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ABSTRACT: Sclareol, a plant-derived diterpenoid widely used as a fragrance and flavoring substance, is well-known for its
promising antimicrobial and anticancer properties. However, its activity on helminth parasites has not been previously reported.
Here, we show that sclareol is active against larval (IC50 ≈ 13 μM), juvenile (IC50 = 5.0 μM), and adult (IC50 = 19.3 μM) stages
of Schistosoma mansoni, a parasitic trematode responsible for the neglected tropical disease schistosomiasis. Microwave-assisted
synthesis of Heck-coupled derivatives improved activity, with the substituents choice guided by the Matsy decision tree. The
most active derivative 12 showed improved potency and selectivity on larval (IC50 ≈ 2.2 μM, selectivity index (SI) ≈ 22 in
comparison to HepG2 cells), juvenile (IC50 = 1.7 μM, SI = 28.8), and adult schistosomes (IC50 = 9.4 μM, SI = 5.2). Scanning
electron microscopy studies revealed that compound 12 induced blebbing of the adult worm surface at sublethal concentration
(12.5 μM); moreover, the compound inhibited egg production at the lowest concentration tested (3.13 μM). The observed
phenotype and data obtained by untargeted metabolomics suggested that compound 12 affects membrane lipid homeostasis by
interfering with arachidonic acid metabolism. The same methodology applied to praziquantel (PZQ)-treated worms revealed
sugar metabolism alterations that could be ascribed to the previously reported action of PZQ on serotonin signaling and/or
effects on glycolysis. Importantly, our data suggest that compound 12 and PZQ exert different antischistosomal activities. More
studies will be necessary to confirm the generated hypothesis and to progress the development of more potent antischistosomal
sclareol derivatives.

KEYWORDS: diterpenoids, schistosomiasis, anthelmintic, sclareol, microwave synthesis, untargeted metabolomics

Sclareol is a labdane diterpenoid widely used as a fragrance1

as well as a food flavoring substance2 and is generally
considered safe for topical and oral administration.3 Originally
isolated from Salvia sclarea, sclareol is also found in essential
oils derived from other Salvia spp which are thought to be
produced in response to infection by bacteria and fungi.4

These plant-defense properties have led to further mechanistic
investigations, which have demonstrated sclareol’s potency as
an antibacterial,5 antifungal,6 and anticancer agent.7−10

However, to the best of our knowledge, the activity of sclareol
against parasitic helminths has not been previously inves-
tigated. As part of our ongoing efforts in identifying and
characterizing anthelmintic phytochemicals, we now report the

activity of sclareol and new synthetic analogues against the
causative helminth responsible for schistosomiasis.
Schistosomiasis is a chronic, debilitating helminthiasis

caused by parasitic trematodes within the genus Schistosoma
and currently affects approximately 600 million people.11 This
disease is predominantly found in tropical areas of the world
and, with up to 300,000 deaths per year, is considered the most
deadly neglected tropical disease (NTD).12 In the absence of a
prophylactic vaccine, schistosomiasis is primarily controlled by
a single drug, praziquantel (PZQ). This pyrazino-isoquinolone
is active against the adult stages of all human-infective
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Schistosoma spp but not on immature forms and, therefore,
requires repeat administrations to maximize efficacy.13

Furthermore, the fear of selecting for PZQ insensitive or
resistant parasites drives the need to identify new anti-
schistosomal drugs with a different mechanism of action to
PZQ. The identification of such compounds will contribute to
the sustainable control of schistosomiasis into the future.14

Toward this end, several diterpenoids with antischistosomal
activity have been previously reported,15−17 including several
from our group.18,19 The collective results of these
investigations demonstrate that this molecule class could be
a promising source of next generation anthelmintic. In this
study, the antischistosomal activity of sclareol was demon-
strated on larval, juvenile, and adult stages of Schistosoma
mansoni, and this activity was considerably improved by the
creation and testing of semisynthetic derivatives. On the basis
of initial structural-activity relationships (SARs) derived from a
first group of analogues, different Heck-coupled derivatives

were synthesized on the basis of a previously reported
synthetic route20 and significantly improved by microwave-
assisted synthesis. The choice of substituents was guided by
the Matsy decision tree,21 an updated version of the more
classical Topliss scheme.22 This process led to the synthesis of
the most active compound 12 (IC50 ≈ 2.2 μM for schistosome
larvae, selectivity index (SI) > 20 in comparison to HepG2
cells; IC50 = 1.7 μM for juveniles, SI = 28.8; IC50 = 9.4 μM for
schistosome adults, SI = 5.2). The effects of compound 12 on
schistosome phenotype were investigated by scanning electron
microscopy (SEM), revealing tegumental alterations at a
sublethal dose, characterized by swelling and bubble-like
protrusions. Untargeted metabolomics of treated adult
worms revealed significant alterations in lipid balance and, in
particular, arachidonic acid (ARA) metabolism. These results
are consistent with the previously reported effects of ARA on
schistosome surface membranes.23 Furthermore, the effect of
compound 12 on schistosome metabolism is quite distinct

