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ABSTRACT 
 

It is now increasingly evident that neurodegenerative diseases such as Alzheimer’s disease 

(AD) and Huntington’s disease (HD) trigger immune activation within the CNS and activate 

innate immune responses, which are primarily driven by microglia.   

HD is caused by a CAG repeat expansion in the huntingtin gene (HTT), leading to translation 

of an aberrant and pathogenic mutant HTT. Studies in mouse models have shown that HD 

microglia acquire a hyper-reactive inflammatory phenotype, mediated by a gain of toxicity of 

mutant HTT. Using a HD induced pluripotent stem cell (iPSC) line containing 109 CAG repeats 

in the HTT gene, microglia-like cells were generated with the aim of characterising their 

phenotype. RNA sequencing was used to explore the microglial-specific transcriptional 

changes associated with mutant HTT and pathway analysis carried out to predict any 

downstream processes affected in the HD109 microglia. Several immune-related functions 

including chemotaxis and phagocytosis were subsequently identified as dysregulated or 

impaired. However, upon functional assay validation, no phenotypic abnormalities were 

manifest in the HD109 microglia, with comparisons made against WT Kolf2 and isogenic 

HD109 corrected iPSC-derived microglia. Similarly, the in vitro microglia did not exhibit the 

inflammatory phenotype characteristic of diseased HD microglia and other immune cells.  

 

Loss-of-function variants in the microglia-enriched gene encoding ATP-binding cassette 

transporter A7 (ABCA7) increase Alzheimer’s disease risk. Although it has been suggested to 

play a role in amyloid beta phagocytosis, the precise role of ABCA7 in AD pathogenesis 

remains unknown. To that end, ABCA7 knockout iPSCs were generated using CRISPR/Cas9 

and in preliminary results, loss-of-function mutations in ABCA7 were found to impair 

phagocytosis of E. coli bioparticles and regulate in vitro microglial inflammatory responses.    

 

This thesis demonstrates that iPSC-derived microglia can serve as a platform for exploring the 

inflammatory pathways mediating microglial involvement in AD and HD pathogenesis, thus 

enabling in-depth mechanistic studies that bridge the gap between clinical and animal 

models.    
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2. MATERIAL AND METHODS  
2.1 Materials 

2.1.1 Cell culture reagents 

Cell culture reagent  Supplier  Catalogue number  

RPMI 1640  Gibco 1185093 

Fetal Bovine Serum  Gibco 10439024  

Glutamax Thermo Fisher 35050-038 

Penicillin/Streptomycin 
(5000U/5000µg) 

Gibco 15070063 

BMP-4 PeproTech 120-05ET 

SCF Miltenyi Biotec 130-093-991 

VEGF PeproTech 100-20 

E8 Flex Medium Life Technologies A2858501 

X-VIVO15 Scientific Laboratory Supplies LZBE02-060Q   

M-CSF BioLegend 574806 

IL-3 BioLegend  578006 

ß-mercaptoethanol Life Technologies 31350 

IL-34 BioLegend 577906 

GM-CSF BioLegend  572902 

Fibronectin  Merck Millipore FC010-10MG 

PBS pH 7.4 Gibco 10010015 

Vitronectin Gibco A31804 

ReLeSR Stem Cell Technologies 05872 

Y-27632 dihydrochloride 
(ROCK inhibitor) 

Tocris 1254 

40 µm cell strainers   Scientific Laboratory Supplies 431750 

D-PBS Life Technologies 14190250 

Trypan Blue solution Sigma Aldrich T8154 

DMEM-F12, no phenol red Thermo Fisher 11039021 

Table 2.1 List of reagents used for cell culture and differentiation.  

 

Cell culture media Composition 

THP-1 maintenance media 
RPMI 1640 + 10% FBS + 2 mM Glutamax + Penicillin/Streptomycin 
50U/50µg  

E8-3G (EB differentiation 
medium) 

E8 + 50 ng/ml BMP4 + 50 ng/ml VEGF + 20 ng/ml SCF 



 

X-VIVO factory medium 
X-VIVO15 + 2 mM Glutamax + 50U/50µg Penicillin/Streptomycin + 50 
µM ß-mercaptoethanol + 50 ng/ml M-CSF + 25 ng/ml IL-3  

Microglia differentiation 
medium 

X-VIVO15 + 100 ng/ml IL-34 + 10 ng/ml GM-CSF 

 Table 2.2 List of media used for cell culture and microglial differentiation  

 

2.1.4 Buffers, consumables and kits  
 

 Composition 

DNA lysis buffer 
1 M Tris pH 8.0 (2.5 ml), 0.5 M EDTA (1 ml) , 10% SDS (155 µl), 5 M NaCl 
(200 µl), Deionised water (46 ml) 

ICC Blocking buffer 
(external markers) 

3% Bovine Serum Albumin (BSA), 2% Normal Serum (Goat/Chicken), PBS 
pH 7.4 (up to 50 ml) 

ICC Blocking buffer 
(internal markers) 

3% BSA, 2% Normal Serum (Goat/Chicken), 0.1% Triton X-100, PBS pH 
7.4 (up to 50 ml) 

FACS buffer  0.1% BSA, PBS pH 7.4 

Table 2.3 List of buffers.   

 
Consumable Supplier Catalogue number 

Superscript II Reverse Transcriptase kit Invitrogen 18064014 

RNEasy Mini kit Qiagen 74104 

PowerUp SYBR Green Master Mix Applied Biosystems A25778 

P3 Primary Cell 4D-Nucleofector Kit Lonza V4XP-3032 

Bovine Serum Albumin (BSA) Sigma Aldrich A7906 

Normal Goat/Chicken Serum Dako X0907/X0903 

Triton X-100 Sigma Aldrich T8787 

Formalin (4% FPA) Sigma Aldrich HT5011 

Poly-D-Lysine  Poly-D-Lysine  Poly-D-Lysine  

Sigma Aldrich Sigma Aldrich Sigma Aldrich 

Cytospin funnels  Fisher Scientific 11972345 

Table 2.4 List of consumables and kits used.    

 
 



 

2.2 Maintenance and culture of human induced pluripotent stem cells  

2.2.1 Maintenance of human iPSC lines 

Studies were performed using two feeder-free human iPSC lines: Kolf2-C1 and HD109. Kolf2-

C1 iPSC lines were generated from fibroblasts collected from a healthy 55-59-year-old male 

and reprogramming carried out by non-integrating Sendai virus transduction of Oct4, Sox2, 

Klf4 and cMyc. HD109 iPSC lines were derived from fibroblasts collected from a 9-year-old 

female with juvenile onset HD from the age of 4, with severe bradykinesia, rigidity and 

dystonia at time of biopsy (HD iPSC Consortium 2012). Reprogramming was conducted by 

lentiviral transduction of Oct4, Sox2, Klf4 and cMyc. For both cell lines, normal karyotypes 

and expression of pluripotent stem cell markers were confirmed. All cell cultures were 

maintained in a humidified incubator (37˚C, 5% CO2).   

 

iPSCs were cultured in feeder-free conditions on 6-well plates (Corning) coated in vitronectin 

(0.5 µg/cm2; Gibco, Life Technologies) and fed with E8 Flex medium. Medium was changed 

daily, and cells were passaged using ReLeSR every 3-5 days (or at 80% confluence). For 

passaging, cells were washed once with PBS pH 7.4 and the ReLeSR added before incubation 

at 37˚C for 5 minutes. The dissociation reagent was removed by aspiration and fresh E8 Flex 

medium added to gently detach the colonies by homogenisation with a pipette. The mixture 

was transferred to a 15 ml Falcon tube and centrifuged for 3 minutes at 1000 rpm. The 

supernatant was aspirated, and cell pellet re-suspended in warm E8 Flex for plating.  

 

2.2.2 Maintenance of THP-1 monocytes  

THP-1 monocytes were a kind gift from Dr Shane Wainwright (Cardiff University). The cells 

were cultured with monocyte maintenance medium (see section 2.1.1) in non-adherent T75 

flasks. The cells were seeded at a density of 2x105 cells per ml and re-suspended in 19 ml of 

media. Once concentration exceeded 1x106 cells per ml, they were collected by centrifugation 

(1000 rpm for 3 minutes) and split in a 1:5 ratio into T75 flasks. 



 

2.3 Directed differentiation of iPSCs into microglia-like cells 

2.3.1 Differentiation of human iPSCs into embryoid bodies (EBs) 

Day 0: iPSC colonies grown to confluence on 6-well plates were washed with 1x PBS pH 7.4 at 

room temperature, ReLeSR was added (1 ml per well) and the cells placed in incubator. After 

2-3 minutes, the dissociation reagent was aspirated, and the side of the plate was lightly 

tapped for 1-2 minutes to allow colonies to dislodge. Following this step, 2ml of warm E8 

medium was gently added to each well to allow the aggregated cells to form floating EBs and 

the plate returned to the incubator for one day.  

 

Day 1: EBs were carefully transferred to a 15-ml tube and allowed to settle by gravity. The 

supernatant medium was removed and replaced with E8 + 50 ng/ml BMP-4, 50 ng/ml VEGF 

and 20 ng/ml SCF. EBs were cultured in E8-3G media for 7 days, with a 50% media change 

every two days.   

2.3.2 Differentiation of EBs into monocyte-like macrophage precursor cells  

E8-3G- cultured EBs were collected and further differentiated to make ‘factories’ by seeding 

15 EBs into one well of a 6-well plate in X-VIVO15 media supplemented with 50 ng/ml M-CSF 

and 25 ng/ml IL-3. The culture media from the factories was changed weekly. After 

approximately 2 weeks, non-adherent (monocyte-like) myeloid cells would become visible in 

the supernatant media of the factories, were harvested weekly and the culture media 

replenished. For harvesting, the supernatant was passed through a 40 µm cell strainer, 

centrifuged for 3 minutes at 1000 rpm and the resulting pellet gently re-suspended for use in 

assays described below or plated onto glass coverslips or tissue-culture plates.  

 

2.3.3 Induction of microglia-like phenotype   

Non-adherent myeloid cells harvested from the factories were plated at a density of 2-3 x 105 

cells per well and 10,000 onto PDL-treated (100 µg/ml in borate buffer) tissue culture 6-well 

plates and glass coverslips respectively, pre- coated with 5 µg/cm2 fibronectin. The cells were 

cultured in XVIVO15 medium supplemented with 10ng/ml GM-CSF and 100 ng/ml IL-34. The 

medium was changed after 7 days and cells incubated in standard culture conditions for 14 

days, prior to being used for experiments.  



 

2.4 Functional assays  

Name Supplier  Catalogue number 

Aß1-42 peptide California Peptide Research 641-15 

Reverse Aß42-1 Tocris 3391 

HFIP Sigma Aldrich H-8508 

Bafilomycin A1 Sigma Aldrich B1793-10UG 

Cytochalasin D Sigma Aldrich C8273-1MG 

pHrodo red E. coli bioparticles Life Technologies P35361 

Live Cell Imaging Solution  Life Technologies A14291DJ 

96-well black-walled µ-clear 
microplates 

Greiner Bio-One 655097 

ClearView 96-well Migration 
plates 

Essen BioScience 4582 

ClearView 96-well reservoir 
plates  

Essen BioScience 4600 

Seahorse XF Cell Mito Stress 
Test 

Agilent Technologies 103015-100 

Seahorse XF96 V3 PS cell 
culture microplates 

Agilent Technologies 101085-004 

Seahorse XF calibrant Agilent Technologies 100840 

Seahorse XF 1.0 M Glucose 
solution 

Agilent Technologies 103577-100 

Seahorse XF RPMI Medium pH 
7.4 

Agilent Technologies 103576-100 

 Seahorse XF96 sensor 
cartridge  

Agilent Technologies 102601-100 

Filipin Sigma Aldrich F9765 

Ibidi 8-well µ-slides  Thistle Scientific  80826 

Lysenin Antiserum  Peptide International NLY-14802-v 

LipidTOX Red Phospholipidosis 
Detection Reagent  

Invitrogen H34351 

Complement C1q  Merck Millipore 204876-1MG 

Lipopolysaccharide Sigma Aldrich  L2654-1MG 

IL-4 PeproTech 200-04 

ADP Sigma Aldrich A2754-500MG 

CX3CL1 BioLegend 583404 

Table 2.5 List of material, media and consumables used for functional assays.  
 

2.4.1 Stimulation with amyloid beta oligomers and reverse amyloid beta  

Synthetic Aß1-42 peptides were resuspended in ice-cold HFIP (or 1,1,1,3,3,3,- 

hexafluoropropan-2-ol), by adding 222 µl to 1mg and aliquoted into microcentrifuge tubes 



 

(100 µl = 0.45 mg). Each aliquot was dried overnight under a stream of N2 gas to allow HFIP 

evaporation (and stored long term at -80˚C). The resulting peptide films were dissolved to 5 

mM Aß stock by adding 20 µl DMSO to 0.45 mg peptide. The peptide stock was further diluted 

to 100 µM in phenol red-free F-12 medium and the suspension incubated at 4˚C for 24 hours 

to allow oligomerisation. Following incubation, the Aß mixture was centrifuged in the cold for 

10 min at 14,000 rpm to pellet out any fibrils. The supernatant was collected as Aß oligomeric 

preparation, diluted in phenol red-free medium before use.       

 

2.4.2 Phagocytic uptake of pHrodo red E. coli bioparticles   

This assay was used to measure the formation of acidified phagosomes: as the pHrodo red E. 

coli bioparticles reach the acidic environment of the phagosome (pH 4.5-5.5), the intensity of 

the fluorescence is greatly enhanced, enabling direct quantification of phagocytosis in real-

time. First, pHrodo red E. coli bioparticles were resuspended to 1mg/ml in Live Cell Imaging 

Solution. The mixture was homogenised, transferred to glass vial and sonicated for 5 min prior 

to each experiment.  

Precursor cells collected from differentiation factories were plated onto 96-well PDL-treated, 

black walled µ-clear flat bottom microplates at a density of 20,000 cells/well in a 100 µl 

suspension and differentiated to microglia for 14 days. Before the assay, the growth medium 

was removed and replaced with 75 µl of live cell imaging solution. After 10 µg per well of 

pHrodo E. coli was added, the microplates were transferred into the IncuCyte S3 live-cell 

imaging system (Essen BioScience), housed inside a 37˚C/5% CO2 incubator. The microplates 

were imaged in the IncuCyte for 4-6 hours with a 20x objective. At least four images per well 

were taken every 15 or 20 min and analysis carried out using the IncuCyte S3 Base software. 

Red channel acquisition was 400 ms and phase contrast masking and cell segmentation was 

applied to exclude cells from background, with an area filter of 50 µm2 to exclude objects. 

Background red channel noise was subtracted using Top-Hat correction with a radius of 20 

µm and a threshold of 2 red corrected units (Kapellos et al. 2016). As a positive control for 

inhibited phagocytosis, cells were pre-treated for 1 hour with 10 µM of the actin 

polymerisation inhibitor cytochalasin D or bafilomycin A1, an inhibitor of the phagolysosome 

V-ATPase.  

 



 

2.4.3 IncuCyte S3 chemotaxis assay  

The chemotaxis assays were conducted with IncuCyte ClearView 96-well Migration plates, 

featuring a low pore density membrane that separates an upper and lower chamber and 

requires cells to migrate across the membrane surface to reach a pore. Prior to cell plating, 

both sides of the IncuCyte ClearView plate membrane were coated with fibronectin: 150 µl 

per well was added to an IncuCyte ClearView 96-well reservoir plate and 20 µl was added to 

the insert wells, before the insert wells were gently placed onto the reservoir plate. The 

migration plate was then incubated at 37˚C for 30 min before being allowed to cool down to 

room temperature for another 30 min. The fibronectin was then aspirated from both the 

reservoir plate and insert and replaced with 200 µl of D-PBS to the reservoir plate. Microglia 

precursor cells were then seeded into each well of the insert plate in 60 µl at 3000 cells per 

well and allowed to settle on the membrane at room temperature for 15-30 min. The cells 

were differentiated to microglia within the plate for 14 days, with a media change after 7 

days.  

On the day of the assay, chemoattractants were made to desired concentrations in XVIVO 

medium, with 200 µl added to the appropriate wells of a reservoir plate and the insert plate 

carefully placed onto the chemoattractant-containing reservoir plate. The migration plate 

was transferred to the IncuCyte S3 system for scanning. 10x objective, phase channel scans 

of both the top and bottom sides of the insert were scheduled every 30 min for 24 hours. 

Migration was quantified by the IncuCyte analysis software as the appearance of in focus cells 

on the bottom of the well and the surface area they occupied (total phase object area in µm2 

/well).    

 

2.4.4 Seahorse XFe96 assays for mitochondrial bioenergetics and glycolytic flux 

The Seahorse XFe96 Analyser measures oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) over a specified time period and at particular time intervals as a way 

of assessing mitochondrial respiration (via cellular oxygen consumption) and glycolytic proton 

efflux. Using the manufacturer’s standardised protocol for the Seahorse XF Cell Mito Stress 

Test, cell respiration can be measured under basal conditions and subsequent exposures to 

the ATP coupler oligomycin, the uncoupler carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP), and the complex I inhibitor Rotenone. Oligomycin, 



 

which acts by inhibiting the proton channel of the ATP synthase (complex V), is used in this 

protocol to calculate the percentage of oxygen consumption allocated to ATP synthesis. 

Treatment with FCCP, which disturbs the transport of hydrogen ions across the mitochondrial 

membrane, affects the mitochondrial membrane potential and results in a rapid increase in 

OCR. Lastly, rotenone injection leads to a shutdown of mitochondrial respiration. Therefore, 

each administered compound allows the assessment of different aspects of mitochondrial 

respiration, including basal respiration, maximal respiration, spare respiratory capacity, 

proton leak and ATP production.       

The optimal seeding density and test compound concentrations were determined during 

preliminary experiments to identify the optimal number of cells required to detect a sufficient 

shift in OCR and ECAR. The Seahorse XF Cell Mito Stress test, which assays mitochondrial 

respiration, generates a bioenergetics profile, whereby each injected drug allows different 

properties of mitochondrial respiration to be measured.    

 

20,000 microglia precursor cells per well were seeded onto PDL-coated Seahorse XF96 V3 PS 

cell culture microplates and differentiated for 14 days in XVIVO with IL-34 and GM-CSF. Prior 

to plating, the plates were coated with fibronectin. Cells were seeded in a 80 µl suspension 

of Seahorse XF RPMI media pH 7.4 supplemented with 10 mM glucose, 1 mM sodium 

pyruvate and 2 mM L-glutamine and allowed to adhere to the plate for 1 hour at room 

temperature to allow for even distribution across the well before being moved to a humidified 

5% CO2 incubator at 37˚C. Four wells were kept empty to serve as background control.  

The day prior to the experiment, the Seahorse XFe96 Analyser was turned on to allow the 

temperature to stabilise. 200 µl of Seahorse XF calibrant was added to the Seahorse XF96 

sensor cartridge and kept in a non-CO2 incubator overnight. The day of the experiment, the 

hydrated cartridge was loaded with the test compounds oligomycin (2µM, 25 µl), FCCP 

(2.5µM, 25 µl) and antimycin A/rotenone (0.5µM, 25 µl) diluted in pre-warmed Seahorse XF 

RPMI media at a 10x concentration to dose delivered to cells. The cartridge was then inserted 

into the Seahorse XFe96 machine and the Seahorse XF Cell Mito Stress test protocol set up 

for calibration according to the manufacturer’s instructions. While the machine was 

calibrating, the cell culture microplate was removed from the 37˚C CO2 incubator, the XVIVO 

growth medium removed, the cells washed once with Seahorse XF calibrant and incubated 

with 175 µl per well of Seahorse XF RPMI assay medium for 45-60 min at 37˚C in a non-CO2 



 

incubator. Following calibration and assay medium incubation, the cell culture microplate was 

inserted into the analyser and the Seahorse XF Cell Mito Stress test protocol was run: 3 

successive readings (every 5 min) of basal respiration, followed by a drug injection sequence 

of oligomycin, FCCP and rotenone/antimycin A with 3 sequential readings every 5 min under 

condition.  

 

2.4.5 Cholesterol staining 

Cholesterol staining was performed using filipin, a cytochemical cholesterol-specific probe  

(Te Vruchte et al. 2004). 14-day differentiated microglia on PDL-treated and fibronectin-

coated 8-well µ-slides were washed once with PBS and fixed in 4% PFA for 15 min followed 

by three PBS washes. Cells were incubated with 125 µg/ml filipin (diluted in XVIVO medium) 

for 30 min in the dark at room temperature, after which the filipin-containing media was 

removed, and cells washed in PBS. Imaging was performed using a Zeiss Axio Imager A1 

microscope in conjunction with an Axiocam High-Resolution Camera and Axiovision software 

v4.8.    

 

2.4.6 Sphingomyelin staining 

The sphingomyelin-specific stain used for these experiments was lysenin (0.1 µg/ml; Peptide 

International). Microglia cells plated on Ibidi chamber slides were washed with PBS once, 

fixed with 4% PFA and then stained with the sphingomyelin stain lysenin overnight (diluted in 

PBS + 1% BSA + 0.1% saponin). Following overnight incubation, cells were washed with PBS 

three times, incubated with lysenin anti-serum (1:500 dilution in PBS) at room temperature 

for 1 hour before incubation with a fluorescent secondary antibody (1:500 dilution in PBS) at 

room temperature for 30 min. Incubation medium was removed, Hoechst nuclear staining 

was applied followed by two PBS washes. Cells were imaged with a Zeiss Axio Imager A1 

microscope and High-Resolution Camera and Axiovision software v4.8.     

 

2.4.7 Phospholipid staining 

Phospholipidosis was analysed using LipidTOX Red Phospholipidosis Detection Reagent (Nioi 

et al. 2007). Microglia differentiated on Ibidi chamber slides were washed once with PBS and 

incubated with LipidTOX (1:1000 dilution in X-VIVO medium) for 4h to detect 



 

phospholipidosis. Subsequently, the media was removed, and nuclei were stained with 

Hoechst before images were obtained with Zeiss Axio Imager A1 microscope and High-

Resolution Camera and Axiovision software v4.8. LipidTOX was excited at 543 nm and its 

emission was detected at 594 nm.  

2.5 Flow Cytometry  

Fluorescence-activated cell sorting (FACS) was carried out for the analysis of cell surface 

molecules on the non-adherent cells collected from supernatant of differentiated factories as 

described above. Cells were washed in 0.1% BSA in PBS, centrifuged at 1000 rom for 3 minutes 

and the resulting pellet was re-suspended in 200 µl of 0.1% BSA in PBS. For single-colour 

staining, 5 µl of the conjugated antibody or isotype-matching control (with the same 

fluorophore, from the same manufacturer) was added to the suspension and the mixture 

incubated at room temperature in the dark for one hour. For two-colour staining, two 

antibodies or two isotype controls (attached to different fluorophores) were added together. 

Following primary staining, the cells were washed twice with 0.1% BSA in PBS and centrifuged, 

before being transferred to 5 ml round bottom tubes (BD Falcon) in 200 µl of 0.1% BSA in PBS. 

Fluorescence was measured using a BD LSR Fortessa and data analysed using FlowJo software.  

The following antibodies and isotype controls were used.  

Antibody Clone Supplier  Catalogue number  

CD14-APC 61D3 eBioscience 17-0149-41 

CD11b-APC  ICRF44 eBioscience 17-0118-42 

CD45-FITC  2D1 eBioscience  11-9459-42  

CD34-PECy7  4H11 eBioscience 25-0349-42 

IgG1κ-APC APC isotype control eBioscience 17-4714-81 

IgG1κ-FITC FITC isotype control eBioscience 11-4714-81 

IgG1κ-PECy7 PE-Cy7 isotype control eBioscience 25-4714-80 

Table 2.6 List of conjugated antibodies used for flow cytometry analysis experiments.    

2.6 Immunocytochemistry  

2.6.1 Immunocytochemistry  

Non-adherent myeloid cells were collected from the differentiated factories and plated onto 

glass coverslips. Cultured cells were washed in 1xPBS pH7.4, fixed with 4% paraformaldehyde 

(PFA) for 15 min at room temperature and washed 3 times with PBS. Fixed cells were 



 

incubated with blocking buffer (3% goat/chicken/donkey serum, 0.1% Triton-X in PBS) for 1 

hour at room temperature before overnight incubation at 4˚C with primary antibodies (see 

list below) diluted in blocking buffer. Following overnight incubation, cells were subjected to 

3 washes of 5 min, followed by a 1-hour incubation at room temperature, protected from 

light, with fluorescent secondary antibodies diluted in blocking solution. Coverslips were 

subsequently incubated with Hoechst at 1:5000 in blocking buffer and mounted on 

microscope slides. Images were taken using an Olympus BX61 fluorescent microscope.      

The ICC primary and secondary antibodies used were as follows:  

1˚ antibody Host Dilution Supplier  

CD34 Mouse anti-human 1:100 Abcam AB6330 

CD45 Mouse anti-human 1:100 R&D Systems MAB1430 

P2RY12 Rabbit anti-human 1:100 Abcam AB188968 

IBA-1 Goat anti-human 1:100 Abcam AB5076 

TGFBR1 Rabbit anti-human 1:50 Abcam AB31013 

TMEM119 Rabbit anti-human  1:100 Abcam AB185333 

CX3CR1 Rabbit anti-human 1:100 Bio-Rad AHP1589 

Table 2.7 List of primary antibodies used for immunocytochemistry.     

 

2˚ antibody  Dilution  Supplier  

Alexa Fluor goat anti-mouse IgG 488  1:400 Invitrogen A11001 

Alexa Fluor goat anti-mouse IgG 594 1:400 Invitrogen A11032 

Alexa Fluor goat anti-rabbit IgG 594 1:400 Invitrogen A11037 

Alexa Fluor goat anti-rabbit IgG 488 1:400 Invitrogen A11034 

Alexa Fluor chicken anti-goat IgG 594 1:400 Invitrogen A21468 

Alexa Fluor chicken anti-rabbit IgG 488 1:400 Invitrogen A21441 

Alexa Fluor chicken anti-mouse IgG 594 1:400 Invitrogen A21201 

Table 2.8 List of secondary antibodies used for immunocytochemistry.     

 

2.6.2 Cytocentrifugation  

Cells were washed and fixed as described. To make cytospins, 1x105 cells were spun at 800 

rpm for 1 min through pre-wet filters onto glass slides using a Centurion CYT04 centrifuge 

before staining as described in section 2.6.1.   



 

2.7 RNA extraction and qRT-PCR  

For RNA extraction, samples were harvested and lysed in RLT buffer (RNEasy Mini kit, Qiagen) 

containing 10 µl/ml ß-mercaptoethanol. Total RNA was extracted according to the 

manufacturer’s protocols. The concentration and purity of the extracted RNA samples were 

measured by spectrophotometry (Nanodrop).  

2.7.1 PowerUp SYBR Green qRT-PCR  

Reverse transcription was carried out using Superscript II kit, with 1 µg template RNA in a 20 

µl reaction volume. The resulting cDNA samples were diluted 1:5 by adding 80 µl of deionised 

water and readied for qRT-PCR. Each qRT-PCR reaction, comprising 1 µl of the diluted cDNA 

product in a 20 µl volume, was placed in a thermocycler set up with the cycling parameters: 

25˚C for 10 min, 42˚C for 50 min and 70˚C for 15 min.  

RT-qPCR was carried out on a CFX Connect Real Time System (Bio-Rad) using PowerUp SYBR 

Green Master Mix (Applied Biosystems). Quantification of target gene transcripts was carried 

out using primers designed and validated with established efficiencies between 90 and 105%. 

Primers were specifically designed following these parameters: Tm close to 60˚C and qPCR 

product between 80 and 120 bp.   

 

 

 

 

 

The qPCR reaction mix was added to a 96-well plate, which was centrifuged for 1 minute at 

1500 rpm and put through the cycling program described below.   

qPCR component Volume  

10 µM Primer mix 1 µl 

PowerUp SYBR Green Master Mix 10 µl 

RNAse-free deionised water 8 µl 

cDNA 1 µl 

Step Temperature Time Cycle 

UDG activation 50˚C 2 min Hold 

Polymerase activation 95˚C 2 min Hold  

Denaturation 95˚C 15 sec  

40 Annealing/extension 60˚C 1 min 

    

Stage Step Ramp rate Temp Time 

 Step 1 1.6˚C/sec 95˚C 15 sec 



 

 

For analysis, the delta-delta CT method was used to determine relative gene expression 

values, with 3 biological replicates. Each biological replicate was analysed in triplicate.  

 

2.7.2 Fluidigm High Throughput qRT-PCR  

Reagent  Catalogue number  Supplier 

Random hexamers C1181 Promega  

Fluidigm Reverse 

Transcription Master Mix kit 
100-6300 Fluidigm 

Preamp Master Mix kit 100-5580 Fluidigm 

Exonuclease I  M0293S New England BioLabs 

TE buffer 12090015 Invitrogen 

Fluidigm 96.96 Dynamic Array 

IFC chip  
BMK-M-96.96 Fluidigm 

96.96 Dynamic Array DNA 

Binding Dye and Assay 

loading reagent kits 

100-3400 Fluidigm 

SsoFast EvaGreen Supermix 

with low ROX 
172-5211 BioRad 

20X DNA Binding Dye Sample 

Loading Reagent 
100-3400 Fluidigm 

Control line fluid 89000021 Fluidigm 

Table 2.8 List of consumables used for Fluidigm qRT-PCR.     

 

Samples were harvested and RNA extraction carried out as described above. cDNA synthesis 

was performed using 100 ng of total RNA and random hexamers with the Fluidigm Reverse 

Transcription Master Mix kit. According to the manufacturer’s instructions, samples had to 

undergo a round of preamplification prior to use with the high throughput array. 1.25 µl of 

each cDNA sample was pre-amplified using the Preamp Master Mix along with 0.5 µl of the 

pooled gene primers (500 nM per primer). The preamplification reactions (see table 2.8) was 

carried out using a 2 min 95˚C denaturation step and 10 cycles of 15s at 95˚C and 4 min at 

Melt curve stage Step 2 1.6˚C/sec 60˚C 1 min 

Step 3 (dissociation) 0.15˚C/sec 95˚C 15 sec 



 

60˚C. The pre-amplified samples then underwent a clean-up step with Exonuclease I, where 

2 µl of diluted Exo I at 4U/µl was added to each 5-µl preamplified reaction. The mixtures were 

put on a cycling program of digestion at 37˚C for 30 min and inactivation at 80˚C for 15 min. 

Following this treatment, the pre-amplified reactions were diluted 5 times using TE buffer.    

Component Vol per reaction (µl) Vol for 96 reactions + 20% overage* (µl) 

PREAMPLIFICATION PRE-MIX 

Preamp Master Mix 1.00 115.2 

Pooled Gene primers 0.50 57.6 

DNase-free H2O 2.25 259.2 

cDNA 1.25 - 

Total  5.00 - 

Table 2.8 Preamplification reaction using Fluidigm Preamp Master Mix. *20% overage for ease of pipetting.  

 

For the high throughput qPCR, a Fluidigm 96.96 Dynamic Array IFC chip, which is formatted 

to run reactions for 96 samples and 96 genes, was used (Spurgeon et al. 2008). The primer 

reaction or assay mixes (see table 2.9) were prepared on a 96-well PCR plate using the 96.96 

Dynamic Array DNA Binding Dye and Assay loading reagent kits. The forward and reverse 

primers were first combined in microcentrifuge tubes before being added to loading reagent 

and TE DNA suspension buffer in individual wells of a 96-well plate. The plate was later 

vortexed for 30 sec and centrifuged at 1000 g for 1 min before pipetting into the IFC inlets.  

Component  Vol per inlet (µl) Vol for 50 µl stock 

2x Assay Loading Reagent 2.5 25 

1X TE buffer 2.25 22.5 

100 µM Forward + Reverse primers 0.25 2.5 

Total  5 50 

Table 2.9 Fluidigm 96.96 IFC primer reaction mix preparation. Final concentration of each primer is 5 µM in the 
inlet and 500 nM in the final reaction. For ease of pipetting, mixtures were made up as 50 µl stocks.  

The sample reaction mixtures containing preamplified and Exo I-treated cDNA were prepared 

as shown in table 10 using SsoFast EvaGreen Supermix with low ROX and 20X DNA Binding 

Dye Sample Loading Reagent. The sample pre-mix was made up in a microcentrifuge tube 

being aliquoted as 3.3 µl per well of a 96-well plate, to which each preamplified cDNA sample 

was added. The cDNA sample mixture plate was vortexed and centrifuged as above before 

loading onto the IFC inlets. 



 

Component Vol per inlet + 20% overage  

(µl) 

Vol for 96.96 IFC for 60 samples 

(µl) 

SAMPLE PRE-MIX 

2X Sso fast EvaGreen  3.0 360 

20X DNA Binding Dye 0.3 36 

Preamplified & Exo I-treated cDNA 2.7 - 

Total  6.00 - 

Table 2.10 Fluidigm 96.96 IFC sample reaction mixture preparation.  

Having prepared the sample and assay mixes, the chip was first primed after control line fluid 

was injected into each accumulator on the IFC. Following the priming script, 5 µl of primer 

assay mix and 5 µl of sample were loaded into their respective inlets of the 96.96 IFC chip and 

the chip placed in the HX controller for automatic loading and mixing. After loading, the chip 

was moved to the BioMark HD Real-Time PCR System (Fluidigm). The cycling program was GE 

Fast 96x96 PCR+Melt v2.     

Segment Type Temp (˚C) Duration (sec) BioMark HD Ramp rate (˚C/s) 

1 Thermal mix 
70 2400 5.5 

60 30 5.5 

2 Hot Start  95 60 5.5 

3 PCR (30 cycles) 
96 5 5.5 

60 20 5.5 

4 Melting curve 
60 

3 
1 

60-95 1˚C/3s 

Table 2.11 Cycling parameters for BioMark HD Real-Time PCR platform for use with 96.96 IFC chip.  

Post chip run qPCR data analysis was initially done using the BioMark Gene Expression Data 

Analysis software, which analyses individual data points and generates Ct values using “pass” 

and “fail” scores. Fail data points, which feature melting curves with aberrant Tm or from 

non-specific amplification, were removed after this initial analysis. Raw Ct values were then 

downloaded from the software as a data frame, and subsequently processed using Singular 

Analysis Toolset (Fluidigm), which runs the R script ‘fluidigmSC”. This script performs a series 

of differential gene expression analysis such as ANOVA, PCA, tSNE and hierarchical clustering 

to identify differentially expressed genes of interest. Gene expression values are generated 

as log2 expression counts, converted from Ct values above the recommended background 

default of 24 (Livak et al. 2013).   



 

2.7.3 qRT-PCR primers   
 

Gene Forward Reverse 

Nestin GTTCCAGCTGGCTGTGGAGGC GCTGCTGCCGACCTTCCAGG 

Brachyury TCAGCAAAGTCAAGCTCACCA CCCCAACTCTCACTATGTGGATT 

Flk1 GGCCCAATAATCAGAGTGGCA CCAGTGTCATTTCCGATCACTTT 

RUNX1 CTGCCCATCGCTTTCAAGGT GCCGAGTAGTTTTCATCATTGCC 

CD34 TGGACCGCGGCTTTGCT CCCTGGGTAGGTAACTCTGGG 

CD45 CATTTGGCTTTGCCTTTCTG TTCTCTTTCAAAGGTGCTTGC 

IBA1 GCTGAGCTATGAGCCAAACC TCATCCAGCCTCTCTTCCTG 

Kir2.1 GGTTTGCTTTGGCTCAGTCG GAACATGTCCTGTTGCTGGC 

NaV1.6 GGCAATGTTTCAGCTCTACGC ATTGTCTTCAGGCCTGGGATT 

TREM2 CTGGAGATCTCTGGTTCCCC AGAAGGATGGAAGTGGGTGG 

CSF1R TATGTCAAAGACCCTGCCCG GTGAGCAGACAGGGCAGTAG 

CD11b GAAAGGCAAGGAAGCCGGAG TGGATCTGTCCTTCTCTTAGCCG 

TMEM119 CTTCCTGGATGGGATAGTGGAC GCACAGACGATGAACATCAGC 

ABCA7 GCTGAGGAACTTGACCAAGGTAT CCTGCTCCATTCACACCCAG 

PLCG2 AACTGCAGACTTCGAGGAGC AGGGGCTTTCACGACGTTAT 

INPP5D CTGCGTGCTGTATCGGAATTG AAGAACCTCATGGAGACGCC 

SREBF2 AGGCAGGCTTTGAAGACGAA AGCTTCCCTGTGATGTGCAG 

IL-1ß TTCGAGGCACAAGGCACAA TGGCTGCTTCAGACACTTGAG 

TNF GCCCATGTTGTAGCAAACCC TATCTCTCAGCTCCACGACA 

IL-6 ACCCCCAATAAATATAGGACTGGA TTCTCTTTCGTTCCCGGTGG 

TGFß1 GGCTGTATTTAAGGACACCCGT GACACAGAGATCCGCAGTCC 

IL-10 AAGACCCAGACATCAAGGCG AATCGATGACAGCGCCGTAG 

P2RY12 GGAGCTGCAGAACAGAACACT AGTTGCCAAACCTCTTTGTGATA 

GAS6 ACC TGACCGTGGGAGGTATT GTGTCTTCTCCGTTCAGCCA 

ABCA1 ACTGGTTTGGCGAGGAAAGT CAGCTTCAAGTGGGTGGGTT 

LRP1 CTCGGATGAGCCCAAGGAAG TCACCGCAATCGTTGTCGTA 

FASN GTGCCCTGAGCTGGACTACT AAGCCGTAGTTGCTCTGTCC 

HMGCS1 GACTGTCCTTTCGTGGCTCA GAAAGAGCTGTGTGAAGGATAGA 

HMGCR TCGGTGGCCTCTAGTGAGAT ACAAAGAGGCCATGCATTCG 

PPARG ACAAGGCCATTTTCTCAAACGAG CAAAGTTGGTGGGCCAGAATG 

LDLR ACCACAGAGGATGAGGTCCA GTCATCCTCCAGACTGACCATC 

CX3CR1 TGGGGCCTTCACCATGGAT GCCAATGGCAAAGATGACGGAG 

  Table 2.12 List of primers used for Fluidigm qRT-PCR. For rest of the list, see appendix 6. 



