is 

transferred by KR, the reduction does occur at the 3-Si face of the 

substrate. Thus our studies show that SQTKS shares more 

 
than just sequence homology and domain organisation with vFAS: 

its fundamental mechanisms for substrate reaction and 

stereoselectivity are also preserved and reinforce the idea that fungal 

hr-PKS and vFAS evolved from a common ancestor. Our current 

work focusses on determining the stereochemical pre-ference of the 

CMeT domain and attempts at engineering SQTKS to rationally 

change its selectivity.  
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