Figure 1. Structure and antischistosomal activity of (−)-sclareol. (A) Structure and scaffold numbering system of the diterpenoid (−)-sclareol. (B)
Sclareol affects the phenotype and motility of S. mansoni schistosomula in a dose-dependent manner (50−1 μM). Schistosomula cocultivated with
negative (0.625% DMSO) and positive (Auranofin 10 μM, 0.625% DMSO) controls are also indicated. The screening was performed by the high
throughput screening platform Roboworm18,27 with each point being the average of two replicates (each replicate contains 120 parasites/well). Hit
compounds (within the hit threshold) affect ≥70% of the larvae. Z′-scores:28 0.69 for phenotype and 0.48 for motility. (C) Sclareol affects the
motility of mixed-sex S. mansoni juvenile worms in a dose-dependent manner (50−0.8 μM) and of (D) mixed-sex S. mansoni adult worms (50−3.13
μM). Scores were calculated according to the Methods. Each point represents a single worm (10 juveniles × 2 independent experiments, 3 worm
pairs × 2 independent experiments) with mean ± SD illustrated. (E) Sclareol inhibits egg production of S. mansoni adult worm couples when
compared to control treatment (0.00). Values are mean ± SD of egg counts from 3 worm pairs × 2 independent experiments. (F) Estimated IC50’s
(μM) calculated from dose response curves on schistosomula phenotype and motility and on juvenile and adult worm motility, estimated CC50 on
HepG2 human liver cell and selectivity index (SI).
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from that induced by PZQ where alteration of sugar
metabolism was predominantly observed. This metabolomics
profile adds mechanistic support to the activity of PZQ in
modulating serotonin signaling24,25 and/or glycolysis25,26 in
schistosomes. The overall results of sclareol derivative
synthesis, bioactivities, and the mechanism of action
investigations (distinct from PZQ) are presented and discussed
here.

■ RESULTS AND DISCUSSION

Anthelmintic Activity of (−)-Sclareol. The activity of a
small collection of plant-derived diterpenoids (see Supporting
Information, S1) on S. mansoni schistosomula (larvae), using
the high throughput screening platform Roboworm,18,27

identified anthelmintic properties among labdane-type diterpe-
noids. On the basis of this finding, we decided to ascertain the
anthelmintic activity of enantiopure (−)-sclareol (Figure 1),
the commercially available labdane diterpenoid (Figure 1A)
more structurally related to the labdane hits in Supporting
Information S1 (same condensed rings, open chain, and allylic
alcohol group) and widely used in the cosmetic1 and food2

industries due to its excellent safety profile. Indeed, in vivo
toxicity studies in mice have demonstrated a LD50 > 5000 mg/
kg for both topical and oral delivery routes and a LD50 = 1000
mg/kg for the parental route.3 Moreover, as sclareol is also
well-known for its promising antimicrobial and antifungal
activities,5,6 we postulated that this labdane diterpenoid
possessed biological properties (low toxicity and anti-infective
nature) to warrant anthelmintic investigations. Therefore,
sclareol’s ability to affect motility and the phenotype of
S. mansoni schistosomula was first assessed (final concen-
trations of 50−1 μM) by the Roboworm platform18,27 (Figure
1B). Here, this diterpenoid demonstrated a dose-dependent
antischistosomal activity with an IC50 of 14.2 μM for
phenotype and 12.3 μM for motility (Figure 1B,F). Sclareol
was then screened against juvenile (final concentrations of 50−

0.8 μM) and adult worms (final concentrations of 50−3.13
μM) where it negatively affected worm motility (IC50 of 5.0
and 19.3 μM, respectively) (Figure 1C,D,F) and inhibited
production of the pathogenic eggs at the lowest concentration
tested (Figure 1E). We additionally confirmed the low toxicity
of sclareol3 on human HepG2 cells (CC50 = 74.1 μM) (Figure
1F). Considering the relative low toxicity of sclareol, we
decided to pursue further medicinal chemistry studies on this
diterpenoid to improve its anthelmintic characteristics.

Synthesis of Sclareol Derivatives. To quantify structural
activity relationships and improve upon the moderate
anthelmintic activity of sclareol, a small group of analogues
was first synthesized (Figure 2). Oxidation of sclareol with
KMnO4 and MgSO4 in acetone29 led to the synthesis of
compound 1, with the allylic alcohol substituted by a keto
group. Dehydration of compound 1 with I2 in toluene29 led to
compound 2. A further derivative of sclareol was obtained by
acetylation of both alcoholic functions by acetyl chloride in the
presence of N,N-dimethylaniline in dichloromethane,30 giving
compound 3, and subsequent selective hydrolysis by KOH in
ethanol30 leading to compound 4. The latter was subjected to
an E1 elimination by using NaHCO3 in DMSO, as described
by Rogachev et al.,30 with some modifications using microwave
conditions (200 °C, 100 W, 11 min); this procedure led to the
synthesis of compound 5 as a geometric isomeric mixture (2:1
exo/endo isomer mixture, as determined by 1H NMR
integration; see Supporting Information, S2). The obtained
dehydrated derivative was subjected to the Heck-reaction,20

with yields and reaction times improved by microwave
conditions (130 °C, 300 W, 12 min), leading to compound
6. The same Heck-reaction was performed directly on sclareol,
obtaining the direct derivative compound 7.
To investigate the impact of these changes on anthelmintic

activity, this first small set of compounds (1−7) was screened
against the schistosomula stage of S. mansoni. Compounds 1
and 2 lost their potency (Table 1), showing that the allylic