 

2.8 CRISPR/Cas9-mediated mutation of ABCA7 gene 

2.8.1 CRISPR guide RNAs design and preparation  

Single guide RNAs (gRNA) targeting the ABCA7 gene were designed using the Wellcome 

Sanger Institute and Deskgen CRISPR design tools, with focus on reducing off target effects 

such as modification of unintended genomic sites. The Alt-R CRISPR-Cas9 system (Integrated 

DNA Technologies or IDT) was used because of its high editing efficiency compared to vector 

constructs (Kim et al. 2014; Zuris et al. 2015). This method forms a ribonucleoprotein (RNP) 

complex by combining a S.p. Cas9 Nuclease (1081058 – IDT) with a target crRNA and a 

fluorescently labelled ATTO 550 tracrRNA (1075928 – IDT). Delivery of the activated RNP 

complex causes double-stranded DNA cleavage of the target DNA by Cas9, activating the non-

homologous end joining system (NHEJ). The gRNAs chosen for the study were mapped onto 

coding exons 2 (Ex2P1) and 8 (Ex8P1) of the ABCA7 gene and were predicted to have minimal 

off-target effects in the genome.      

gRNA name Target region Sequence 

Ex2P1 Exon 2 GGAAGAATTTCATGTATCGCCGG 

Ex8P1 Exon 8 CACTGCTGCAGAGACCCCGAGGG 

 

To generate the RNP complex, each crRNA oligo and tracrRNA was resuspended to 200 µM in 

nuclease-free duplex buffer (IDT). Then, a cRNA:tracrRNA duplex was formed by combining 

each oligo with a tracrRNA in equimolar concentration: 1.7 µl crRNA + 1.7 µl tracrRNA + 1.7 

µl of nuclease-free duplex buffer. The reaction mixture was heated at 95˚C for 5 min and 

allowed to cool at room temperature. To assemble the RNP complex for each oligo, the 

reaction mixture below was set up and incubated for 20 min at room temperature prior to 

transfection. The Cas9 nuclease was made up by diluting 3.1 µl of 10 µg/µl Cas9 stock with 

1.9 µl Cas9 storage buffer (10 mM tris-HCl pH 7.4, 300 mM NaCl, 0.1 mM EDTA, 1mM DTT).  

Component   Volume (µl) 

cRNA:tracrRNA complex (1µM) 2.5 

Cas9 nuclease (6.2 µg/µl) 2.5 

Total volume 5  

  



 

2.8.2 Cell culture, transfection and selection of targeted clones   

Kolf2 iPS cells were grown to 70-80% confluence and maintained in E8 medium, as described 

before. On the day of transfection, media was removed and replaced with E8 media 

containing 10 µM ROCK inhibitor for 1-2 hours before transfection. Cells were washed once 

with PBS pH 7.4 and dissociated with pre-warmed accutase for approximately 5 min (Life 

Technologies). E8 media containing ROCK inhibitor was added to inactivate the accutase, the 

mixture homogenised, centrifuged at 1500 rpm for 3 min and counted with 1 million cells 

being used. Cells were then resuspended in 100 µl of nucleofection buffer, made up of 78 µl 

P3 buffer and 22 µl supplement from the P3 Primary Cell 4D-Nucleofector Kit. 5 µl of each 

assembled RNP was added to the suspension, which was then transferred to an Amaxa 

cuvette. The cuvette was gently tapped onto a flat surface to eliminate bubbles. Cells were 

transfected with RNP complexes by electroporation using the Amaxa 4D Nucleofector system 

(program CA137). Following nucleofection, the cells were allowed to recover for ~ 10 min at 

37˚C, before addition of pre-warmed E8 + ROCK inhibitor media and plating onto a culture 

dish pre-coated with vitronectin. 24 hours post nucleofection, the transfected cells were FACS 

sorted to select for the top 10% of the most fluorescent cells, for increased editing efficiency. 

Briefly, the transfected cells were washed in PBS and dissociated as single cells with accutase, 

as above. The cells were then centrifuged and resuspended in 500 µl in E8 media + ROCK 

inhibitor into FACS tubes for sorting in a FACS ARIA Fusion (BD Biosciences) using the tracrRNA 

ATTO550. The sorted cells were collected in a FACS tube containing 1 ml of E8 + ROCK 

inhibitor, replated onto a 10 cm tissue culture dish pre-coated with vitronectin in order to 

obtain single cell clones. The following day, the culture media was changed to E8 medium and 

thereafter the cells were fed every other day, being monitored daily for the formation of 

colonies. Around 7 days after transfection, single colonies were cut in half and picked onto 

two separate 96-well plates by using a P20 pipette set at 10 µl – cells grown one plate were 

used for genomic DNA extraction and PCR screening to detect successful excision of the target 

region (see table 2.13 below). The corresponding 96-well plate was used for clonal expansion.  

PCR primer Target region Sequence 

Ex2F Exon 2 ATTGGTTTACTCCACCCCTGGG 

Ex2R Exon 2 GAGTCGTTGAAGTTGCTCAGGC 

Ex8F Exon 8 ctttgcctctcagagcctcagt 

Ex8R Exon 8 GGAAACCGAGGTCAGTCACTCA 



 

 

PCR component   Volume (µl) 

5x colourless GoTaq Flexi buffer 10 

25 mM MgCl2 solution 5 

10 µM dNTPs 1 

Ex2F2 Primer 1 

Ex8R6 Primer 1 

Extracted DNA with DNA lysis buffer  1 

GoTaq DNA polymerase 0.25 

Nuclease-free water to 50 

Table 2.13 ABCA7 KO PCR screening reaction.  

For genomic DNA extraction, cells in 96-well plates were washed once with PBS before 

addition of DNA lysis buffer (see section 2.1.4) supplemented with 2% proteinase K. 50 µl of 

DNA lysis buffer was added per well and the mixture incubated at 55˚C for 4 hours or 

overnight. This was followed by inactivation at 95˚C for 30 minutes, where each extracted 

DNA sample was diluted 1 in 10 in 10 mM Tris pH 8.0. The diluted and inactivated DNA sample 

was then used for PCR assay outlined below. The PCR cycling parameters were set up as 

follows: 

Step Temperature Time Cycle 

Initial denaturation 95˚C 2 min 1 

Denaturation 95˚C 15 secs  

30 Annealing 60˚C 45 secs 

Extension 72˚C 1 min 

Final extension 72˚C 5 min 1 

 

96-well plate clones found to carry the successful mutation after PCR screening were 

subjected to sub-cloning. To do this, the cells were washed with PBS and incubated with 

accutase for 5 min to ensure a single cell suspension. Pre-warmed E8 media was added to the 

cell suspension to inactive the accutase and the mixture centrifuged at 1000rpm for 3 min. 

The cells were then re-suspended in E8 + ROCK inhibitor media before plating at very low 

density in a vitronectin-coated 10 cm culture dish. This allowed the cells to expand from single 

cells, before individual colonies from the dish were picked, grown and expanded in 24-well 

plates before another round of PCR screening. All expanded sub-clones were also kept as 



 

frozen pellets. The PCR-amplified DNA were separated by agarose gel electrophoresis using 

2% gels.   

2.9 RNA Sequencing and Analyses 

2.9.1 RNA Sequencing library construction and sequencing 

Samples used for RNA sequencing (RNA-seq) were harvested using RLT buffer from RNeasy 

Mini Kit before total RNA was extracted from lysates following the protocols of the 

manufacturer. RNA-seq was performed at the Genomics Research Hub of Cardiff University 

School of Biosciences by Angela Marchbank. RNA integrity was measured for all samples with 

the Agilent Bioanalyser 2100 (Agilent Technologies) and samples with RNA integrity number 

above 8 were retained for library construction. The Illumina TruSeq mRNA stranded protocol 

was used to perform cDNA synthesis from all samples and generate poly-A mRNA libraries. 1 

µg of RNA was used to construct RNA-seq libraries. Libraries were then assessed for their 

quality with the Agilent 4200 TapeStation (Agilent Technologies) and sequenced as single-end 

75 bp reads on the Illumina NextSeq500 sequencer, generating 40 million reads per sample.     

 

2.9.2 RNA-seq read mapping, gene counts estimation and differential gene expression 

analysis  

RNA-seq reads (fastq files) were first trimmed using Trimmomatic (version 0.35) (Bolger et al. 

2014) and then mapped to the GRCh38.89 reference human genome using STAR (version 

2.5.1b) (Dobin et al. 2013). Transcripts were assembled before raw read counts per gene were 

generated using the software FeatureCounts (Liao et al. 2014). Transcripts with at least 1 

count per million in at least one sample were considered to represent expressed genes and 

retained for further downstream analysis, otherwise removed. Differential gene expression 

analysis was carried out with the Bioconductor package DESeq2 (release 3.6) to generate gene 

expression values as FPKM (Fragments per Kilobase of transcript per Million mapped reads) 

(Love et al. 2014). The Benjamini-Hochberg (BH) multiple testing correction procedure, which 

decreases false discovery rate, was employed to compute adjusted p-values. Principal 

component analysis of the normalised expression counts was performed using the R function 

“prcomp” and plotted with “ggplot”. Hierarchical clustering heatmap based on normalised 

gene expression counts was conducted using the R function “pheatmap”.  



 

 

2.9.3 Comparative Gene Set Enrichment Analysis of iPSC-derived microglia  

Single-ended RNA-seq data for human cortical neurons, astrocytes and myeloid cells (Zhang 

et al., 2016) was retrieved from Gene Expression Omnibus (accession GSE73721). The 

downloaded raw fastq files were processed along the same pipeline as described above to 

produce raw gene counts. These were combined with values from our data to estimate 

normalised gene expression counts with corresponding adjusted p-values. Genes with p-

adjusted < 0.05 were chosen to carry out a comprehensive Gene Set Enrichment Analysis 

(GSEA) of the stem cell-derived microglia datasets. GSEA analyses whether enrichment of 

differential expression among gene sets relates to biological hypotheses and pathways 

(Subramanian et al. 2005). GSEA orders all genes according to their differential expression 

statistic, and tests whether genes in a specific gene set have a higher overall rank than would 

be expected by chance. A pathway set was chosen consisting of Gene Ontology (GO) (Harris 

et al. 2004), Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al. 2012), 

Reactome (Croft et al. 2014), BioCarta and NCI pathway interaction database (Schaefer et al. 

2009). Upregulated and downregulated genes in iPSC-derived microglia were assessed 

separately.   

2.9.4 iPathwayGuide Impact Analysis    

Pathway Impact Analysis was run using AdvaitaBio iPathwayGuide 

(https://www.advaitabio.com/ipathwayguide.html) to identify significantly impacted 

pathways. This method utilises a systems biology approach and incorporates the classical 

probabilistic aspects of analysis (e.g. GSEA) with important biological factors: “the magnitude 

of the expression changes of each gene, the position of the differentially expressed genes on 

the given pathways, the topology of the pathway that describes how these genes interact, 

and the type of signalling interactions between them” (Draghici et al. 2007; Donato et al. 

2013).  

This method analyses DE gene datasets in the context of pathways from the KEGG database 

(Kanehisa et al., 2012), gene ontologies from Gene Ontology consortium database (Ashburner 

et al. 2000) and miRNAs from the miRBase (Release 21). The pathways are then scored 

according to two criteria: (i) the over-representation of DE genes in a given pathway and (ii) 

the perturbation of that pathway computed by propagating the measured expression 



 

changes across the pathway topology. These criteria are taken account to calculate two 

probability values: pORA and pAcc. pORA expresses the probability of observing the number 

of DE genes in a given pathway that is greater than or equal to the probability by random 

chance. The second probability pAcc is calculated based on the amount of total accumulation 

measured in each pathway and the sum of all of all absolute accumulations of the genes in a 

given pathway. The probability values are then combined into one final pathway score by 

calculating a p value using Fisher’s method, corrected for multiple comparisons by False 

discovery rate (FDR).    

 

2.9.5 Upstream regulator analysis   

Upstream regulator analysis was performed using the Ingenuity Pathway Analysis (Ingenuity 

Systems, Qiagen). This program predicts potential upstream regulators and mechanistic 

networks that explain the gene expression changes observed in a dataset, by calculating P-

values of overlap and activation z-score statistics. The P-value of overlap establishes whether 

there is a statistically significant overlap between gene expression changes in a dataset and 

the genes affected by an upstream regulator (regulators with p value of < 0.01 qualified). The 

activation z-sore considers the direction of gene expression changes and is used to predict 

whether regulators are activated or inhibited in the dataset. Generally, a z-score of > 2 or < -

2 is regarded as significant. A cut-off of 0.01 was used to decide which genes were included 

in this analysis.      

2.10 Statistical analysis  

Statistical analysis of Fluidigm qRT-PCR data was carried out using GraphPad Prism 7.0 

software. Data were represented as average log2 expression values generated by Fluidigm 

analysis R package (see section 2.7.1). When comparing the log2 expression from multiple 

conditions against a control group, one-way ANOVA with Dunnett’s post hoc comparison was 

used. For assessing data from experiments with independent variables and one continuous 

dependent variable, a two-way ANOVA with Tukey’s post hoc multiple comparisons test was 

carried out. Asterisks representing significance are defined as follows: ns – not significant; P 

> 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.   
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3. TRANSCRIPTOMIC AND 

FUNCTIONAL VALIDATION OF HUMAN 

IPSC-DERIVED MICROGLIA 

3.1 Introduction  

Animal models have been invaluable in advancing our understanding of 

neurodegenerative diseases such as Alzheimer’s and Huntington’s disease (Götz & 

Ittner 2008; Laferla & Green 2012). Much has been gained from animal studies, 

including the now recognised importance of research focusing on the role of 

neuroinflammation, and specifically microglia in those disorders (see section 1.1). 

Nonetheless, the emphasis needs to shift towards elucidating the phenotypic 

characteristics of diseased microglia, as well as how they can be harnessed to treat 

disease. Indeed, it can be argued that the failure of several clinical trials and paucity 

of new therapies (Cummings et al. 2014) highlight a necessity for improved disease 

models that bridge the gap between the clinic and animal models.   

In that respect, advances in stem cell technology since the advent of induced 

pluripotent stem cells (iPSCs) (Takahashi & Yamanaka 2006; Okita et al. 2007; 

Takahashi et al. 2007) have revolutionised in vitro disease modelling, leading to the 

development of several reliable protocols for differentiation of iPSCs into neurons and 

astrocytes (Krencik et al. 2011; Serio et al. 2013; Shaltouki et al. 2013). Prior to the 

beginning of this study, there were no published protocols for in vitro differentiation 

of microglia. As established through lineage tracing studies, microglia arise from 

primitive yolk-sac derived haematopoietic precursors during embryonic development 

that colonise the developing brain (Ginhoux et al. 2010). Therefore, any strategy for 

microglial differentiation would require mimicking the steps leading to yolk sac 

haematopoiesis (Ginhoux et al. 2013). Based on this rationale, a number of microglia 

differentiation protocols have since been reported (Muffat et al. 2016; Abud et al. 

2017; Haenseler et al. 2017; Pandya et al. 2017). The protocol used in this study (see 
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section 2.3) was adapted from work by (Karlsson et al. 2008; van Wilgenburg et al. 

2013), who showed that monocyte-like primitive macrophage precursors can be 

derived from human stem cells. The differentiation method involves culturing 

embryoid bodies (EBs) in serum-free and feeder-free medium containing the 

cytokines IL-3 and macrophage colony-stimulating factor (M-CSF) to promote the 

formation of the non-adherent myeloid cells in the culture supernatants. These 

macrophage precursors are then harvested from the culture medium and 

differentiated to a microglial phenotype by the addition of two growth factors: the 

astrocyte-derived granulocyte M-CSF (GM-CSF) and IL-34, which have been shown to 

induce a ramified microglia phenotype from human monocytes (Ohigdani et al. 2014). 

In the CNS, IL-34 is produced by neurons and is required to maintain microglial survival 

(Wang et al. 2012; Greter et al. 2012). This protocol compares favourably to the others 

mentioned in its simplicity and straightforwardness, while it involves little 

manipulation other than a simple weekly harvest of the macrophage precursors, 

compared to a trituration-based method (Muffat et al. 2016) and rounds of FACS-

sorting (Pandya et al. 2017).    

3.2 Aims  

This chapter set out to characterise microglia differentiated from iPSCs using the 

protocol described in section 2.3. Two cell lines of different genetic backgrounds Kolf2 

and HD109 were used, enabling an appraisal of the efficacy and reproducibility of the 

differentiation protocol. Using RNA sequencing, the transcriptome profile of the 

differentiated microglia was investigated, with emphasis on the differences between 

macrophage precursors and microglia highlighted here.  
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3.3 Results 

3.2.1 Human iPSC-derived microglia cells express characteristic microglial 

markers 

Figure 3.1 displays a schematic of the differentiation process, including the time 

course and changes in culture conditions through the early parts of the protocol. Split 

into three parts, the early stages of the protocol involve the formation of EBs and 

culture in E8-3G medium to induce mesoderm layer differentiation. Preliminary 

experiments indicated that E8-3G-treated EBs were committed to the mesoderm 

lineage, increasing expression of Brachyury, a transcription factor required for 

mesoderm layer formation and haematopoietic stem cell differentiation. Similarly, 

this treatment was found to increase expression of the haematopoietic stem cell 

marker CD34 and of RUNX1, a transcription factor that regulates haematopoietic stem 

cell differentiation (data not shown). Taken together, these results indicated a definite 

switch upon EB formation and culture with VEGF, BMP4 and SCF.    

 

Figure 3.1 Schematic representation of the protocol for the differentiation of human iPSCs 
into macrophage precursor cells. 
Feeder-free iPSCs were enzymatically dissociated using ReLeSR to form embryoid bodies (A), which were 
subsequently cultured in E8 medium with 50 ng/ml BMP-4, 50 ng/ml VEGF and 20 ng/ml SCF (or E8-3G) for 7-10 
days to allow the EBs to form cystic structures. EBs were further differentiated by seeding 6-8 EBs into a well of 6-
well plate cultured in X-VIVO15 media supplemented with M-CSF and IL-3. Under these conditions, EBs adhere to 
the culture surface and begin to spread, forming factories (B). As the factories continue to differentiate, there is 
formation of phase bright cells, which increase in number and are shed from their factory colonies, allowing them 
to be harvested from the supernatant weekly (C). Scale bars represent 50 µm. 
 

In the second stage of differentiation, non-adherent cells produced in the supernatant 

of differentiation factories were harvested and assayed for expression of various 

myeloid-specific markers by immunocytochemistry (Figure 3.2). Cytocentrifugation 

and immunostaining of the cells revealed a highly homogeneous population of cells 

where typical myeloid surface antigens CD45 and CD11b were expressed. 

Interestingly, the supernatant cells were also positive for CD34, suggesting that they 
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were still undergoing maturation. This trend was similar in both the HD109 and Kolf2 

differentiated cells (Figure 3.2).   

 

Figure 3.2 Schematic representation of the protocol for the differentiation of human iPSCs 
into macrophage precursor cells. 
Representative images of non-adherent myeloid cells formed during M-CSF and IL-3 directed differentiation of 
HD109 and Kolf2 iPS cell lines. The cells were shed into the culture supernatant of the differentiated factories and 
harvested before cytospin and staining for the expression of haematopoietic markers CD34 (green), CD11b (red) 
and CD45 (green). Scale bar represents 50 µm. 

Next, the non-adherent myeloid cells harvested at different time points from the 

differentiation factories (weeks 3 and 5) were analysed for the expression of CD34, 

CD45, CD14 and CD11b by flow cytometry (Figure 3.3). The majority of the HD109 

harvested cells were positive cells at week 3 (82%), whereas CD34 expression was 

negligible (Figure 3.3A). Cells harvested two weeks later displayed a similar FACS 

profile, with an equally high proportion of CD45+ CD14+ double positive cells (80%), 

while CD11b expression was measured at 15% (Figure 3.3B). An immortalised human 

monocytic cell line THP-1 (Tsuchiya et al. 1980), featuring high CD45 and CD11b 

expression, was then used to confirm the monocyte-like antigen profile of the 

supernatant cells (Figure 3.3C).  

Flow cytometry analysis was extended to Kolf2 supernatant cells harvested at weeks 

3 and 5 from the differentiation factories, with similar results. CD45 and CD14 

expression at both time points was measured at over 90%, with CD34 equally low at 

1% (Figure 3.3 D-E). CD11b was also expressed at around 30% for the two harvests, 

showing that the phenotype of the monocyte-like supernatant cells does not vary 

greatly over the course of a differentiation.  
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Figure 3.3 Non-adherent supernatant cells harvested from microglia differentiation factories are positive for haematopoietic markers.   
(A) A high proportion of HD109 supernatant cells harvested from M-CSF & IL-3 differentiation factories at week 3 expressed the myeloid markers CD45 and CD14 (95% and 
82%). CD34 expression in the cells harvested from the same differentiation factories was less than 1%. Co-expression of CD45 and CD14 showed a large population of 82%. 
Gates were defined by using the appropriate isotype control antibodies. (B) Staining for HD109 supernatant cells harvested from the same differentiation factories at week 
5 showed a similarly high proportion of CD45+ (over 85%), CD14+ cells (78%) produced in the culture supernatant. Double staining for CD45 and CD11b showed that 15% of 
the harvested cells were double positive. (C) Expression of CD45 and CD11b in the HD109 and Kolf2 supernatant cells was compared to the myeloid control cell line THP-1 
monocytes, which express high levels of CD45 (over 90%) and CD11b (57%). (D) Differentiation factories set up from Kol2 iPSCs produced a population of monocyte-like 
myeloid cells at week 3 expressing high levels of CD45 and CD14 (both, at over 90%), with CD11b expression measured at 27% and CD34 at 1%. Red peaks denote antigens 
and blue peaks denote isotype controls. (E) Kolf2 supernatant cells harvested from the same differentiation factories at week 5 displayed a similar FACS profile to those from 
week 3. Representative of three independent experiments. 
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As previously mentioned, the neuron-derived cytokine IL-34 is vital for the 

development and maintenance of microglia in the brain, where it binds to the colony-

stimulating factor-1 receptor (CSF1R), whose ablation results in loss of microglia 

(Erblich et al. 2011). Moreover, a recent study demonstrated that stimulation with IL-

34 and GM-CSF can induce a ramified phenotype in blood monocytes (Ohgidani et al. 

2014). Therefore, to induce an in vitro microglial phenotype, Kolf2 and HD109 

macrophage precursor cells (Macpre) were cultured in XVIVO15 media supplemented 

with 10 ng/ml GM-CSF and 100 ng/ml IL-34 for 14 days, before being stained for the 

canonical macrophage/microglia markers TMEM119 and IBA1 (Figure 3.4).     

 
Figure 3.4 Differentiation of macrophage precursor cells with GM-CSF and IL-34 induces a 
microglial-like phenotype.  
Confocal images of HD109 (A) and Kolf2 (B) microglia-like cells, which were plated on PDL-treated fibronectin-
coated coverslips and cultured in XVIVO + GM-CSF + IL-34 for 14 days. MG cells were fixed and stained with 
TMEM119, a cell marker of unknown function highly specific to human and mouse microglia, and the 
macrophage/microglia marker IBA1.   Scale bars represent 20 µm.  

 
  

A 

B 
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3.2.2 Transcriptomic profiling of human iPSC-derived microglia reveals a 

microglial signature   

Following confirmation that the iPSC-derived IL-34 and GM-CSF-treated microglia cells 

(MG) express microglial markers such as IBA1 and TMEM119, RNA sequencing was 

employed to profile the transcriptome of the in vitro differentiated by comparing it to 

the macrophage precursor cells. Samples used for this experiment were drawn from 

three independent differentiations. Correlation analysis showed clear separation 

between the macrophage precursor cells and the IL-34 differentiated microglial cells 

for both genetic backgrounds (Figure 3.5A). Crucially, a disease effect on top of the 

cell type segregation was apparent between the Kolf2 and HD109 samples, as shown 

by the principal component analysis plot (see chapter 4). When compared to their 

respective macrophage precursor cells, differential gene expression analysis (fold 

change of 2 and p-value 0.05) demonstrated a total of 935 and 605 differentially 

expressed (DE) genes in the Kolf2 (Figure 3.5B) and HD109 MG cells (Figure 3.5C) 

respectively. In total, IL-34 and GM-CSF treatment of the respective precursor cells 

increased expression of 374 and 240 genes in Kolf2 MG and HD109 MG cells 

respectively. In contrast, 561 DE genes were downregulated in the Kolf2 WT cells, 

compared to 365 in the HD109 iPSC-derived microglia (Figure 3.5 B-C).   
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Figure 3.5 Transcriptomic profiling of Kolf2 and HD109 iPSC-derived microglia demonstrates a microglial signature in the in vitro cells.     
Differential gene expression was carried out using DESeq2 to generate normalised expression counts. Biological replicates were used for comparative analysis to compute 
significant differentially expressed genes at fold change of 2 and Benjamini-Hochberg p value-adjusted < 0.05.  
(A) Principal component analysis of Macpre and MG cells shows a cell-type specific segregation between Macpre samples and MG samples. PCA was performed using 
“prcomp” and plotted with “ggplot”. (B) Differentiation of Kolf2 Macpre cells into MG cells with IL-34 and GM-CSF resulted in 935 DE genes, with 374 upregulated (log2 fold 
change > 1) and 561 downregulated genes (log2 fold change < -1). (C) Treatment of HD109 Macpre cells with GM-CSF and IL-34 resulted in a total of 605 DE genes in HD109 
MG cells, with 240 upregulated and 365 downregulated genes. The majority of microglia sensome genes were found to be comparably expressed between the Macpre and 
MG cells, except the genes highlighted as green dots on the volcano plots. (D) Differentially expressed microglia sensome genes between Macpre and MG samples. A pseudo-
count, log2 transformed measure of normalised gene expression counts (FPKM+1) was used to compare expression levels between samples (Abud et al. 2017). (E) Canonical 
microglia genes were highly expressed in Kolf2 and HD109 Macpre and MG cells. (F) Levels of the purinergic receptor P2RY12 and surface protein CX3CR1 were surprisingly 
low in all the Kolf2 and HD109 samples. Data analysed by DESeq2 and Benjamini-Hochberg multiple correction procedure used to compute adjusted p-values. * p < 0.05, ** 
p < 0.01, *** p < 0.001. ns – not significant. n=3 independent differentiations.     
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To assess whether a microglial signature could be detected in our Kolf2 and HD109 

microglia cells, a number of complementary analyses were undertaken. Firstly, the 

expression of microglia sensome genes was compared between Macpre and MG 

samples. For this purpose, a list of ~190 ‘microglia sensome’ genes, identified in recent 

publications to be associated with microglia (Hickman et al. 2013; Butovsky et al. 2014; 

Grabert et al. 2016; Galatro et al. 2017), was compiled and included PRRs, 

chemoattractant and chemokine receptors, purinergic and cytokine receptors, cell-to-

cell interaction and ECM-protein receptors as well as various endogenous transporters 

(see Table 1.1 in section 1.2.3 for examples of genes included in the list). The majority 

of sensome genes showed similar expression in Macpre and MG cells, with only a 

handful showing differential expression between the respective MG and Macpre cells, 

highlighted as green dots on the volcano plots (Figure 3.5 B-C). Of those genes, the AD 

risk gene ABI3, transmembrane receptor STAB1 and sodium/calcium transporter 

SLC24A3 were significantly downregulated in HD109 and Kolf2 MG compared to 

Macpre samples, along with the inflammatory-associated transcription factor FOS. 

Conversely, mRNA levels of IL1A, the cytokine released in response to injury were 

higher in the MG cells (Figure 3.5D). Key canonical microglial genes such as C1QA, 

GAS6, GPR34, PROS1, MERTK, TREM2 and SLCO2B1 were strongly expressed, and at 

comparable levels in both cell types (Figure 3.5E). Surprisingly, the microglial surface 

proteins P2RY12 and CX3CR1 were found to be expressed at low levels (Figure 3.5F), 

with CX3CR1 significantly downregulated in the Kolf2 MG vs Macpre (log2FC = -5.547 

& p-value of 1.59 x 10-4) but not in HD109 MG vs Macpre cells (log2FC = 2.479 & p-

value of 0.113).  

 

Secondly, the transcriptomics data was evaluated for expression of markers of 

leukocytes and tissue macrophages and comparisons made with expression of 

sensome genes. Markers for T cells (CD3, CD32), B cells (CD19) and dendritic cells 

(CD123) were not expressed at detectable levels. Other lowly expressed genes 

included CD68 (the phagocytic-promoting lysosomal protein highly expressed in 

monocytes and macrophages), the carrier protein FABP4 and the serine protease 

SERPINB2 (Figure 3.6A). Many recently recognised microglia-specific genes, rather 

than belonging to a particular biological pathway, are mostly implicated in host 
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defence and regulation of immune response. Correspondingly, the iPSC-derived MG 

cells expressed high levels of LGMN (a cysteine protease involved in the MHC II 

pathway of bacterial peptide processing), SQLE (ER-localised enzyme that catalyses 

squalene oxidation, a rate-limiting step in sterol biosynthesis), the lysosomal protease 

cathepsin D and the purinergic receptor P2RX4, highly expressed in the nervous 

system where it has been implicated in inflammation activation and synaptic 

strengthening (Baxter et al. 2011; de Rivero Vaccari et al. 2012) (Figure 3.6B). The 

presence of immune-related transcripts highly expressed in macrophages was 

nevertheless notable in the Macpre and MG cells, including scavenger receptors 

(MSR1 and MARCO) and proteins such as TLR8 (endosomal PRR for viral ssRNA - 

(Cervantes et al. 2012)), IFITM (IFN-induced antiviral proteins that inhibit viral entry 

into the cytoplasm - (Bailey et al. 2014)) and the chemokine receptor 1 (CCR1), which 

enables recruitment of effector immune cells to an inflammation site and has been 

recently identified as enriched in a subpopulation of embryonic microglia  (Hammond 

et al. 2018) (Figure 3.6C). Also expressed by the in vitro MG cells were a host of 

immune alertness genes, including inhibitory (CD33, CD47, TREM2) and classically 

activating molecules such as CD163 and TLR2, suggesting that the cells are in an 

immune vigilant and competent state, capable of reacting to pathogenic stimuli 

(Figure 3.6C). Several transcription factors and regulators have been identified as part 

of the core human microglial transcriptome and these were evaluated in the HD109 

and Kolf2 stem cell-derived cells (Figure 3.6D). While the cells expressed low mRNA 

levels of the dendritic cell-associated transcription factor FLT3 (Figure 3.6A), microglia-

specific TFs SPI1, IRF8 and MEF2C were found in relatively high levels, along with the 

inflammatory associated regulators IRF5 and TRIM22 (interferon-induced) (Figure 

3.6F). Similarly, the cells showed robust expression of the ubiquitous MHC class I 

regulator NLRC5 and the MHC class II regulator CIITA (Meissner et al. 2010), stressing 

the importance of interactions between microglia and other immune cells.  
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Figure 3.6 iPSC-derived microglia display low expression levels of leukocyte markers, but high levels of immune alertness genes.  
Expression of markers for T cells (CD3, CD32), B cells (CD19) and dendritic cells (CD123) was undetected in HD109 and Kolf2 samples. (A) The macrophage genes CD68, 
SERPINB2 and FABP4 were expressed at low levels in Macpre and MG cells, along with the dendritic cell TF FLT3. (B) Newly identified MG-enriched genes P2RX4, LGMN, SQLE 
and CTSD were expressed at comparable levels in the MG and Macpre samples from both Kolf2 and HD109 cells. (C -D) In vitro macrophage precursors and microglia express 
high levels of macrophage-associated scavenger receptors (MSR1, MARCO), TLR proteins (TLR2, TLR8), viral entry IFITM proteins and immune alertness proteins (CCR1, CD33, 
CD47, CD163). (E) iPSC-derived macrophage precursors and microglia cells express several microglia-specific transcription factors such as SPI1, MEF2C, IRF8 and TRIM22. MG 
cells express higher levels of MHC II transcription regulator CIITA.   
 
Expression levels are represented as log2 transformed FPKM counts. Data analysed by DESeq2 and Benjamini-Hochberg multiple correction procedure used to compute 
adjusted p-values. Asterisks denote statistical significance: * < 0.05, ** < 0.01, *** < 0.001, ns – not significant. n=3 independent differentiations.         
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In the final step of analysis, the microglia sensome list described above was employed 

to run a microglial signature enrichment analysis via Gene Set Enrichment Analysis 

(GSEA), in order to find out how the Kolf2 and HD109 iPSC-derived microglia compared 

to other brain cell types, namely brain myeloid cells, neurons and astrocytes. With the 

sensome gene list as the gene set of interest, GSEA was carried out using Fisher’s exact 

test, to determine whether the sensome gene set was significantly enriched in the MG 

samples compared to primary brain cell type samples. Due to lack of availability and 

failure to acquire good quality primary tissues, publicly available datasets were used. 

Direct transcriptomic comparisons to primary samples and microglia derived from 

recently published differentiation protocols (Muffat et al. 2016; Abud et al. 2017) were 

intended but not undertaken given differences in cell culture conditions and 

sequencing platforms – any potential gene expression changes may have reflected all 

those factors, as much as variations according to cell types.  

 

Instead, the enrichment analysis described here below was carried out by identifying 

commonly DE genes in the iPSC-derived microglia cells when compared to human 

cortical neurons, astrocytes and myeloid cells from the (Zhang et al. 2016) dataset, 

chosen as the sequencing platform used by the authors closely matched our own. 

Enrichment analysis for the microglia sensome gene set by Fisher’s exact test was 

calculated, with the results shown in Table 3.1. In sum, both HD109 and Kolf2 iPSC-

derived microglia were significantly enriched for microglia-specific genes, relative to 

neurons, astrocytes and cortex myeloid cells.  

 Kolf2 iPSC-microglia  HD109 iPSC-derived microglia 

Comparison Odds ratio p-value Odds ratio p-value 

MG vs cortex neurons 2.79 1.57 x 10-10 2.84  5.4 x 10-11 

MG vs cortex astrocytes 5.47 2.66 x 10-23 5.54 3.8 x 10-24 

MG vs cortex myeloid cells 3.51 2.18 x 10-15 4.04 3.08 x 10-18 

Table 3.1 Enrichment analysis of microglia sensome genes in iPSC-derived microglia. Dataset used for 
this analysis was the gene list generated by comparative analysis of iPSC-derived microglia against primary 
neurons, astrocytes and myeloid cells.  
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The expression of several MG markers was further validated by Fluidigm qRT-PCR, 

with differential gene expression analysis carried out using the R package “Singular 

Analysis Toolset” (see section 2.7.1). Gene expression values are represented as log2 

expression normalised to the reference genes GAPDH, ß-actin, SDHA, HPRT1, UBC and 

HMBS. Compared to THP-1 monocytes, ANOVA comparisons showed that the iPSC-

derived microglia significantly expressed higher levels of CABLES1 (p < 0.01) and 

TMEM119 (p< 0.05), as well as GPR34 and C1QA (both at p< 0.01). Transcript levels 

were comparable between macrophage precursor and microglia samples, confirming 

RNA-seq data (Figure 3.7 A-B). Equally, the expression of these genes did not vary 

significantly across the two genetic backgrounds of Kolf2 and HD109. However, 

CX3CR1 was significantly downregulated in the MG samples compared to THP-1 (p < 

0.05) and Macpre samples. Moreover, P2RY12 and MERTK expression was lower in 

THP-1 (p< 0.01) but higher in precursor macrophages and microglia cells (Figure 3.7C). 

The family of sialic acid-binding immunoglobulin-like lectins or SIGLECs is made up of 

cell surface receptors that have important homeostatic functions in microglia, in 

particular immunosuppression and neuroprotection. They have been shown mediate 

a number of processes including activation, phagocytosis and inflammasome 

formation through cytoplasmic Immunoreceptor Tyrosine-based Inhibitory or 

Activation Motif or ITIM/ITAM domains (MacAuley et al. 2014). Examples include 

CD33, the neuroprotective SIGLEC11 and SIGLEC12, as well as the AD risk gene TREM2, 

which is associated with the ITAM TYROBP, which recruits and phosphorylates the 

tyrosine kinase SYK to activate cellular responses such as phagocytosis (Takahashi et 

al. 2005). As shown in Figure 3.7D, macrophage precursor and microglia samples from 

both cell lines expressed similarly high levels of TREM2, SYK and TYROBP, while mRNA 

levels of the neuroprotective SIGLEC12 were lower in comparison.    

 

RNA-seq analysis for the enrichment of Alzheimer’s disease-associated risk genes 

showed that the majority of these genes were comparably expressed in the Kolf2 

microglia and their precursor cells (Figure 3.8A). This observation was confirmed using 

qPCR, with results showing that the Macpre and MG express risk genes such as PLCG2, 

CR1, CD33, INPP5D and CD2AP at levels comparable with THP-1 monocytes, with only 

APOE being significantly upregulated in the in vitro derived cells at p< 0.001 (Figure 
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3.8 B-C). This confirms that iPSC-derived microglia can be used to study the influence 

of these genes on microglia function and AD risk in vitro.      
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Figure 3.7 Validation of expression of canonical microglia genes in iPSC-derived microglia by Fluidigm qRT-PCR. 
Kolf2 and HD109 MG were differentiated for 14 days in IL-34 and GM-CSF and all samples assayed by Fluidigm qRT-PCR. Ct values generated by the Fluidigm BioMark qPCR 
software were analysed using the R package “fluidigmSC” to gene expression values, represented here as mean Log2 Expression. Log2 Expression was normalised, during 
analysis, to reference genes GAPDH, ß-actin, SDHA, HPRT1, UBS and HMBS. (A) TMEM119 and CABLES1 are upregulated in Macpre and MG samples compared to THP1, while 
levels are comparable between HD109 and Kolf2 Macpre and MG samples. (B) iPSC-derived Macpre and MG cells express significantly higher levels of C1QA and GPR34 than 
THP1 monocytes. CX3CR1 is downregulated in the MG samples (Kolf2 & HD109) compared to THP1 and Macpre cells. (C) Expression P2RY12 and MERTK is significantly 
upregulated in macrophage precursors and microglia compared THP1. Levels between HD109 and Kolf2 cells did not vary significantly. (D) Macpre and MG cells express 
members of the SIGLEC family such as SIGLEC12, CD33 and TREM2 and their associated receptors.  
 
Statistical analysis used two-way ANOVA with Tukey’s multiple comparisons test. Asterisks denote statistical significance: * < 0.05, ns – not significant. n=3 biological replicates 
for all samples, except THP1 (n=2).  
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Figure 3.8 iPSC-derived microglia express Alzheimer’s disease risk genes.  
(A) Heatmap of 29 genes with variants associated with late onset Alzheimer’s disease showed that the Kolf2 Macpre and MG express several immune genes at similar levels. 
Heatmap and hierarchical clustering based on normalised gene expression counts from RNA-seq data. Data plotted using R function “pheatmap”. (B) Validation of APOE, 
CLU, ABI3 and PLCG2 expression in HD109 and Kolf2 Macpre and MG cells by Fluidigm qRT-PCR. Changes in expression did not show a significant difference between Macpre 
and MG cells. APOE is upregulated in Macpre and MG cells compared to THP1 (p< 0.001). (C) Levels of CR1, CD33, INPP5D and CD2AP in microglia are comparable to expression 
in THP1 monocytes. Log2 Expression normalised to reference genes. Statistical analysis used two-way ANOVA with Tukey’s multiple comparisons test. Asterisks denote 
statistical significance: * < 0.05, ** < 0.01, *** < 0.001, ns – not significant. n=3 biological replicates for all samples, except THP1 (n=2). 
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3.2.3 Functional analysis and validation of Kolf2 iPSC-derived microglia   

Microglial activation is mediated by a complex interaction of cellular signals, 

metabolism and their surrounding microenvironment. They can therefore assume 

diverse phenotypes. Stimulation by LPS results in an M1 phenotype and is associated 

with expression of pro-inflammatory cytokines.  Conversely, microglia can be 

stimulated by IL-4 to an M2 phenotype, for resolution of inflammation and tissue 

repair (Biswas & Mantovani 2012). Though this dichotomous nomenclature doesn’t 

faithfully represent the spectrum of microglial polarisation states and phenotypes, it 

remains a useful tool for in vitro assays (see section 1.2.5). Thus, in order to 

functionally validate the capacity of iPSC-derived microglia to show both M1 and M2 

polarisation states, the inflammatory response of Kolf2 cells under stimulation with 

LPS and IL-4 was investigated. 14-day-differentiated cells were incubated with 1 µg/ml 

LPS or 50ng/ml IL-4 for 24 hours.  

 

LPS-activated gene expression is mediated through TLR4 signalling and involves the 

activation of several pathways including NFB and STAT1, which induce the release of 

pro-inflammatory cytokines and chemokines such as IL-1ß, TNF-, IL-6 and CCL2. qPCR 

results revealed that LPS increased expression of IL-1ß (though this didn’t reach 

significance at p = 0.058), while reducing mRNA levels of the neuroprotective 

molecules CD22 and SIGLEC12 (Figure 3.9A). The nuclear receptor PPAR plays a 

critical immune role by inhibiting pro-inflammatory gene expression and promoting 

anti-inflammatory processes (Clark 2002). Interestingly, PPAR expression was, after 

CD22, the most significantly downregulated gene post LPS incubation (Figure 3.9A). In 

addition, LPS treatment did not appreciably alter transcript levels of pro-inflammatory 

markers such as IL-6, TNF-, CCL2 and IL-8 (Figure 3.9B), which suggests a diminishing 

immune response after 24 hours of exposure to LPS.     
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Figure 3.9 Functional analysis of iPSC-derived microglial response to immune stimuli. 
(A-B) Kolf2 MG cells were incubated with 1 µg/ml LPS for 24 hours. LPS incubation led to decreased 

expression of the anti-inflammatory PPAR and neuroprotective genes CD22 and SIGLEC12. M1 pro-

inflammatory markers such as IL-1ß, TNF- and ICAM1 showed a trend towards upregulation. (C-D) 
Kolf2 MG were stimulated with 50 ng/ml IL-4 for 24 hours to induce a M2 polarisation. This resulted in 

a significant increase of anti-inflammatory genes (CCL17, CCL22, PPAR) while expression levels of M2 
polarisation markers (MRC1, IL-10, CD163) remained constant. (E-F) Incubation of Kolf2 MG cells with 
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1 µM oligomeric Aß1-42 resulted in significant downregulation of both pro- (ICAM1, NLRP3, STAT1, IL-

1ß, IL-8) and anti-inflammatory genes (TGF-ß1, PPAR). (G) Incubation with 1 µM rAß42-1 for 24 hours 

resulted in lower expression of PPAR, CD22 and IL-8. No differences were found in the expression of 
other inflammatory genes. 
    
Log2 Expression normalised to reference genes. Statistical analysis used one-way ANOVA with 
Dunnett’s post hoc comparison. Asterisks denote statistical significance: * < 0.05, ** < 0.01, *** < 0.001, 
ns – not significant. n=3 biological replicates for all samples, except for Kolf2 MG 24h LPS (n=2). 

 
 
Binding of IL-4 to the IL-4 receptor initiates a signalling cascade through the 

transcription factor STAT6 that polarises cells towards an anti-inflammatory 

phenotype typified by increased expression of classical M2 markers such as MRC1, IL-

10 and PPAR (Martinez & Gordon 2014). Stimulation of Kolf2 cells with 50 ng/ml IL-4 

resulted in upregulation of CCL17, CCL22 and PPAR, while mRNA levels of the M2 

markers CD163, IL-10, MRC1 and HLA-DR were not significantly induced (Figure 3.9 C-

D).   

 

Microglia are also activated upon exposure to abnormal protein aggregates, releasing 

cytokines and other inflammatory mediators to induce a cascade of pathways and 

mechanisms thought to contribute to neuronal death (Block et al. 2007). In order to 

measure the microglial inflammatory response to Aß, Kolf2 iPSC-derived microglia 

were stimulated with 1 µM of Aß oligomers (AßO) for 24 hours. This resulted in gene 

expression changes characterised by downregulation of activation molecules such as 

ICAM1, the NLRP3 inflammasome, the interferon regulator STAT1, CD40 (expressed 

on professional antigen presenting cells) and PPAR (Figure 3.9E). The pro-

inflammatory cytokines IL-1ß and IL-8 were also downregulated, while other M1 

markers such as CCL2, IL-6 and TNF- were unchanged (Figure 3.9F). In contrast, the 

anti-inflammatory TGF-ß1 was significantly reduced (p < 0.0042). As a negative control, 

the cells were stimulated with 1µM rAß42-1 for 24 hours, which resulted in PPAR, CD22 

and IL-8 downregulation (Figure 3.9G). Otherwise, the rAß response closely matched 

the unstimulated samples.   
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Figure 3.10 The in vitro microglial response to oligomeric Aß is distinct from M1 and M2 polarisation states.  
(A) 24-hour incubation of Kolf2 iPSC-derived MG cells with 1 µM Aß1-42 oligomers resulted in significantly decreased expression of lipid synthesis genes. (B) Expression of 

cholesterol metabolism regulator ABCA1, which stimulates anti-inflammatory signalling through the PPAR-LXR pathway (NR1H2 and NR1H3), was significantly 
downregulated, along with the Aß receptor LRP1. (C-D) In AßO-treated MG cells, levels of AD CD33, CD2AP, ABI3, APOE, CLU, INPP5D and ABCA7 were significantly decreased.  
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(E) PCA analysis revealed that AßO-treated MG cells clustered away from LPS-treated cells. Additionally, they segregated with IL-4 treated Kolf2 MG cells, despite significant 
differences in expression of lipid and cholesterol metabolism genes (F-G) Treatment of MG cells with Aß oligomers did not induce statistically significant differences in 
expression of canonical microglial genes, except for the downregulation of the phagocytosis-associated C1QA.    
 
Log2 Expression normalised to reference genes. Statistical analysis used two-way ANOVA with Tukey’s multiple comparisons test. Asterisks denote statistical significance: * < 
0.05, ** < 0.01, *** < 0.001, ns – not significant. n=3 biological replicates for all samples, except for Kolf2 MG 24h LPS (n=2). 
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Notably, the ANOVA results highlighted significant decreases in the expression of several 

genes involved in lipid and cholesterol metabolism, including fatty acid synthase (FASN), 

HMG-CoA reductase, HMG-CoA synthase 1 and the sterol response element binding factor 2 

(SREBF2); these genes not only help regulate intracellular cholesterol and are also associated 

with phagocytosis (Iwamoto et al. 2006). Correspondingly, levels of the multifunctional 

receptor LRP1, which acts as a phagocytic receptor for Aß oligomers, were similarly reduced 

following AßO stimulation (Figure 3.10 A-B).  The toxic effects of oligomeric Aß also influenced 

the expression of several AD risk genes, by downregulating CD2AP (p= 0.013), CD33 (p= 0.039) 

and more prominently ABI3, INPP5D, ABCA7, APOE, CLU and PICALM (Figure 3.10 C-D). 

Differences in PICALM, TREM2 and PLCG2 expression levels did not reach significance. This 

pattern of gene expression was found to diverge from the pro-inflammatory LPS Kolf2 

microglial response, as shown by the clear segregation of the LPS-treated samples on the PCA 

plot, generated by using a dataset comprising inflammatory, cholesterol metabolism, 

sensome and AD risk genes (Figure 3.10E). Moreover, oligomeric Aß treatment impacted on 

expression of the MG-specific C1QA, though expression differences in CX3CR1, P2RY12 and 

SIGLEC12 did not reach statistical significance (Figure 3.10F). Other sensome genes including 

the purinergic receptor ADORA3, GPR34, TYROBP and IBA1 were not significantly altered 

following Aß treatment (Figure 3.10G). However, when compared with mRNA levels of IL-4 

treated Kolf2 microglia cells, expression of several sensome genes were found to be 

significantly altered. Overall, the 24h AßO-treated samples seemed to segregate away from 

the IL-4 and LPS-stimulated samples, which suggests that the microglial oligomeric Aß 

response differs significantly from the established M1 and M2 in vitro paradigm.    

3.3 Summary and Discussion  

The work highlighted in this chapter set out to investigate the efficacy and reproducibility of 

the microglia differentiation protocol described in section 2.3. The resulting iPSC-derived 

microglia cells displayed robust expression of microglial markers by immunocytochemistry 

and were enriched for several microglia-exclusive transcripts such as GAS6, C1QA, GPR34 and 

the recently identified immune alertness gene CCR1. RNA sequencing was then used to 

analyse the transcriptome of the in vitro derived cells to establish a microglial signature.   
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This protocol for in vitro microglial differentiation mimics development in the embryo, giving 

rise to a population of monocyte-like primitive macrophage precursor cells (van Wilgenburg 

et al. 2013). The myeloid phenotype of these cells was validated by FACS and immunostaining 

to confirm an expression profile of myeloid markers comparable across two cell lines of 

different genetic background – a wild-type Kolf2 and a Huntington’s disease iPSC line with a 

109 CAG repeat expansion in the HTT gene (HD iPSC Consortium 2012). Recent work has 

elucidated the developmental origin of these in vitro microglia precursor cells, demonstrating 

that they are derived from a RUNX1- and SPI1-dependent lineage distinct from MYB-

dependent monocytes and macrophages (Buchrieser et al. 2017). This makes them closer 

developmentally to yolk-sac-derived precursors of microglia (Ginhoux et al. 2010) and is in 

accordance with the latest findings from fate mapping mouse studies (Mass et al. 2016).  

 

Transcriptomic analysis by RNA sequencing confirmed this close similarity between 

macrophage precursors and IL-34 and GM-CSF-treated microglia cells. Several genes 

identified as exclusive to microglia were expressed at comparable levels in the macrophage 

precursor cells (Figure 3.5). Furthermore, gene set enrichment analysis was used to highlight 

a microglial signature enrichment when the MG cells were compared to other brain cell types 

(see Table 3.1). Nonetheless, this signature reflected the monoculture nature of the in vitro 

cells and featured low expression of CX3CR1, P2RY12 and other genes involved in the 

homeostatic and surveillance functions of microglia (Figure 3.5). In vitro work by Abud et al. 

2017 built on in vivo mouse studies data by Butovsky et al., 2014 to show that TGF-ß removal 

from the microglia differentiating medium strongly influences the microglial transcriptome, 

reducing expression of key markers such as P2RY12, CX3CR1 and TGFßR1. Interestingly, lack 

of TGF-ß also downregulated expression of several key AD-associated genes such as APOE, 

CD33 and BIN1. (Bennett et al. 2018) recently demonstrated that microglial identity is induced 

by brain signalling, emphasising that microglia are highly sensitive to their environment and 

require brain signals to sustain homeostatic gene expression. The authors used a 

transplantation system to assess the survival of various macrophage populations in the 

microglia-deficient mouse brain and crucially found that, though tissue macrophages were 

able to survive and express some characteristic microglial genes, only yolk-sac derived cells 

were able to fully attain microglial identity – emphasising the crucial role of ontogeny on 

correct microglial identity. Similarly, it has been shown that though peripheral macrophages 
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can engraft into the brain, they maintain a unique transcriptional identity divergent to that of 

microglia (Cronk et al. 2018).  

 

No significant differences in the microglial signature of Kolf2 and HD109 microglia cells were 

detected using gene set enrichment analysis, with transcript levels of canonical genes 

expressed comparably between the two cell lines, with a few exceptions (Figures 3.3 & 3.4). 

Fluidigm qPCR validation likewise found a similar pattern of sensome gene expression in the 

IL-34 induced microglia from both cell lines (Figure 3.6), which strongly indicates that the 

expanded CAG track in the HTT gene has no discernible effect on the intrinsic microglia 

sensome. Nonetheless, the variability in the genetic background of the cell lines was reflected 

in the number of differentially expressed (DE) genes in the iPSC-derived microglia samples, 

when compared to their respective macrophage precursors samples. Treatment of the 

precursor cells resulted in the upregulation of 374 DE genes in the Kolf2 microglia, compared 

to 240 genes in the HD109 cells. Similarly, a greater number of genes were significantly 

downregulated in the Kolf2 (561) than in the HD109 microglia (365). This could be attributed 

to a Huntington’s disease effect, whereby the HD109 microglia are developmentally delayed 

in a fashion mirroring the developmental delay in HD iPSC-derived neural stem cells (Mattis 

& Svendsen 2017). However, given the presence of an intact microglial signature in the HD109 

cells, this discrepancy is most likely an artefact of the in vitro differentiation process.   

 

Microglia are capable of adopting various phenotypes. To test the functionality of the in vitro 

derived microglia-like cells, Kolf2 cells were activated with LPS and IL-4, which induce 

polarisation to an M1 and M2 phenotype respectively. LPS challenge for 24 hours was able to 

induce an M1 phenotype, though the characteristically increased expression of several pro-

inflammatory markers did not reach statistical significance. This result suggests that the 

microglial response to LPS diminishes over time and hints at a different M1 polarisation 

phenotype in microglia compared to macrophages, underlining the distinct nature of the 

microglial phenotype. Polarisation to an M2 phenotype using IL-4 was also attempted and 

results showed no alterations in the expression of M2 markers, including the mannose 

receptor MRC1, CD163 as well as HLA-DR and IL-10. Intriguingly, the anti-inflammatory 

nuclear receptor PPAR was upregulated, along with the chemokines CCL17 and CCL22. Again, 

this pattern of gene expression contrasts with expected changes after IL-4 induction in 
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macrophages, though these results compare favourably with reports of decreased sensitivity 

to M2 polarisation in human microglia (Durafourt et al. 2012).  

 

Previous studies carried out within our lab have shown that stimulation with monomeric Aß 

gives rise to a pro-inflammatory response (Emma Cope thesis, 2014). Post treatment with 

oligomeric Aß, Kolf2 microglia segregated away from LPS and IL-4-treated cells, proving that 

the AßO-stimulated phenotype differs from M1 and M2 polarised activation phenotype of 

microglia. Characterised by reduced expression of both pro- and anti-inflammatory genes, 

this inflammatory phenotype also featured the marked downregulation of several AD risk 

genes. These results particularly provide strong evidence linking the microglial response to 

amyloid ß to lipid and cholesterol metabolism, highlighting the PPAR-LXR axis as an 

important player in the regulation of Aß-mediated inflammation. Induction of the anti-

inflammatory PPAR and LXR pathways in mouse macrophages is promoted by LRP1 

signalling, which also inhibits pro-inflammation (Zurhove et al. 2008; May et al. 2013). In 

microglia, LRP1 downregulation results in increased production of pro-inflammatory 

cytokines through the JNK and NFB pathways (Yang et al. 2016). Conversely, activation of 

LRP1 signalling in response to inflammation induces transcription of ABCA1, which regulates 

cellular cholesterol export and the formation of lipid rafts (Xian et al. 2017). The findings that 

stimulation of in vitro microglia with oligomeric Aß aggregates affect LRP1 levels and 

cholesterol metabolism reinforce the notion that cellular cholesterol homeostasis plays a 

crucial role in the inflammatory responses of microglia. One caveat to this approach is the 

fact that this is an acute model of oligomeric Aß toxicity, with 1µM AßO concentration used 

in the experiments. This method has been shown to lead to increased neuronal death in a 

recent study comparing the toxicity of nanomolar and micromolar Aß concentrations to iPSC-

derived neurons (Berry et al. 2018). Dahlgren and colleagues also previously showed that 

oligomeric Aß42 inhibit neural viability significantly more than unaggregated peptides and 

fibrils at nanomolar concentrations (Dahlgren et al. 2002). Therefore, future experiments 

should focus on investigating the effects of more physiological concentrations on the 

microglial phenotype, with particular attention to expression of AD risk genes, immune 

response and cholesterol metabolism genes.   
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Not many studies of stem cell microglia have focused on elucidating the gene expression 

changes associated with in vitro Aß challenge. There is a rationale for carrying out such 

experiments, as a way to study the impact of Aß on specific pathogenic pathways. Abud et al 

2017 demonstrated this when they stimulated their iPSC microglia with fibrillar Aß to show 

that AD risk genes such as ABCA7, APOE, CLU, TREM2 and TYROBP were upregulated by the 

treatment. Equally, the focus of many ongoing studies will be to reveal how iPSC-derived 

microglia interact with AD pathology in vivo, by using humanised tau and amyloid mouse 

models. This exciting avenue of research is set to greatly advance the AD neuroinflammation 

field, and answer pertinent questions, for example regarding the role of microglia in tau 

propagation in AD (Asai et al. 2015; Maphis et al. 2015). Moreover, transplantation of stem 

cell microglia into AD mouse models will allow to investigate the influence of microglia-

enriched risk genes and specific disease-associated mutations on pathology in vivo.  



63  

4. CHARACTERISATION OF THE CELL-

AUTONOMOUS EFFECTS OF THE HTT 

GENE CAG EXPANSION ON IPSC-

DERIVED MICROGLIA 

4.1 Introduction  

Immune activation in the central nervous system, primarily driven by microglia, is a 

major feature of Huntington’s disease. Inflammation caused by a gain of toxicity of 

mutant HTT represents an important mechanism in HD pathogenesis (Ellrichmann et 

al. 2013), with current evidence suggesting that efficacy of immune system function 

may act as a disease modifier (Crotti & Glass 2015).    

 

Though generally associated with neuroprotection, microglia in HD acquire an 

inflammatory phenotype, resulting in elevated levels of pro-inflammatory cytokines 

in the brains of HD patients and in several mouse models (Dalrymple et al. 2007; 

Silvestroni et al. 2009). Moreover, when stimulated with lipopolysaccharide (a 

component of the bacterial cell wall), HD immune cells cultured ex vivo exhibit an 

exaggerated immune response, secreting higher levels of pro-inflammatory cytokines 

(Björkqvist et al. 2008; Trager et al. 2015). Expression of mutant HTT seems key to this 

pathogenic phenotype. Indeed, Crotti et al. 2014 showed that mHTT-expressing 

microglia in R6/2 and Q175 knock-in mice (Menalled et al. 2012) are primed for an 

enhanced immune response through increased basal expression of pro-inflammatory 

and neurotoxic genes that potentiate neuronal death (Crotti et al. 2014). In particular, 

mHTT expression increased expression and transcriptional activity of the transcription 

factor PU.1, leading to higher expression of PU.1-C/EBP target pro-inflammatory 

genes such as Il6, Irf1, Tnf and Tlr2. The same study also found corresponding higher 
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expression of SPI1 (PU.1), TLR2, IL6 and IRF1 in the striatum of post-mortem HD brains 

in comparisons with matched controls. Elsewhere, mutant HTT has also been detected 

in monocytes and macrophages using time-resolved FRET, where levels tracked 

disease burden (Weiss et al. 2012).       

 

The hyper-reactivity of HD immune cells is also partially mediated through altered 

intracellular signalling pathways centred around NFB, a major regulator of 

inflammatory mediator activation in immune cells. Mutant HTT has been shown to 

interact with the IKK complex, leading to the phosphorylation and degradation of 

IB. This releases NFB from cytoplasmic sequestration, allows its nuclear 

translocation and enhances its activity. Trager and colleagues recently demonstrated 

the reversibility of this cellular dysfunction by using glucan-encapsulated small 

interfering RNA particles to lower mHTT levels in primary monocytes and 

macrophages isolated from patients with HD (Träger et al. 2014). This intervention 

lowered cytokine production in macrophages and led to transcriptional changes in 

monocytes. Interestingly, cytokine production was reduced in siRNA-treated WT cells, 

suggesting that wild-type HTT plays a role in cytokine production.          

 

Wild-type HTT also plays a role in actin remodelling and microtubule dynamics 

(Cattaneo et al. 2005), processes required for a variety of immune functions including 

cytokine trafficking and release (Lacy & Stow 2011), and cell migration. Fittingly, HD 

microglia isolated from YAC128 (yeast artificial chromosome model of human HD gene 

with 128 CAG repeats) and BACHD (bacterial artificial chromosome of human HD gene 

with 97 CAG repeats) mice (Slow et al. 2003; Gray et al. 2008) were shown to exhibit 

impaired migration, while aged BACHD microglia also showed a delayed response to 

laser-induced injury (Wanda Kwan et al. 2012). This deficit was attributed to mHTT-

mediated decreased membrane ruffling and lower levels of the actin-binding protein 

cofilin, which plays an essential role in the regulation of actin polymerisation and is 

required for cell migration (Dawe et al. 2003). The same study also reported that 

monocytes and macrophages isolated from HD patients showed severe impairments 

in migration, agreeing with findings by Munsie and colleagues that revealed deficits in 

actin remodelling in patient-derived HD lymphocytes (Munsie et al. 2011). It is also 
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worth noting that impaired migration has been suggested as an explanation for the 

absence of infiltration of immune cells into the brain in mouse models and HD patients 

(Crotti & Glass 2015).         

A recent RNA-sequencing study of blood-derived monocytes from HD patients found 

a significant enrichment in pro-inflammatory pathway activation in the transcriptome 

of HD monocytes at the basal level (Miller et al. 2016). Functional gene sets associated 

with innate immunity, cytokine production and inflammatory response, especially 

genes related to the NFB pathway, were enriched, adding support to the notion that 

mHTT primes HD myeloid cells.  

4.2 Aims  

Given the overwhelming amount of evidence for pathogenic abnormalities in HD 

immune cells from patients as well as mouse models, experiments in this chapter were 

aimed at characterising the cell-autonomous phenotype of human microglia derived 

from HD iPS cell lines containing 109 CAG repeats. Having established correct 

expression of canonical microglial markers in chapter 3, RNA-sequencing was used 

here to closely examine the transcriptome of the HD109 iPSC-derived microglia and 

compare it to Kolf2 WT microglia. Finally, differentiated HD109 microglia were 

assayed for their inflammatory response to stimulation with LPS to investigate 

whether the HD cells exhibited the exaggerated immune response characteristic of 

HD immune cells.     
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4.3 Results

4.3.1 Transcriptomic analysis of HD109 iPSC-derived microglia  

Gene expression analyses uncovering the transcriptional changes in human HD 

immune cells have been predominantly carried out in peripheral blood cells (Runne et 

al. 2007; Mastrokolias et al. 2015). Indeed, while one study has looked at the 

transcriptome-wide effects associated with mHTT expression in HD patient-derived 

monocytes (Miller et al. 2016), to date no study has conducted a similar analysis of 

human microglia in HD. Therefore, in order to dissect any microglial-specific 

transcriptional changes, microglial cells and their precursors were generated from 

control Kolf2 and HD109 iPS cells for transcriptomic analysis by RNA sequencing.  

 

Using principal component analysis (PCA), a correlation analysis showing the variance 

between data, the samples were shown to segregate by cell type, macrophage 

precursor samples from both cell lines showing orthogonal separation from microglia 

samples from both cell lines (Figure 4.1A). Analysis on the basis of disease indicated a 

distinct disease effect between the respective Kolf2 control and HD109 precursor and 

microglia samples. After processing the RNA sequencing data (see section 2.9), 

differential gene expression analysis was used to calculate the number of differentially 

expressed (DE) genes across the different samples. To investigate the possibility of a 

disease signature common to both HD cell types in comparison with the respective 

Kolf2 samples, a HD-specific meta-analysis was carried out, identifying 421 genes with 

significantly altered expression in both HD cell types vs Kolf2 control (Figure 4.1B). 

These were obtained using a threshold of 0.05 for statistical significance and a log fold 

change of expression with absolute value of at least 1, corresponding to a 2-fold 

change in mRNA expression. Of that total, 196 genes were upregulated compared to 

223 downregulated genes. The gene lists were then inputted into the functional 

annotation tool DAVID (Huang et al. 2008) to uncover any enriched biological themes 

and functionally related gene groups. Among the upregulated genes, gene sets 

relating to ubiquitin conjugation, mitosis, cell cycle, DNA damage, DNA repair and cell 

division were found to be enriched. On the other hand, significantly downregulated 
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gene sets included those associated with cellular organelles such as lysosome, 

endoplasmic reticulum and Golgi membrane (see Table 4.1 below).         

GO term  Fold enrichment  Benjamini corrected p value 

Ubiquitin conjugation  2.398 6.55 x 10-4 

Mitosis 5.035 6.91 x 10-3 

Cell cycle 3.044 1.1 x 10-2 

DNA damage 3.747 3.55 x 10-2 

DNA repair 4.052 3.84 x 10-2 

Cell division 3.400 4.96 x 10-2 

 

Lysosome 4.768 1.02 x 10-2 

Endoplasmic reticulum 2.484 1.12 x 10-2 

Golgi membrane 2.652 3.29 x 10-2 

Table 4.1 GO terms upregulated (top) and downregulated (bottom) in HD macrophage precursor and 
microglia cells. 
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Figure 4.1 Transcriptomic analysis of HD109 microglia by differential gene expression reveals immune pathways likely to be impacted.    
(A) Correlation analysis of Kolf2 and HD109 Macpre and MG cells segregation of the samples by cell type and by genotype, indicating a disease effect. Data presented here 
is same as in Figure 3.5A. (B) Differential gene expression analysis (> 2-fold, p< 0.05) identified a common disease signature in the HD Macpre and MG cells compared to 
Kolf2 samples. 421 genes were significantly altered in both HD Macpre and MG cells vs their respective Kolf2 WT cells - 196 upregulated and 223 downregulated genes. (C) 
Volcano plot highlighting differential expression of 1114 genes (red dots) in HD109 compared to Kolf2 microglia. X axis shows log2 fold change and BH corrected p-values 
shown on Y axis as negative log (base 10) values. n=3 independent differentiations. (D) Analysis of KEGG pathways impacted by differential expression in HD109 MG cells was 
performed by iPathwayGuide Impact analysis package (AdvaitaBio). Top 13 Immune pathways predicted to be affected in HD109 MG include cell adhesion, cytokine-cytokine 
receptor interaction, antigen processing, chemokine signalling and phagosome.   
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The next analysis focused on the microglial-specific differences between the 

transcriptomes of the HD109 and Kolf2 cells. Out of a total of 17039 genes with 

measured expression, DE analysis of the data identified 1114 DE genes (233 

upregulated and 881 downregulated) in HD109 cells compared to Kolf2 control cells 

(Figure 4.1C). The top 20 genes ranked by p-value correction contained several 

immune-related transcripts, including BDKRB1, CALR, CD151 (cell adhesion molecule), 

CTSB, CX3CR1, CXCL1, HLA-A/-B/-H and IL15RA (see appendix 1).  

 

To contextualise the observed transcriptional changes in the HD109 microglia into 

biological relevance, the iPathwayGuide Impact Analysis package (AdvaitaBio) was 

utilised, as it incorporates analyses of pathways, biological processes and miRNAs (see 

section 2.9.4). Following analysis of impacted biological processes, a number of 

immune system themes and processes were represented, including immune 

response, response to stimulus, cell migration, chemotaxis and extracellular matrix 

organisation. Enrichment analysis showed that developmental and cell proliferation 

processes were also heavily represented outside the top 10 enriched GO terms (see 

Table 4.2). Table 4.3 shows the corresponding GO molecular functions. Of the 

enriched molecular functions, membrane receptor binding and activities including 

cytokine, chemokine and other signalling molecules featured prominently. It is worth 

noting that redundancy is a feature of these analyses, due to overlapping gene sets.    

GO Biological process DE genes (#/ALL) FDR-adjusted p value 

Immune response 151/1200 7.783 x 10-11 

Response to stimulus 531/6428 1.503 x 10-8 

Defence response  136/1142 1.503 x 10-8 

Cell migration 128/1055 1.592 x 10-8 

Chemotaxis  71/458 1.592 x 10-8 

Response to external stimulus  173/1602 3.942 x 10-8 

Cell communication  417/4835 5.188 x 10-8 

Inflammatory response 76/538 1.752 x 10-7 

Localisation of the cell 131/1141 1.752 x 10-7 

Regulation of cell migration 82/609 2.83 x 10-7 

Table 4.2 Representation of enriched gene sets in differentially expressed genes in HD109 microglia. 
GO terms list was generated by inputting DESeq2 data frame into iPathwayGuide Impact analysis package.  
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GO Molecular function DE genes (#/ALL) FDR-adjusted p value 

Receptor activity 124/910 2.979 x 10-12 

Molecular transducer activity 124/910 2.979 x 10-12 

Transmembrane receptor activity 95/646 4.062 x 10-11 

Transmembrane signalling receptor activity 91/607 4.062 x 10-11 

Signalling receptor activity 97/694 3.520 x 10-10 

Cytokine activity 32/134 3.385 x 10-8 

Chemokine receptor binding 17/41 5.609 x 10-8 

Chemokine activity 15/32 6.77 x 10-8 

Receptor binding  126/1134 6.018 x 10-7 

Collagen binding 18/60 5.01 x 10-6 

Table 4.3 Molecular function gene sets represented in the DE HD109 microglia cells. 

Pathway analysis identified 12 KEGG pathways significantly altered in the HD 

microglia, following FDR correction (Figure 4.1D). A number of immune pathways 

were predicted to be impacted, including cytokine-cytokine receptor interaction 

(KEGG:04060 – FDR = 2.19 x 10-4), antigen processing and presentation (KEGG: 04612 

– FDR = 0.001), hematopoietic cell lineage (KEGG: 04640 – FDR = 0.001), autoimmune 

thyroid disease (KEGG: 05320 – FDR = 0.008), chemokine signalling (KEGG: 04062 – 

FDR = 0.029), allograft rejection (KEGG: 05330 – FDR = 0.029), Staphylococcus aureus 

infection (KEGG: 05150 – FDR = 0.035), phagosome (KEGG: 04145 – FDR = 0.035) and 

complement  and coagulation cascades (KEGG: 04610 – FDR = 0.047). The most 

affected pathway in terms of number of DE genes was cytokine-cytokine receptor 

interaction (36 DE genes), followed by neuroactive ligand-receptor interaction (29 DE 

genes), cell adhesion molecules (24 DE genes) and chemokine signalling pathway (20 

DE genes). 

 

When considering the cytokine-cytokine receptor interaction and chemokine 

signalling pathways together, a pattern of dysregulation becomes evident, whereby 

several chemokines including CCL7, CCL17 and CCL18 and members of the CXC 

subfamily were found to be downregulated compared to just one, CCL24 being 

upregulated, log2FC = 3.284 & p-value of 0.021 (Figure 4.2B). In addition, the 

chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6) bind the common chemokine 

receptor, IL8RB or CXCR2. On the other hand, only two cytokines were shown to be 
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upregulated in the HD109 stem cell-derived microglia, TNFSF18 (log2FC of 2.657 and 

p-value of 0.026) and TNFSF11 (log2FC of 3.98 & p-value 0.041) (Figure 4.2A). Both are 

members of the TNF ligand family, thought to be important in the regulation of T 

lymphocyte survival in peripheral tissues. The anti-inflammatory IL-10 was found in 

lower levels (log2FC of -1.687 & p-value 0.010) in the HD109 microglia, along with 

CLCF1 or BSF3 (log2FC of -1.503 & p-value 0.036), a member of the IL-6 family which 

induces tyrosine phosphorylation of the IL-6 receptor subunit gp130, LIF receptor beta 

and the transcription factor STAT3. Though most chemokine receptors levels 

remained unchanged, levels of CCR2 (log2FC of 5.688 and p-value 0.010) and CX3CR1 

(log2FC of 9.412 and p-value 1E-06) were significantly upregulated (Figure 4.2B). The 

important adaptor proteins [ADCY9 (log2FC of -1.194 and p-value 0.017), STAT1 

(log2FC of -1.416 and p-value 7.139E-04) and GNG11 (log2FC of -2.17 and p-value 

0.034)] were also downregulated, leading to actin regulation, cytokine production, 

migration and chemotaxis listed among the predicted perturbed processes (Figure 

4.2C). Crucially, levels of CSF1R, the receptor which mediates microglial proliferation 

and survival, were shown to be significantly higher in the HD microglia (log2FC of 1.411 

and p-value 0.020) compared to Kolf2 cells.   
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Figure 4.2 Several immune pathways are predicted to be 
altered in HD109 microglia.     
(A) The TNF family ligands TNFSF11 and TNFSF18 were upregulated 
in HD109 MG, whereas the majority of cytokines including IL-10 
were downregulated compared to Kolf2 MG cells. 
 (B) With the exception of CCL24, the expression of several 
chemokines was downregulated in the HD109 MG cells. The 
chemokine receptors CX3CR1 and CCR2 were significantly 
upregulated in the HD MG cells.  
(C) Dysregulation in chemokine signalling was predicted to perturb 
several processes, including cell migration and chemotaxis, actin 
regulation and cytokine production. Chemokine signalling pathway 
diagram (KEGG: 04062) overlaid with computed iPathway Guide 
perturbation analysis (bold red lines and arrows). Perturbation 
analysis accounts for measured fold change for the gene and for 
the accumulated perturbation propagated from any upstream 
genes. The highest negative perturbation is shown in dark blue, and 
the highest positive perturbation in dark red. 
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 (D) 24 cell adhesion molecules, belonging to the KEGG pathway (04514) were reported as DE in the HD109 MG cells. (E) Differential expression of extracellular matrix-
receptor interaction molecules (KEGG: 04512) in HD109 microglia in comparison to Kolf2 WT cells. (F) The neuroactive ligand-receptor interaction KEGG pathway contained 
29 DE genes in the HD109 microglia.         
 
Bar plots of top-30 genes out of total number of DE genes in a pathway. Upregulated genes displayed in red, downregulated in blue. Box and whisker plots outline the 
distribution of DE genes annotated to the KEGG pathway. Box represents the first quartile, the median and third quartile; outliers are shown as circles.   
 

D 

E 

F 



74  

Two closely related pathways were also predicted as dysregulated: cell adhesion 

molecules (KEGG: 04514 – FDR = 2.19 x 10-4) and extracellular matrix-receptor 

interaction (KEGG: 04512 – FDR = 0.001). A number of cell adhesion genes that 

regulate pre- and post-synaptic neuronal interactions as well as interactions between 

neurons and other nervous system cells were altered (Figure 4.2D). Those include the 

neuronal adhesion genes CDH2 (log2FC of -1.866 and p-value 0.006), L1CAM (log2FC 

of -2.626 and p-value 0.003), NLG4Y (log2FC of 1-9.807 and p-value 1 x 10-6) and 

CADM3 (log2FC of -4.139 and p-value 0.001), all significantly downregulated whereas 

CNTN2 was the only neuronal adhesion gene markedly upregulated (log2FC of 8.082 

and p-value 0.044). Also upregulated was the epithelial and tight junction protein 

CLDN10 (log2FC of 6.563 and p-value 0.009) while the claudin family members CLDN1 

(log2FC of -2.798 and p-value 0.018) and CLDN28 (log2FC of -1.133 and p-value 8.118 

x 10-4) and the endothelium adhesion proteins VCAM1 (log2FC of -2.315 and p-value 

0.008) and JAM2 (log2FC of -2.419 and p-value 0.032) were significantly reduced in the 

HD microglia. Notably, several immune-specific cell adhesion molecules were altered, 

with predicted perturbating effects on antigen processing and presentation via the 

MHC I and MHC II pathways (below). Examples include ALCAM, an activated adhesion 

molecule that binds the T-cell CD6 antigen (log2FC of 1.506 and p-value 0.003) and 

CD80, a receptor that binds to T-cells when activated and induces their proliferation 

(log2FC of -1.042 and p-value 0.005).    

The HD109 microglia also displayed significantly lower levels of transcripts coding for 

integrins, receptors that facilitate cell adhesion to the extracellular matrix: ITGA1, 

ITGA2, ITGA3 and ITGA5. Indeed, only ITGB7 levels were higher in HD109 vs Kolf2 

microglial cells (Figure 4.2E).    

 

The KEGG pathway neuroactive ligand-receptor interaction (KEGG: 04080) was 

another predicted to be dysregulated by HD109 microglia. The most perturbed gene 

here was the bradykinin receptor or B1BDKRB1 (log2FC of -5.42 and p-value 1 x 10-6), 

which mediates binding to bradykinin, a peptide released in inflammatory conditions. 