Figure 2. Derivatives of sclareol. Structures and synthetic scheme of the sclareol derivatives. When not specified, X = H.
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portion is important for anthelmintic activity. The bis-
acetylated compound 3 was inactive too, while the
monoacetylated compound 4 recovered activity, comparable
to sclareol, showing again that the free allylic alcohol is
essential. The importance of the allylic alcohol for activity was
also confirmed by comparison with the previous diterpenoid
collection screening results (see Supporting Information, S1),
where the two hit compounds S6 and S8 share this feature,
while similar compounds presenting an inverted allylic alcohol
(S2, S10) or replacement of the function (S3, S9) were not
active. Compound 5 showed comparable activity to compound
4 (and to its plant-derived reference S6), while the addition of
a phenyl ring in position 15 led to the loss of activity in
compound 6. Interestingly, this did not happen when the
addition was made directly on sclareol to obtain compound 7,
which showed an almost 3-fold improved activity (IC50 ≈ 5.5
μM) over sclareol. Thus, we decided to pursue the synthesis of
new Heck-coupled derivatives (compounds 7−13) with
different phenyl substituents. The previous described synthesis

route,20 using Pd(OAc)2, Cu(OAc)2, and NaOAc in DMF at
80 °C, was followed and improved by microwave heating at
130 °C, leading to improved yields (from ∼60% to ∼90%) and
improved reaction times (from 3−6 h to 11 min). Under
microwave conditions, monocoupled products (7−13) with
trans configuration, as shown by the 1H NMR coupling
constants of the alkene (J ≈ 16 Hz), were obtained; when
using classic thermal synthesis, Heck-coupling led to the bis-
arylated products (14) in addition to monocoupled product
(12).
To maximize the chance of finding more potent analogues

against schistosomula while reducing the number of synthesis
steps, the Matsy decision tree,21 an updated version of the
classical Topliss tree,22 was followed (Figure 3). The first
phenyl ring substitution with chlorine in the 4-position
(compound 8) improved the antischistosomula activity of
compound 7 to an IC50 ≈ 3.5 μM. The 3,4-dichloro-
substituted compound 9 was then synthesized as suggested
by the Matsy tree, but this led to decreased activity.

Table 1. Antischistosomal and HepG2 Cytotoxicity Activitiesa

compounds
IC50 on schistosomula

phenotype/motility (μM)
IC50 on juvenile
worms (μM)

IC50 on adult
worms (μM)

CC50 on HepG2
cells (μM)

SI on schistosomula
phenotype/motility

SI on
juvenile
worms

SI on adult
worms

sclareol 14.2/12.3 5.5 19.3 74.1 5.2/5.9 13.5 3.8
1 >25 NA NA >100 NA NA NA
2 >25 NA NA >100 NA NA NA
3 >25 NA NA >100 NA NA NA
4 11.6/12.1 NA NA >100 NA NA NA
5 12.9/10.4 NA NA 85.1 6.6/8.2 NA NA
6 >25 NA NA 74.1 NA NA NA
7 5.7/5.3 2.0 18.6 43.7 7.7/8.2 21.9 2.3
8 3.5/3.6 6.5 12.7 42.7 12.2/11.9 6.7 3.4
9 27.6/10.6 NA NA 93.3 3.4/8.8 NA NA
10b >25 NA NA >100 NA NA NA
11 8.2/5.4 11.2 27.7 53.7 6.5/9.9 4.8 1.9
12 2.1/2.3 1.7 9.4 49.0 23.3/21.3 28.8 5.2
13 26.0/19.8 NA NA 63.1 2.4/3.2 NA NA
14 1.4/1.3 6.3 16.4 42.7 30.5/32.8 6.8 2.6

aEstimated IC50’s (μM) calculated from dose response curves for S. mansoni schistosomula phenotype/motility and S. mansoni adult and juvenile
worm motility. Estimated CC50’s (μM) calculated from dose response curves for HepG2 cells and selectivity indices (SI) of the anthelmintic
activity when compared to the cell line. The values are mean results of experiments in duplicate for helminths or triplicate for cells (IC50’s and
CC50’s with 95% confidence intervals in Supporting Information, S3). bSolubility problem.

Figure 3. Matsy decision tree and pathway followed to generate more active antischistosomal compounds. The figure shows the Matsy decision
tree by O’Boyle et al.,21 an updated version of the classic Topliss decision tree. According to the increased or decreased activity brought by the
different aromatic substituents, a pathway is followed leading to the choice of new substituents. The pathway followed in this study is highlighted in
green. Adapted from ref 21. Copyright 2014 American Chemical Society.

ACS Infectious Diseases Article

DOI: 10.1021/acsinfecdis.9b00034
ACS Infect. Dis. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.9b00034/suppl_file/id9b00034_si_007.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.9b00034/suppl_file/id9b00034_si_007.pdf
http://dx.doi.org/10.1021/acsinfecdis.9b00034