Other downregulated neuroligand receptors were the acetylcholine receptor subunit 

genes CHRNA1 and CHRNA3, the NDMA receptor subunit GRIN3B and the muscarinic 

cholinergic receptor CHRM2 (Figure 4.2F). Additional notable receptors belonging to 
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this pathway that were upregulated in HD microglia included the GABA-A receptor 

subunit GABRA3 (log2FC of 5.026 and p-value 1 x 10-6) as well the glutamate AMPA 

receptors GRIA1, GRIA2 and GRIA4. Intriguingly, transcript levels for the adenosine 

receptors A1 and A2B were markedly lower, while downregulation of the microglial 

sensome gene ADORA3 did not reach statistical significance (log2Fc of -1.018 and p-

value 0.253). Similarly, mRNA levels for the purinergic receptors P2RX6 and P2RY2 

were also lower in the HD109 cells (log2FC of -3.003 and -2.039) whereas P2RX1 

(log2FC of 1.567 and p-value 0.031) and P2RY12 (log2FC of 1.935 and p-value 0.152) 

levels were higher.       

 

Antigen processing and presentation (KEGG: 04612 – FDR = 0.0010) was another 

pathway predicted to be impacted by the transcriptional changes identified in HD109 

microglia (Figure 4.3A). Upon closer inspection, several MHC I and MHC II molecules 

were found in significantly lower levels in the HD in vitro microglia. All MHC class I 

molecules, expressed in nearly all cells and present peptide antigens processed by the 

proteasome and derived from the ER, displayed significantly lower mRNA levels. Of 

the class II pathway, expressed in professional antigen presenting cells, HLA-DOB 

(log2FC of -1.933 and p-value 7.67 x 10-4) was found at reduced mRNA levels in the HD 

MG cells, along with mRNAs for cathepsins B and L. Perturbation analysis predicted 

that these changes would affect presentation of endogenous and endocytosed 

antigens to natural killer (NK) cells.         

The process of phagocytosis, an important function of microglia, was also identified 

among the dysregulated pathways (KEGG: 04145 – FDR = 0.035) (Figure 4.3B). Many 

transcripts in this pathway were shared with the antigen presentation pathway 

described above. The phagocytosis-promoting receptors FCAR, FCGR2B and FCGR2C 

exhibited markedly reduced mRNA levels, along with the scavenger receptor MARCO 

(log2FC of -4.327 and p-value 2.154 x 10-5), the complement receptor C1R and integrins 

ITGA2 and ITGA5. In contrast, three important genes were upregulated in the HD 

microglia compared to Kolf2 WT: the scavenger receptor CD36 (log2FC of 1.262 and p-

value 0.008), the NADPH oxidase 2 gene CYBB, superoxide enzyme that generates 

reactive oxygen species (log2FC of 1.208 and p-value 0.003) and the actin-binding 
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protein coronin 1A, which initiates fusion of the phagosome to the lysosome (log2FC 

of 1.182 and p-value 0.008); perhaps hinting at a compensatory mechanism.  

 

According to the iPathwayGuide Impact analysis, the final pathway predicted to be 

significantly affected was the complement and coagulation pathway (KEGG: 04610 – 

FDR = 0.047), which had 13 DE genes, of which C5 and C7 were upregulated (Figure 

4.3C). CR2, CLU, MASP1, C1S, C1R and VTN were all found to be downregulated in 

HD109 MG cells.  
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Figure 4.3 Phagocytosis and antigen processing and 
presentation are among the top pathways predicted to be 
dysregulated in HD109 iPSC-derived microglia. 
(A) Perturbation analysis by iPathway Guide identified antigen 
processing and presentation as likely affected in HD109 MG. 
Highest negative perturbation shown in dark blue. Changes 
predicted to affect antigen presentation to natural killer cells.   
(B) Phagosome KEGG pathway diagram overlaid with measured 
fold changes for genes including CYBB, CD36 and coronin 
(upregulated) and downregulated receptors such as FCGR2B and 
MARCO. (C) Complement pathway was enriched with 13 DE 
genes in HD109 MG cells.  
 
Bar plots of top-30 genes out of total number of DE genes in a 
pathway. Upregulated genes displayed in red, downregulated in 
blue. Box and whisker plots outline the distribution of DE genes 
annotated to the KEGG pathway. Box represents the first 
quartile, the median and third quartile; outliers are shown as 
circles.   

 
 

B C 
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To gain further insight into the underlying mechanisms driving the differential gene 

expression observed in the HD109 stem cell-derived microglia, upstream regulator 

analysis was performed using Ingenuity Pathway Analysis software (IPA, Qiagen). This 

software compares gene expression in a dataset with known gene lists regulated by 

specific upstream signalling molecules and networks (p-value of overlap) and predicts 

whether a specific molecule is likely to be activated or inhibited (z score). Using a z 

score of > 2 or < -2 and p value of < 0.01 as cut-offs for ascribing significance, the 

extensive list of predicted upstream regulators was narrowed down to 41, with the 

majority (28 out of 41) found to be significantly inhibited (see Table 4.4) compared to 

13 predicted to be activated (see appendix 3).  

Upstream regulator  Activation z-score P value of overlap Function  

Lipopolysaccharide  -4.272 6.42E-14 
Bacterial cell wall component that elicits 

strong immune response 

NFB complex -4.222 0.0022 
Family of TFs that regulate inflammatory 

response 

TP53 -4.17 1.7E-05 
Tumour suppressor involved in regulation 

of apoptosis 

IFN-2 -4.114 6.16E-05 
Type I IFN cytokine produced by virus-

infected cells 

poly rI:rC-RNA  -3.806 2.05E-05 
Synthetic drug that activates IFN-

inducible genes 

IFN- -3.668 1.04E-10 Immune response-mediating cytokine 

IL1A -3.609 2.15E-03 Pro-inflammatory cytokine 

TNF -3.545 1.53E-15 Pro-inflammatory cytokine 

F2 -3.502 1.94E-03 
Serine protease involved in clotting 

process  

IFN-ß -3.399 7.75E-04 
Type I IFN cytokine involved in innate 

immune response 

Table 4.4 IPA of upstream transcriptional regulators inhibited in HD109 iPSC-derived microglia. IPA 
was used to predict activation of specific transcription regulators that overlap with the transcriptome changes 
observed in HD109 microglia. The upstream regulators were ranked by activation z-score, with a significant p 
value cut-off of < 0.01. The 10 most significant regulators and networks were included in the table above (for the 
remaining inhibited regulators – see appendix 2).    

The top activated regulator in terms of z score was the p38 MAPK kinase inhibitor 

SB203580 (z score of 3.885 and p-value overlap 1.33 x 10-8), followed by the nuclear 

receptor retinoic acid receptor alpha or RARA (z score of 3.414 and p-value of overlap 
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5.41 x 10-7). The cytokine IL1RN, whose expression was upregulated (log2FC of 2.254 

& p-value 0.034), was identified as one of the activated upstream regulators (z score 

of 2.279 and p-value 1.64 x 10-3), along with the growth factor DKK1 (z score of 2.005 

and p-value 1.94 x 10-4). Predictive activation of the transcription factor STAT3, 

previously identified as an activated regulator in HD monocytes (Miller et al. 2016), 

failed to reach significance (z score of 1.12 and p-value 7.29 x 10-4) whereas NKX2-3 (z 

score of 2.103 and p-value 6.63 x 10-6) and MYCN (z score of 2.671 and p-value 7.85 x 

10-4) were predicted as significantly activated.   

In contrast, a large number of cytokines, transcription factors and pathways were 

predicted to be inhibited in the HD109 microglial cells. Top of this list were the LPS 

pathway (z score of -4.272 and p-value overlap 6.42 x 10-14), NFB complex (z score of 

-4.222 and p-value overlap 2.2 x 10-3), TP53 (z score of -4.17 and p-value overlap 1.7 x 

10-5), IFN2 (z score of -4.114 and p-value overlap 6.16 x 10-5), IFN- (z score of -3.668 

and p-value overlap 1.04 x 10-10) and TNF (z score of -3.545 and p-value overlap 1.53 

x 10-15). Several other regulators including IL6, IL1ß, IFN, IL4, ERK1/2, p38 MAPK, 

IRF3, IRF1 and STAT1 were similarly predicted to be significantly inhibited, though 

TLR4 didn’t fit the z score criterion (-1.58 and p-value overlap 6.65 x 10-4). Overall, 

these data firmly suggest that the transcriptional changes observed in the HD109 stem 

cell-derived microglia are associated with inhibition by several upstream regulators.  
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4.3.2 Functional validation of HD109 of iPSC-derived microglia  

Upstream regulator analysis carried out using IPA (see section 4.3.1) projected several 

inflammatory pathways to be inhibited in HD109 MG, including the NFB (Figure 4.4A) 

and LPS pathways (Figure 4.5A). To test this hypothesis, the expression of NFB 

pathway genes in the RNA-seq data was compared to WT Kolf2 cells. Out of a total of 

50 genes, only three were differentially expressed: IL1R1 (log2FC of -1.411 and p-value 

0.018), IL10 (log2FC of -1.687 and p-value 0.01) and STAT1 (log2FC of -1.416 and p-

value 7.14 x 10-4) were downregulated (Figure 4.4B). All other genes in this pathway, 

including important adaptor proteins such as MYD88 were expressed at comparable 

levels in both cell lines, though differences in IL-1ß did not reach statistical significance 

(log2FC 1.115 and p-value 0.241) (Figure 4.4C). The expression of key NFB pathway 

genes was further validated by Fluidigm qRT-PCR and results confirmed RNA-seq data 

observations that mRNA levels of NFB genes did not vary significantly between 

HD109 and Kolf2 microglia samples (Figure 4.4 D-E).      
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Figure 4.4 The expression of NFB pathway genes is unaltered in HD109 microglia compared to WT Kolf2 microglia.      
(A) IPA’s Upstream regulator analysis of the DE genes in the HD109 microglia RNA-seq dataset predicted the inhibition of several inflammatory pathways including the NFB 
complex. Regulators with significantly inferred activation (IL-10, SMAD7 and STAT3) are shown in orange, inhibited regulators (TNF, IL-6, IL-1ß, TGFß1, STAT1 and IRF1) are 

shown in blue. (B) Expression of various components of the NFB pathway was assessed by RNA-seq. No significant differences were found in levels of NFB subunits RELA 
and RELB, as well as the inflammatory activation markers TNF, ICAM1, CCL2 and IRF1. (C) Out of 50 genes in the pathway, three were differentially expressed (downregulated) 
in HD109 microglia: IL1R1, IL-10 and STAT1. RNA-seq expression levels are represented as log2 transformed FPKM pseudo-counts. Data analysed using one-way ANOVA with 
Tukey’s multiple comparison test. Asterisks denote statistical significance: * < 0.05, **  < 0.01, *** < 0.001, ns – not significant. n=3 independent differentiations.  
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(D-E) Fluidigm qPCR validation of NFB pathway genes expression in the HD109 microglia. No statistically significant differences were found in the expression levels of several 
genes between Kolf2 and HD109 iPSC-derived microglia, despite a notable trend towards upregulation. Fluidigm qRT-PCR data are presented as log2 expression normalised 
to reference genes. Statistical analysis used one-way ANOVA with Dunnett’s post hoc comparison. ns – not significant. n=3 biological replicates, except THP-1 (n=2). 
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Mouse model studies have shown how HD immune cells cultured ex vivo exhibit a 

hyper-reactive profile upon LPS stimulation, secreting higher levels of pro- 

inflammatory cytokines compared to controls (Björkqvist et al. 2008; Trager et al. 

2015). Thus, the hypothesis that LPS-stimulation of HD109 microglia may result in a 

hyper-reactive was investigated, with expression of classical M1 markers and LPS 

pathway genes assessed by qPCR. HD109 and Kolf2 microglia were differentiated for 

14 days in IL-34 and GM-CSF, after which the cultures were incubated with 1 µg/ml 

LPS for 4 and 24 hours, as gene expression changes following LPS stimulation peak at 

around 4 hours (Yamamoto et al. 2004; Aung et al. 2006). No notable differences were 

evident in the magnitude of change in expression of activation molecules after 4 hours 

between HD and Kolf2 microglia, which suggests that both cell lines exhibited the 

expected M1 activation or polarisation state. Genes such as IRF1, CCR7, ICAM1, CD40 

and NLRP3 were upregulated to similar levels in both LPS-treated cell samples (Figure 

4.5B). Though these differences were not statistically significant, there was a trend 

towards higher mRNA levels of M1 pro-inflammatory cytokines in unstimulated 

HD109 microglia, including TNF-, IL-8, IL-6, IL-1ß and CCL2. Subsequently, these 

genes were upregulated in response to LPS incubation at 4 hours, with no differences 

in mRNA levels post incubation between the cell lines (Figure 4.5C). However, the 

magnitude of the mRNA increases between the LPS-treated microglia samples differed 

for two genes, TNF- and IL-1ß. For TNF-, mRNA levels increased by a greater 

magnitude in the Kolf2 WT cells (3-fold increase at p = 0.0024) compared to HD109 

cells (2-fold increase at p= 0.0217) (Figure 4.5C). A similar pattern was observed for IL-

1ß, with a 3-fold increase in gene expression for Kolf2 cells (p= 0.0073) versus 2.5-fold 

increase in the HD109 cells (p= 0.0256). The 4h LPS challenge also resulted in higher 

CCL2 expression in HD109 microglia compared to Kolf2, whereas CCL22 expression 

was higher in 4h LPS-treated HD109 compared to 4h LPS-treated WT Kolf2 cells. The 

chemokine CCL18, a cytokine with both immune activation and suppressive 

properties, was equally upregulated by LPS induction in both genotypes (Figure 4.5D). 

Taken together, these observations hint at a tighter regulation of pro-inflammatory 

cytokine production in the HD109 microglial cells.    
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Figure 4.5 The inflammatory response to LPS shows that HD109 microglia are not hyper-reactive.   
(A) The LPS pathway was predicted as inhibited in HD109 MG cells by IPA upstream regulator analysis. Inflammatory regulators such as IL-1ß, TNF, IFN and IFN (shown in 
blue) were among those predictively inhibited whereas IL-10 and STAT3 (shown in orange) were identified as upstream activators. (B) HD109 and Kolf2 MG cells were 
incubated with 1 µg/ml LPS for 4h. No significant differences between HD and WT cells were found in expression levels of M1 polarisation markers following LPS stimulation. 

(C) In response to LPS, and in comparison with Kolf2 WT microglia, HD109 microglia produced similar levels of the pro-inflammatory cytokines TNF-, IL-1ß, IL-6 and IL-8. (D) 
LPS treatment resulted in higher CCL2 expression in HD109 MG cells whereas CCL22 expression was significantly higher in the LPS-treated Kolf2 MG cells than the 
corresponding HD109 cells.  
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(E) Cluster analysis of unstimulated and LPS-treated Kolf2 and HD109 MG cells showed a greater segregation 
between Kolf2 4h and 24h LPS-stimulated samples than for the corresponding HD109 cells. (F-G) LPS-induced 
expression of the anti-inflammatory chemokines CCL17, CCL18 and CCL22 was differentially regulated in Kolf2 
vs HD109 MG cells. In HD109 MG cells, no significant differences were found in the expression of the chemokines 
over a 24-hour course of LPS stimulation. In Kolf2 MG cells, expression of all three chemokines peaked at 4 hours 
post LPS before significantly decreasing at 24 hours. (H-I) LPS treatment significantly affects expression of 
calming molecules in Kolf2 MG but not HD109 cells.  
 
Fluidigm qRT-PCR data are presented as log2 expression normalised to reference genes. Statistical analysis used 
two-way ANOVA with Tukey’s multiple comparisons test. ns – not significant, * < 0.05; ** < 0.01; *** < 0.001. 
n=3 biological replicates, except Kolf2 MG + 24h LPS (n=2).  

 

Next, a PCA plot was used to examine the divergence of all LPS-treated samples from their 

corresponding unstimulated samples. For both cell lines, 4h LPS samples were segregated 

away from 24h samples, with the Kolf2 LPS-treated cells showing greater separation than the 

corresponding HD109 cells (Figure 4.5E). Furthermore, the plot demonstrated that the 4h and 

24h HD109 cells were closely matched to each other and to unstimulated HD109 control cells. 

For the Kolf2 samples, the control cells segregated with the 24h LPS-stimulated cells, which 

were clearly separate from the 4h treated cells. This hinted at significant differences in the 

maximal LPS response at 4 hours of cells from both genotypes. To delve further into these 

differences, the profile of LPS response of both cell lines was compared for meaningful trends. 

Chemokine expression in response to LPS was found to differ in HD109 vs Kolf2. Except for 

increased CCL18 release, all levels of chemokines remain constant over the 24h course of LPS 

treatment in HD109 microglia (Figure 4.5F). In comparison, CCL22, CCL18 and CCL17 were 

upregulated in Kolf2 cells after 4 hours of LPS treatment, with levels decreasing significantly 

thereafter (Figure 4.5G).  

Moreover, LPS stimulation appeared to impact the expression of a number of neuroprotective 

genes in Kolf2 microglia (Figure 4.5H). CX3CR1, CD22 and SIGLEC12, sensing molecules that 

provide a constitutive and calming ‘off’ signal were downregulated in Kolf2 microglia over the 

course of LPS treatment, whereas levels of the same genes remained constant in the control 

and LPS-stimulated HD109 microglia (Figure 4.5I). In conclusion, these experiments 

demonstrated that HD109 microglia did not exhibit a hyper-reactive phenotype in response 

to challenge with LPS.   
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4.4 Summary and Discussion  

In this chapter, a HD iPSC line containing 109 CAG repeats and a WT Kolf2 iPSC line were 

differentiated into microglia and the phenotype of the in vitro derived microglial cells 

characterised using RNA sequencing in order to analyse the microglia-specific transcriptome 

effects of the HD CAG expansion. Gene Ontology analysis revealed that developmental 

processes, including development of the embryo, mesenchyme, vasculature and epithelium 

were among those significantly enriched in the HD109 microglia gene sets. The fact that these 

processes aren’t specific to the nervous or immune system suggests that these transcriptional 

changes reflect development as a whole being altered in HD. Recent studies have shown that 

CAG repeat expansion results in the dysregulation of genes involved in neuronal development 

and dorsal striatum formation (Ring et al. 2015). Similarly, Molero et al. 2009 found that CAG 

expansion-associated developmental abnormalities in neurogenesis in the striatum 

subsequently made medium spiny neurons more susceptible to degeneration in later life 

(Molero et al. 2009). These findings seem to support the notion of HD as a 

neurodevelopmental disorder (Kerschbamer & Biagioli 2016). Genes related to skeletal and 

limb morphogenesis were also represented among the gene sets altered in the HD109 

microglia, likely as a result of non-specific transcriptional changes due to aberrant mutant HTT 

transcription factors interactions. These findings agree with recent RNA-seq data from 

Labadorf et al. 2015, who analysed gene expression in the prefrontal cortex of HD post-

mortem samples and found evidence of a developmental signal, although it was unclear 

which brain cell type was responsible for this signal (Labadorf et al. 2015). The same study 

also uncovered evidence of an enrichment in inflammatory and immune response gene sets 

in HD brains. 

According to pathway impact analysis of the in vitro HD microglia transcriptome data, several 

immune-related pathways were predicted to be dysregulated. Transcripts coding for cell 

adhesion molecules that mediate antigen presentation and immune cell regulation were 

downregulated in HD109 vs Kolf2 cells. Given that microglial cell adhesion molecules play a 

critical role in many processes, including neural tissue development, it was unsurprising to 

note a predicted dysregulation in the KEGG pathway 04080, enriched with genes coding for 

neuroactive ligand-receptor interactions. This may hint at an impairment of HD microglia in 

their capacity to aid the construction and development of neuronal networks. Another 
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pathway impact analysis prediction was the likely perturbation of interactions between HD 

microglia and the extracellular matrix, which are mainly mediated by integrins and cell 

adhesion molecules whose expression was found to be dysregulated. Given that the ECM 

plays a key role in the morphogenesis and maintenance of cell and tissue structure and 

function, these data appear to tally well with reports of neurovasculature disruptions in HD 

patients, R6/2 mouse models and iPSC models of blood-brain barrier (Drouin-ouellet et al. 

2015; Lim et al. 2017; Vatine et al. 2017).  

Chemokine signalling was among the biological pathways revealed to be significantly affected 

by transcriptional changes in HD109 microglia. Chemokines involved in the recruitment of 

blood myeloid cells (CCL7, CCL8, CCL17) were significantly downregulated. mRNA levels of 

CCL24, strongly chemotactic to resting T lymphocytes, was upregulated while levels of T cell 

recruiting chemokines such as CCL1, CCL2 and CCL22 were unchanged. This pattern of 

expression seems to contradict data from previous findings, which have shown that levels of 

chemokines, complement proteins and the anti-inflammatory cytokine IL-10 increase with HD 

burden (Dalrymple et al. 2007; Bjorkqvist et al. 2008; Wild et al. 2011). Equally, these 

observations could be reflective of a dysregulation in chemokine signalling and thus compare 

favourably with reports of a lack of infiltration of blood myeloid cells into the HD brain (Lucin 

& Wyss-Coray 2009; Rocha et al. 2016); a phenomenon previously thought to be a 

consequence of impaired immune cell migration in HD (Wanda Kwan et al. 2012). Finally, 

altered chemokine signalling is likely to affect crosstalk between the HD microglia in the CNS 

and cells of the adaptive immune system, and potentially have an impact on the involvement 

of other immune cells in the striatum. Certainly, this view is supported by predicted deficits 

in the antigen processing and presentation machinery of the HD109 microglia, perhaps an 

adaptation to keep out infiltrating blood immune cells such as cytotoxic T-cells, NK cells and 

monocytes.  

Expression of three important cytokines and chemokine receptors (CCR2, CX3CR1 and CSF1R) 

was increased in HD microglia, perhaps an indication of a proliferative and neuroprotective 

adaptation of the cells to the HD neuronal environment. Interestingly, a recent study showed 

in a rodent brain slice model that mutant HTT aggregation triggered by neuronal stressors led 

to increased IL-34 production and corresponding microglial proliferation, exacerbating 

degeneration of medium spiny neurons (Khoshnan et al. 2017). In addition, deletion of CCR2 

has been shown to hamper microglial accumulation in a transgenic mouse model of 
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Alzheimer’s disease, resulting in higher amyloid burden and increased mortality (El Khoury et 

al. 2007), implying that CCR2-dependent microglial accumulation can be neuroprotective. Of 

course, deletion of the fractalkine receptor CX3CR1 has been shown to regulate microglial 

activation in a mouse model of tauopathy (Bhaskar et al. 2010), while its overexpression 

suppresses activation and diminishes tau pathology (Nash et al. 2013).  

 

The inflammatory response of the HD109 cells was subsequently validated, to investigate the 

hypothesis that HD microglia are primed for an exaggerated response to exogenous stimuli. 

Following stimulation with LPS, both HD109 and Kolf2 cells exhibited the expected M1 

polarisation state featuring a similar upregulation in pro-inflammatory markers including 

CD40, ICAM1 and IRF1. In contrast, the same challenge appeared to induce a maintenance of 

the core microglial phenotype in the HD109 microglia, with neuroprotective and calming 

molecules such as SIGLEC12, CD22 and CX3CR1 being expressed at similar levels during and 

following LPS treatment, whereas the same genes were downregulated in the Kolf2 cells 

(Figure 4.5). Another particular point of difference in the HD109 inflammatory response 

profile was that the increase in TNF- and IL-1ß expression post LPS of a higher magnitude in 

Kolf2 compared to HD109 microglia. All things considered, it appears that the immune 

response of HD109 microglia is more tightly regulated to prevent excessive release of 

deleterious pro-inflammatory cytokines and loss of a neuroprotective signature. Cytokines 

such as TNF and IL-6 are contained in carrier vesicles that are trafficked to the cell surface for 

release (Stanley & Lacy 2010). Upon TLR-mediated LPS stimulation, carrier vesicles 

accumulate in the Golgi prior to release. Several molecules are involved in the vesicular 

transport of TNF-containing vesicles, including the lysosomal cysteine protease cathepsin B 

(Ha et al. 2008), which is downregulated in HD109 microglia. Given the importance of the 

Golgi network in cytokine trafficking, and given the fact that several Golgi and lysosome-

associated proteins were found to be decreased in the HD109 cells, it is plausible that altered 

vesicle transport and trafficking pathways form part of the inhibitory mechanisms that 

regulate cytokine release in HD stem cell derived microglia.     

 

The hypothesis that the HD CAG expansion results in a more neuroprotective microglial 

phenotype is further supported by findings from the upstream regulator analysis, which 

predicted inhibition of several inflammatory pathways and signalling cascades in the HD109 
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microglia (see Table 4.4). In particular, the TNF and LPS pathways, previously shown to be 

dysregulated in HD patient-derived monocytes (Miller et al. 2016), were predicted to be 

inhibited, in comparison with the Kolf2 microglia cells. The NFß pathway, another 

dysregulated pathway in HD immune cells (Trager et al. 2014), was similarly predictively 

inhibited. These results imply a protective anti-inflammatory phenotype in the HD109 cells, 

in stark contrast to the cell-autonomous pro-inflammatory state of HD mouse microglia cited 

in the literature (Crotti & Glass, 2015). This discrepancy intriguingly invites questions about 

the origin of this immune dampening effect – is this effect an accurate reflection of the HD 

microglial phenotype or an artefact of in vitro differentiation? If this is an HD microglia-

specific effect, what are the mechanisms mediating it? The first question is the subject of the 

investigation in chapter 5. To answer the second question, one has to consider the crucial role 

of the brain microenvironment on the microglial phenotype.    

 

Recent studies have intimated that neuronal co-culture highly modulates the transcriptome 

of iPSC-derived microglial cells, suppressing pro-inflammatory signalling pathways relative to 

monocultures (Abud et al. 2017; Haenseler et al. 2017). Despite the lack of neuronal co-

culture in this differentiation protocol, the predicted inhibitory effects observed in our HD 

microglia dataset are evident when compared to the HD macrophage precursors upstream 

regulator analysis dataset (see appendix 4), demonstrating that the neuronal IL-34 is partly 

responsible for this particular inhibitory signal. In addition, it could be argued that in vitro 

microglia are protected from this mutant HTT-mediated priming effect due to their distinct 

ontogeny to other immune cell types. Indeed, the primitive macrophages used as precursors 

for differentiation in this protocol have been shown to arise from a MYB-independent, RUNX1 

and SPI1 lineage (Buchrieser et al. 2017) that is separate from the MYB-dependent wave of 

haematopoiesis that gives rise to monocytes and macrophages (Orkin & Zon 2008). Therefore, 

it is plausible that the distinct ontogeny of microglia combined with the immune-privileged 

nature of the CNS and the fragility of the HD brain environment mediate the immune 

dampening and inhibitory effects observed on the transcriptome of HD iPSC-derived 

microglia.   
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5. EXPLORING THE EFFECTS OF 

CORRECTING THE HD MUTATION ON 

IMMUNE DYSFUNCTION IN IPSC-

DERIVED HD MICROGLIA 

5.1 Introduction  

Huntington’s disease is a fatal neurodegenerative disorder caused by expansion of a 

polymorphic CAG repeat tract in exon 1 of the huntingtin (HTT) gene (MacDonald et 

al. 1993). Though neurodegeneration in the HD brain primarily affects medium spiny 

neurons in the striatum, mutant HTT is broadly expressed, including in immune cells 

where its levels track with disease progression (Weiss et al. 2012). Thus, mutant HTT 

expression in cells of the immune system has been suggested to contribute to HD 

neuropathology. Activation of microglia, the brain’s resident immune cells, as 

evidenced in HD post-mortem brains (Sapp et al. 2001), is not only widespread in 

symptomatic patients, but it also occurs years before disease onset in HD gene carriers 

(Pavese et al. 2006; Tai et al. 2007). Indeed, these pathological microglial changes 

mirror those reported in dysfunctional peripheral immune cells (Dalrymple et al. 2007; 

Bjorkqvist et al. 2008). Several studies have put forward convincing evidence for the 

peripheral and central immune systems acting as modifiers of HD pathogenesis. In 

2012, Kwan and colleagues showed that transplantation of WT bone marrow cells 

attenuates motor deficits, enhances synaptogenesis and lowers plasma cytokine 

levels in HD mice (W. Kwan et al. 2012). An earlier study determined that inhibiting 

the enzyme kynurenine 3-monooxygenase (KMO), a key metabolite in the kynurenine 

pathway, is neuroprotective, resulting in reduced microglial activation, attenuated 

synaptic loss and a prolonged life span in HD mice, despite the inhibitor’s inability to 

cross the BBB (Zwilling et al. 2011). Furthermore, signalling through the cannabinoid 
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receptor 2, expressed in microglia and peripheral immune cells and whose levels 

increase in post-mortem HD brains and mice, was recently shown to modulate 

immune activation (Palazuelos et al. 2009). Administration of a CB2 agonist dampened 

CNS inflammation and inhibited motor defects and synaptic loss in R6/2 HD mice 

(Bouchard et al. 2012).     

 

The development of protocols for the differentiation of human iPSCs into several cell 

types of interest has unlocked new prospects in disease modelling. Nevertheless, one 

challenge of iPSC-based disease modelling that remains is the inconsistency in 

differentiation quality due to variations in genetic background (Kajiwara et al. 2012), 

which may affect the interpretation of in vitro diseased phenotypes. Moreover, the 

impact of genetic background on observed phenotypes in iPSC-based models can be 

substantial, even for a monogenic disease like HD where numerous disease-modifying 

loci alter age of neurological onset (GeM-HD Consortium 2015). This should therefore 

encourage the use of genetically identical control iPSC lines, to increase confidence 

and authenticate observed HTT-specific mechanisms and phenotypes. For this reason, 

work carried out within our lab by Jasmine Donaldson was successful in generating 

isogenic control iPSC lines from the HD109n1 iPSC line, which is heterozygous for the 

HD mutation with one WT allele of 21 CAG repeats and an expanded allele of 109 CAG 

repeats. Using a homologous gene-targeting approach, CRISPR gRNAs were used to 

target the 5’ UTR and exon 1 sequences of the expanded HTT allele. The donor DNA 

featured a piggyBac transposon to allow a footprint-free removal of the selection 

cassette from the targeted locus. Targeted clones were identified by PCR amplification 

of exon 1 of the HTT allele, and following excision of the selection cassette by piggyBac 

transposase, correct footprint-free editing of the HD iPSCs was confirmed by Sanger 

sequencing and SNP array genotyping. In all, three isogenic HD109 corrected clones 

were generated (5H9, 3H2 and 2H1), along with a non-corrected HD iPSC line (11B11) 

that did not undergo piggyBac selection cassette to be used as an additional control 

HD iPSC line. All lines were validated for pluripotency and shown to retain a normal 

karyotype. 
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Successful correction of the HD mutation in iPSCs has been previously reported (An et 

al. 2014; Shin et al. 2016). Efforts to characterise the effects have focused on 

phenotypic abnormalities in iPSC-derived neural stem cells, namely impaired neural 

rosette formation, increased susceptibility to growth factor removal and 

mitochondrial respiration deficits (An et al. 2012; Mattis et al. 2015; Xu et al. 2017). In 

an attempt to assess the effects of HD correction on immune cell function, a study by 

the Tabrizi group used anti-HTT small interfering RNA to demonstrate that immune 

dysfunction and hyperactivity caused by NFB dysregulation can be reversed by 

reducing mutant HTT expression in patient-derived monocytes and macrophages 

(Trager et al. 2014).               

5.2 Aims  

In chapter 4, RNA-seq was used to reveal any microglia-specific transcriptome changes 

associated with mutant HTT expression in the HD109 iPSC-derived cells. Pathway 

analysis identified several immune-related functions and pathways as being 

potentially impaired or dysregulated in these cells. Following on from this earlier work, 

this chapter had two principal objectives. Firstly, isogenic control HD corrected iPSC 

lines were differentiated into microglia in order to study the effects of correcting the 

HD mutation on the gene expression changes reported in the HD109 iPSC-microglia. 

Secondly, a series of experiments aimed to investigate the predicted impaired 

functions of HD microglia, characterise any potential impairments and ascertain the 

extent to which any phenotypic abnormalities were rescued by correcting the 

Huntington disease CAG expansion.   
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5.3 Results 

5.3.1 Does correcting the HTT CAG expansion reverse the gene expression 

changes observed in HD109 iPSC-derived microglia?   

The presence of the expanded CAG track in the HTT gene resulted in widespread 

changes in the transcriptome of the HD109 stem cell-derived microglia, as described 

in chapter 4. In order to disentangle whether these transcriptional changes were 

mutant HTT-specific or due to differences in genetic background between the HD109 

and Kolf2 cells, isogenic control HD corrected iPSC lines were differentiated into 

microglia. As well as the three HD corrected clones (5H9, 3H2 and 2H1), one non-

corrected HD iPSC line (11B11) was also used as control.   

 

Initially, HD corrected microglia were assayed for expression of canonical markers by 

immunocytochemistry. As highlighted in chapter 3, treatment of macrophage 

precursors with IL-34 and GM-CSF results in robust expression of several microglial 

markers. Confocal imaging analysis of microglia derived from isogenic corrected iPSCs 

showed clearly that the IL-34 induced cells were positive for the microglial markers 

IBA1, P2RY12 as well as the leucocyte-specific CD45 (Figure 5.1). Also expressed was 

the microglia-enriched TGFBR1, a protein kinase receptor that binds the astrocyte-

derived cytokine TGF-ß (Schilling et al. 2001) shown to be essential for microglial 

development and maintenance (Abutbul et al. 2012; Butovsky et al. 2014).  
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Figure 5.1 HD109 Corrected and non-corrected iPSC-derived microglia express microglial 
markers and display the characteristic ramified morphology of microglia.     
(A-B) Confocal images of microglia-like cells derived from HD109 corrected lines 3H2 (A) and 5H9 (B) shows robust 
expression of MG markers IBA1, TGFBR1, P2RY12 and CD45. (C) Non-corrected HD iPSC-derived MG cells were 
cultured for 14 days in GM-CSF and IL-34, fixed and stained with P2RY12 and CD45. (D) HD109 MG cells express 
the MG-enriched protein kinase TGF-ß receptor 1. Scale bars represent 20 µm.  
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Next, the expression of microglia-specific markers was analysed by Fluidigm qRT-PCR 

and results showed that genes such as C1QA, GPR34, MERTK, P2RY12 and CABLES1 

were expressed at similar levels in the HD corrected microglia compared to Kolf2 and 

isogenic HD109 cells. Although its expression was decreased compared to THP1 

monocytes, CX3CR1 followed a similar trend to other microglia sensome genes, with 

transcript levels consistent across cells of different genotypes (Figure 5.2 A-B). Also, 

two other sensome genes P2RY12 and ADORA3 found to be differentially expressed 

in the HD109 microglia after RNA-seq data analysis were expressed at comparable 

levels between the different genotypes. 

The expression of AD risk genes in the HD corrected iPSC-derived microglia was 

assessed, with CLU and CR2 being identified as differentially expressed in the HD109 

microglia compared to Kolf2. qPCR results showed that CLU expression did not vary 

markedly between the Kolf2, HD109 and HD109 corrected microglia samples. CR2 

expression was not detected in THP1 monocytes and low in the microglia samples, 

with the highest expression in the HD109 microglia and transcripts levels in the 

corrected HD109 cells matching the low levels in the Kolf2 cells. However, these 

differences did not reach statistical significance (Figure 5.2C).       

 

Findings presented in chapter 4 established that expression levels of NFB genes were 

similar in Kolf2 and HD109 microglia (see section 4.3.2). Expression of the core 

microglial transcription factor PU.1 (SPI1) and its target genes, which is increased in 

HD mouse immune cells, was equally similar. When the same genes were evaluated 

in the corrected HD109 microglia by qPCR, results established that expression of both 

sets of genes were comparable to the WT Kolf2 and HD109 microglia (Figure 5.2 D-E). 

Overall, these results are consistent with the lack of altered NFB signalling observed 

in HD109 microglia and suggest that reversal of the CAG mutation in HD microglia may 

not affect basal activation of pro-inflammatory signalling through NFB.  
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Figure 5.2 The expression of canonical microglial and NFB pathway genes is unaffected by reversal of HD CAG repeat expansion.  
Kolf2, HD109 and HD109 corrected MG cells were differentiated for 14 days in IL-34 and GM-CSF and all samples assayed by Fluidigm qRT-PCR. (A-B) No significant differences 
were found in the expression of microglia-enriched markers between HD109 corrected MG cells, Kolf2 and HD109 MG samples. (C) ABI3, CLU and CR2 were identified as DE 

in HD109 MG compared to Kolf2 by RNA-seq. Validation by qPCR shows comparable expression levels between HD109, Kolf2 and HD109 corrected samples. (D) NFB pathway 
genes are comparably expressed in HD109 and isogenic corrected MG cells. (E) Expression of the TF SPI1 and of its target genes is unaltered in HD109 and following correction 
of the CAG mutation.     
Log2 Expression normalised to reference genes. Statistical analysis by two-way ANOVA with Tukey’s multiple comparisons test. Asterisks denote significance: * < 0.05, ** < 
0.01, *** < 0.001, ns – not significant. n=3 biological replicates for all samples, except for THP1 (n=2).  
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5.3.2 Effects of correcting the HD mutation on the microglial inflammatory 

response under stimulatory conditions  

Having previously established that HD109 microglia exhibited an inflammatory 

activation profile distinct from Kolf2 WT cells, the next set of experiments aimed at 

investigating the immune response of the HD corrected iPSC-derived microglia. 14-

day-differentiated microglia derived from HD109 corrected iPSC were stimulated with 

1 µg/ml LPS for 4 hours, and the expression of pro-inflammatory markers compared 

to 4-hour LPS-treated Kolf2 and HD109 microglia. The activation profile of the 

corrected HD109 microglia was found to be consistent with that of Kolf2 and HD109 

cells, with expected increases in the M1 markers IRF1, CCR7 and ICAM1 that were 

comparable in magnitude between the corresponding unstimulated and 4h LPS 

samples; the only notable difference being that CCR7 mRNA levels post LPS were 

significantly higher in Kolf2 vs corrected HD109 cells (Figure 5.3A). The two main pro-

inflammatory cytokines TNF- and IL-1ß were upregulated after LPS stimulation in all 

three cell lines, with comparable mRNA levels post incubation (Figure 5.3B). 