Subsequently, the far right branch of the tree was followed,
leading to the synthesis of 4-OMe (compound 10) and 3-Cl
(compound 11) substituted analogues (the first with a
solubility problem, the second with lower activity) as well as
a 4-F analogue (compound 12), which showed the most
potent activity (IC50 ≈ 2.2 μM, 6-fold more potent than
sclareol). Taking into account the increased activity brought by
the fluorine group, a 4-CF3 derivative was also synthesized
(compound 13); the double addition side product generated
from the classical reaction of compound 12 (compound 14)
was also tested. While compound 13 was less potent, the
activity of the side product (compound 14) was more potent
(IC50 ≈ 1.3 μM). The greater antischistosomula activity
associated with the double addition side product 14 could be
correlated with increased lipophilia compared to the
correspondent single addition product 12, which in turn is
more lipophilic and potent when compared to sclareol lacking
a phenyl ring (calculated logP 7.9 > 6.4 > 4.7, respectively).
Indeed, increased lipophilia could be responsible for a greater
passage of the compound through the schistosomula
membrane and, therefore, for better activity. However, changes

in lipophilia brought about by phenyl substituents did not
always follow this correlation (e.g., 8 is more potent than 9,
although calculated logP values are 6.8 and 7.4, respectively)
and suggest that other factors likely contribute. However, when
compounds were tested on juvenile and adult worms, as fully
described in the next paragraph, compound 12 was the most
potent.

Anthelmintic and Cytotoxic Screening of Derivatives.
As described above, to help inform the progression of hit
compound identification, compounds were first titrated (50 to
1 μM) on S. mansoni schistosomula by using the automated
platform Roboworm, which scores parasites on the basis of
their phenotype and motility.18 A follow-up secondary screen
of all synthesized compounds was subsequently completed to
validate these results and to compare antischistosomal potency
at 10 μM (Figure 4). In addition to this, all compounds were
assessed for overt cytotoxicity by screening against the human
HepG2 liver cell line (collective results shown in Table 1).
Compounds with IC50 values on schistosomula below 10

μM (7, 8, 11, 12, and 14) were then selected for follow-up
experiments against juvenile and adult schistosomes (Table 1;

Figure 4. Screening of sclareol derivatives on S. mansoni schistosomula at 10 μM. (A) The synthesized derivatives (at 10 μM) were assessed for
their ability to affect phenotype and motility of S. mansoni schistosomula when compared to the original sclareol (Scl, 10 μM) as well as to the
negative (0.625% DMSO) and positive (Auranofin 10 μM, 0.625% DMSO) controls. The screening was performed by the high throughput
platform Roboworm as previously described.18 Hit compounds (within the hit threshold) affect ≥70% of the larvae. Each point represents the
average score of two replicates. Z′-scores:28 0.41 for phenotype and 0.23 for motility. (B) Images of the parasites after treatment with the controls
and the five hits at 10 μM are also shown. Control schistosomula presented a normal phenotype and high motility (indicated by change in red
outlines), while affected schistosomula presented an altered phenotype (change in shape and darkening) and low or absent motility (no change in
red outlines).

Figure 5. Screening of compound 12 on S. mansoni juvenile and adult worms. Compound 12 affects the motility of (A) S. mansoni juvenile worms
(50−0.8 μM) and (B) S. mansoni adult worms (50−3.13 μM). Scores were calculated according to the Methods. Each point represents a single
worm (10 juveniles × 2 independent experiments, 3 worm pairs × 2 independent experiments) with mean ± SD shown. (C) Compound 12
inhibits egg production (3 worm pairs/well × 2 replicate experiments) until the lowest concentration tested (3.13 μM) when compared to the
DMSO control (0).
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Supporting Information, S4 and S5). Similar to the
antischistosomula screens, compound 12 showed the greatest
activity (IC50 of 1.7 μM on juveniles, 9.4 μM on adults; Table
1) and inhibited egg production (despite worm recovery) at all
concentrations tested (Figure 5).
Phenotypes of adult worms treated with a sublethal

concentration (12.5 μM) of compound 12 were analyzed by
SEM (Figure 6). The surface of treated parasites was altered
when compared to the DMSO control and, in particular,
blebbing, swelling of the tegument, and bubble-like protrusions
were observed on both male and female worms (Figure 6A,C
compared to Figure 6B,D). This suggested that the
antischistosomal activity of compound 12 could be related to
membrane or tegumental disruptions, as previously reported
for other terpenoids.16,17,31

Untargeted Metabolomics. To further investigate the
mode of action of compound 12, analysis of metabolomic
changes induced in adult worms cocultured at its IC50 value
was performed as described in the Methods, adapting the
procedure applied on bacteria by Baptista et al.32 and using
MetaboAnalyst 4.033 for metabolite comparative quantification
and annotation. Flow infusion electrospray ionization high
resolution mass spectrometry (FIE-HRMS) was used to profile
extracted metabolites derived from treated (compound 12 vs
PZQ) and control S. mansoni adult worms. Unsupervised
principal component analysis (PCA) revealed that the
metabolomics profile of worms treated with compound 12 is
quite distinct from the metabolic profile of PZQ-treated and

untreated worms, suggesting a different mode of action (Figure
7).
Metabolites responsible for separation between compound

12 treated and control worms (DMSO) in PCA were
identified using MetaboAnalyst 4.0.33 A total of 2123 m/z
FIE-HRMS features were found to be significantly different (p
< 0.01) between the two samples considering positive and
negative ionization mode together (1210 and 913, respec-
tively). The MetaboAnalyst 4.0-MS peaks to pathway was used
to identify these variables. The software used the mummichog
algorithm, which allows avoidance of the a priori identification
of metabolites and the biased manual assignment of spectral
features to metabolites34 by looking for local enrichment after
plotting all possible matches in the metabolic network. This
method provides accurate reproduction of true activity, as the
false matches distribute randomly.34 The run analysis revealed
that arachidonic acid (ARA), pentose phosphate, pyrimidine,
amino sugar, and fructose and mannose metabolism were all
significantly affected in compound 12 treated worms (Table
2A for significant pathways, Supplementary Data SD1 and SD2
for all identified metabolites and Supplementary Data SD3 and
SD4 for all identified pathways).
Pathway identifications were performed by using Metab-

oAnalyst 4.0,33 as described in the Methods section, after
analysis and identification (tolerance = 3 ppm) of m/z features
obtained by high resolution mass spectrometry. The tables
include ranked enriched pathways, total number of hits,
significant hits (p < 0.05), their EASE (Expression Analysis

Figure 6. Scanning electron microscopy (SEM) images of S. mansoni worms cocultivated with compound 12. SEM images of untreated adult male
(A) and female (C) worms compared to male (B) and female (D) worms treated with compound 12 at 12.5 μM. The surface of the treated
parasite appears damaged when compared to the control, and the presence of bubble-like protrusions and swelling is evident.
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Systematic Explorer) score,35 their raw p-values (Fisher’s exact
test, FET), and the p-values using a Gamma distribution.
Within the positive ionization mode, the only pathway found

to be significantly affected by compound 12 was ARA
metabolism. Specifically, ARA and its downstream derivatives
prostaglandin (PG) E2 and/or D2 were found in higher
abundance within the metabolite pool of compound 12 treated
worms when compared to controls (Figure 8A). Interestingly,
exogenously administered or elevated levels of host derived
ARA have previously been shown to kill schistosomes in vitro
as well as in vivo.23,36 Because of this and an excellent safety
profile, ARA has recently undergone clinical trials in school

children within highly endemic regions.37,38 While ARA led to
worm reductions similar to PZQ in both lightly and heavily
infected children, it potentiated the effect of this anthelmintic
when coadministrated to both study populations. The
proposed mechanism of ARA action on schistosome viability
has been reported to function through activation of the
tegument-associated neutral sphingomyelinase, nSMase; this
enzyme is responsible for sphingomyelin hydrolysis and a
consequent increase in membrane permeability and alteration
of lipid balance, as well as exposure of surface antigens to
antibody binding.23,38,39 Interestingly, the reported phenotype
for ARA-treated worms includes tegumental disruption and the
formation of “bubble-like lesions”,23 very similar to what was
observed in compound 12 treated worms. Indeed, sphingo-
myelin hydrolysis is associated with internal release of
ceramide,40 signaling molecules that have been previously
associated with membrane blebbing and apoptosis.41 Collec-
tively, these observations seem to suggest that compound 12
affects schistosome survival by interfering with either ARA
metabolism and/or PGE2/D2 homeostasis. Although PG-
producing cyclooxygenases have not yet been identified in
schistosomes,42 prostaglandins are a major component of the
schistosome lipidome43 and are thought to be involved in host
immune system evasion44 as well as in cercarial penetration.45

Whether these altered PGE2/PGD2 levels, induced by
compound 12, would also affect schistosome survival in vivo
is currently unknown. However, this hypothesis seems
plausible due to the importance of these downstream ARA
products in modulating host interactions. Finally, and similar
to the phenomenon observed for other diterpenoids on human
cells,46,47 the lipophilic structure of compound 12 may directly
affect schistosome survival by altering PG and lipid balances
essential for normal maintenance of the worm’s heptalaminate
barrier.
When examining the compound 12 induced pathways

significantly enriched in the negative ionization mode, the
involvement of sugar metabolism was evident. In particular,
pentose phosphate pathway (PPP) metabolites were less
abundant. As one of the main functions of the PPP is to
generate metabolites essential for nucleic acid synthesis, it was
not surprising that nucleotides and nucleotide sugars were also
less abundant in compound 12 treated schistosomes. The

Figure 7. Principal component analysis (PCA) of S. mansoni adult
worm metabolome. PCA score plots (positive and negative ionization
mode together; colored regions display 95% confidence interval) of
normalized m/z intensities of metabolites extracted from S. mansoni
adult worms after 24 h of treatment with compound 12 (12, in red) at
IC50 concentration (9.4 μM) compared to worms treated with DMSO
(0.625%) (D, in green) and to worms treated with PZQ (P, in blue)
at IC50 concentration (30 nM; Supporting Information, S6).

Table 2. Significantly Affected Pathways in Adult S. mansoni Worms after 24 h of Treatment with Compound 12 and PZQ
(Compared to DMSO Control Worms)

A. Compound 12 vs Control Worms

pathway total hits tot. hits sig. EASE FET Gamma

arachidonic acid metabolisma 14 6 6 0.10996 0.01598 0.00013
pentose phosphate pathwayb 19 12 11 0.03670 0.00711 0.00008
pyrimidine metabolismb 32 17 14 0.05077 0.01550 0.00009
amino sugar and nucleotide sugarb metabolism 27 14 12 0.05509 0.01460 0.00009
fructose and mannose metabolismb 16 10 9 0.09049 0.02083 0.00012