Intriguingly, differences in the magnitude of these changes were again apparent, with 

a 3-fold upregulation in both genes for the WT Kolf2 and corrected HD109 microglia 

compared to a 2.5-fold increase in TNF- and IL-1ß for the HD109 cells. Inflammatory 

regulation of these two genes may therefore be an indication of the effects of 

correcting the CAG mutation on HD109 microglia. The other pro-inflammatory 

cytokines IL-8 and IL-6 were also upregulated after LPS incubation, with non-

significant variations between the genotypes (Figure 5.3C).  

The genetic background of the cells also seemed to dictate their LPS response. 

Whereas levels of the anti-inflammatory IL-10 and the pro-inflammatory CCL2 were 

unchanged in the LPS-treated Kolf2 cells, these two genes were correspondingly 

upregulated in the HD109 and isogenic corrected microglia (Figure 5.3D). Expression 

of the main anti-inflammatory cytokine IL-10 hinted at a balanced secretion of pro- 

and anti-inflammatory molecules. Fittingly, the upregulation of the chemokines CCL22 

(in Kolf2 microglia only) and CCL18 (in all three samples) after LPS exposure seemed 

to support this idea (Figure 5.3E). To illustrate the segregation between the 

unstimulated and LPS-treated samples, a principal component analysis was carried 
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out, with the results plotted using a t-distributed Stochastic Neighbour Embedding 

(tSNE) (Van Der Maaten & Hinton 2008). The resulting plot showed close proximity 

between HD corrected microglia, HD109n1 and two Kolf2 microglia samples, hinting 

at a close similarity between the unstimulated microglia (Figure 5.3F). The LPS-treated 

samples from all three cell lines formed separate clusters that segregated according 

to genotype, which suggested that LPS treatment resulted in a HD corrected 

phenotype distinct from that observed in the WT Kolf2 and HD109 microglia. This 

therefore hinted at differences between the HD109 and the corrected microglia and 

demonstrated that correction of the CAG mutation on the HD gene had an effect on 

the phenotype of microglia.  
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Figure 5.3 The LPS inflammatory response of HD corrected microglia is similar to that of HD109 microglia.   
(A) 4h LPS stimulation of HD109 corrected MG cells leads to upregulation of IRF1, CCR7 and ICAM1 comparable with Kolf2 and HD109 cells. (B) Despite a trend towards lower 

expression of TNF- and IL-1ß in corrected compared to HD109 MG, no significant differences were found in expression of both genes in the corresponding LPS-treated MG 
samples. (C) Expression of the pro-inflammatory cytokines IL-8 and IL-6 did not vary significantly between the HD genotypes following LPS incubation. (D) LPS-induced changes 
in IL-10 and CCL2 expression are dictated by the genetic background of the MG cells; expression of both genes is upregulated in both HD genotypes and unchanged in Kolf2 
cells. (E) Expression of the anti-inflammatory chemokine CCL18 is significantly increased in LPS-treated corrected MG cells and HD109 MG cells. Kolf2 MG cells upregulate 
CCL18 and CCL22 expression in response to LPS incubation.   
 
Fluidigm qRT-PCR analysis used to generate log2 Expression values normalised to reference genes. Statistical analysis by two-way ANOVA with Tukey’s multiple comparisons 
test. Asterisks denote significance: * < 0.05, ** < 0.01, *** < 0.001, ns – not significant. n=3 biological replicates for all samples.  
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(F) 4-hour LPS stimulation of Kolf2, HD109 and HD109 corrected microglia resulting in clustering effect, 
with MG samples segregating according to genotype.  
tSNE plot generated using “Fluidigm SC” package analysis of raw Ct data. Each data point represents 
one MG sample.  
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5.3.3 HD109 microglia do not manifest transcriptome-associated functional 

deficits in phagocytosis and chemotaxis 

As described in chapter 4, several KEGG pathways were predicted through impact 

analysis to be impaired or dysregulated in HD109 microglial cells. These included 

cytokine-cytokine interaction, chemokine signalling, cell adhesion and ECM-receptor 

interaction as well as phagosome. Two pathways were chosen for functional 

validation: phagocytosis (FDR= 0.035) and chemotaxis (0.029). Levels of chemokines 

such as CCL17 and CCL18 were also downregulated in HD109 microglia, with qPCR 

results confirming that only one gene followed the same trend, with negligible CCL17 

levels in the HD109 and corrected microglia compared to Kolf2. Elsewhere, transcript 

levels of CCL22 and CCL18 in HD109 and corrected cells matched those in Kolf2 cells 

(Figure 5.5A).     

 

Phagocytosis is a key function of microglia, enabling clearance of pathogens, protein 

aggregates and apoptotic cells in the CNS. Differential gene expression identified 

downregulation of several phagocytosis-promoting receptors (FCAR, FCGR2B and 

FCGR2C, C1R, ITGA2, ITGA5, MARCO) in HD109 microglia compared to Kolf2 WT 

microglia. Interestingly, genes coding for the multi-ligand scavenger receptor CD36 

and the enzyme NADPH oxidase or CYBB were upregulated. Validation of CD36 and 

CYBB expression by qPCR indicated that both genes were comparably expressed in the 

Kolf2 and HD microglia from both genotypes (Figure 5.4A). Also downregulated was 

CORO1A, a protein that initiates fusion of the phagosome to the lysosome during 

pathogen killing. These findings seemed to indicate a compensatory mechanism. To 

confirm this observation, phagocytosis of pHrodo red E. coli particles was monitored 

in real time using the IncuCyte S3 live imaging platform, which quantifies the increase 

in red fluorescence triggered by the uptake of pHrodo cells and internalisation into 

the acidic phagosome by professional phagocytes (Kapellos et al. 2016). Microglia 

from Kolf2, HD109 and HD109 corrected iPSCs were seeded on 96-well plates at 

35,000 cells per well, differentiated for 14 days and then incubated with 10 µg pHrodo 

red particles for 6 hours while confocal images were taken every 10 min. All HD 

derived microglial cells (HD109, non-corrected and corrected) displayed a higher rate 
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of uptake compared to Kolf2 microglia, indicating that they retained efficient ability 

to phagocytose bioparticles (Figure 5.4B). Interestingly, Kofl2 WT cells pre-treated 

with the phagolysosome v-ATPase inhibitor bafilomycin A1 were capable of ingesting 

the fluorescent particles, though the final count of phagocytosed particles was 

significantly reduced compared to Kolf2 and all HD genetic backgrounds (two-way 

ANOVA with Tukey’s post hoc test, p<0.0001). This was hypothesised to be due to the 

high cell density in each well (Figure 5.4C). Comparisons between the HD109n1 and 

the HD109 corrected clones showed that correction of the HD CAG mutation had no 

effect on the cells’ ability to phagocytose bioparticles, despite clonal variations in 

pHrodo E. coli bioparticle uptake. This experiment was repeated with a lower number 

of 20 000 plated cells per well (Figure 5.5D). On this occasion, pre-treatment of the 

cells with bafilomycin A1 and cytochalasin D resulted in a larger reduction in 

fluorescence signal, demonstrating that the rate of bioparticle uptake is dependent 

on cell numbers (Figure 5.4E). At the peak of around 6 hours of incubation, MG cells 

from two of the HD109 corrected clones (5H9 and 2H1) ingested more particles than 

cells derived from the isogenic HD109 line. The HD109 corrected clone 3H2 

phagocytosed less particles than cells generated from the parental HD109n1 

(p<0.0001), although this rate of phagocytosis was found to be as efficient as that of 

the HD109 non-corrected iPSC-derived microglial cells (p = 0.5897). To conclude, while 

clonal differences in the kinetics of pHrodo phagocytosis were evident, HD microglia 

have shown to be competent phagocytes of bioparticles.  
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Figure 5.4 Phagocytosis of E. coli bioparticles and chemotaxis are 
not impaired in HD109 iPSC-derived microglia.     
(A) qPCR validation of phagocytosis and chemokine transcripts shows 
expression of CCL17 and CCL22 is higher in Kolf2 MG than HD109 MG. 
CYBB and CD36 expression levels are comparable in HD109 and Kolf2 MG. 
(B) MG cells from HD109 and HD109 corrected iPSCs exhibit a higher rate 
of uptake of bioparticles than Kolf2 MG cells. MG cells were plated on a 
96-well plate at 35,000 per well and incubated with 10 µg pHrodo E. coli 
for 6 hours. For negative control, Kolf2 MG cells were pre-treated with 10 
µM bafilomycin A1 before 1hr before E. coli incubation. (C) End point 
fluorescence values from (B) were plotted. Data presented as mean ± SEM 
from each condition with 8 technical replicates. n=1 independent 
experiment. 
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 (D) HD109 corrected microglia phagocytose E. coli bioparticles as efficiently as microglia derived from the HD109 parental clonal line. MG cells were plated at 20,000 cells 
per well. HD109 MG cells were pre-incubated with 10 µM cytochalasin D for 1hr before E. coli treatment. End point fluorescence values were plotted in (E). Data presented 
as mean ± SEM from each condition or genotype with 8 technical replicates. n=2 independent experiments.     
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(F) HD109 and HD109 corrected MG cells display efficient cell migration in response to stimulation with CX3CL1. (G) End point (12h) values for top membrane index show 
that compared to cytochalasin D-treated MG cells, HD109 and HD109 corrected microglia retain proper chemotactic functions. (H) Chemotactic response of MG cells to ADP 
is unaffected in HD1009 iPSC-derived microglia.       
For pHrodo E. coli phagocytosis assays, red channel fluorescence (400ms) was measured every 10 mins in an IncuCyte S3 live imaging platform. Data was analysed using the 
IncuCyte S3 Base software (see section 2.5.3 for analysis parameters).   
For chemotaxis assays, MG cells were plated and differentiated for 14 days on the upper chamber of 96-well ClearView chemotaxis plates. Cells were stimulated with 200 
ng/ml CX3CL1 or 8 µM ADP to induce migration to the lower chamber of the chemotaxis plate. Phase channel images were taken using IncuCyte S3 every 30 mins for 12-24 
hours and quantified by IncuCyte analysis software. n=1 independent experiment.         
 
Statistical significance was tested using two-way ANOVA with Tukey’s multiple comparisons test. * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, ns – not significant. n=1 
independent experiment. 
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Kwan et al. 2012 revealed using myeloid cells isolated from premanifest HD patients 

and early postnatal mouse microglia overexpressing mutant HTT that immune cells 

display mHTT-dependent deficits in migration to chemotactic stimuli. In order to 

characterise any potential impairments in chemotaxis in HD109 iPSC-derived 

microglia, cell migration assays were carried out using the IncuCyte S3 platform (see 

section 2.5.3). Microglial cells from Kolf2, HD corrected and HD109 iPSCs were 

differentiated for 14 days on a 96-well ClearView Chemotaxis, where each well is 

made up of a membrane that contains a lower and upper chamber. Cells are required 

to migrate across the membrane, through 8µm pores to reach the lower chamber, a 

process visualised and quantified in real-time by the IncuCyte analysis software. 

Migration in response to two chemoattractants, CX3CL1 and ADP was assayed. Cells 

stimulated with 200 ng/ml CX3CL1 were shown to be responsive to the chemotactic 

stimulus (Figure 5.4F), as shown by the reduced top membrane index (Figure 5.4G). 

When compared to cytochalasin D-treated MG HD 109 cells, all cell lines were found 

to be efficient at cell migration through the membrane. Interestingly, no significant 

variations in response were found between the HD109 and the corrected iPSC-derived 

microglia. Chemotactic response to ATP was then investigated. Along with CX3CL1, 

sphingosine-1-phosphate (S1P) and lysophosphatidylcholine (lysoPC), ATP and other 

nucleotides are so called “find-me signals” released by cells undergoing apoptosis that 

attract phagocytes towards them (Lauber et al. 2004). Chemotactic response of the 

HD MG cells to 8 µM ADP was quantified and results showed no statistically significant 

differences in the migration of HD109 and HD109 corrected microglia compared to 

Kolf2 WT microglia (Figure 5.4H). Overall, these results suggest that migration and 

regulation of actin remodelling of HD iPSC-derived microglia is not impaired, with no 

rescue effect of the CAG expansion excision on those properties.           

 

5.3.4 HD109 microglia do not exhibit deficits in mitochondrial respiration 

associated with other HD cell types  

Mitochondrial dysfunction has been strongly implicated in HD pathogenesis, with 

impairments in ATP production, mitochondrial basal respiration and glycolysis among 

early reported disturbances in the HD brain (Damiano et al. 2010; Costa & Scorrano 
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2012). Studies in mouse models and post-mortem human brains have described 

mitochondrial impairments in several HD cell types, e.g. primary lymphoblasts, 

fibroblasts and striatal cells (Polyzos & Mcmurray 2017) and stem cell-derived neural 

stem cells (An et al., 2012; Xu et al. 2017). To date, impairments in HD microglia have 

not been extensively reported or characterised. Given the metabolic demands that 

homeostatic and immune functions place on microglia (Cherry et al. 2014), an 

investigation of the bioenergetics profile of HD109 microglia was performed to initially 

compare it to that of WT Kolf2 microglia (Figure 5.5A). For this series of preliminary 

experiments, microglial cells from Kolf2, HD109 and corrected HD109 iPSC lines were 

differentiated in Seahorse XF96 plates and responsiveness to the mitochondrial 

stressors oligomycin, FCCP and rotenone measured to calculate the oxygen 

consumption rate (OCR). The Seahorse XF Cell Mito Stress Test protocol was used (see 

section 2.5.4), which allows the assessment of different aspects of mitochondrial 

respiration, including basal respiration, maximal respiration, spare respiratory 

capacity and ATP production.  

Though earlier results had hinted at the HD109 MG cells exhibiting a lower basal 

respiration rate, the preliminary examinations presented here showed that basal 

respiration was similar between the WT and HD109 microglial cells (Figure 5.5B). 

Microglia derived from the HD109n1 clonal line seemed to exhibit a greater 

mitochondrial spare respiratory capacity compared to cells derived from Kolf2, 

HD109n4 and HD109n5 lines, with a similar pattern emerging in the maximal 

respiration OCR rates between the lines (Figure 5.5C). ATP production rates were also 

comparable between the HD109 and Kolf2 WT MG cells (Figure 5.5D).  

Similarly, the profile of HD corrected iPSC-derived microglia was compared to that of 

HD109n1, the parent clonal line (Figure 5.5E), with preliminary data showing small 

increases in maximal respiratory capacity for two out of three clones (Figure 5.5F), but 

no changes in ATP production or basal respiration (Figure 5.5 G-H). Taken together, 

these preliminary results into the bioenergetics profile of iPSC-derived microglia 

suggest that mitochondrial function may not be impaired in the HD109 microglia. 
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Figure 5.5 Preliminary results show that mitochondrial oxidative phosphorylation is unimpaired in HD109 iPSC-derived microglia.       
MG cells (20,000 per well) were plated and differentiated on Seahorse XF 96-well plates. Oxygen consumption rate (OCR) was measured with sequential injections of 2 µM 
oligomycin, 2.5 µM FCCP and 0.5 µM antimycin A & rotenone. (A-D) Measurements of basal respiration and ATP production show no differences between HD109 and Kolf2 
MG cells. MG cells derived from HD109n1 iPSCs seemed to show greater maximal respiration rate than WT Kolf2 MG cells. Data presented as mean ± SEM from each 
genotype with at least 8 technical replicates; OCR measures normalised to absorbance at 560 nm; n=1 independent experiment.  
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(E-H) Mitochondrial basal respiration, maximal respiration and ATP production rates in HD109 corrected microglia are comparable to measurements in the microglia cells 
derived from the parental clonal line HD109n1. n=1 independent experiment.        
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A complex interplay exists between the immune response and the major metabolic 

pathways of glycolysis, the TCA cycle, fatty acid synthesis and oxidation, amino acid 

metabolism and the pentose phosphate pathway. In particular, changes in the 

metabolites of these pathways have been shown to regulate the innate inflammatory 

response (Galván-peña & O’Neill 2014; O’Neill et al. 2016). For example, Tannahill et 

al. 2013 showed that LPS stimulation of mouse macrophages causes an increase in 

intracellular levels of the TCA cycle intermediate succinate, which subsequently drives 

production of IL-1ß (Tannahill et al. 2013). Stimulation by LPS, which results in an M1 

phenotype and is associated with expression of pro-inflammatory cytokines, is 

accompanied by a shift from oxidative phosphorylation to glycolysis for energy 

production, called the Warburg effect (López-Lázaro 2008). A second aspect of this 

shift during inflammation is mitochondrial dysfunction, whereby mitochondria are 

reprogrammed by undergoing fission, which induces formation of ROS and other 

inflammatory mediators such as NFB (Park et al. 2013; Park et al. 2015). To 

investigate mitochondrial contribution to the energetic demands concurrent with 

inflammation, preliminary experiments were undertaken to study the effects of LPS 

stimulation on the bioenergetics of microglia. Cells were plated and differentiated on 

Seahorse XF96 plates for 14 days. After differentiation, the microglia were stimulated 

in situ with 1 µg/ml LPS for 4 hours before measurements of mitochondrial respiration 

(Figure 5.6A). LPS challenge was found not to cause any changes in ATP production or 

basal respiration in the respective HD109 and Kolf2 microglial cells (Figure 5.6 B-C). A 

similar pattern was observed with microglia derived from the HD corrected iPSC lines 

(Figure 5.6 D-F). When comparing challenged and unstimulated cells, LPS stimulation 

only resulted in subtle differences in the maximal respiration rates (Figure 5.6E). Taken 

together, these preliminary experiments appear to indicate that LPS activation of in 

vitro microglia does not result in deficits in mitochondrial respiration.   
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Figure 5.6 LPS stimulation of iPSC-derived microglia does not seem to impair mitochondrial respiration.       
MG cells (20,000 per well) differentiated on Seahorse XF 96-well plates were stimulated with 1 µg/ml LPS for 4 hours before OCR measurements. (A-C) Measurements of 
basal respiration and ATP production in HD109 and Kolf2 MG cells show that LPS stimulation does not affect mitochondrial function in iPSC-derived microglia. (D-F) Preliminary 
comparisons of mitochondrial respiration measures between HD109 and HD109 corrected microglia suggest that mitochondrial function is unchanged following LPS 
stimulation.  
 
Data presented as mean ± SEM from each genotype with at least 8 technical replicates; OCR measures normalised to absorbance at 560 nm; n=1 independent experiment.  
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5.4 Summary and Discussion  

As described in chapter 4, pathway impact analysis of changes in the transcriptome 

HD109 microglia predicted potential impairments in crucial immune functions such as 

chemotaxis, antigen processing and presentation, phagocytosis. The work undertaken 

in this chapter was thus based on these transcriptomic findings and experiments were 

carried out to characterise any phenotypic and functional abnormalities in the HD109 

microglia. In parallel, isogenic control HD corrected iPSCs, generated by CRISPR-Cas9 

and piggyBac transposon editing, were used to derived microglia, with the aim of 

establishing the extent to which any functional abnormalities observed in the HD109 

microglia could be rescued by correction of the HD CAG expansion mutation.  

 

Differential gene expression of RNA-seq data highlighted decreased expression levels 

of several phagocytosis-associated transcripts in HD109 microglia, prompting 

questions about whether these expression changes could translate to an observed 

phenotype. This was assayed with pHrodo E. coli particles, where no functional 

abnormalities in the HD109 microglia were apparent. The lack of phenotypic 

manifestations of these transcriptional changes was first suggested to be due to the 

likely compensatory upregulation of CD36, CORO1A and CYBB, key genes in the 

phagocytosis pathway. Indeed, the scavenger receptor CD36 is crucial to engagement 

of apoptotic particles and the subsequent actin cytoskeleton signalling that facilitates 

phagocytosis (Stuart et al. 2007). In addition, it has been shown to mediate 

phagocytosis through interactions with TLRs (Erdman et al. 2009). However, qPCR 

validation of CD36 and CYBB revealed that mRNA levels of these two genes were 

similar in the Kolf2 and HD109 microglia. Alternatively, the absence of observed 

phagocytosis deficits may reflect the relatively young age of the microglial cells in the 

monocultures. Since iPSC microglial differentiation mimics embryonic 

haematopoiesis, it is conceivable that these phenotypic abnormalities would not 

manifest at the embryonic stage of microglial development, but rather later as the 

cells age and mature. Another point to consider is that phagocytosis has been shown 

to differ according to macrophage polarisation, whereby a slower rate of phagosome 

acidification and maturation is thought to facilitate antigen presentation (Canton 
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2014). Thus, it could be hypothesised that any phagocytic deficits in the HD109 

microglia would become more apparent upon stimulation with LPS for example. 

Likewise, these deficits could be more evident in the inflamed environment of the HD 

brain, using viable humanised transgenic mouse models. 

 

Similarly, cell migration in response to a chemotactic gradient was not altered in the 

HD109 microglia. Given that these microglial functions were intact in the HD109 

microglia, it was unsurprising to discover that cells derived from corrected HD iPS cell 

lines did not exhibit any impairments when chemotaxis was assayed in response to 

CCL5, ADP and CX3CL1. Despite transcriptomic evidence pointing to the contrary, 

these findings indicate that the CAG track expansion in the HTT gene is unlikely to 

impact the phagocytosis and chemotaxis-associated homeostatic functions of HD 

microglia. However, these results should also be analysed in the context of a recent 

study by Galatro et al. 2018, which analysed the transcriptome of human microglia 

isolated from aged patients and identified several age-related transcriptional changes 

in genes associated with actin cytoskeleton dynamics and cell motility. This could 

mean that ultimately the HD cells have either adapted to their transcriptome or, as 

with the prediction of phagocytic deficits, that the embryonic nature of the HD109 

iPSC-derived microglia is masking manifestations of any potential deficits. Ultimately, 

these findings demonstrate that HD iPSC-derived microglia-like cells are competent 

immune cells capable of phagocytosis and chemotaxis.      

 

There is currently little published data on the direct contribution of metabolic 

pathways to in vivo microglial function, an important area of research, given recent 

mouse model findings that variations in metabolic and bioenergetic pathways 

contribute to regional diversity in microglial population (Grabert et al. 2016). 

Furthermore, mitochondrial dysfunction has been strongly implicated in HD 

pathogenesis, with impairments described in several HD cell types but not microglia 

(Polyzos & McMurray 2017). The hypothesis that HD microglia would exhibit potential 

mitochondrial deficits was investigated in preliminary experiments, with the assay 

results suggesting that in vitro HD microglia did not present deficiencies in 

mitochondrial respiration. This implies that impairments in mitochondrial function 
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may be due to cell type specific effects of mutant HTT. These findings are in contrast 

to reports of impairments in HD iPSCs and iPSC-derived neural precursor cells (Xu et 

al. 2017). However, these results seem to align with our transcriptomic data where we 

found no differences in the expression of genes required for glycolysis and oxidative 

phosphorylation were found in the HD109 microglia dataset compared to Kolf2. They 

also confirm the intact metabolic capacity of HD109 microglia and are in agreement 

with other functional data proving the competency of HD microglia in phagocytosis, 

chemotaxis and inflammatory response. Exploratory mito stress results showed no 

changes in OCR levels in response to LPS activation, indicating that microglia maintain 

mitochondrial function under inflammatory stimulatory conditions in vitro. This 

suggests that the bioenergetic profile of human iPSC-derived microglia is distinct from 

that of mouse microglia (Orihuela et al. 2016; Park et al. 2013; Park et al. 2015) and 

macrophages (Everts et al. 2012; Everts et al. 2014). In those cells, inflammatory 

stimulation is characterised by a metabolic shift towards glycolysis for energy 

production, whereas preliminary results from proton efflux rate experiments hinted 

that microglia undergo a less pronounced glycolytic shift under stimulatory conditions 

(data not shown).  

 

Aberrant NFB signalling, which is mediated by mutant HTT transcriptional activity, is 

a widely reported feature of HD immune cells. In particular, mHTT expression leads to 

increased expression and transcriptional activity of the transcription factor PU.1 (SPI1) 

and results in higher expression of SPI1 target pro-inflammatory genes such as Il6, Irf1, 

Tnf and Tlr2 in microglia isolated from new-born R6/2 mice, with similar findings 

reported in primary microglia derived from Q175/Q175 mutant mice (Crotti et al. 

2014). Fluidigm qRT-PCR was therefore used to validate expression of genes belonging 

to this pathway, with comparisons made between Kolf2, HD109 and HD corrected 

microglial cells. It was found that expression of NFB pathway and SPI1-target pro-

inflammatory genes in the HD109 corrected were expressed at comparable levels to 

those in WT Kolf2 and HD109 microglia. Notably, these results were consistent with 

findings of a lack of pro-inflammatory NFB-mediated signature in the HD109 iPSC-

derived microglia, as described in chapter 4.  
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Mutant HTT expression in mouse models has been shown to have several other cell-

autonomous effects on immune cells. These include a priming effect, such that the 

cells exhibit an exaggerated inflammatory response to exogenous stimuli (Crotti & 

Glass 2015). The same priming effect has been recapitulated in HD patient-derived 

monocytes (Miller et al. 2016). However, qPCR data from the LPS stimulation 

experiments revealed an activation profile similar to that of microglia derived from 

the parental clonal line HD109 iPSCs (Figure 5.3). Yet, principal component analysis of 

the LPS-treated samples showed a separation between HD corrected and HD109 LPS-

treated samples, hinting at slight differences in the immune response of the cells. 

Given that the unstimulated HD corrected microglia clustered together with the 

HD109 microglia, these overall findings suggest that correction of the HTT gene CAG 

mutation did impact on the phenotype of the HD microglia, with these effects evident 

only after inflammatory stimulation.  

Moreover, the LPS experiments indicated that aspects of the immune response of the 

in vitro microglia varied according to the genetic background of the cells. For example, 

whilst unaffected in the HD genotypes, LPS stimulation in the Kolf2 microglia led to 

increased expression of the CCR4 agonist CCL22, an inflammatory chemokine 

associated with M2 polarisation expressed by various cells (Mantovani et al. 2004). 

Likewise, this was noted for the M2a-associated chemokine CCL17 (data not shown), 

which also binds to CCR4 and is induced by production of IL-10 to inhibit M1 activation 

(Katakura et al. 2004). These observations may reflect a genotype-specific divergent 

regulation of immune response in microglia. Still, despite these genetic background-

related differences, there were parallels in the LPS response of the three cell lines, 

centring around the upregulation of activation markers such as ICAM1, IRF1 and CCR7, 

and the pro-inflammatory molecules IL-8 and IL-6. In this regard, the response from 

all three cell lines exhibited a consistent M1 activation profile. Logically, this variability 

in microglial immune response across different iPSC lines highlights the need for 

careful thought and planning of experiments, especially those involving the use of 

non-isogenic control-matched iPSC models.         

LPS exposure was also found to elicit expression of CCL18, induced by anti-

inflammatory cytokines such as IL-4, IL-13 and IL-10 (Politz et al. 2000). The presence 

of this anti-inflammatory signature in an overall pro-inflammatory environment 
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suggests that the gene expression changes evident in the results do not take into 

account and/or may mask the immune response and behaviour at the single cell level. 

It is likely, that individual cells or a subpopulation of cells are driving the expression of 

specific anti-inflammatory mediators. In addition, based on the prediction of potential 

inhibition of specific inflammatory pathways in HD microglia, it may transpire that the 

transcription and inhibitory nuances sought after are more apparent at the level of 

the single cell, but may be masked overall. Therefore, future experiments should 

endeavour to investigate the transcriptome of LPS-treated HD109 and HD corrected 

iPSC-derived microglia at the single cell level, in combination with comparisons of bulk 

samples of HD corrected and HD109 iPSC-derived microglia. In addition, a proteomics 

approach using mass spectrometry analysis of culture supernatants could be 

integrated to these experiments, by assessing whether any gene expression changes 

observed at the transcriptomic levels match protein and cytokine expression at the 

level of the secretome.  

 

Finally, it should be noted that while the results described herein have considered the 

downstream effects of their immune response, the transcriptomic data hinted at 

complex changes upstream of HD microglia’s immune response genes. These could 

include transcription factor interactions and regulatory gene networks, which could 

be the focus of future transcriptomic studies of HD109 and corrected iPSC-derived 

microglia. Several analysis tools are available to help with these imputations, for 

example weighted gene co-expression network analysis or WGCNA, which can be used 

for finding clusters of highly correlated genes and identifying patterns of expression 

(Langfelder & Horvath 2008). Another example is the Bioconductor package 

CoRegNet, which analyses large-scale gene expression datasets and imputes the 

transcriptional co-regulator networks responsible. It integrates data from ChIP and TF 

binding sites (Nicolle et al. 2015). These packages could be used in conjunction with 

the upstream regulator analysis from IPA to build a more complete map of the 

transcriptional changes specific to the HD microglia.
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6. INVESTIGATION OF THE EFFECTS OF 

ABCA7 LOSS-OF-FUNCTION IN 

HUMAN IPSC-DERIVED MICROGLIA

6.1 Introduction  

Phagocytosis is an important and highly complex process central to several biological 

processes, including development, tissue homeostasis and innate immunity. 

Mechanistically, it involves the recognition and ingestion of particles larger than 0.5 

µm into membrane-bound vacuolar structures known as phagosomes. It is primarily 

performed by professional phagocytes, a subset of cells that comprises monocytes, 

macrophages, dendritic cells, neutrophils, eosinophils and osteoblasts (Rabinovitch 

1995). Phagocytes express a spectrum of distinct receptors that mirrors the diversity 

of particles they encounter, ranging from foreign pathogens such as bacteria and yeast 

to apoptotic cells.  

As the resident phagocytes of the CNS, microglia express a range of PRRs, 

PAMPs and DAMPs (see section 1.2.4) that facilitate particle recognition, engagement 

and initiation of appropriate downstream signalling. Their phagocytic ability is thus 

crucial in modulating their response to apoptotic or damaged neurons (Stolzing & 

Grune 2004; Fraser et al. 2010), harmful protein aggregates such as amyloid beta (Ard 

et al. 1996), as well as the capacity to shape neural circuits (Paolicelli et al. 2011; 

Schafer et al. 2012). Following on from the notion of microglial phagocytosis being 

essential to normal brain health, variants in phagocytosis-related genes such as 

TREM2 and CD33 have been identified as risk factors for Alzheimer’s disease 

(Kleinberger et al. 2014; Griciuc et al. 2013).  

 

First identified as a risk factor for AD by two genome-wide association studies in 2011 

(Naj et al. 2011; Hollingworth et al. 2011), and later by Lambert et al. 2013, ABCA7 is 

one of four risk loci significantly associated with plaque burden in Alzheimer’s disease, 



120  

alongside CR1, APOE and CD2AP (Shulman et al. 2013). The common ABCA7 GWAS 

risk allele rs3764650G, located in intron 13, is associated with reduced expression in 

the brain and increased plaque burden (Vasquez et al. 2013), suggesting that lower 

levels of ABCA7 protein may underline increased disease risk. Fittingly, rare loss-of-

function coding variants were found in a Belgian cohort by Cuyvers et al. 2015, 

demonstrating that several ABCA7 coding mutations segregate with disease in an 

autosomal dominant manner. Some of these findings were replicated in an Icelandic 

cohort (Steinberg et al. 2015), while a recent study by the European Early-Onset 

Dementia consortium identified ten novel deleterious ABCA7 mutations (Figure 6.1) 

(Roeck et al. 2017). Le Guennec et al. 2016 performed a meta-analysis of recently 

published data from France and Belgium cohorts to find that ABCA7 rare loss-of-

function variants of ABCA7 account for around 3% of AD cases (Le Guennec et al. 

2016). These and more recent early onset AD findings from  Bellenguez et al. 2017 

provide strong genetic evidence that ABCA7 mutations significantly contribute to AD 

risk (Bellenguez et al. 2017).  

 

Figure 6.1 Schematic representation of rare loss-of-function variants in ABCA7.  
Loss-of-function variants identified by Steinberg et al. 2015, Cuyvers et al. 2015 and Roeck et al. 2017.  
fs denotes frameshift mutations; * denotes nonsense mutations. Figure adapted from Cuyvers et al. 
2015; Aikawa et al. 2018.  
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ABCA7 encodes ATP-binding cassette transporter A7, a member of the ABC 

transporter superfamily involved in the transport across cell membranes of a variety 

of substrates ranging from small molecules such as amino acids and sugars to larger 

compounds including peptides, oligonucleotides and lipids (Dean & Annilo 2005). Its 

expression can be detected in several tissues including thymus, spleen and the brain, 

where it is most abundant in microglia (Kim et al. 2006). Structurally, ABC transporters 

are organised into four functional units: two nucleotide-binding domains (NBDs) and 

two transmembrane domains (TMDs). The NBDs or ATP-binding cassettes are highly 

conserved in sequence and structure across all ABC transporters, with each composed 

of seven motifs that include the Walker A, Walker B and ABC signature LSGGQ motif 

(Beek et al. 2014). The -helices of the two TMDs are arranged such that they form a 

transmembrane pore accessible either from the cytoplasm (inward-facing 

conformation) or the outside of the cell (outward-facing conformation) (Rees et al. 

2009).  

 

ABCA7 has previously been shown to regulate phagocytosis of apoptotic cells. Jehle et 

al. 2006 demonstrated that Abca7+/- mice-derived macrophages exhibit a deficiency in 

the phagocytosis of apoptotic Jurkat T cells and neutrophils. Similarly, Iwamoto and 

colleagues have shown that siRNA-knockdown of ABCA7 in BALB/3T3 fibroblasts 

significantly reduces phagocytic activity (Iwamoto et al. 2006). Studies assessing 

ABCA7 function in AD mouse models have shown that ABCA7 deletion increases 

amyloid plaque load (Kim et al. 2013; Li et al. 2015; Sakae et al. 2016). Importantly, 

ABCA7 deficiency has been shown to impair Aß phagocytosis in mouse macrophages 

and microglia, suggesting that ABCA7 may play a role in phagocytic clearance of 

amyloid from the brain. However, given the lack of direct mechanistic evidence for 

the link between ABCA7 and microglial phagocytosis, more work is required to further 

our understanding of the role of ABCA7 in microglia and of its contribution to the 

pathogenesis of Alzheimer’s disease.   

6.2 Aims  

The objective of this chapter was to investigate the function of ABCA7 in human 

microglia derived from iPSCs. ABCA7 single and double allele KO iPSC lines were 
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generated by CRIPSR-Cas9 genome editing and validated. Microglia were 

subsequently differentiated from the successfully generated ABCA7-edited clones and 

the cells used to analyse the effects of these ABCA7 mutations on phagocytosis, 

immune response and lipid metabolism.  

6.3 Results 

6.3.1 Generation of ABCA7 KO iPSC lines by CRIPSR-Cas9   

The full length (type I) ABCA7 encodes a protein of 2146 amino acids (Abe-Dohmae et 

al. 2006). Ikeda et al. 2003 detected a splicing variant of the protein (designated type 

II), with a translation initiation codon between exon 5 and 6 of the full-length isoform. 

This novel N-terminus in type II ABCA7 is thought to affect both the size, subcellular 

localisation and lipid release function of the protein. To generate a loss-of-function 

allele of ABCA7 in iPSCs, two CRISPR guide RNAs were designed to target the coding 

exons 2 (Ex2P1) and 8 (Ex8P1) in the N-terminus of the protein. The guide RNAs were 

chosen as they were predicted to have no potential off-target sites – this was 

confirmed by using the Cas-OFFinder algorithm (Bae et al. 2014) 

(http://www.rgenome.net/cas-offinder/). In addition, this combination of gRNAs 

would result in a successful excision of a 2.4kb region at the 5’ end of the gene and a 

subsequent frameshift mutation (Figure 6.2A).   

Following transfection and the first round of single colonies picking and screening (see 

section 2.8.2), 9 clones were initially identified as potential ABCA7 positive KO by PCR 

screening, from which four (2G, 7G, 11H and 12H) were chosen for sub-cloning onto 

10 cm culture dishes (Figure 6.2B). A total of ~ 200 single sub-clones were picked from 

this pool (48 colonies per clones) and PCR screened for successful ABCA7 excision. A 

number of potential KO positive sub-colonies were identified by PCR screen, from 

which 4 mutant clones were expanded and re-screened to confirm excision of the 

intervening DNA between exons 2 and 8 (Figure 6.2C). The PCR fragments from these 

screens were sequenced to reveal the Cas9 cleavage sites on ABCA7 exon 2 and exon 

8 loci. Sequencing results revealed a great degree of variability in the Cas9 cleavage 

sites between clones. Cleavage resulted in identical sequences for two clones 11H-7C 

and 11H-11B, with the Cas9 cleaving the target sequence 5 base pairs upstream of the 

PAM sequence and the insertion of two base pairs (Figure 6.2D). In both cases, the 
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mutation would result in a premature stop codon. Sequencing for the third single KO 

clone 11H-9G showed the Cas9 cut site to be 3 base pairs upstream of the PAM 

sequences in both exons 2 and 8 (Figure 6.2E), resulting in a frameshift mutation, as 

verified using the CRISPR-mediated indel detection tool CRISPR-ID (Dehairs et al. 

2016).   