B. PZQ vs Control Worms

pathway total hits tot. hits sig. EASE FET Gamma

glycolysis or gluconeogenesisb 25 15 14 0.039364 0.00830 0.00008
citrate cycle (TCA cycle)b 20 10 10 0.061894 0.00890 0.00010
fructose and mannose metabolismb 16 10 10 0.061894 0.00890 0.00010
pentose and glucuronate interconversionsb 11 9 9 0.09122 0.01435 0.00012
pentose phosphate pathwayb 19 12 11 0.11081 0.02864 0.00013
alanine, aspartate, and glutamate metabolismb 17 12 11 0.11081 0.02864 0.00013

aFrom metabolites identified in positive ionization mode. bFrom metabolites identified in negative ionization mode.
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other main function of the PPP is in the synthesis of NADPH
that, in mammals, is necessary for fatty acid synthesis;
therefore, the PPP would be downregulated when fatty acids
are in abundance. Despite the lack of a proper de novo
lipogenesis, schistosomes can synthesize new fatty acids by
modification of host-derived ones using NADPH-dependent
enzymes;48 therefore, similar to mammals, we speculate that
the PPP was likely downregulated in compound 12 treated
worms due to the increase in abundance of fatty acids (here
ARA).
To determine if these metabolomics changes are specific to

compound 12 or are generally induced in schistosomes upon
all anthelmintic stresses, interrogation of the metabolomics
signatures between PZQ-treated and untreated worms was
subsequently performed. To our knowledge, this has not been
done before and may also represent a novel way of identifying
PZQ’s mechanism of action. A total of 2756 m/z HRMS
features were found to be significantly different (p < 0.01)
between the two samples considering positive and negative
ionization modes together (1725 and 1031, respectively).
Affected pathways mainly belonged to sugar metabolism (i.e.,
glycolysis or gluconeogenesis), citrate cycle, fructose and
mannose metabolism, pentose and glucuronate interconver-
sions, PPP, and the metabolism of the glucogenic amino acids
alanine, aspartate, and glutamate (see Table 2B for significant
pathways, Supplementary Data SD1 and SD2 for all identified
metabolites, and Supplementary Data SD5 and SD6 for all
identified pathways). In particular, the main product of
schistosome carbohydrate metabolism, lactate, was found to
be more abundant than in the control; other glucose pool

metabolites (e.g., glucose 6-P) were found in decreased
abundances, while glucose itself was found to be in much
higher concentration (Figure 8B). Considering the recent
report describing PZQ as a human serotonin 5-HT2b receptor
agonist,24 we assessed how our metabolomics data paralleled
serotonin pathway activation. In schistosomes, serotonin
increases carbohydrate catabolism by increasing glycogen
utilization, stimulating glycolysis and, therefore, increasing
production of lactate.49 Moreover, serotonin also causes an
increase in glucose uptake.49 Disturbance of carbohydrate
metabolism, with an increase in glycogen breakdown, and an
impairment of serotonin stimulation of carbohydrate metab-
olism have also been described in PZQ-treated schistosomes.25

All these previously reported effects are compatible with the
observed data, supporting the idea that PZQ could alter
serotonin signaling in schistosomes too. A different hypothesis
that could justify an increased glucose concentration,
associated with a decreased concentration of glucose-6-
phosphate, is a direct interference of PZQ in the glycolytic
pathway. In schistosomes, the enzyme responsible for glucose
phosphorylation is a hexokinase with an intermediate
characteristic between mammalian hexokinase and glucokinase
and is a strong point of glycolysis regulation.50 An antagonist
effect of PZQ on hexokinase was recently demonstrated on the
trematode Clonorchis sinensis,26 whose hexokinase share 69%
identity with S. mansoni. A similar antagonist action of PZQ on
S. mansoni hexokinase would justify a decreased glucose
phosphorylation. However, we cannot exclude that the
observed effects on glycolysis could also be a consequence of
generalized cellular stress.

Figure 8. Significant affected key metabolites found in treated schistosomes. Some key metabolites with significantly (*p < 0.01, **p < 0.001)
different concentrations found between control and treatment. (A) Compound 12 treatment induces increased production of arachidonic acid and
prostaglandins (e.g., PGE2 or PGD2 level; as the two prostaglandins are structural isomers with the same exact mass and belonging to the same
enriched pathway, the algorithm is not able to distinguish between them). (B) PZQ-treatment induces increased production of glucose and lactate,
while levels of glucose 6-phosphate were decreased.
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■ CONCLUSIONS

In summary, we demonstrated that sclareol, a nontoxic
diterpenoid widely used in the cosmetic and food industries,
has antischistosomal properties. By pursuing the medicinal
chemistry development of 14 derivatives, we have created more
active compounds. The most potent derivative, compound 12,
showed a selective improved potency on larval schistosomes
(IC50 ≈ 2.2 μM, SI ≈ 22 when compared to HepG2 cells),
juveniles (IC50 = 1.1 μM, SI = 44.5), and adult worms (IC50 =
9.4 μM, SI = 5.2). Moreover, phenotypic analyses by SEM and
metabolomics investigation revealed that this diterpenoid likely
acts by disrupting surface membranes through alterations of
ARA metabolism. This mechanism of action is quite distinct
from that ascertained by metabolomics-based investigation of
PZQ-treated worms, which revealed carbohydrate metabolism
alterations similar to that observed upon serotonin signaling.
Further mechanistic analyses of sclareol derivatives could
provide important information for the development of novel
antischistosomal molecules.

■ METHODS

Chemistry. Enantiomerically pure (−)-sclareol was pur-
chased from Sigma-Aldrich (357995-1G, CAS 515-03-7) and
used without further purification. The diterpenoid small
collection was obtained by PhytoQuest Ltd., and all other
reagents or solvents were obtained from Sigma-Aldrich or
Fisher Scientific and used without purification. The synthe-
sized sclareol derivatives were characterized by high resolution
mass spectrometry (HRMS) and 1H, 13C, and two-dimensional
nuclear magnetic resonance (NMR) spectroscopy (2D COSY,
HSQC). NMR spectra were recorded on a Bruker Avance 500
MHz NMR spectrometer, with CDCl3 used as solvent and
NMR spectra referenced to the CDCl3 residual peak. All the
reactions were checked by thin layer chromatography (TLC)
on precoated TLC aluminum sheets of silica gel. All the
synthesized derivatives were purified by column chromatog-
raphy on silica gel (35−70 mesh) using the eluents indicated.
Mass spectrometry was performed on an Orbitrap Fusion
Thermo Scientific with a Dionex UltiMate 3000 UHPLC
system. Microwave-assisted reactions were performed in a
CEM discover microwave synthesizer 2005 (908010, serial
number DU9667).
The general methods for synthesis and the characterization

(1H and 13C NMR, HRMS) of all the synthesized compounds
as well as 1H and 13C NMR spectra of key compounds (7, 8,
11, 12, and 14) can be found in the Supporting Information.
Compound Handling and Storage. (−)-Sclareol and all

the synthesized derivatives were solubilized in DMSO (Fisher
Scientific, Loughborough, UK) and stored at −20 °C at a stock
concentration of 16 mM.
Schistosoma mansoni Schistosomula Culture and

Compound Screening. S. mansoni (Puerto Rican Strain,
Naval Medical Research Institute, NMRI) schistosomula were
obtained by mechanical transformation51 of S. mansoni
cercariae collected after exposure of infected Biomphalaria
glabrata (NMRI) snails to 2 h of light at 26 °C. Newly
transformed schistosomula were deposited in 384-well black-
sided microtiter plates (PerkinElmer, MA, USA) and screened
by the high throughput screening platform Roboworm as
previously described18,27 with a final DMSO concentration of
0.625%. The effect of compounds on phenotype and motility
of schistosomula was analyzed after 72 h using the image

analysis model described by Paveley et al.52 Phenotype and
motility scores were used to calculate IC50 values derived from
dose response titrations (50, 25, 10, and 1 μM) by using
GraphPad Prism 7.02.

Schistosoma mansoni Juvenile Worm Culture and
Compound Screening. S. mansoni juvenile worms were
recovered from hepatic portal veins by perfusion53 3 weeks
after percutaneous exposure of TO mice (Harlan, UK) to
∼4000 S. mansoni cercariae and collected as previously
described.18 Briefly, collected worms were transferred into 50
mL falcon tubes and subjected to three series of centrifugation
(300g for 2 min) and washing (in phenol-red free DMEM)
steps with the final washed parasites pelleted by gravity.
Between 10 and 15 juvenile worms were cultured per well in a
96-well tissue culture plate (Fisher Scientific, Loughborough,
UK). Each well contained 200 μL of modified DMEM (Gibco,
Paisley, UK) supplemented with 10% v/v HEPES (Sigma-
Aldrich, Gillingham, UK), 10% v/v fetal calf serum (Gibco,
Paisley, UK), 0.7% v/v 200 mM L-glutamine (Gibco, Paisley,
UK), and 1% v/v antibiotic/antimycotic (Gibco, Paisley, UK).
After incubation for 2 h at 37 °C in a humidified atmosphere
containing 5% CO2, test compounds were added to obtain the
final concentrations of 50, 25, 12.5, 6.25, 3.13, 1.65, and 0.8
μM (0.3% DMSO final concentration). After 72 h, worms were
scored manually using microscopic methods previously
described.18 Briefly, a score of 0 equaled no detectable
movement, 1 included movement of the suckers and/or slight
body contraction, 2 represented slow movement of anterior
and posterior regions, 3 equated to sluggish movement of the
full body, and 4 represented normal movement. IC50 values
were determined using GraphPad Prism 7.02.

Schistosoma mansoni Adult Worm Culture and
Compound Screening. Mature adult parasites were
recovered from hepatic portal veins by perfusion53 7 weeks
after percutaneous exposure of TO mice (Harlan, UK) to 180
S. mansoni cercariae. Three adult worm pairs were cultured per
well in a 48-well tissue culture plate (Fisher Scientific,
Loughborough, UK). Each well included 1 mL of modified
DMEM (Gibco, Paisley, UK) media containing 10% v/v
Hepes (Sigma-Aldrich, Gillingham, UK), 10% v/v Foetal Calf
Serum (Gibco, Paisley, UK), 0.7% v/v 200 mM L-Glutamine
(Gibco, Paisley, UK), 1% v/v Antibiotic/antimycotic (Gibco,
Paisley, UK). After incubation for 2 h at 37 °C in a humidified
atmosphere containing 5% CO2, test compounds were added
to obtain the final concentrations of 50, 25, 12.5, 6.25, and 3.13
μM (0.3% DMSO final concentration). After 72 h, worms were
scored manually using microscopic methods described in the
literature54 and eggs collected and counted from each well.
IC50 values were determined using GraphPad Prism 7.02.