 

ABCA7 double KO alleles were generated using the same strategy, by submitting the 

ABCA7 heterozygous clone 11H-11B to a round of transfection, picking and screening, 

followed by sub-cloning and expansion of potential double KO positive clones. PCR 

screening showed the presence of single 500 bp bands indicative of successful excision 

of the target region between the exons 2 and 8 of ABCA7 gene (Figure 6.2F). The 

double KO clones identified in this way were subsequently sequenced: clones T2-9G 

and T2-11B returned similar sequences, as shown in Figure 6.2G. On the other hand, 

sequencing for the T2-1F and T2-1G clones revealed the Cas9 cut site for the exon 8 

Ex8P1 guide RNA to be located three base pairs upstream of the PAM site, with the 

exon 2 cut site five base pairs upstream of the CGG sequence (Figure 6.2H). To further 

differentiate between heterozygous and homozygous ABCA7 mutants, an additional 

PCR screen was carried using the Ex2F forward primer and Ex2R reverse primer, which 

binds in the guide RNA-targeted region (Figure 6.2I). PCR products of 800 bp could be 

detected for WT Kolf2 and ABCA7+/- cells, with no bands detected for the homozygous 

clones T2-1F, T2-9G and T2-11B.         
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Figure 6.2 CRISPR/Cas9-edited generation of ABCA7 knock out mutants in Kolf2 iPS cells.   
(A) Guide RNAs (Ex2P1 and Ex8P1) were designed to target exons 2 and 8 at the N-terminal end of ABCA7 in Kolf2 iPSCs. Successful Cas9 cleavage would result in deletion of 
a 2.4kb region that could identified by PCR screen using Ex2F and Ex8R primers flanking the target DNA sequence to give a knock out PCR fragment of 500 bp and WT fragment 
of 2400 bp. (B) Following transfection and picking of single colonies in a 96-well plate, 9 clones were identified as potential KO clones by the initial PCR screening – targeted 
efficiency of 9%. From those potential clones, four (2G, 7G, 11H and 12H) were selected for sub-cloning on 10 cm TC dishes and single colonies picked for further screening. 
(C) 200 sub-clones were picked and screened, with four 11H sub-clones identified as potential ABCA7+/- mutants. (D) Sequencing analysis showed Cas9 cleavage sites for 11H-
7C and 11H-11B ABCA7+/- mutants were 5 bp upstream of PAM sites, with 2 bp insertion. The mutated DNA sequence would result in the insertion of a premature stop codon 
in the translated protein.  
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(E) Sequencing for the ABCA7+/- mutant 11H-9G revealed the Cas9 cleavage sites to be 3 bp upstream of the PAM sites, leading to a frameshift mutation. (F) ABCA7-/- mutants 
were generated by transfecting the heterozygous mutant 11H-11B, followed by colony picking and sub-cloning. PCR screening identified seven T2 homozygous clones, by the 
presence of 500 bp bands of stronger intensity than the heterozygous 11H ABCA7+/- mutants. (G-H) Sequencing analysis of the homozygous T2 clones identified variability in 
the Cas9 cleavage sites between the different clones. (I) PCR screens revealed differences between ABCA7 heterozygous and homozygous clones, using the Ex2R reverse 
primer that binds in the guide RNA-targeted region. For heterozygous clones, the reaction would yield a PCR product of 800bp while no band would be produced for 
homozygous clones.    
 

I 
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6.3.2 Validation of ABCA7-edited iPSC-derived microglial cells  

Having generated the ABCA7 mutant iPSC lines, microglia were derived from the 

edited iPS cells before the expression of canonical MG markers was confirmed by 

immunostaining (Figure 6.3 A-B). Expression of MG-specific transcripts CABLES1, 

C1QA and GPR34 was also measured by qPCR, with comparisons showing significant 

upregulation in the microglial samples compared to THP1 monocytes and comparable 

expression across the ABCA7 genotypes (Figure 6.3C). Validation of protein expression 

in the ABCA7-edited MG cells by immunocytochemistry and western blotting was 

attempted over the course of the study, but no suitable antibodies could be found. As 

a result, Fluidigm qRT-PCR analysis was used to assess reduction of ABCA7 mRNA 

expression in the ABCA7 mutant microglia generated from the heterozygous KO 

clones 11H-7C and 11H-11B as well as the homozygous KO clones T2-1G, T2-9G and 

T1-11B. Principal component analysis showed a clear separation between samples 

from the double KO microglia and Kolf2 WT microglia, while the ABCA7+/- mutants 

segregated with the Kolf2 WT samples (Figure 6.3D). Gene expression results revealed 

no significant differences in the ABCA7 mRNA levels between the samples, although 

there was a trend towards lower expression in the homozygous KO samples (Figure 

6.3E). ABCA7 shares sequence homology with ABCA1, the ATP cassette transporter 

essential for the regulation of intracellular cholesterol levels (Kaminski et al. 2000). 

The potential for a compensatory upregulation of ABCA1 after ABCA7 deletion was 

also investigated, with results showing that ABCA1 expression levels did not differ 

between WT and ABCA7-edited MG cells (Figure 6.3E).       
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Figure 6.3 Microglia derived from ABCA7+/- and ABCA7-/- iPSCs express canonical microglia markers.   
(A) Confocal images of ABCA7+/- microglia-like cells positive for P2RY12 and CD45. (B) Differentiation of ABCA7-/- clones generated TMEM119+ IBA1+ iPSC-derived microglia. 
Scale bar represents 20 µm. (C) Expression of microglia-enriched genes C1QA, GPR34 and CABLES1 in microglia differentiated from ABCA7-edited Kolf2 iPSCs was validated 
by Fluidigm qPCR. (D) Cluster analysis revealed that ABCA7-/- samples segregated away from WT and ABCA7+/- samples.    
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 (E) ANOVA comparisons revealed no significant differences in ABCA7 mRNA expression between 
ABCA7+/-, WT and ABCA7-/- Kolf2 microglia. Levels of the related ATP transporter ABCA1 were similarly 
unchanged in the ABCA7-edited MG cells. Log2 Expression normalised to reference genes. Statistical 
analysis used two-way ANOVA with Tukey’s multiple comparison test. Asterisks denote statistical 
significance: * < 0.05, ** < 0.01, *** < 0.001, ns – not significant. n=3 biological replicates for all 
samples, except for THP-1 (n=2), Kolf2 ABCA7+/- MG (n=2).      

 

Next, the impact of the ABCA7+/- mutations generated on the microglial immune 

response was investigated. ABCA7+/- cells were differentiated on 6-well plates for 14 

days and stimulated with 1 µg/ml LPS for 4 hours or 50 ng/ml IL-4 for 24 hours. Under 

control unstimulated conditions, both ABCA7+/- and WT MG cells expressed 

comparable mRNA levels of M1 activation markers. Following LPS treatment, only 

three markers CCR7, TNF- and IL-1ß were significantly upregulated in the Kolf2 

ABCA7+/- cells vs control ABCA7+/- cells (p < 0.01) (Figure 6.4A). In contrast, transcript 

levels of several other activation markers were significantly upregulated in the LPS-

treated WT Kolf2 cells (p < 0.001), including the chemokines IL-8, CCL18 and CCL22 (p 

< 0.01) and the inflammation-induced adhesion molecule ICAM1 (Figure 6.4B). This 

suggests that though the LPS-treated cells displayed the classical M1 phenotype, the 

ABCA7 mutations restricted the magnitude of the induced pro-inflammatory 

response.  

  



130  

  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

TN
F-
α

IL
-1
ß

C
C
R
7

0

5

10

15

20

L
o
g

2
 E

x
p
re

s
s
io

n

Kolf2 MG

Kolf2 ABCA7+/- MG

Kolf2 ABCA7+/- MG + 4h LPS

Kolf2 MG + 4h LPS

*

**

***
*

**

***

*

**

***

A 

IC
A
M

1
IL

-8

C
C
L18

C
C
L22

0

5

10

15

20

L
o
g

2
 E

x
p
re

s
s
io

n

Kolf2 MG

Kolf2 ABCA7+/- MG

Kolf2 ABCA7+/- MG + 4h LPS

Kolf2 MG + 4h LPS

*

ns

***
*

***

ns
*

***

ns
ns

**

nsns

ns

ns

ns

B 

Done

Save

Clear

Circle

Point

Kolf2 MG ABCA7+/-

Kolf2 MG

Kolf2 ABCA7+/- 24h IL-4

Kolf2 ABCA7+/- 4h LPS

Kolf2 ABCA7+/- 24h LPS

Kolf2 24h LPS

Kolf2 4h LPS

Kolf2 24h IL-4

-10 0 10 20

-1
0

-5
0

5

PCA Score Plot

PC1

P
C

2

11H-11B MG 24h IL-4

11H-7C MG 24h IL-4

11H-11B MG

11H-7C MG

Kolf2 MG2

Kolf2 MG3

Kolf2 MG1

Kolf2 MG 24h IL4 (2)

Kolf2 MG 24h IL4 (1)

11H-7C MG 4h LPS

11H-11B MG 24h LPS

11H-7C MG 24h LPS

Kolf2 MG 24h LPS 2

Kolf2 MG 24h LPS 1

Kolf2 MG 4h LPS 2

Kolf2 MG 4h LPS 1C 

P
PA

R
γ

N
R
1H

2

M
R
C
1

C
D
16

3

0

5

10

15

20

L
o
g

2
 E

x
p
re

s
s
io

n

Kolf2 ABCA7+/- MG

Kolf2 ABCA7+/- MG + 24h IL-4

Kolf2 MG + 24h IL-4

Kolf2 MG

ns

***

ns
ns

***

ns

ns

***

ns
ns

***

D 



131  

 
Figure 6.4 The inflammatory response of iPSC-derived microglia to LPS and IL-4 stimulation is influenced by ABCA7 deleterious mutations.   
(A) Stimulation of Kolf2 ABCA7+/- MG cells with 1 µg/ml LPS for 4 hours resulted in increasing expression of three M1 markers, TNF-, IL-1ß and CCR7. Compared to WT 4h 
LPS-treated MG cells, this pro-inflammatory response was markedly restrained, as demonstrated by higher expression levels of those three genes in the corresponding 
Kolf2 WT LPS samples. (B) Expression of ICAM1, IL-8, CCL18 and CCL22 was unchanged in the ABCA7-edited MG cells after the same LPS challenge, whereas the same genes 
were significantly upregulated in 4h LPS-stimulated WT MG cells. (C) Kolf2 WT and ABCA7+/- MG cells were stimulated with 50 ng/ml IL-4 for 24 hours. Cluster analysis 
showed that the M2 phenotype of ABCA7-edited IL-4 treated MG cells was markedly different from that of IL-4 treated WT Kolf2 MG cells. (D) IL-4 stimulation resulted in 

lower expression of the anti-inflammatory genes (PPAR and NR1H2) and M2-specific markers (MRC1 and CD163) in the ABCA7+/- MG cells compared to WT MG cells. (E) 
The pro-inflammatory genes CCL2, ICAM1 and NLRP3 were expressed at lower levels in compared to WT MG cells. (F) Differences in the expression of ABCA7 and 
cholesterol-associated genes were statistically significant between WT and ABCA7+/- MG cells after treatment with IL-4.  
 
Log2 Expression normalised to reference genes. Statistical analysis used two-way ANOVA with Tukey’s multiple comparison test.  
 
Asterisks denote statistical significance: * < 0.05, ** < 0.01, *** < 0.001, ns – not significant. n=3 biological replicates for all samples, except for Kolf2 ABCA7+/- MG (n=2); 
Kolf2 ABCA7+/- MG + 4h LPS (n=2); Kolf2 ABCA7+/- MG + 24h IL-4 (n=2).       
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This immune response-altering effect was more apparent with stimulation with IL-4, 

which induces an M2 phenotype. As shown by the PCA plot in Figure 6.4C, the 

inflammatory phenotype of the ABCA7+/- cells was markedly different from that of WT 

microglia after IL-4 treatment, with a distinct segregation based on expression of 

several immune response genes. This difference was particularly illustrated by the fact 

that the M2-specific markers PPAR- and CD163, and the nuclear factor NR1H2 (or 

LXR-ß), which showed a trend towards upregulation in the WT IL-4 stimulated cells, 

trended towards downregulation in the corresponding ABCA7-edited MG cells (Figure 

6.4D). In addition, the pro-inflammatory markers ICAM1, NLRP3 and CCL2 showed a 

trend towards reduction in the IL-4-treated ABCA7 mutant microglia, while IL-1ß 

reduction was found to be statistically significant. Crucially, the differences in 

expression levels of these genes were significant when comparing WT and ABCA7+/- 

IL-4 treated cells (Figure 6.4E). It is also worth noting that, following IL-4 stimulation, 

levels of ABCA7 and the cholesterol related transcripts SREBF2 and LRP1 were lower 

in ABCA7+/- cells vs WT cells (Figure 6.4F). Taken together, these results showed that, 

along with pro-inflammation, M2 anti-inflammatory responses were likely to be 

affected by ABCA7 loss-of-function mutations.     

 

6.3.3 ABCA7 loss of function impairs phagocytosis in iPSC-derived microglia  

ABCA7+/- and ABCA7-/- microglia cells were functionally validated for their capacity to 

phagocytose pHrodo red E. coli particles. 96-well plate differentiated microglial cells 

(20,000 per well) were incubated with 10 µg pHrodo particles and red channel 

fluorescence measurements were taken every 15 minutes for 4 hours in the IncuCyte 

S3 live imaging platform (see section 2.5). pHrodo red fluorescence was found to be 

markedly reduced in ABCA7+/- and ABCA7-/- cells compared to Kolf2 WT microglial cells 

(Figure 6.5A). Quantification of the endpoint fluorescence indicated that ABCA7 

homozygous and heterozygous mutant microglia cells ingested significantly fewer 

particles than WT Kolf2 cells (p <0.0001) (Figure 6.5B). Pre-treatment of the WT cells 

with 1 µM bafilomycin A1 resulted in ablation of the fluorescent signal, confirming 

that phagolysosome acidification is a prerequisite for this process. Tellingly, ABCA7 

mutant cells showed a higher rate of particle uptake than the inhibitor-treated cells, 
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except for one ABCA7-/- clone T2-1F where the difference was non-significant. 

Differences in rate of particle uptake were also uncovered between the three different 

ABCA7-/- clones, which individually ingested significantly fewer particles (p< 0.0001) 

than the single ABCA7+/- clone studied in this experiment. Therefore, these preliminary 

results suggest that microglial phagocytosis of red E. coli bioparticles is considerably 

impaired by genetic modification of ABCA7, implying that ABCA7 is essential for 

phagocytosis of pathogenic particles.      
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Figure 6.5 Phagocytosis of pHrodo E. coli bioparticles seems to be impaired by ABCA7 heterozygous and homozygous KO mutations in preliminary 
examinations.    
iPSC-derived MG cells plated at 20,000 per well were incubated with 10 µg pHrodo E. coli for 4 hours. (A) For negative control, WT MG cells were pre-treated with 10 µM of 
bafilomycin A1 for 1 hour before E. coli treatment. (B) End point fluorescence values from the experiment in (A) were plotted. Data are presented as mean ± SEM from each 
genotype or condition with 8-16 technical replicates. n=1 independent experiment.  
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Figure 6.6 Stimulation with the apoptotic molecule C1q induces intracellular accumulation of phospholipids and cholesterol in iPSC-derived microglia.      
Kolf2 WT and ABCA7+/- MG cells were cultured on PDL-treated and fibronectin-coated Ibidi 8-well chamber slides before stimulation with 10 µg/ml C1q for 1 hour. (A) MG 
cells were incubated with the phospholipidosis detection reagent LipidTOX for 4 hours. Fluorescence images were taken with a high-resolution microscope – LipidTOX was 
excited at 543 nm and its emission detected at 594 nm. (B) Following C1q stimulation, MG cells were incubated for 30 mins with 125 µg/ml of the cholesterol-specific probe 
filipin. Fluorescence images were taken at 300nm.   
Scale bars represent 20 µm.   
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6.3.4 Is ABCA7 involved in intracellular lipid trafficking?  

ABCA7 has been reported to exert its phagocytosis-mediating activity in mouse macrophages 

through recruitment to the cell surface of the low-density lipoprotein receptor-related 

protein 1 or LRP1, with both proteins colocalised to phagocytic cups when the cells were 

stimulated with C1q (Jehle et al. 2006). C1q is expressed on apoptotic cells, where it binds to 

LRP1 on phagocytes, initiating uptake of apoptotic cells (Ogden et al. 2001).  

Particle engulfment by phagocytes is a tightly orchestrated process that requires several 

proteins operating in concert to generate approximately 100 lipids in order to replenish the 

cell membrane expended during initial engulfment (Aderem 2002). This rapid rate of lipid 

synthesis is accompanied by increased transcription of many proteins, including the LDL 

receptor, fatty acid synthase and the cholesterol synthesis enzymes 3-hydroxy-3-

methylglutaryl CoA synthase and 3-hydroxy-3-methylglutaryl CoA reductase (Castoreno et al. 

2005). In order to explore the dynamics of cell membrane biogenesis and lipid metabolism 

during microglial phagocytosis, lipid trafficking assays focusing on two species (cholesterol 

and phospholipids) were carried out. Microglia differentiated from WT and ABCA7+/- cell lines 

were cultured on Ibidi 8-well chamber slides and incubated with 10 µg/ml C1q for 1 hour 

before staining for cholesterol and phospholipids with filipin and LipidTOX respectively (see 

section 2.5). High resolution images showed that unstimulated microglial cells exhibited low 

levels of phospholipids, with the LipidTOX staining enclosed in intracellular puncta (Figure 

6.6A). Upon stimulation with C1q, cells exhibited a noticeable intracellular accumulation of 

phospholipids, indicative of an increased rate of lipid synthesis. Crucially, no differences in 

staining pattern were observed between WT and single KO microglial cells, suggesting that 

ABCA7 mutations do not affect phagocytosis-mediated synthesis of phospholipids in microglia 

cells (Figure 6.6A). Cholesterol was similarly observed in intracellular punctate structures, as 

shown by staining with filipin (Figure 6.6B). ABCA7+/- and WT microglia treated with C1q for 1 

h showed elevated levels of filipin staining, the accumulation of cholesterol being 

concentrated in intracellular compartments (Figure 6.6B). Though not quantified, cholesterol 

staining in the ABCA7+/- cells was less pronounced compared to WT cells, hinting at an altered 

capacity to regulate cholesterol levels in response to a phagocytic challenge.  
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6.3 Summary and Discussion  

Transcriptomic and gene expression studies described in chapter 3 demonstrated that the 

human iPSC-derived microglia generated using the protocol described in this study express 

several disease-associated risk genes for AD. To validate the suitability of these in vitro 

differentiated cells for modelling the function of microglial-enriched AD risk genes, ABCA7 

was chosen as a candidate gene with the intention of knocking out the gene and studying the 

subsequent effects of these mutations on microglial function. Using CRISPR/Cas9 genome 

editing, ABCA7 mutant clones were generated by excision of a 2.5 kb region at the N-terminal 

end of the protein. Potential heterozygous and homozygous KO clones were identified by PCR 

screening and sequencing.  

 

Validation by Fluidigm qRT-PCR showed that ABCA7 mRNA expression was found to be 

unaltered following genome editing. The mRNA primers used were mapped to the coding 

exons 40 and 41 of the full-length protein, with the forward mRNA primer flanking the exon-

exon boundary for increased specificity. No reduction in ABCA7 mRNA levels in either the 

heterozygous or homozygous mutants suggests that the mutated mRNA transcripts may have 

escaped the nonsense mediated decay machinery. One important limitation of this 

investigation was the failure to validate ABCA7 protein expression and therefore the KO lines 

generated by Western blotting. A number of antibodies were trialled, namely the rabbit 

polyclonal antibody 25339-1-AP from ProteinTech Europe and another rabbit polyclonal 

antibody ARP-43690_P050 from Aviva Systems Biology (USA), which targets the middle region 

of the protein. Neither antibody worked convincingly by producing any bands when Western 

blots experiments were carried out. Recently, a study published the first paper using an 

antibody specific to human ABCA7 (Allen et al. 2017), designed to bind the epitope aa 2096-

2146 in the C-terminus of the full-length protein (LS-C291064, LifeSpan BioSciences - USA). 

This antibody looks like a good candidate for validation of the KO lines generated in this study.  

 

Nevertheless, preliminary functional assays carried out with pHrodo red E. coli bioparticles 

demonstrated a deficit in phagocytosis in ABCA7-edited microglia, showing that ABCA7 is 

required for efficient phagocytosis of bioparticles. In addition, the findings underlined the 

importance of actin remodelling and phagolysosome fusion in microglial phagocytosis, as the 
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use of the respective inhibitors cytochalasin D and bafilomycin A1 resulted in loss of pHrodo 

fluorescence. These observations are in agreement with recent studies of iPSC-derived 

macrophage and microglia phagocytosis performed using similar live cell imaging platforms 

(Kapellos et al. 2016; Brownjohn et al. 2018). Though this study recapitulates previous mouse 

model findings that ABCA7 mediated phagocytosis, another limitation is that only one aspect 

of bioparticle phagocytosis, through engagement of the TLR4 was investigated herein. Future 

experiments would need to establish whether mechanisms of phagocytosis impairment 

through ABCA7 loss-of-function are receptor- and particle-dependent, by challenging cells 

with larger bioparticles such as zymosan, a ligand found on the surface of fungi that stimulates 

TLR2-mediated uptake. Another essential question that has to be answered is whether these 

ABCA7 mutations would affect binding and internalisation of oligomeric Aß, as ABCA7 

deletion in AD mouse models enhances plaque load (Kim et al. 2013; Li et al. 2015; Sakae et 

al. 2016). Given that iPSC-derived microglia were shown to express several Aß receptors 

including TREM2, CD36 and CR1, impairments in Aß phagocytosis would likely point towards 

a general phagocytic mechanism that requires ABCA7.     

 

Studies in mouse macrophages have shown that ABCA7 staining is mostly intracellular 

(Liensel-Nitschke et al. 2005), whereas the protein co-localises with LRP1 following 

stimulation with C1q (Jehle et al. 2006). The latter work also proved that ABCA7 is required 

for signalling through LRP1. The ubiquitously expressed receptor LRP1 regulates a diverse 

range of physiological processes including endocytosis, lipid metabolism and signal 

transduction (May et al. 2005). In macrophages, it promotes anti-inflammatory signalling via 

inhibition of pro-inflammatory gene expression (Zurhove et al. 2008; May et al. 2013). This in 

turn affects polarisation by favouring an M2 anti-inflammatory phenotype. Correspondingly, 

LRP1 downregulation in mouse microglia leads to increased pro-inflammation via JNK and 

NFB activation (Yang et al. 2016). LPS and IL-4 stimulation experiments showed that the 

inflammatory response of microglia was affected by ABCA7 mutations, suggesting that the 

ATP transporter may play a role in microglial anti-inflammatory signalling. ABCA7+/- microglia 

exhibited a more restrained inflammatory response to LPS incubation compared to WT Kolf2 

cells, as indicated by fewer and statistically smaller increases in pro-inflammatory and M1 

activation molecules (Figure 6.4). Similarly, a distinct immune profile was obtained following 

stimulation with the anti-inflammatory cytokine IL-4. These data therefore provide 
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preliminary evidence for the involvement of ABCA7 in both the pro- and anti-inflammatory 

response of microglial cells, perhaps in modulating the appropriate response to pathogens 

and inflammatory stimuli. Given the evidence for LRP1 in this context and that ABCA7 is 

required for LRP1 signalling, it is plausible that ABCA7 exerts its inflammation- and 

phagocytosis-mediating effects through interactions with LRP1 in lipid rafts. Consequently, 

more work is needed to certify these potential links between LRP1 and ABCA7, including their 

intracellular localisation in unstimulated microglia and during phagocytosis. This could be 

done using confocal microscopy, as well as using co-immunoprecipitation assays that could 

enable the identification of proteins and complexes that interact with ABCA7 during 

phagocytosis.     

 

C1q treatment of iPSC-derived microglia resulted in increased intracellular cholesterol and 

phospholipid staining, indicative of a higher rate of lipid and cholesterol synthesis in response 

to or during phagocytosis. Future experiments should aim to quantify these increases and 

assess whether ABCA7 mutations inhibit or enhance these processes. Additionally, ABCA7 

expression is regulated by intracellular cholesterol levels through the SREBP2 pathway, 

whereby its expression is upregulated by cholesterol depletion and downregulated by higher 

cellular cholesterol levels (Iwamoto et al. 2006). A series of experiments focusing on this 

pathway in the ABCA7 KO iPSC lines were planned, with cholesterol depletion to be mimicked 

using the cholesterol-lowering drug mevastatin, an inhibitor of the HMG-CoA reductase 

enzyme (Bamji-Mirza et al. 2016). Preliminary results with Kolf2 WT microglia stimulated with 

10 µM mevastatin (ML-236B, Sigma Aldrich) for 4 hours showed that mevastatin treatment 

significantly increased expression of SREBF2 and the cholesterol-synthesis enzymes fatty acid 

synthase (FASN), low density lipoprotein receptor (LDLR) and HMG-CoA synthase 1 (HMGCS1) 

(see appendix 5). Likewise, experiments assessing the effects of C1q stimulation on gene 

expression of cholesterol pathway genes should be carried out, and comparisons made 

between WT and ABCA7-deficient microglia.   

 

Phagocytosis and clearance of debris is a quintessential and defining function of microglia 

(Gordon & Martinez 2010). Indeed, a growing research area within the field revolves around 

their involvement in synaptic pruning, whereby microglia engulf and eliminate synapses 

during development (Paolicelli et al. 2011; Schafer et al. 2012). Though there is very little 
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evidence for microglial-mediated synaptic pruning after development, proper microglia 

function is critical for the correcting wiring of embryonic brain circuits (Squarzoni et al. 2014). 

Furthermore, microglia have been shown to mediate synaptic loss in AD mouse models 

through the CR3 pathway, a process that precedes plaque deposition and is dependent on 

C1q expression (Hong et al. 2016). Fluorescence imaging of synaptic membrane dynamics has 

been reported using the pH-sensitive pHluorin (Miesenböck et al. 1998; Royle et al. 2008) and 

thus can be adapted for in vitro live imaging assays, by co-culturing microglia with synapto-

pHluorin-expressing iPSC-derived neurons. This would allow to investigate synaptic pruning 

in vitro as well as the effects of ABCA7 mutations on this microglial activity.    
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7. GENERAL DISCUSSION 

7.1 General discussion and future perspectives  

7.1.1 Characterisation of the phenotype of HD109 iPSC-derived microglia  

The accumulation of reactive microglia is a key feature of the HD brain (Sapp et al. 2001), with 

imaging studies going on to demonstrate that this extensive microglial activation is apparent 

long before age of onset in HD gene carriers (Tai et al. 2007) and that it correlates with 

neuronal loss in symptomatic patients (Pavese et al. 2006). Moreover, studies in mouse 

models and post-mortem human brains have shown that HD microglia acquire an 

inflammatory phenotype, resulting in elevated levels of proinflammatory cytokines 

(Dalrymple et al. 2007; Silvestroni et al. 2009). Though microglial activation in the HD brain 

has been relatively well reported, it remains unclear whether this phenomenon is a secondary 

response to neuronal degeneration or mainly down to the cell-autonomous effects of mutant 

HTT expression in immune cells.  

The first aim of this thesis was to investigate the phenotype of microglia derived from a 

Huntington’s disease human iPS cell line containing 109 CAG repeats in the HTT gene. The 

transcriptome of HD109 iPSC-derived microglia was compared to that of WT cells derived 

from a different genetic background by RNA sequencing. The transcriptional hallmarks of 

mutant HTT-associated immune dysfunction, which include NFB dysregulation and higher 

expression of pro-inflammatory SPI1-target genes, were not detected in the HD109 microglia. 

In fact, the findings presented in chapter 4 point towards the notion that the pathogenic 

hallmarks of mutant HTT-expressing microglia, as described in the literature, may not be 

innate to their basal transcriptome.  

 

The study’s focus then turned to assessing whether the pro-inflammatory properties of HD 

microglia would manifest following exogenous stimulation. Surprisingly, results showed that 

the in vitro HD microglia did not exhibit a hyper-reactive activation profile when challenged 

with LPS. When paying close attention to genes belonging to the two HD affected pathways 

of NFB and LPS, no evidence of dysregulation in gene expression were found in those 

pathways, contrary to findings reported elsewhere (Crotti et al. 2014).    
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These results therefore indicate that the transcriptome of human HD microglia may not be 

primed; instead, evidence points towards a distinct neuroprotective signature with several 

pathways highlighted as activated in patient-isolated monocytes predicted to be inhibited. As 

already mentioned, one attractive explanation is that this is down to the impact of the 

neuronal environment, particularly the neuron-derived cytokine IL-34 on the microglial 

phenotype, which illustrates the transcriptional alterations that microglia undergo as they 

populate the embryonic brain. This could be viewed as an adaptation of the HD microglial 

transcriptome to its surrounding neuronal environment, shown to be susceptible to 

degeneration early in neurodevelopment (Molero et al. 2009; Ring et al. 2015). Indeed, the 

fragile HD brain may initially potentiate the phenotype of microglia in HD, potentially 

dampening the priming effects of mutant HTT expression.  

 

Another possibility is that this inhibitory transcriptomic signal represents a human microglial-

specific effect, given that microglia from HD mouse models exhibit activated inflammatory 

pathways. A crucial point of difference between the findings outlined in chapter 4 and those 

of patient-derived monocytes resides in the age of the patient-derived cells from Miller et al. 

2016, where the mean age of participants at the early or moderate stage of the disease was 

48 years old. In contrast, a feature of differentiation protocols is that they seldom give rise to 

adult differentiated cells. Indeed, this remains a great challenge for the iPSC modelling field. 

Given this caveat, it is plausible that differences in transcriptome-wide pathway activation 

from the respective studies reflect different stages of the choreography of inflammation in 

Huntington’s disease.  Furthermore, these findings imply that the basal transcriptome of 

microglia in HD may be non-pathogenic and/or neuroprotective, with gradual changes in 

phenotype towards those reported in mouse models and HD patients with characteristics 

such as increased pro-inflammation, as a likely consequence of exposure to the HD brain 

environment and degeneration in the striatum. One way to test this hypothesis would be to 

use human iPSC-derived microglia from HD and isogenic control lines in combination with 

xenotransplantation compatible WT mice (e.g. MITRG) (Rongvaux et al. 2014) and 

corresponding HD mouse models, along with single cell transcriptomic approaches to 

investigate the effects of both ageing and exposure to the HD brain microenvironment on the 

immune phenotype of human microglia. Such an experiment would answer pertinent 
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questions about the effect of ageing on the phenotype of HD microglia. In addition, this would 

shed a light on the contribution of diseased and non-diseased microglia on inflammatory 

processes in the HD brain, and subsequently on neural degeneration in the striatum.      

 

7.1.2 The effects of correcting the HD CAG mutation on the microglial phenotype  

Comparing iPSC-derived neural stem cells, Xu et al. 2017 recently found that transcriptome 

differences between HD and non-isogenic lines were not detected when comparing HD with 

isogenic corrected line samples, suggesting that those differences resulted from non-HD-

specific effects, a consequence of genetic background variations. The second aim of this thesis 

was therefore to determine the effects of correcting the HD CAG expansion mutation on the 

phenotype of HD109 iPSC-derived microglia. Given the predictions of potential impairments 

in several immune pathways in the HD109 microglia (when compared to WT Kolf2 iPSC-

derived microglia), experiments were carried out to ascertain the HD-specific nature of these 

HD109 transcriptome changes, with comparisons against microglia differentiated from HD 

isogenic corrected iPSC lines. When assayed, the HD109 cells displayed no functional deficits 

in phagocytosis or chemotaxis compared to HD corrected and Kolf2 cells. Similarly, an 

investigation into the immune response of the corrected HD microglia failed to pinpoint 

mutant HTT-specific phenotypic differences in the LPS response of HD109 microglia. Taken 

together, the data point towards genetic background, rather than HD-specific, differences 

between the transcriptome of HD109 and Kolf2 microglia. This is best illustrated by the fact 

that while RNA-seq data showed lower levels of chemokines expressed in HD109 cells 

implying a dysregulation in chemokine signalling, validation by Fluidigm qRT-PCR confirmed 

that these differences were most likely due to genetic background, as the LPS chemokine 

profile of the HD109 microglia post LPS was found to match that of the LPS-stimulated HD 

corrected cells.  

 

The absence of any predicted transcriptome-associated functional dysfunctions in the HD109 

microglia, allied with the lack of manifestation of phenotypic differences with the HD 

corrected cells, could be explained by an absence of mutant HTT expression in the in vitro 

derived HD109 microglia. One way to confirm this hypothesis would be to measure mutant 
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HTT expression by Western blotting, which, due to time constraints, was not undertaken and 

remains a significant limitation of this study.    

Mutant HTT detection has been reported in new-born mice microglia (Crotti et al. 2014), but 

not human microglia, although it was found to be expressed in other immune cells isolated 

from symptomatic HD patients such monocytes, T cells and B cells (Weiss et al. 2012). 

However, it should be pointed out that the characteristics and reactivity of microglia in rodent 

models of Huntington’s disease vary greatly across species. In a recent study, Harrison et al. 

2018 used quinolinic acid lesion models of HD to evaluate differences in survival of engrafted 

tissues in mice and rats and demonstrated that mice models exhibited a lower engraftment 

survival than equivalent rat grafts, and substantially higher microglia activation and 

recruitment to the site of transplantation (Harrison et al. 2018).  The outcome of higher 

mouse microglia reactivity has many implications that are important to consider, not just for 

mouse transplantation studies (since mouse models comprise the majority of transgenic HD 

models) but also for the fields of microglial research in general and in neurodegenerative 

diseases such HD and AD. Additionally, it emphasises a particular disparity in the immune 

response between rodent models that is under-reported in the neuroinflammation field and 

is highly likely to translate into differences with human cells. In turn, it could be argued that 

this could be reflected in the human iPSC models used in this work.  

 

No matter whether mutant HTT expression can be detected in HD iPSC-derived microglia in 

future experiments, the absence of a HD phenotype in these embryonic-like cells 

demonstrates that the cell autonomous effects of mutant HTT on the microglial phenotype 

must be triggered by either intrinsic cellular events (e.g. mutant HTT aggregation or ageing) 

or by extrinsic factors, such as interactions between microglia and the HD brain 

microenvironment. This entails that the presence of the CAG expansion track in the HTT gene 

on its own is insufficient to trigger the manifestation of the pathogenic effects characteristic 

of HD microglia, an observation compatible with reports of increased microglial activation 

with age in HD patients (Pavese et al. 2006; Tai et al. 2007). It also suggests that, rather than 

a causal disease mechanism, microglial activation in HD should be considered as a disease 

biomarker. Nonetheless, this does not preclude from microglia contributing to striatal 

degeneration.   
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This is the first study to evaluate the effects of reversing the HD mutation on immune 

dysfunction in human microglia. Given the extensive evidence for the involvement of 

microglia and other immune cells in HD neuropathology, it is imperative to investigate the 

effects of mutant HTT lowering on HD human immune cells. In addition, this area of research 

is of greater importance in the light of current encouraging developments in human clinical 

trials of the mutant HTT-lowering antisense oligonucleotide-based IONIS-HTTRx (RG6042) 

(Østergaard et al. 2013; Skotte et al. 2014). Preliminary phase 1/2 trials have assessed safety 

of this treatment and confirmed a dose-dependent reduction of mutant HTT in the CSF of HD 

patients, using a single-molecule counting mHTT immunoassay (Wild et al. 2015). Studies in 

HD mouse models had earlier demonstrated that human mutant HTT-targeting antisense 

oligonucleotides produced long-lasting reductions in HTT brain mRNA and protein levels, 

which correlated with improved motor function and survival (Kordasiewicz et al. 2012).  

 

7.1.3 Modelling neuroinflammation with iPSC-derived microglia  

As well as helping to elucidate the pathogenic mechanisms underlying microglial involvement 

in HD, iPSC-based models hold great potential for Alzheimer’s disease. Firstly, they provide a 

good alternative to animal models for drug screening. In vitro microglia can certainly be used 

to develop assays that probe the effects of immunomodulatory therapies on immune 

activation. One aspect of microglial function that can certainly be exploited in this manner, 

using Seahorse assays, is the link between metabolism and inflammatory processes, which 

work in this thesis attempted to investigate. This is especially relevant to AD, with evidence 

for the influence of metabolic processes on microglial function coming from mouse model 

studies by Ulland et al. 2017, where the authors demonstrated that TREM2 deletion disrupts 

microglial function by impairing other metabolic pathways including glycolysis, the TCA cycle 

and the pentose phosphate pathway (Ulland et al. 2017). Indeed, TREM2-deficient mouse 

microglia exhibit mitochondrial impairments including reduced mitochondrial mass and 

increased autophagy.   

 

Secondly, iPSC-derived microglia can and are being used to understand the role of microglia-

enriched disease-associated risk genes in microglial biology, enabling researchers to look at 

both rare and common disease variants. While the former offer an insight into pathological 

mechanisms, the latter allows us to model predisposition to disease, increasing the likelihood 
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of discovering preventative therapies. The advent of CRISPR/Cas9 genome editing, along with 

the progress made in generating patient-specific iPSCs, have opened the door for in vitro 

functional studies in these two contexts.         

  

One important challenge of this microglial differentiation protocol remains that there are 

doubts surrounding the suitability of monocultured in vitro microglia. Reasons for this include 

the lack of elaborate ramifications in the in vitro microglia and the relatively high expression 

of inflammatory genes in the IL-34 and GM-CSF treated iPSC-derived microglia. The first 

observation is partly reflective of the neuronal-free culture conditions, while the second is a 

reported feature of ex vivo microglial culture (Bohlen et al. 2017). Another possibility, 

currently being investigated in our lab, is that the absence of a dampened immune signature 

in the in vitro monocultured microglia cells could represent an artefact of in vitro 

differentiation with GM-CSF, which has been shown to regulate cell proliferation and enhance 

several inflammatory functions (Shiomi & Usui 2015).  

 

Given our rapidly evolving understanding of how the transcriptome, phenotype and functions 

of microglia is modulated by the CNS microenvironment, the findings described in this thesis 

underline the importance of using the appropriate culture conditions that more faithfully 

recapitulate microglia origins, maturation and homeostasis. Therefore, the use of more 

complex model systems such as co-cultures that better mimic the natural microglial habitat 

should be greatly encouraged, where possible. These systems would ideally integrate 

neuronal and astrocytic cell types in order to more faithfully study the effects of the functional 

interactions between the relevant cell types on the phenotypes and functionality of the 

individual cell types.  
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7.2 Concluding remarks  

Immune activation within the CNS is now accepted as a key feature of Alzheimer’s disease, 

Huntington’s disease and many other neurodegenerative diseases. In AD, recent GWAS 

findings highlighting several microglia-enriched genes as disease-associated risk loci have 

focused current research on the role of microglia-mediated inflammation. Using iPSC-derived 

microglia, loss-of-function mutations in ABCA7 have been found to impair phagocytosis and 

regulate microglial inflammatory responses in preliminary studies. Although limited, the 

ABCA7 work in this thesis provides the starting point for more in-depth mechanistic studies 

to explore the role of ABCA7 in microglial biology.   

 

Data from human imaging studies in Huntington’s disease point towards the detrimental 

influence of microglia-mediated neuroinflammatory processes to disease progression. In 

addition, studies in HD mouse models have established that mutant HTT induces pathogenic 

cell-autonomous effects on the phenotype of microglia. Using microglia derived from HD 

iPSCs, this study demonstrates that the pathogenic and inflammatory phenotype of diseased 

HD microglia is not innate to their transcriptome, suggesting that it may therefore be a 

consequence of intrinsic factors or extrinsic interactions with the degenerative HD brain 

microenvironment. In particular, the lack of manifestation of the phenotypic abnormalities 

characteristic of diseased HD microglia in the embryonic-like in vitro microglia suggests that 

the HD microglial phenotype may not be accurately reflected outside of the diseased HD brain 

environment. These findings provide an insight into the limitations of in vitro models of 

microglia, whilst emphasising the need for iPSC-based models that better recapitulate disease 

pathology and subsequently better enable dissecting the contribution of microglia to 

pathogenesis.       
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Götz, J. & Ittner, L.M., 2008. Animal models of Alzheimer’s disease and frontotemporal 

dementia. Nature Neuroscience, 9(july). 
Grabert, K. et al., 2016. Microglial brain region−dependent diversity and selective regional 

sensitivities to aging. Nature Neuroscience, (January). Available at: 
http://www.nature.com/doifinder/10.1038/nn.4222. 

Graeber, M.B., Li, W. & Rodriguez, M.L., 2011. Role of microglia in CNS inflammation. FEBS 
Letters, 585(23), pp.3798–3805. Available at: 
http://dx.doi.org/10.1016/j.febslet.2011.08.033. 

Gray, M. et al., 2008. Full-Length Human Mutant Huntingtin with a Stable Polyglutamine 
Repeat Can Elicit Progressive and Selective Neuropathogenesis in BACHD Mice. Journal 
of Neuroscience, 28(24), pp.6182–6195. Available at: 
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0857-08.2008. 

Greter, M. et al., 2012. Stroma-Derived Interleukin-34 Controls the Development and 
Maintenance of Langerhans Cells and the Maintenance of Microglia. Immunity, 37, 
pp.1050–1060. 

Griciuc, A. et al., 2013. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of 
Amyloid Beta. Neuron, 78(4), pp.631–643. Available at: 
http://dx.doi.org/10.1016/j.neuron.2013.04.014. 

Le Guennec, K. et al., 2016. ABCA7 rare variants and Alzheimer disease risk. Neurology, 
86(23), pp.2134–2137. 

Guerreiro, R. et al., 2013. TREM2 Variants in Alzheimer’s Disease. New England Journal of 
Medicine, 368(2), pp.117–127. 

Gulyas, B. et al., 2011. Activated MAO-B in the brain of Alzheimer patients, demonstrated by 
[11C]-L-deprenyl using whole hemisphere autoradiography. Neurochemistry 
international, 58(1), pp.60–68. 

Ha, S.-D. et al., 2008. Cathepsin B Is Involved in the Trafficking of TNF- -Containing Vesicles 
to the Plasma Membrane in Macrophages. The Journal of Immunology, 181(1), pp.690–
697. Available at: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.181.1.690. 

van de Haar, H.J. et al., 2016. Blood-Brain Barrier Leakage in Patients with Early Alzheimer 
Disease. Radiology, 281(2), pp.527–535. Available at: 
https://doi.org/10.1148/radiol.2016152244. 

van de Haar, H.J. et al., 2016. Neurovascular unit impairment in early Alzheimer’s disease 
measured with magnetic resonance imaging. Neurobiology of Aging, 45, pp.190–196. 
Available at: http://dx.doi.org/10.1016/j.neurobiolaging.2016.06.006. 

de Haas, A.H., Boddeke, H.W.G.M. & Biber, K., 2008. Region-specific expression of 
immunoregulatory proteins on microglia in the healthy CNS. Glia, 56(8), pp.888–894. 

Haenseler, W. et al., 2017. Excess α-synuclein compromises phagocytosis in iPSC-derived 
macrophages. Scientific Reports, (July), pp.1–11. Available at: 
http://dx.doi.org/10.1038/s41598-017-09362-3. 

Halliday, G.M. et al., 1998. Regional specificity of brain atrophy in Huntington’s disease. 
Experimental neurology, 154(2), pp.663–672. 

Hamelin, L. et al., 2016. Early and protective microglial activation in Alzheimer’s disease: a 
prospective study using 18 F-DPA-714 PET imaging. Brain, 139(4), pp.1252–1264. 
Available at: https://academic.oup.com/brain/article-
lookup/doi/10.1093/brain/aww017. 

Hammond, T.R. et al., 2018. Complex cell-state changes revealed by single cell RNA 



156  

sequencing of 76 , 149 microglia throughout the mouse lifespan and in the injured 
brain. Biorxiv, pp.1–22. 

Hanisch, U.-K.K. & Kettenmann, H., 2007. Microglia: active sensor and versatile effector cells 
in the normal and pathologic brain. Nature Neuroscience, 10(11), pp.1387–1394. 
Available at: 
isi:000250508400013%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/17965659. 

Hanisch, U.K., Johnson, T. V. & Kipnis, J., 2008. Toll-like receptors: roles in neuroprotection? 
Trends in Neurosciences, 31(4), pp.176–182. 

Hao, C., Richardson, A. & Fedoroff, S., 1991. Macrophage-like cells originate from 
neuroepithelium in culture: characterization and properties of the macrophage-like 
cells. International journal of developmental neuroscience, 9(1), pp.1–14. 

Hardy, J. & Selkoe, D.J., 2002. The amyloid hypothesis of Alzheimer’s disease: progress and 
problems on the road to therapeutics. Science (New York, N.Y.), 297(5580), pp.353–
356. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12130773. 

Hardy, J.A. & Higgins, G.A., 1992. Alzheimer’s disease: the amyloid cascade hypothesis. 
Science (New York, N.Y.), 256(5054), pp.184–185. 

Harold, D. et al., 2009. Genome-wide association study identifies variants at CLU and 
PICALM associated with Alzheimer ’ s disease. Nature genetics, 41(10). 

Harris, M.A. et al., 2004. The Gene Ontology (GO) database and informatics resource. 
Nucleic acids research, 32(Database issue), pp.D258-61. 

Harrison, D.J. et al., 2018. The Effect of Tissue Preparation and Donor Age on Striatal Graft 
Morphology in the Mouse. Cell Transplantation, 27(2), pp.230–244. 

Haynes, S.E. et al., 2006. The P2Y12 receptor regulates microglial activation by extracellular 
nucleotides. Nature neuroscience, 9(12), pp.1512–1519. 

HD iPSC Consortium, 2012. Induced Pluripotent Stem Cells from Patients with Huntington’s 
Disease Show CAG-Repeat-Extension Associated Phenotypes. Cell Stem Cell, 11, 
pp.264–278. 

Heneka, M.T. et al., 2013. NLRP3 is activated in Alzheimer’s disease and contributes to 
pathology in APP/PS1 mice. Nature, 493(7434), pp.674–678. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/23254930%5Cnhttp://www.nature.com/nature
/journal/v493/n7434/pdf/nature11729.pdf. 

Herrup, K., 2015. The case for rejecting the amyloid cascade hypothesis. Nature 
Neuroscience, 18(6), pp.794–799. Available at: 
http://www.nature.com/doifinder/10.1038/nn.4017%5Cnhttp://www.ncbi.nlm.nih.gov
/pubmed/26007212%5Cnhttp://www.nature.com/neuro/journal/v18/n6/pdf/nn.4017.
pdf. 

Hickman, S.E. et al., 2013. The microglial sensome revealed by direct RNA sequencing. 
Nature neuroscience, 16(12), pp.1896–905. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3840123&tool=pmcentrez
&rendertype=abstract. 

Higgins, C.F., 1992. ABC transporters: from microorganisms to man. Annual review of cell 
biology, 8, pp.67–113. 

Higgins, C.F. & Linton, K.J., 2004. The ATP switch model for ABC transporters. Nature 
reviews. Structural & molecular biology, 11(10), pp.918–926. 

Hirschhorn, J.N. & Daly, M.J., 2005. genome-wide association studies for common diseases 
and complex traits. Nature reviews. Genetics, 6(February), pp.95–108. 

Hoek, R.M. et al., 2000. Down-regulation of the macrophage lineage through interaction 



157  

with OX2 (CD200). Science (New York, N.Y.), 290(5497), pp.1768–1771. 
Hollingworth, P. et al., 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 

and CD2AP are associated with Alzheimer’s disease. Nature genetics, 43(5), pp.429–
436. 

Holtzman, D.M., Morris, J.C. & Goate, A.M., 2011. Alzheimer’s Disease : The Challenge of the 
Second Century. Science Translational Medicine, 3(77), pp.1–18. 

Hong, S. et al., 2016. Complement and microglia mediate early synapse loss in Alzheimer 
mouse models. Science, 8373, pp.1–9. Available at: 
http://www.sciencemag.org/cgi/doi/10.1126/science.aad8373. 

Hoozemans, J.J.M. et al., 2011. Soothing the inflamed brain: effect of non-steroidal anti-
inflammatory drugs on Alzheimer’s disease pathology. CNS & neurological disorders 
drug targets, 10(1), pp.57–67. 

Hsiao, H.-Y. et al., 2014. Inhibition of soluble tumor necrosis factor is therapeutic in 
Huntington’s disease. Human Molecular Genetics, 23(16), pp.4328–4344. Available at: 
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddu151. 

Huang, D.W., Sherman, B.T. & Lempicki, R.A., 2008. Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, p.44. 
Available at: http://dx.doi.org/10.1038/nprot.2008.211. 

Huyhn,  a et al., 1995. Characterization of hematopoietic progenitors from human yolk sacs 
and embryos. Blood, 86(12), pp.4474–85. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/8541536. 

Ikeda, Y. et al., 2003. Posttranscriptional regulation of human ABCA7 and its function for the 
apoA-I-dependent lipid release. Biochemical and Biophysical Research 
Communications, 311(2), pp.313–318. 

Imai, F. et al., 2007. Neuroprotective effect of exogenous microglia in global brain ischemia. 
Journal of cerebral blood flow and metabolism, 27(3), pp.488–500. 

Ishii, K. et al., 1997. Increased Aß42(43)-plaque deposition in early-onset familial 
Alzheimer’s disease brains with the deletion of exon 9 and the missense point mutation 
( H163R ) in the PS-1 gene. Neuroscience Letters, 228, pp.17–20. 

Itagaki, S. et al., 1989. Relationship of microglia and astrocytes to amyloid deposits of 
Alzheimer disease. Journal of neuroimmunology, 24(3), pp.173–182. 

Iwamoto, N. et al., 2006. ABCA7 expression is regulated by cellular cholesterol through the 
SREBP2 pathway and associated with phagocytosis. Journal of lipid research, 47(9), 
pp.1915–1927. 

Jankowsky, J.L. et al., 2004. Mutant presenilins specifically elevate the levels of the 42 
residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific 
gamma secretase. Human molecular genetics, 13(2), pp.159–170. 

Jehle, A.W. et al., 2006. ATP-binding cassette transporter A7 enhances phagocytosis of 
apoptotic cells and associated ERK signaling in macrophages. The Journal of cell biology, 
174(4), pp.547–556. 

Jones, L. et al., 2015. Convergent genetic and expression data implicate immunity in 
Alzheimer’s disease. Alzheimer’s and Dementia, 11(6), pp.658–671. 

Jonsson, T. et al., 2013. Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. 
New England Journal of Medicine, 368(2), pp.107–116. 

Jossan, S.S. et al., 1991. Monoamine oxidase B in brains from patients with Alzheimer’s 
disease: a biochemical and autoradiographical study. Neuroscience, 45(1), pp.1–12. 

Kajiwara, M. et al., 2012. Donor-dependent variations in hepatic differentiation from 



158  

human-induced pluripotent stem cells. Proceedings of the National Academy of 
Sciences, 109(36), pp.14716–14716. Available at: 
http://www.pnas.org/cgi/doi/10.1073/pnas.1212710109. 

Kalonia, H. et al., 2010. Protective effect of rofecoxib and nimesulide against intra-striatal 
quinolinic acid-induced behavioral, oxidative stress and mitochondrial dysfunctions in 
rats. Neurotoxicology, 31(2), pp.195–203. 

Kalonia, H. & Kumar, A., 2011. Suppressing inflammatory cascade by cyclo-oxygenase 
inhibitors attenuates quinolinic acid induced Huntington’s disease-like alterations in 
rats. Life sciences, 88(17–18), pp.784–791. 

Kaminski, W.E. et al., 2000. Identification of a novel human sterol-sensitive ATP-binding 
cassette transporter (ABCA7). Biochemical and biophysical research communications, 
273, pp.532–538. 

Kanehisa, M. et al., 2012. KEGG for integration and interpretation of large-scale molecular 
data sets. Nucleic acids research, 40(Database issue), pp.D109-14. 

Kapellos, T.S. et al., 2016. A novel real time imaging platform to quantify macrophage 
phagocytosis. Biochemical Pharmacology, 116, pp.107–119. Available at: 
http://dx.doi.org/10.1016/j.bcp.2016.07.011. 

Karch, C.M. et al., 2012. Expression of Novel Alzheimer’s Disease Risk Genes in Control and 
Alzheimer’s Disease Brains. PLoS ONE, 7(11), p.e50976. 

Karch, C.M. & Goate, A.M., 2015. Alzheimer’s Disease Risk Genes and Mechanisms of 
Disease Pathogenesis. Biological Psychiatry, 77(1), pp.43–51. Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0006322314003394. 

Karlsson, K.R. et al., 2008. Homogeneous monocytes and macrophages from human 
embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. 
Experimental Hematology, 36(9), pp.1167–1175. 

Kashon, M.L. et al., 2004. Associations of cortical astrogliosis with cognitive performance 
and dementia status. Journal of Alzheimer’s disease : JAD, 6(6), pp.581–595. 

Katakura, T. et al., 2004. CCL17 and IL-10 as effectors that enable alternatively activated 
macrophages to inhibit the generation of classically activated macrophages. Journal of 
immunology (Baltimore, Md. : 1950), 172(3), pp.1407–1413. 

Kerschbamer, E. & Biagioli, M., 2016. Huntington’s disease as neurodevelopmental disorder: 
Altered chromatin regulation, coding, and non-coding RNA transcription. Frontiers in 
Neuroscience, 9(JAN), pp.1–5. 

Kettenmann, H. et al., 2011. Physiology of microglia. Physiological reviews, 91(2), pp.461–
553. Available at: http://physrev.physiology.org/content/91/2/461.abstract. 

Khoshnan, A. et al., 2017. IKKß and mutant huntingtin interactions regulate the expression 
of IL-34: implications for microglial-mediated neurodegeneration in HD. Human 
Molecular Genetics, 0(0), pp.1–11. 

El Khoury, J. et al., 2007. Ccr2 deficiency impairs microglial accumulation and accelerates 
progression of Alzheimer-like disease. Nature Medicine, 13(4), pp.432–438. 

Kierdorf, K. et al., 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and 
Irf8-dependent pathways. Nature Neuroscience, 16(3), pp.273–280. Available at: 
http://dx.doi.org/10.1038/nn.3318. 

Kim, S. et al., 2014. Highly efficient RNA-guided genome editing in human cells via delivery 
of purified Cas9 ribonucleoproteins. Genome Research, 24, pp.1012–1019. 

Kim, T.-S. et al., 2008. Changes in the levels of plasma soluble fractalkine in patients with 
mild cognitive impairment and Alzheimer’s disease. Neuroscience letters, 436(2), 



159  

pp.196–200. 
Kim, W.S. et al., 2005. Abca7 null mice retain normal macrophage phosphatidylcholine and 

cholesterol efflux activity despite alterations in adipose mass and serum cholesterol 
levels. Journal of Biological Chemistry, 280(5), pp.3989–3995. 

Kim, W.S. et al., 2013. Deletion of Abca7 increases cerebral amyloid-β accumulation in the 
J20 mouse model of Alzheimer’s disease. Journal of Neuroscience, 33(10), pp.4387–94. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/23467355. 

Kim, W.S. et al., 2006. Quantitation of ATP-binding cassette subfamily-A transporter gene 
expression in primary human brain cells. Neuroreport, 17(9), pp.891–6. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/16738483. 

Kinchen, J.M. et al., 2005. Two pathways converge at CED-10 to mediate actin 
rearrangement and corpse removal in C . elegans. Nature, 434(649), pp.93–100. 

Kitamura, T., Miyake, T. & Fujita, S., 1984. Genesis of Resting Microglia in the Gray Matter of 
Mouse Hippocampus. Journal of Comparative Neurology, 226, pp.421–433. 

Kiyota, T. et al., 2009. CCL2 accelerates microglia-mediated Abeta oligomer formation and 
progression of neurocognitive dysfunction. PloS one, 4(7), p.e6197. 

Kleinberger, G. et al., 2014. TREM2 mutations implicated in neurodegeneration impair cell 
surface transport and phagocytosis. Science Translational Medicine, 6(243). 

Koldamova, R., Staufenbiel, M. & Lefterov, I., 2005. Lack of ABCA1 Considerably Decreases 
Brain ApoE Level and Increases Amyloid Deposition in APP23 Mice. Journal of Biological 
Chemistry, 280(52), pp.43224–43235. 

Kordasiewicz, H.B. et al., 2012. Sustained Therapeutic Reversal of Huntington’s Disease by 
Transient Repression of Huntingtin Synthesis. Neuron, 74(6), pp.1031–1044. Available 
at: http://dx.doi.org/10.1016/j.neuron.2012.05.009. 

Krabbe, G. et al., 2013. Functional Impairment of Microglia Coincides with Beta-Amyloid 
Deposition in Mice with Alzheimer-Like Pathology. PLoS ONE, 8(4). 

Krasemann, S. et al., 2017. The TREM2-APOE Pathway Drives the Transcriptional Phenotype 
of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 47(3), pp.566–
581. Available at: http://dx.doi.org/10.1016/j.immuni.2017.08.008. 

Kreisl, W.C. et al., 2013. In vivo radioligand binding to translocator protein correlates with 
severity of Alzheimer’s disease. Brain, 136(7), pp.2228–2238. 

Krencik, R. et al., 2011. Specification of transplantable astroglial subtypes from human 
pluripotent stem cells. Nature Biotechnology, 29(6), pp.528–534. Available at: 
http://www.nature.com/doifinder/10.1038/nbt.1877. 

Kreutzberg, G.W., 1996. Microglia: a sensor for pathological events in the CNS. Trends in 
neurosciences, 19(8), pp.312–318. 

Kumaravelu, P. et al., 2002. Quantitative developmental anatomy of definitive 
haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-
gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse 
embryonic liver. Development (Cambridge, England), 129(21), pp.4891–4899. 

Kunkle, B.W. et al., 2017. Targeted sequencing of ABCA7 identifies splicing, stop-gain and 
intronic risk variants for Alzheimer disease. Neuroscience Letters, 649, pp.124–129. 
Available at: http://dx.doi.org/10.1016/j.neulet.2017.04.014. 

Kwan, W. et al., 2012. Bone Marrow Transplantation Confers Modest Benefits in Mouse 
Models of Huntington’s Disease. Journal of Neuroscience, 32(1), pp.133–142. Available 
at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4846-11.2012. 

Kwan, W. et al., 2012. Mutant huntingtin impairs immune cell migration in Huntington 



160  

disease. J Clin Invest., 122(12), pp.4737–4747. 
Labadorf, A. et al., 2015. RNA Sequence Analysis of Human Huntington Disease Brain 

Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. 
Plos One, 10(12), p.e0143563. Available at: 
http://dx.plos.org/10.1371/journal.pone.0143563. 

Lacy, P. & Stow, J.L., 2011. Cytokine release from innate immune cells : association with 
diverse membrane trafficking pathways. Blood, 118(1), pp.9–19. 

Laferla, F.M. & Green, K.N., 2012. Animal Models of Alzheimer Disease. Cold Spring Harbour 
Perspectives in Medicine, pp.1–14. 

Lambert, J. et al., 2009. Genome-wide association study identifies variants at CLU and CR1 
associated with Alzheimer’s disease. Nature Genetics, 41(10), pp.1094–1099. Available 
at: http://dx.doi.org/10.1038/ng.439. 

Lambert, J.C. et al., 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 
loci for Alzheimer’s disease. Nature genetics, 45(12), pp.1452–8. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3896259&tool=pmcentrez
&rendertype=abstract. 

Langfelder, P. & Horvath, S., 2008. WGCNA: An R package for weighted correlation network 
analysis. BMC Bioinformatics, 9. 

Langmann, T. et al., 2003. Real-Time Reverse Transcription-PCR Expression Profiling of the 
Complete Human ATP-Binding Cassette Transporter Superfamily in Various Tissues. 
Clinical Chemistry, 238, pp.230–238. 

Lapchak, P.A. et al., 2001. Neuroprotection by the selective cyclooxygenase-2 inhibitor SC-
236 results in improvements in behavioral deficits induced by reversible spinal cord 
ischemia. Stroke, 32(5), pp.1220–1225. 

Lauber, K. et al., 2004. Clearance of Apoptotic Cells : Getting Rid of the Corpses. Molecular 
Cell, 14, pp.277–287. 

Lavin, Y. et al., 2014. Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the 
Local Microenvironment. Cell, 159(6), pp.1312–1326. Available at: 
http://dx.doi.org/10.1016/j.cell.2014.11.018. 

Lawson, L.J. et al., 1990. Heterogeneity in the distribution and morphology of microglia in 
the normal adult mouse brain. Neuroscience, 39(I), pp.151–170. 

Lawson, L.J., Perry, V.H. & Gordon, S., 1992. Turnover of resident microglia in the normal 
adult mouse brain. Neuroscience, 48(2), pp.405–415. 

Li, H., Karl, T. & Garner, B., 2015. Understanding the function of ABCA7 in Alzheimer’s 
disease. Biochemical Society Transactions, 43(5), pp.920–923. Available at: 
http://biochemsoctrans.org/cgi/doi/10.1042/BST20150105. 

Li, S. et al., 1997. Glutamate transporter alterations in Alzheimer disease are possibly 
associated with abnormal APP expression. Journal of neuropathology and experimental 
neurology, 56(8), pp.901–911. 

Liao, Y., Smyth, G.K. & Shi, W., 2014. featureCounts: an efficient general purpose program 
for assigning sequence reads to genomic features. Bioinformatics, 30(7), pp.923–930. 

Liévens, J.C. et al., 2001. Impaired glutamate uptake in the R6 Huntington’s disease 
transgenic mice. Neurobiology of Disease, 8(5), pp.807–821. 

Lim, R.G. et al., 2017. Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial 
Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Reports, 
19(7), pp.1365–1377. Available at: http://dx.doi.org/10.1016/j.celrep.2017.04.021. 

Linsel-nitschke, P. et al., 2005. Potential role of ABCA7 in cellular lipid efflux to apoA-I. 



161  

Journal of lipid research, 46, pp.86–93. 
Liu, D. & Niu, Z.-X., 2009. The structure, genetic polymorphisms, expression and biological 

functions of complement receptor type 1 (CR1/CD35). Immunopharmacology and 
Immunotoxicology, 31(4), pp.524–535. Available at: 
http://www.tandfonline.com/doi/full/10.3109/08923970902845768. 

Livak, K.J. et al., 2013. Methods for qPCR gene expression profiling applied to 1440 
lymphoblastoid single  cells. Methods (San Diego, Calif.), 59(1), pp.71–79. 

López-Lázaro, M., 2008. The warburg effect: why and how do cancer cells activate glycolysis 
in the presence of oxygen? Anti-cancer agents in medicinal chemistry, 8(3), pp.305–
312. 

Lotze, M.T. et al., 2007. The grateful dead: Damage-associated molecular pattern molecules 
and reduction/oxidation regulate immunity. Immunological Reviews, 220(1), pp.60–81. 

Love, M.I., Huber, W. & Anders, S., 2014. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), p.550. Available at: 
https://doi.org/10.1186/s13059-014-0550-8. 

Lucin, K.M. & Wyss-Coray, T., 2009. Immune Activation in Brain Aging and 
Neurodegeneration: Too Much or Too Little? Neuron, 64(1), pp.110–122. Available at: 
http://dx.doi.org/10.1016/j.neuron.2009.08.039. 

Van Der Maaten, L.J.P. & Hinton, G.E., 2008. Visualizing high-dimensional data using t-sne. 
Journal of Machine Learning Research, 9, pp.2579–2605. Available at: 
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf%0Ahttp://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_ui
ds=7911431479148734548related:VOiAgwMNy20J. 

MacAuley, M.S., Crocker, P.R. & Paulson, J.C., 2014. Siglec-mediated regulation of immune 
cell function in disease. Nature Reviews Immunology, 14(10), pp.653–666. 

MacDonald, M.E. et al., 1993. A novel gene containing a trinucleotide repeat that is 
expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), pp.971–
983. 

Magno, L. et al., 2018. Alzheimer’s disease Phospholipase C-gamma-2 (PLCG2) protective 
variant is a functional hypermorph. Biorxiv, 2, pp.1–21. 

Mahley, R.W. & Rall, S.C., 2000. APOLIPOPROTEIN E : Far More Than a Lipid Transport 
Protein. Annual Review of Genomics and Human Genetics, 1(59), pp.507–537. 

Mann, D.M.A. & Pickering-brown, S.M., 2001. Amyloid Angiopathy and Variability in Amyloid 
ß Deposition Is Determined by Mutation Position in Presenilin-1-Linked Alzheimer’s 
Disease. The American Journal of Pathology, 158(6), pp.2165–2175. Available at: 
http://dx.doi.org/10.1016/S0002-9440(10)64688-3. 

Mantovani, A. et al., 2004. The chemokine system in diverse forms of macrophage 
activation and polarization. Trends in Immunology, 25(12), pp.677–686. 

Maphis, N. et al., 2015. Reactive microglia drive tau pathology and contribute to the 
spreading of pathological tau in the brain. Brain, 138(6), pp.1738–1755. 

Maragakis, N.J. & Rothstein, J.D., 2006. Mechanisms of Disease: astrocytes in 
neurodegenerative disease. Nature clinical practice. Neurology, 2(12), pp.679–689. 

Martinez, F.O. & Gordon, S., 2014. The M1 and M2 paradigm of macrophage activation: 
time for reassessment. F1000prime reports, 6(March), p.13. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3944738&tool=pmcentrez
&rendertype=abstract. 

Masliah, E. et al., 1996. Deficient glutamate transport is associated with neurodegeneration 



162  

in Alzheimer’s disease. Annals of neurology, 40(5), pp.759–766. 
Mass, E. et al., 2016. Specification of tissue-resident macrophages during organogenesis. 

Science, 4238(August). 
Mastrokolias, A. et al., 2015. Huntington’s disease biomarker progression profile identified 

by transcriptome sequencing in peripheral blood. European Journal of Human Genetics, 
23(10), pp.1349–1356. 

Mattis, V.B. et al., 2015. HD iPSC-derived neural progenitors accumulate in culture and are 
susceptible to BDNF withdrawal due to glutamate toxicity. Human molecular genetics, 
24(11), pp.3257–3271. 

Mattis, V.B. & Svendsen, C.N., 2017. Modeling Huntington׳s disease with patient-derived 
neurons. Brain Research, 1656, pp.76–87. Available at: 
http://dx.doi.org/10.1016/j.brainres.2015.10.001. 

May, P., Bock, H.H. & Nofer, J., 2013. Low density receptor-related protein 1 (LRP1) 
promotes anti-inflammatory phenotype in murine macrophages. Cell Tissue Research, 
354, pp.887–889. 

May, P., Herz, J. & Bock, H.H., 2005. Molecular mechanisms of lipoprotein receptor 
signalling. Cellular and Molecular Life Science, 62, pp.2325–2338. 

McGeer, P.L. et al., 1988. Reactive microglia are positive for HLA-DR in the substantia nigra 
of Parkinson’s and Alzheimer’s disease brains. Neurology, 38(8), pp.1285–1291. 

McGrath, K.E. et al., 2003. Circulation is established in a stepwise pattern in the mammalian 
embryo. Blood, 101(5), pp.1669–1676. 

McKercher, S.R. et al., 1996. Targeted disruption of the PU.1 gene results in multiple 
hematopoietic abnormalities. The EMBO journal, 15(20), pp.5647–5658. 

McMahon, H.T., Wigge, P. & Smith, C., 1997. Clathrin interacts specifically with amphiphysin 
and is displaced by dynamin. FEBS letters, 413(2), pp.319–322. 

Meissner, T.B. et al., 2010. NLR family member NLRC5 is a transcriptional regulator of MHC 
class I genes. Proceedings of the National Academy of Sciences of the United States of 
America, 107(31), pp.13794–13799. 

Menalled, L.B. et al., 2012. Comprehensive Behavioral and Molecular Characterization of a 
New Knock-In Mouse Model of Huntington’s Disease: ZQ175. PLoS ONE, 7(12). 

Meyerholz, A. et al., 2005. Effect of Clathrin Assembly Lymphoid Myeloid Leukemia Protein 
Depletion on Clathrin Coat Formation. Traffic, 6(13), pp.1225–1234. 

Miesenböck, G., De Angelis, D.A. & Rothman, J.E., 1998. Visualizing secretion and synaptic 
transmission with pH-sensitive green fluorescent proteins. Nature, 394(6689), pp.192–
195. 

Migliaccio, G. et al., 1986. Human Embryonic Hemopoiesis. J Clin Invest, 78, pp.51–60. 
Miller, J.R. et al., 2016. RNA-Seq of Huntington’s Disease Patient Myeloid Cells Reveals 

Innate Transcriptional Dysregulation Associated With Proinflammatory Pathway 
Activation. Human Molecular Genetics, 0(0), p.ddw142. Available at: 
http://www.hmg.oxfordjournals.org/lookup/doi/10.1093/hmg/ddw142. 

Miller, J.R.C. et al., 2015. Mutant Huntingtin Does Not Affect the Intrinsic Phenotype of 
Human Huntington’s Disease T Lymphocytes. Plos One, 10(11), pp.1–16. Available at: 
http://dx.plos.org/10.1371/journal.pone.0141793. 

Mittelbronn, M. et al., 2001. Local distribution of microglia in the normal adult human 
central nervous system  differs by up to one order of magnitude. Acta 
neuropathologica, 101(3), pp.249–255. 

Molero, A.E. et al., 2009. Impairment of developmental stem cell-mediated striatal 



163  

neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease. 
Proceedings of the National Academy of Sciences of the United States of America, 
106(51), pp.21900–5. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2799796&tool=pmcentrez
&rendertype=abstract. 

Monier, A. et al., 2007. Entry and distribution of microglial cells in human embryonic and 
fetal cerebral cortex. Journal of Neuropathology and Experimental Neurology, 66(5), 
pp.372–382. Available at: 
http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L46
701319%5Cnhttp://dx.doi.org/10.1097/nen.0b013e3180517b46. 

Montagne, A., Zhao, Z. & Zlokovic, B. V, 2017. Alzheimer’s disease : A matter of blood – 
brain barrier dysfunction ? The Journal of Experimental Medicine. Journal of 
Experimental Medicine, 214(11), pp.3151–3169. 

Moore, M.A. & Metcalf, D., 1970. Ontogeny of the haemopoietic system: yolk sac origin of in 
vivo and in vitro colony forming cells in the developing mouse embryo. British journal 
of haematology, 18(3), pp.279–296. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/5491581. 

Morris, J.C. et al., 2010. APOE Predicts Amyloid-Beta but Not Tau Alzheimer Pathology in 
Cognitively Normal Aging. Annals of Neurology, 67, pp.122–131. 

Mosher, K.I. & Wyss-Coray, T., 2014. Microglial dysfunction in brain aging and Alzheimer’s 
disease. Biochemical Pharmacology, 88(4), pp.594–604. Available at: 
http://dx.doi.org/10.1016/j.bcp.2014.01.008. 

Mucke, L. et al., 2000. High-level neuronal expression of abeta 1-42 in wild-type human 
amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. 
Journal of Neuroscience, 20(11), pp.4050–4058. 

Muffat, J. et al., 2016. Derivation of microglia-like cells from human pluripotent stem cells. 
Nature Medicine, (September). Available at: http://dx.doi.org/10.1038/nm.4189. 

Munsie, L. et al., 2011. Mutant huntingtin causes defective actin remodeling during stress: 
Defining a new role for transglutaminase 2 in neurodegenerative disease. Human 
Molecular Genetics, 20(10), pp.1937–1951. 

Murabe, Y. & Sano, Y., 1982. Morphological studies on neuroglia. VI. Postnatal development 
of microglial cells. Cell and tissue research, 225(3), pp.469–485. 

Murabe, Y. & Sano, Y., 1983. Morphological studies on neuroglia. VII. Distribution of ‘brain 
macrophages’ in brains of neonatal and adult rats, as determined by means of 
immunohistochemistry. Cell and tissue research, 229(1), pp.85–95. 

Myers, R.H. et al., 1991. Decreased neuronal and increased oligodendroglial densities in 
Huntington’s disease caudate nucleus. Journal of neuropathology and experimental 
neurology, 50(6), pp.729–742. 

Nagele, R.G. et al., 2003. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid 
plaques in Alzheimer disease brains. Brain research, 971, pp.197–209. 

Naj, A.C. et al., 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are 
associated with late-onset Alzheimer’s disease. Nature genetics, 43(5). 

Nakamura, Y., 2000. Regulating factors for microglial activation. Biological and 
Pharmaceutical Bulletin, 72(6), pp.465–468. 

Nash, K.R. et al., 2013. Fractalkine overexpression suppresses tau pathology in a mouse 
model of tauopathy. Neurobiology of Aging, 34(6), pp.1540–1548. Available at: 
http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.011. 



164  

Nicolle, R., Radvanyi, F. & Elati, M., 2015. CoRegNet: Reconstruction and integrated analysis 
of co-regulatory networks. Bioinformatics, 31(18), pp.3066–3068. 

Nimmerjahn, A., Kirchhoff, F. & Helmchen, F., 2005. Resting Microglial Cells Are Highly 
Dynamic Surveillants of Brain Parenchyma in Vivo. Science, 308(May), pp.1314–1319. 
Available at: http://www.sciencemag.org/content/suppl/2005/05/26/1110647.DC1. 

Nioi, P. et al., 2007. In vitro detection of drug-induced phospholipidosis using gene 
expression and fluorescent phospholipid-based methodologies. Toxicological Sciences, 
99(1), pp.162–173. 

Norflus, F. et al., 2004. Anti-inflammatory treatment with acetylsalicylate or rofecoxib is not 
neuroprotective in Huntington’s disease transgenic mice. Neurobiology of disease, 
17(2), pp.319–325. 

O’Neill, L.A.J., Kishton, R.J. & Rathmell, J., 2016. A guide to immunometabolism for 
immunologists. Nature reviews. Immunology, 16(9), pp.553–65. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/27396447%5Cnhttp://www.pubmedcentral.nih
.gov/articlerender.fcgi?artid=PMC5001910. 

Ogden, C.A. et al., 2001. C1q and Mannose Binding Lectin Engagement of Cell Surface 
Calreticulin and CD91 Initiates Macropinocytosis and Uptake of Apoptotic Cells. Journal 
of Experimental Medicine, 194(6). 

Ohgidani, M. et al., 2014. Direct induction of ramified microglia-like cells from human 
monocytes: Dynamic microglial dysfunction in Nasu-Hakola disease. Scientific Reports, 
4(4957), pp.1–7. Available at: http://www.nature.com/doifinder/10.1038/srep04957. 

Okello, A. et al., 2009. Microglial activation and amyloid deposition in mild cognitive 
impairment: a PET study. Neurology, 72(1), pp.56–62. 

Okita, K., Ichisaka, T. & Yamanaka, S., 2007. Generation of germline-competent induced 
pluripotent stem cells. Nature, 448(July), pp.313–318. 

Olmos-Alonso, A. et al., 2016. Pharmacological targeting of CSF1R inhibits microglial 
proliferation and prevents the progression of Alzheimer’s-like pathology. Brain, 139(3), 
pp.891–907. 

Olson, J.K. & Miller, S.D., 2004. Microglia Initiate Central Nervous System Innate and 
Adaptive Immune Responses through Multiple TLRs. The Journal of Immunology, 
173(6), pp.3916–3924. Available at: 
http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.173.6.3916. 

Orihuela, R., Mcpherson, C.A. & Harry, G.J., 2016. Microglial M1/M2 polarization and 
metabolic states. British Journal of Pharmacology, 173, pp.649–665. 

Orkin, S.H. & Zon, L.I., 2008. Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. 
Cell, 132(4), pp.631–644. 

Orre, M. et al., 2014. Isolation of glia from Alzheimer’s mice reveals inflammation and 
dysfunction. Neurobiology of Aging, 35(12), pp.2746–2760. 

Østergaard, M.E. et al., 2013. Rational design of antisense oligonucleotides targeting single 
nucleotide polymorphisms for potent and allele selective suppression of mutant 
Huntingtin in the CNS. Nucleic Acids Research, 41(21), pp.9634–9650. 

Palazuelos, J. et al., 2009. Microglial CB2 cannabinoid receptors are neuroprotective in 
Huntington’s disease excitotoxicity. Brain, 132(11), pp.3152–3164. 

Palis, J. et al., 1999. Development of erythroid and myeloid progenitors in the yolk sac and 
embryo proper of the mouse. Development (Cambridge, England), 126(22), pp.5073–
5084. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10529424. 

Pandya, H. et al., 2017. Differentiation of human and murine induced pluripotent stem cells 



165  

to microglia-like cells. Nature Neuroscience, (March), pp.2–11. Available at: 
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4534.html. 

Paolicelli, R.C. et al., 2011. Synaptic Pruning by Microglia Is Necessary for Normal Brain 
Development. Science, 333(September), pp.1456–1459. 

Park, J. et al., 2013. Mitochondrial dynamics modulate the expression of pro-inflammatory 
mediators in microglial cells. Journal of Neurochemistry, 127(2), pp.221–232. Available 
at: http://doi.wiley.com/10.1111/jnc.12361. 

Park, J. et al., 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response 
in microglia cells by regulating MAPK and NF-κB pathways. Neuroscience letters, 584, 
pp.191–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25459294. 

Pavese, N. et al., 2006. Microglial activation correlates with severity in Huntington disease: a 
clinical  and PET study. Neurology, 66(11), pp.1638–1643. 

Perry, V.H., 1998. A revised view of the central nervous system microenvironment and 
major histocompatibility complex class II antigen presentation. Journal of 
neuroimmunology, 90(2), pp.113–121. 