HepG2 Cell Culture and MTT Assay. HepG2 human
liver cancer cells were grown to ∼80% confluency in a
modified BME culture media (containing 10% v/v fetal bovine
serum, 1% v/v MEM nonessential amino acid solution, 1% v/v
200 mM L-glutamine, and 1% v/v antibiotic/antimycotic).
Confluent cells were subjected to cytotoxicity assays as
previously described.18,27 Briefly, 2.5 × 104 cells per well
were cultured in a black walled 96-well microtiter plate (Fisher
Scientific, Loughborough, UK) and incubated for 24 h at 37
°C in a humidified atmosphere with 5% CO2. Test compounds
were then titrated from 100 to 3.13 μM (1.25 final % DMSO),
and negative (DMSO; 1.25%) and positive (1% v/v Triton X-
100)55 controls were included. After 24 h of incubation, the
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MTT assay was performed as described.18,27 CC50 values were
determined using GraphPad Prism 7.02.
Scanning Electron Microscopy (SEM). Adult worms,

cultured for 72 h with sublethal concentrations of test
compounds and negative (DMSO) controls, were collected
and prepared for SEM analysis. Several steps from Collins et
al.56 were adapted as previously described.18 Briefly, collected
schistosomes were relaxed in 1 mL of anesthetic (1% ethyl 3-
aminobenzoate methane (Sigma-Aldrich, Gillingham, UK)
dissolved in DMEM) and then killed in 1 mL of 0.6 mM
MgCl2 (Fisher Scientific, Loughborough, UK). After washing
in PBS, worms were placed in SEM fixative (0.1 M sodium
cacodylate, 2.5% v/v glutaraldehyde (Agar Scientific, Stansted,
UK) in ultrapure water) and stored at 4 °C until ready for
SEM analysis. In preparation for SEM analysis, the stored
samples were exposed to a number of wash, staining, and
dehydration steps as described18 and finally mounted for
imaging. SEM analysis was conducted using a Hitachi S-4700
FESEM microscope (Ultra High Resolution, an accelerating
voltage of 5.0 kV with a working distance of 5.0 mm). Images
were captured at 2560 × 1920 resolution.
Metabolomics Sample Preparation and Metabolite

Extraction. The procedure previously described by Baptista et
al.32 was adapted to schistosome materials. Adult male worms
were collected and cultured in media as described in previous
paragraphs. In brief, 24-well plates were set up with 10 male
worms per well (one biological replicate) for a total of 18 wells
(6 replicates per 3 time points) per treatment (compound 12
and PZQ, at their respective IC50 values, 9.4 μM and 30 nM,
and control). At each time point (0, 12, 24 h), worms were
removed from culture, immersed in liquid nitrogen to quench
metabolism, and stored at −80 °C. In preparation for the
extraction, samples were thawed, centrifuged (10 °C, 2000
rpm), and washed with phosphate buffer saline. Worms were
disrupted by a mill bead homogenizer, and extraction was
performed in a chloroform/methanol/water 2:5:2 solution.
After a final centrifugation, 100 μL of solution was transferred
in mass vials for FIE-HRMS analysis.
Metabolomics Analysis. Extracted metabolites were

analyzed by flow infusion electrospray ionization high-
resolution mass spectrometry (FIE-HRMS) in the High
Resolution Metabolomics Laboratory (HRML), Aberystwyth
University. FIE-HRMS was performed by a Q-Exactive Plus
mass analyzer equipped with an UltiMate 3000 UHPLC
system, which includes a Thermo-Scientific binary pump,
column compartment (not used), and auto sampler.
Metabolite fingerprints were created in both positive and
negative polarity switching mode. Ion intensities were acquired
between m/z 55 and 1200 for 3.5 min in profiling mode at a
resolution setting of 280,000. Twenty μL of each extracts was
injected by an autosampler into a flow of 100 μL·min−1

methanol/water (70:30, v/v). Electrospray ionization (ESI)
source parameters were set in agreement with manufacturer’s
recommendations. An in-house data aligning routine in Matlab
(R2013b, The MathWorks) was used to join mass spectra
around the apex of the infusion maximum into a single mean
intensity matrix (runs × m/z) for each ionization mode. Data
from the matrix were log10-transformed and used for statistical
analysis performed by MetaboAnalyst 4.0.-Statistical analysis.33

Metabolites and pathway identification were performed by the
MetaboAnalyst 4.0.-MS peaks to pathway33 (tolerance = 3
ppm, model organism = S. mansoni; time point = 24 h, as this
had the highest number of significantly different features).

MetaboAnalyst identified pathways on the basis of the
mummichog algorithm, which predicts metabolome changes
directly from mass spectrometry data, without the a priori
identification of metabolites and avoiding the biased manual
assignment of spectral features to metabolites.34 Mummichog
looks for local enrichment after plotting all possible matches in
the metabolic network, providing accurate reproduction of true
activity, as the false matches will distribute randomly.34

Examples of key metabolites were analyzed for the significant
difference (t test) between control and treatment on Microsoft
Excel and by GraphPad Prism 7.02.

Ethics Statement. All procedures performed on mice
adhered to the United Kingdom Home Office Animals
(Scientific Procedures) Act of 1986 (project license PPL 40/
3700) as well as the European Union Animals Directive 2010/
63/EU and were approved by Aberystwyth University’s (AU)
Animal Welfare and Ethical Review Body (AWERB).
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