Perry, V.H., Hume, D.A. & Gordon, S., 1985. Immunohistochemical localization of 
macrophages and microglia in the adult and developing mouse brain. Neuroscience, 
15(2), pp.313–326. 

Pike, L.J., Han, X. & Gross, R.W., 2005. Epidermal growth factor receptors are localized to 
lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics 
study. The Journal of biological chemistry, 280(29), pp.26796–26804. 

Pocock, J.M. & Kettenmann, H., 2007. Neurotransmitter receptors on microglia. Trends in 
Neurosciences, 30(10), pp.527–535. 

Politis, M. et al., 2015. Increased central microglial activation associated with peripheral 
cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiology of 
Disease, 83, pp.115–121. Available at: http://dx.doi.org/10.1016/j.nbd.2015.08.011. 

Politz, O. et al., 2000. Pseudoexons and regulatory elements in the genomic sequence of the 
beta-chemokine, alternative macrophage activation-associated CC-chemokine (AMAC)-
1. Cytokine, 12(2), pp.120–126. 

Polyzos, A.A. & Mcmurray, C.T., 2017. The chicken or the egg: mitochondrial dysfunction as 
a cause or consequence of toxicity in Huntington’s disease. Mechanisms of Ageing and 
Development, 161, pp.181–197. Available at: 
http://dx.doi.org/10.1016/j.mad.2016.09.003. 

Prinz, M. et al., 2011. Heterogeneity of CNS myeloid cells and their roles in 
neurodegeneration. Nature neuroscience, 14(10), pp.1227–1235. 

Prokop, S., Miller, K.R. & Heppner, F.L., 2013. Microglia actions in Alzheimer’s disease. Acta 
neuropathologica, 126(4), pp.461–477. 

Quazi, F. & Molday, R.S., 2013. Differential phospholipid substrates and directional 
transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-
causing mutants. Journal of Biological Chemistry, 288(48), pp.34414–34426. 

Querfurth, H.W. & Laferla, F.M., 2010. Alzheimer’s Disease. The New England Journal of 
Medicine, 362(4), pp.329–344. 

Rabinovitch, M., 1995. Professional and non-professional phagocytes: an introduction. 
Trends in cell biology, 5(3), pp.85–87. 

Rajagopalan P, Hibar DP, T.P., 2013. TREM2 and Neurodegenerative Disease. New England 
Journal of Medicine, 369(16), pp.1565–1567. Available at: 
http://www.nejm.org/doi/10.1056/NEJMc1306509. 



166  

Ramjaun, A.R. & Mcpherson, P.S., 1998. Multiple Amphiphysin II Splice Variants Display 
Differential Clathrin Binding : Identification of Two Distinct. Journal of Neurochemistry, 
70(6), pp.2369–2376. 

Ransohoff, R.M., 2016. How neuroinflammation contributes to neurodegeneration. Science, 
353(6301), pp.168–175. 

Ransohoff, R.M. & Perry, V.H., 2009. Microglial physiology: unique stimuli, specialized 
responses. Annual review of immunology, 27, pp.119–45. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19302036. 

Rebeck, C.W. et al., 1993. Apolipoprotein E in Sporadic Alzheimer’s Disease : Allelic Variation 
and Receptor Interactions. Neuron, 11, pp.575–580. 

Rees, D.C., Johnson, E. & Lewinson, O., 2009. ABC transporters: the power to change. 
Nature reviews. Molecular cell biology, 10(3), pp.218–27. Available at: 
http://dx.doi.org/10.1038/nrm2646. 

Reich, D.E. et al., 2001. Linkage disequilibrium in the human genome. Nature, 411, pp.199–
204. 

Reitz, C. et al., 2013. Variants in the ATP-Binding Cassette and the Risk of Late-Onset 
Alzheimer Disease. JAMA, 309(14), pp.1483–1493. 

Remaley, A.T. et al., 1997. Decreased reverse cholesterol transport from Tangier disease 
fibroblasts. Acceptor specificity and effect of brefeldin on lipid efflux. Arteriosclerosis, 
thrombosis, and vascular biology, 17(9), pp.1813–1821. 

Ren, G. et al., 2006. The BAR Domain Proteins : Molding Membranes in Fission, Fusion, and 
Phagy. Microbiology and Molecular Biology Reviews, 70(1), pp.37–120. 

Rezaie, P. & Male, D., 1999. Colonisation of the developing human brain and spinal cord by 
microglia: a review. Microscopy research and technique, 45(6), pp.359–382. 

Ring, K.L. et al., 2015. Genomic Analysis Reveals Disruption of Striatal Neuronal 
Development and Therapeutic Targets in Human Huntington’s Disease Neural Stem 
Cells. Stem Cell Reports, 5(6), pp.1023–1038. Available at: 
http://dx.doi.org/10.1016/j.stemcr.2015.11.005. 

del Rio-Hortega, P. (1919) El tercer elemento de los centros nerviosos. Biol. Soc. Esp. Biol. 9, 
69–120.  
del Rio-Hortega, D. (1932). “Microglia,” in Cytology and Cellular Pathology of the Nervous 
System, Vol. 2, ed W. Penfield, (New York, NY: P. B. Hoeber, Inc.), 482–534.  
de Rivero Vaccari, J.P. et al., 2012. P2X4 Receptors Influence Inflammasome Activation after 

Spinal Cord Injury. Journal of Neuroscience, 32(9), pp.3058–3066. Available at: 
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4930-11.2012. 

Robinson, M., Lee, B.Y. & Hane, F.T., 2017. Recent Progress in Alzheimer’s Disease Research, 
Part 2: Genetics and Epidemiology. Journal of Alzheimer’s disease : JAD, 57(2), pp.317–
330. 

Rocha, N.P. et al., 2016. Neuroimmunology of Huntington’s Disease : Revisiting Evidence 
from Human Studies. Mediators of Inflammation, 2016, pp.1–10. Available at: 
http://dx.doi.org/10.1155/2016/8653132. 

Rodriguez-Vieitez, E. et al., 2016. Diverging longitudinal changes in astrocytosis and amyloid 
PET in autosomal dominant Alzheimer’s disease. Brain, 139(Pt 3), pp.922–936. 

Roeck, A. De et al., 2017. Deleterious ABCA7 mutations and transcript rescue mechanisms in 
early onset Alzheimer’s disease. Acta Neuropathologica. 

Rogers, J. et al., 1996. Inflammation and Alzheimer’s disease pathogenesis. Neurobiology of 
aging, 17(5), pp.681–686. 



167  

Rogers, J. et al., 2002. Microglia and Inflammatory Mechanisms in the Clearance of Amyloid-
ß Peptide. Glia, 269(July), pp.260–269. 

Rogers, J. et al., 2006. Peripheral clearance of amyloid β peptide by complement C3-
dependent adherence to erythrocytes. Neurobiology of Aging, 27(12), pp.1733–1739. 

Rongvaux, A. et al., 2014. Development and function of human innate immune cells in a 
humanized mouse model. Nature Biotechnology, 32(4), pp.364–372. 

Ross, C.A. et al., 2014. Huntington disease: Natural history, biomarkers and prospects for 
therapeutics. Nature Reviews Neurology, 10(4), pp.204–216. Available at: 
http://dx.doi.org/10.1038/nrneurol.2014.24. 

Ross, C.A. & Tabrizi, S.J., 2011. Huntington’s disease: From molecular pathogenesis to 
clinical treatment. The Lancet Neurology, 10(1), pp.83–98. Available at: 
http://dx.doi.org/10.1016/S1474-4422(10)70245-3. 

Royle, S.J. et al., 2008. Imaging pHluorin-based probes at hippocampal synapses. Methods in 
Molecular Biology, 457(8), pp.293–303. 

Runne, H. et al., 2007. Analysis of potential transcriptomic biomarkers for Huntington’s 
disease in peripheral blood. Proceedings of the National Academy of Sciences of the 
United States of America, 104(36), pp.14424–14429. 

Rupprecht, R. et al., 2010. Translocator protein (18 kDa) (TSPO) as a therapeutic target for 
neurological and psychiatric disorders. Nature Reviews Drug Discovery, 9(12), pp.971–
988. Available at: http://dx.doi.org/10.1038/nrd3295. 

Sagare, A.P. et al., 2013. Pericyte loss influences Alzheimer-like neurodegeneration in mice. 
Nature Communications, 4, pp.1–14. Available at: 
http://dx.doi.org/10.1038/ncomms3932. 

Sakae, N. et al., 2016. ABCA7 Deficiency Accelerates Amyloid-beta Generation and 
Alzheimer’s Neuronal Pathology. Journal of Neuroscience, 36(13), pp.3848–3859. 

Santillo, A.F. et al., 2011. In vivo imaging of astrocytosis in Alzheimer’s disease: an (1)(1)C-L-
deuteriodeprenyl and PIB PET study. European journal of nuclear medicine and 
molecular imaging, 38(12), pp.2202–2208. 

Sapp, E. et al., 2001. Early and progressive accumulation of reactive microglia in the 
Huntington disease brain. Journal of neuropathology and experimental neurology, 
60(2), pp.161–172. 

Satoh, K. et al., 2015. ATP-binding cassette transporter A7 (ABCA7) loss of function alters 
Alzheimer amyloid processing. Journal of Biological Chemistry, 290(40), pp.24152–
24165. 

Saura, J. et al., 1994. Increased monoamine oxidase B activity in plaque-associated 
astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. 
Neuroscience, 62(1), pp.15–30. 

Saura, J. et al., 1996. Molecular neuroanatomy of human monoamine oxidases A and B 
revealed by quantitative enzyme radioautography and in situ hybridization 
histochemistry. Neuroscience, 70(3), pp.755–774. 

Schaefer, C.F. et al., 2009. PID: the Pathway Interaction Database. Nucleic acids research, 
37(Database issue), pp.D674-9. 

Schafer, D.P. et al., 2012. Microglia Sculpt Postnatal Neural Circuits in an Activity and 
Complement-Dependent Manner. Neuron, 74(4), pp.691–705. Available at: 
http://dx.doi.org/10.1016/j.neuron.2012.03.026. 

Schellenberg, G.D. & Montine, T.J., 2012. The genetics and neuropathology of Alzheimer’s 
disease. Acta Neuropathologica, 124, pp.305–323. 



168  

Schilling, T. et al., 2001. Astrocyte-released cytokines induce ramification and outward 
K+channel expression in microglia via distinct signalling pathways. European Journal of 
Neuroscience, 14(3), pp.463–473. 

Schmid, C.D. et al., 2002. Heterogeneous expression of the triggering receptor expressed on 
myeloid cells-2  on adult murine microglia. Journal of neurochemistry, 83(6), pp.1309–
1320. 

Schulz, C. et al., 2012. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic 
Stem Cells. Science, 336(86), pp.2–7. 

Serio, A. et al., 2013. Astrocyte pathology and the absence of non-cell autonomy in an 
induced pluripotent stem cell model of TDP-43 proteinopathy. Proceedings of the 
National Academy of Sciences of the United States of America, 110(12), pp.4697–702. 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3607024&tool=pmcentrez
&rendertype=abstract. 

Shaltouki, A. et al., 2013. Efficient generation of astrocytes from human pluripotent stem 
cells in defined conditions. Stem Cells, 31(5), pp.941–952. 

Sheng, J.G., Mrak, R.E. & Griffin, W.S.T., 1997. Neuritic plaque evolution in Alzheimer’s 
disease is accompanied by transition of activated microglia from primed to enlarged to 
phagocytic forms. Acta Neuropathologica, 94(1), pp.1–5. 

Shi, Q. et al., 2017. Complement C3 deficiency protects against neurodegeneration in aged 
plaque-rich APP/PS1 mice. Science Translational Medicine, 6295(May). 

Shin, J.-Y. et al., 2005. Expression of mutant huntingtin in glial cells contributes to neuronal 
excitotoxicity. The Journal of Cell Biology, 171(6), pp.1001–1012. Available at: 
http://www.jcb.org/lookup/doi/10.1083/jcb.200508072. 

Shin, J.W. et al., 2016. Permanent inactivation of Huntington’s disease mutation by 
personalized allele-specific CRISPR/Cas9. Human molecular genetics, 25(20), pp.4566–
4576. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27634650. 

Shiomi, A. & Usui, T., 2015. Pivotal roles of GM-CSF in autoimmunity and inflammation. 
Mediators of Inflammation, 2015. 

Shulman, J. et al., 2013. Genetic Susceptibility for Alzheimer Disease Neuritic Plaque 
Pathology. JAMA Neurology, 70(9), pp.1150–1157. 

Sierra, A. et al., 2013. Janus-faced microglia: beneficial and detrimental consequences of 
microglial phagocytosis. Frontiers in Cellular Neuroscience, 7(January), pp.1–22. 
Available at: http://journal.frontiersin.org/article/10.3389/fncel.2013.00006/abstract. 

Silvestroni, A. et al., 2009. Distinct neuroinflammatory profile in post-mortem human 
Huntington’s disease. NeuroReport, 20(12), pp.1098–1103. 

Simard, A.R. et al., 2006. Bone marrow-derived microglia play a critical role in restricting 
senile plaque formation in Alzheimer’s disease. Neuron, 49(4), pp.489–502. 

Simmons, D.A. et al., 2007. Ferritin accumulation in dystrophic microglia is an early event in 
the development of Huntington’s disease. Glia, 55(10), pp.1074–1084. 

Simpson, J.E. et al., 2010. Astrocyte phenotype in relation to Alzheimer-type pathology in 
the ageing brain. Neurobiology of Aging, 31(4), pp.578–590. Available at: 
http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.015. 

Sims, R. et al., 2017. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-
mediated innate immunity in Alzheimer’s disease. Nature genetics, (June), pp.1–15. 

Singhrao, S.K. et al., 1999. Increased complement biosynthesis by microglia and 
complement activation on neurons in Huntington’s disease. Experimental Neurology, 



169  

159(2), pp.362–376. 
Skotte, N.H. et al., 2014. Allele-specific suppression of mutant huntingtin using antisense 

oligonucleotides: Providing a therapeutic option for all Huntington disease patients. 
PLoS ONE, 9(9). 

Slow, E.J. et al., 2003. Selective striatal neuronal loss in a YAC128 mouse model of 
Huntington disease. Human molecular genetics, 12(13), pp.1555–1567. 

Smith, J.D. et al., 2004. ABCA1 mediates concurrent cholesterol and phospholipid efflux to 
apolipoprotein A-I. Journal of lipid research, 45(4), pp.635–644. 

Soreq, L. et al., 2017. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of 
Human Brain Aging. Cell Reports, 18(2), pp.557–570. Available at: 
http://dx.doi.org/10.1016/j.celrep.2016.12.011. 

Spangenberg, E.E. et al., 2016. Eliminating microglia in Alzheimer’s mice prevents neuronal 
loss without modulating amyloid-ß pathology. Brain, 139(4), pp.1265–1281. 

Spurgeon, S.L., Jones, R.C. & Ramakrishnan, R., 2008. High throughput gene expression 
measurement with real time PCR in a microfluidic dynamic array. PLoS ONE, 3(2). 

Squarzoni, P. et al., 2014. Microglia Modulate Wiring of the Embryonic Forebrain. Cell 
Reports, 8(5), pp.1271–1279. Available at: 
http://dx.doi.org/10.1016/j.celrep.2014.07.042. 

Stanley, A.C. & Lacy, P., 2010. Pathways for Cytokine Secretion. Physiology, 25(4), pp.218–
229. Available at: 
http://physiologyonline.physiology.org/cgi/doi/10.1152/physiol.00017.2010. 

Steinberg, S. et al., 2015. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s 
disease. Nature Genetics, 47(5), pp.445–447. Available at: 
http://www.nature.com/doifinder/10.1038/ng.3246. 

Stolzing, A. & Grune, T., 2004. Neuronal apoptotic bodies: phagocytosis and degradation by 
primary microglial cells. FASEB Journal, 18(6). 

Strittmatter, W.J. et al., 1993. Apolipoprotein E : High-avidity binding to , B-amyloid and 
increased frequency of type 4 allele in late-onset familial Alzheimer disease 4 ° C ,. 
Proceedings of the National Academy of Sciences of the United States of America, 
90(March), pp.1977–1981. 

Stuart, L.M. et al., 2007. CD36 signals to the actin cytoskeleton and regulates microglial 
migration via a p130Cas complex. Journal of Biological Chemistry, 282(37), pp.27392–
27401. 

Subramanian, A. et al., 2005. Gene set enrichment analysis: a knowledge-based approach 
for interpreting genome-wide expression profiles. Proceedings of the National 
Academy of Sciences of the United States of America, 102(43), pp.15545–15550. 

Tai, F. et al., 2007. Microglial activation in presymptomatic Huntington’s disease gene 
carriers. Brain, 130, pp.1759–1766. 

Takahashi, K. et al., 2007. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts 
by Defined Factors. Cell, pp.861–872. 

Takahashi, K., Rochford, C.D.P. & Neumann, H., 2005. Clearance of apoptotic neurons 
without inflammation by microglial triggering receptor expressed on myeloid cells-2. 
The Journal of Experimental Medicine, 201(4), pp.647–657. Available at: 
http://www.jem.org/lookup/doi/10.1084/jem.20041611. 

Takahashi, K. & Yamanaka, S., 2006. Induction of Pluripotent Stem Cells from Mouse 
Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2, pp.663–676. 

Tanaka, N. et al., 2011. HMG-CoA reductase inhibitors enhance phagocytosis by 



170  

upregulating ATP-binding cassette transporter A7. Atherosclerosis, 217(2), pp.407–414. 
Available at: http://dx.doi.org/10.1016/j.atherosclerosis.2011.06.031. 

Tannahill, G.M. et al., 2013. Succinate is an inflammatory signal that induces IL-1β through 
HIF-1α. Nature, 496(7444), pp.238–242. Available at: 
http://dx.doi.org/10.1038/nature11986. 

Tavian, M. & Péault, B., 2005. Embryonic development of the human hematopoietic system. 
International Journal of Developmental Biology, 49, pp.243–250. 

Tay, T.L. et al., 2017. A new fate mapping system reveals context-dependent random or 
clonal expansion of microglia. Nature Neuroscience, 20(6), pp.793–805. 

Thinakaran, G. & Koo, E.H., 2008. Amyloid precursor protein trafficking, processing, and 
function. Journal of Biological Chemistry, 283(44), pp.29615–29619. 

Tian, Y. et al., 2013. Adaptor complex AP2/PICALM, through interaction with LC3, targets 
Alzheimer’s APP-CTF for terminal degradation via autophagy. Proceedings of the 
National Academy of Sciences of the United States of America, 110(42), pp.17071–
17076. 

Tomioka, M. et al., 2017. Lysophosphatidylcholine export by human ABCA7. BBA - Molecular 
and Cell Biology of Lipids, 1862(7), pp.658–665. Available at: 
http://dx.doi.org/10.1016/j.bbalip.2017.03.012. 

Trager, U. et al., 2015. Characterisation of immune cell function in fragment and full-length 
Huntington’s disease mouse models. Neurobiology of Disease, 73, pp.388–398. 

Träger, U. et al., 2014. HTT-lowering reverses Huntington’s disease immune dysfunction 
caused by NFκB pathway dysregulation. Brain, 137(3), pp.819–833. 

Trapp, B.D. et al., 2007. Evidence for synaptic stripping by cortical microglia. Glia, 55(4), 
pp.360–368. 

Tsuchiya, S. et al., 1980. Establishment and characterization of a human acute monocytic 
leukemia cell line  (THP-1). International journal of cancer, 26(2), pp.171–176. 

Ulland, T.K. et al., 2017. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s 
Disease. Cell, 170(4), p.649–656.e13. Available at: 
http://dx.doi.org/10.1016/j.cell.2017.07.023. 

Vasquez, J.B., Fardo, D.W. & Estus, S., 2013. ABCA7 expression is associated with 
Alzheimer’s disease polymorphism and disease status. Neuroscience Letters, 556, 
pp.58–62. Available at: http://dx.doi.org/10.1016/j.neulet.2013.09.058. 

Vatine, G.D. et al., 2017. Modeling Psychomotor Retardation using iPSCs from MCT8-
Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell, 
20(6), p.831–843.e5. Available at: http://dx.doi.org/10.1016/j.stem.2017.04.002. 

Velazquez, P. et al., 1997. Aspartate residue 7 in amyloid beta-protein is critical for classical 
complement pathway activation: implications for Alzheimer’s disease pathogenesis. 
Nature medicine, 3, pp.77–79. 

Verghese, P.B. et al., 2013. ApoE influences amyloid-β (Aβ) clearance despite minimal 
apoE/Aβ association in physiological conditions. Proceedings of the National Academy 
of Sciences of the United States of America, 110(19), pp.E1807–E1816. 

Verney, C. et al., 2010. Early microglial colonization of the human forebrain and possible 
involvement in periventricular white-matter injury of preterm infants. Journal of 
Anatomy, 217(4), pp.436–448. 

Vetrivel, K.S. & Thinakaran, G., 2010. Membrane rafts in Alzheimer’s disease beta-amyloid 
production. Biochimica et Biophysica Acta, 1801(8), pp.860–867. Available at: 
http://dx.doi.org/10.1016/j.bbalip.2010.03.007. 



171  

Vonsattel, J.P. et al., 1985. Neuropathological classification of Huntington’s disease. Journal 
of neuropathology and experimental neurology, 44(6), pp.559–577. 

Te Vruchte, D. et al., 2004. Accumulation of glycosphingolipids in Niemann-Pick C disease 
disrupts endosomal transport. Journal of Biological Chemistry, 279(25), pp.26167–
26175. 

van der Wal, E.A., Gomez-Pinilla, F. & Cotman, C.W., 1993. Transforming growth factor-beta 
1 is in plaques in Alzheimer and Down pathologies. Neuroreport, 4(1), pp.69–72. 

Walker, D.G. et al., 2009. Decreased expression of CD200 and CD200 receptor in Alzheimer’s 
disease: A potential mechanism leading to chronic inflammation. Experimental 
Neurology, 215(1), pp.5–19. Available at: 
http://dx.doi.org/10.1016/j.expneurol.2008.09.003. 

Wang, C.C., Wen, C.Y. & Medical, T., 1996. Immunohistochemical study of amoeboid 
microglial cells. Journal of Anatomy, 189, pp.567–574. 

Wang, N. et al., 2003. ATP-binding Cassette Transporter A7 (ABCA7) Binds Apolipoprotein A-
I and Mediates Cellular Phospholipid but Not Cholesterol Efflux. Journal of Biological 
Chemistry, 278(44), pp.42906–42912. 

Wang, N. et al., 2000. Specific Binding of ApoA-I , Enhanced Cholesterol Efflux , and Altered 
Plasma Membrane Morphology in Cells Expressing ABC1. Journal of Biological 
Chemistry, 275(42), pp.33053–33058. 

Wang, Y. et al., 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the 
development of Langerhans cells and microglia. Nature immunology, 13(8), pp.753–60. 
Available at: http://dx.doi.org/10.1038/ni.2360. 

Weiss, A. et al., 2012. Mutant huntingtin fragmentation in immune cells tracks Huntington’s 
disease progression. Journal of Clinical Investigation, 122(10), pp.3731–3736. 

Westin, K. et al., 2012. CCL2 is associated with a faster rate of cognitive decline during early 
stages of Alzheimer’s disease. PloS one, 7(1), p.e30525. 

Wild, E. et al., 2011. Abnormal peripheral chemokine profile in Huntington’s disease. PLoS 
currents, 3, p.RRN1231. 

Wild, E.J. et al., 2015. Quantification of mutant huntingtin protein in cerebrospinal fluid 
from Huntington’s disease patients. The Journal of clinical investigation, 125(5), pp.1–8. 

van Wilgenburg, B. et al., 2013. Efficient, long term production of monocyte-derived 
macrophages from human pluripotent stem cells under partly-defined and fully-
defined conditions. PloS one, 8(8), p.e71098. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3741356&tool=pmcentrez
&rendertype=abstract. 

Wright, G.J. et al., 2000. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a 
novel receptor on macrophages implicated in the control of their function. Immunity, 
13(2), pp.233–242. 

Wright, G.J. et al., 2001. The unusual distribution of the neuronal/lymphoid cell surface 
CD200 (OX2) glycoprotein is conserved in humans. Immunology, 102(2), pp.173–179. 

Wynn, T.A., Chawla, A. & Pollard, J.W., 2013. Macrophage biology in development, 
homeostasis and disease. Nature, 496(7446), pp.445–455.  

Wyss-Coray, T. et al., 2003. Adult mouse astrocytes degrade amyloid-beta in vitro and in 
situ. Nature medicine, 9(4), pp.453–457. 

Wyss-Coray, T. et al., 2001. TGF-beta1 promotes microglial amyloid-beta clearance and 
reduces plaque burden in transgenic mice. Nature medicine, 7(5), pp.612–618. 

Xian, X. et al., 2017. LRP1 integrates murine macrophage cholesterol homeostasis and 



172  

inflammatory responses in atherosclerosis. eLife, 6(e29292), pp.1–31. 
Xiao, Q. et al., 2012. Role of Phosphatidylinositol Clathrin Assembly Lymphoid-Myeloid 

Leukemia ( PICALM ) in Intracellular Amyloid Precursor Protein ( APP ) Processing and 
Amyloid Plaque Pathogenesis *. Journal of Biological Chemistry, 287(25), pp.21279–
21289. 

Xu, J. et al., 2016. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by 
Apoptotic Neuron and Lysophosphatidylcholine. Developmental Cell, 38, pp.214–222. 

Xu, X. et al., 2017. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene 
Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem 
Cell Reports, 8(3), pp.619–633.  

Yamamoto, M. et al., 2005. Overexpression of monocyte chemotactic protein-1/CCL2 in 
beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid 
deposition. The American journal of pathology, 166(5), pp.1475–1485. 

Yamamoto, M. et al., 2004. Regulation of Toll/IL-1-receptor-mediated gene expression by 
the inducible nuclear protein IκBζ. Nature, 430, p.218. Available at: 
http://dx.doi.org/10.1038/nature02738. 

Yang, L. et al., 2016. LRP1 modulates the microglial immune response via regulation of JNK 
and NF-κB signaling pathways. Journal of Neuroinflammation, 13(304), pp.1–13. 
Available at: http://dx.doi.org/10.1186/s12974-016-0772-7. 

Yusa, K., 2013. Seamless genome editing in human pluripotent stem cells using custom 
endonuclease-based gene targeting and the piggyBac transposon. Nature Protocols, 
8(10), pp.2061–2078. 

Zetterberg, H., Andreasen, N. & Blennow, K., 2004. Increased cerebrospinal fluid levels of 
transforming growth factor-beta1 in Alzheimer’s disease. Neuroscience letters, 367(2), 
pp.194–196. 

Zhang, B. et al., 2013. Integrated Systems Approach Identifies Genetic Nodes and Networks 
in Late-Onset Alzheimer’s Disease. Cell, 153(3), pp.707–720. Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0092867413003875. 

Zhang, Y. et al., 2016. Purification and Characterization of Progenitor and Mature Human 
Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron, 
89(1), pp.37–53. Available at: http://dx.doi.org/10.1016/j.neuron.2015.11.013. 

Zhou, Q. et al., 2012. A hypermorphic missense mutation in PLCG2, encoding phospholipase 
Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. 
American Journal of Human Genetics, 91(4), pp.713–720.  

Zipser, B.D. et al., 2007. Microvascular injury and blood-brain barrier leakage in Alzheimer’s 
disease. Neurobiology of aging, 28(7), pp.977–986. 

Zlokovic, B. V., 2011. Neurovascular pathways to neurodegeneration in Alzheimer’s disease 
and other disorders. Nature Reviews Neuroscience, 12(12), pp.723–738. Available at: 
http://dx.doi.org/10.1038/nrn3114. 

Zurhove, K. et al., 2008. γ -Secretase Limits the Inflammatory Response Through the 
Processing of LRP1. Science Signalling, 1(47), pp.1–13. 

Zuris, J.A. et al., 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-
based genome editing in vitro and in vivo. Nature Biotechnology, 33(1), pp.73–80. 

Zwilling, D. et al., 2011. Kynurenine 3-monooxygenase inhibition in blood ameliorates 
neurodegeneration. Cell, 145(6), pp.863–874. 

 



173  

9. APPENDICES 
Appendix 1. Top 50 differentially expressed genes in HD109 iPSC-derived microglia.  
 
Genes were ranked by p-value correction with  

Symbol LogFC p-value 

LRRC61 -4.101 1.00E-06 

BDKRB1 -5.42 1.00E-06 

CALR -1.127 1.00E-06 

CD151 -1.339 1.00E-06 

CTSB -1.108 1.00E-06 

CX3CR1 9.412 1.00E-06 

DGKG -2.242 1.00E-06 

EVI2A 1.026 1.00E-06 

F3 -2.066 1.00E-06 

F10 -3.127 1.00E-06 

GABRA3 5.026 1.00E-06 

GALNT2 -1.083 1.00E-06 

CXCL1 -2.356 1.00E-06 

GSTM1 8.009 1.00E-06 

HLA-A -1.878 1.00E-06 

HLA-B -1.728 1.00E-06 

HLA-H -2.147 1.00E-06 

ID2 1.159 1.00E-06 

IL15RA -2.306 1.00E-06 

ITGA2 -4.622 1.00E-06 

JARID2 1.027 1.00E-06 

CD82 -1.989 1.00E-06 

MFGE8 -2.753 1.00E-06 

MELTF -3.198 1.00E-06 

MYO10 -2.137 1.00E-06 

P4HB -1.314 1.00E-06 

PRKY -10 1.00E-06 

MASP1 -5.793 1.00E-06 

RPA1 1.079 1.00E-06 

RPS4Y1 -10 1.00E-06 

RRAD -4.167 1.00E-06 
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CCL7 -4.399 1.00E-06 

SLC22A3 -4.6 1.00E-06 

SMPD1 -1.023 1.00E-06 

TAP1 -1.182 1.00E-06 

TCN2 -2.424 1.00E-06 

MEG9 -3.74 1.00E-06 

TIMP1 -3.057 1.00E-06 

FAM155A -2.434 1.00E-06 

UTY -10 1.00E-06 

VTN -4.171 1.00E-06 

ZFX 1.171 1.00E-06 

MIR4458HG -9.571 1.00E-06 

ZFY -10 1.00E-06 

ZNF232 -1.438 1.00E-06 

TFPI2 -6.756 1.00E-06 

KDM5D -10 1.00E-06 

USP9Y -10 1.00E-06 

DDX3Y -10 1.00E-06 

PLOD3 -1.182 1.00E-06 

 

Appendix 2. IPA output of upstream transcriptional regulators inhibited in HD109 
iPSC-derived microglia.  
 
This table contains the rest of the transcriptional regulators identified as inhibited in HD109 
via IPA. 
   

Upstream regulator  Activation z-score P value of overlap 

IL6 -3.348 0.000811 

IFNL1 -3.286 0.000048 

ERK1/2 -3.236 0.000124 
SMARCA4 -3.168 0.0000153 

IRF1 -3.16 0.00513 

P38 MAPK -2.728 0.00112 

Interferon alpha -2.66 0.00000881 
IRF3 -2.655 0.00357 

IL4 -2.591 0.00000563 

IL1B -2.576 1.1E-09 
JAK -2.433 0.000599 

STAT1 -2.374 0.00928 

SREBF1 -2.301 0.00284 

PRL -2.184 7.86E-08 

CCL11 -2.084 0.00000379 
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forskolin -2.082 0.0000173 

VEGFA -2.012 0.0000252 

 

Appendix 3. IPA output of upstream transcriptional regulators activated in HD109 
iPSC-derived microglia.  
 

Upstream regulator  Activation z-score P value of overlap 

SB203580 3.885 1.33E-08 
calphostin C 2.42 2.16E-07 

RARA 3.414 5.49E-07 

NKX2-3 2.103 6.63E-06 
Go 6976 2.97 1.30E-05 

miR-199a-5p  2.72 2.48E-05 

tyrphostin AG 1478 2.397 1.32E-04 

PD98059 2.746 1.86E-04 

DKK1 2.005 1.94E-04 

UDP-D-glucose 2.449 1.61E-09 

MYCN 2.671 7.85E-04 

2-aminopurine 2.165 9.46E-04 

IL1RN 2.279 1.64E-03 

 

Appendix 4. IPA output of inhibited upstream transcriptional regulators specific to 
HD109 iPSC-derived macrophage precursors.  
 

Upstream regulator  Activation z-score P value of overlap 

3-deazaneplanocin -2.561 2.48E-05 

OSM -2.709 1.07E-04 

lipopolysaccharide -3.881 4.60E-04 

enterotoxin B -2.414 1.27E-03 

pyrrolidine 
dithiocarbamate 2.584 1.35E-03 

TGFB1 -2.206 1.37E-03 

IRF7 -2.18 5.04E-03 
TP53 -2.251 5.38E-03 
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Appendix 5. Microglia response to cholesterol depletion 
 
Kolf2 WT microglia were stimulated with 10 µM mevastatin for 4 hours.   
 

 
 

Appendix 6. List of qRT-PCR primers used in this project (continued) 
 

Gene Forward Reverse 

MERTK TCC ATC CGT CCG GAG AGA AA CCC TTG CCT CAG TGA TAG CTC 

C1QA TGG AGT TGA CAA CAG GAG GC ATA TGG CCA GCA CAC AGA GC 

PROS1 ATGACCCGGAAACGGATTATT AGCATTAGTTGACTGACGTGC 

GPR34 CCCAGCTGACACAACCAAGA TGCATTAAAGTTCAGGTTCGCC 

CR1 ATAGCAGGGTCCTTCCTTGAC TTTAGCACGAGGCAGAAGGG 

CR2 AATCGGATCACCAATGGAACCC CTGCAGCAATACCACAAAGGACAG 

SDHA TGG GAA CAA GAG GGC ATC TG CCA CCA CTG CAT CAA ATT CAT G 

HPRT1 TGA CAC TGG CAA AAC AAT GCA GGT CCT TTT CAC CAG CAA GCT 

UBC CGG TGA ACG CCG ATG ATT AT ATC TGC ATT GTC AAG TGA CGA 

HMBS TGC AAC GGC GGA AGA AAA ACG AGG CTT TCA ATG TTG CC 

GAPDH TGC ACC ACC AAC TGC TTA GC GGC ATG GAC TGT GGT CAT GAG 

CD33 TCAACGTCACCTATGTTCCAC CACTCCTGCTCTGGTCTCTTG 

TYROBP CTGCGGAGGCAGCGA GGCCTCTGTGTGTTGAGGTC 

SYK GGGAAAGAAGTTCGACACGC ACATTTCCCTGTGTGCCGATT 

APOE CAGGTCACCCAGGAACTGAG CGGGGTCAGTTGTTCCTCC 

ß-actin CCC AGC ACA ATG AAG ATC AA ACA TCT GCT GGA AGG TGG AC 
PICALM TGGAGTCAACCAGGTGAAAAG GGGTGCGTATTGTGGAAAATG 

CD36 GCCAGGTATTGCAGTTCTTTTC TGTCTGGGTTTTCAACTGGAG 

IL8 ATACTCCAAACCTTTCCACCC TCTGCACCCAGTTTTCCTTG 

IRF1 CAACAGATGAGGATGAGGAAGG GGTTCATTGAGTAGGTACCCC 

ADORA3 CTTATCTTTACCCACGCCTCC CAGGAATGACACCAGCCA 

CLEC7A TGTCACTAAATTCCTGGGATGG ATCAGGTTGGGAAGACACTTG 

SIGLEC12 TCCCTGCAAAACGAGTACAC GGACCTCACTACAACGAAGATG 

CD22 TGTAATAGTTGGTGCTCGTGG AGAAGTCACATTGGAGGCTG 
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CLU ATTCAAAATGCTGTCAACGGG CTTTGTCTCTGATTCCCTGGTC 

ICAM1 CAATGTGCTATTCAAACTGCCC CAGCGTAGGGTAAGGTTCTTG 

FCER1G TCGACTGAAGATCCAAGTGC ACCGCATCTATTCTAAAGCTACTG 

NR1H2 GATGTCCCAGGCACTGATG ACAGACACGGCAAAGCTC 

TLR4 TGCGTGAGACCAGAAAGC TTAAAGCTCAGGTCCAGGTTC 

CD40 AAGCTGTGAGACCAAAGACC ATAAAGACCAGCACCAAGAGG 

CABLES1 TCATTGGTCTGGAAGGTGTG GTTACGGAACTGGGAGAAAGAG 

STAT1 TGAACTTACCCAGAATGCCC CAGACTCTCCGCAACTATAGTG 

MRC1 CACCTTAACAACTGGATTTGCCA TGGTGGATTGTCTTGAGGAGC 

CCL18 CTTGTCCTCGTCTGCACCAT TTGTGGAATCTGCCAGGAGG 

CCL17 CTTCAAGGGAGCCATTCCCC CCTGCCCTGCACAGTTACA 

CCL2 AATCAATGCCCCAGTCACCT CTTCTTTGGGACACTTGCTGC 

CD163 TATTTCTGGAATGGAAAAGGAGGC ATCTTAAAGGCTGAACTCACTGGG 

CCR2 GGTTCAGTTGCTGAGAAGCC GTACTGGGGAAATGCGTCCT 

CYBB GGAATGCCCAATCCCTCAGT AAAACCGCACCAACCTCTCA 

NLRP3 GCGATCAACAGGAGAGACCT TTCAATGCTGTCTTCCTGGCA 

NR1H3 TTCTGGACAGGAAACTGCACC TGGTCATTACCAAGGCACTGT 

SOCS3 GGAGACTTCGATTCGGGACC GGAGCCAGCGTGGATCTG 

CCR7 CTTCCTGTGTGGTTTTACCGC CACAGGCATACCTGGAAAATGA 

CCL22 TACTGGACCTCAGACTCCTGC GAATCATCTTCACCCAGGGCA 

CD68 ATCCCCACCTGCTTCTCTCA CCGAGAATGTCCACTGTGCT 

SPI1 GATCTGACCGACTCGGAGC GTCTTCTGATGGCTGAGGGG 

HLA-DR TTCAGGAATCAGAAAGGACACTC TCTGCATTTCAGCTCAGGAA 
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