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Summary 

 

Background: Endocrine resistance is a common problem in estrogen receptor 

positive (ER+) breast cancer, particularly in the advanced setting. Beyond the 

anticipated effects of endocrine resistance, recent evidence points towards some 

ER+ cancers exhibiting a counterintuitive, adverse response to endocrine 

treatments, particularly in the setting of E-cadherin deficiency. Here the effects of 

adverse cell response to endocrine therapy is explored, including responsible 

cellular mechanisms. The ER co-receptor PELP-1, found to be of importance in 

mediating a pro-invasive response to endocrine treatments, was further explored 

in relation to its function in ER+, as compared to triple negative breast cancer 

(TNBC). 

Methods: The effects of endocrine treatments on the proliferative and 

invasive/migratory capacity of ER+ and TNBC cells, in the presence or absence of 

functional E-cadherin and/or PELP-1, were determined using cell counting and 

trans-well Boyden chamber-based assays respectively. For TNBC cells, studies 

were extended into 3D culture models. Mechanistic studies on endocrine-

mediated modulation of cell signalling were determined by Western blotting. 

Results: Tamoxifen and fulvestrant induced a pro-invasive/pro-migratory 

phenotype in ER+ MCF-7 cells that displayed a high basal expression of PELP-1. 

This effect was augmented in the setting of E-Cadherin suppression and regulated 

in a Src-dependent manner. In contrast, no adverse phenotype was observed with 

cells cultured in estrogen-deprived conditions. PELP-1 suppression reduced 

endocrine-induced invasion/migration in MCF-7 cells, whilst PELP-1 knockdown 

in TNBC cells inhibited endogenous invasion in 2D and 3D culture. 

Conclusion: ER-targeting anti-estrogens may be responsible for inducing an 

adverse cell phenotype in ER+ breast cancers that highly express PELP-1; this 

effect may be more apparent in tumours that are also E-cadherin deficient. Such 

tumours may benefit from treatment with aromatase inhibitors as opposed to ER-

targeting agents. PELP-1 may be an important target for future therapy, and act as 

a biomarker, predicting response to treatment in ER+ and TNBC. 
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1.0 Introduction 

 

1.1 Breast Cancer 

 

Breast cancer remains the most common form of cancer in females worldwide 

with an estimated 1.7 million new cases diagnosed globally in 2012 (1). The 

incidence of the disease varies across the world, with the highest rates reported 

across Northern Europe, North America and Oceania, and the lowest incidences 

reported in Asia and Africa (2). Within the UK there were 53,700 new cases 

diagnosed in 2013 alone, making it the most common form of cancer, accounting 

for 15% of all new cancer cases (3). Although breast cancer is predominantly a 

disease affecting females, 1% of all cases occur in male patients (3). 

 

A number of key risk factors for breast cancer have been identified, including 

overall age, age at menarche and menopause and family history (4). In addition 

lifestyle factors also influence the incidence of disease, including obesity, alcohol 

consumption, age at first pregnancy (4), and more notably use of the combined 

oral contraceptive pill (5) and hormone replacement therapy (6). These risk 

factors are all associated with an increased lifetime exposure to estrogen, known 

to be a common contributing factor in the development of breast cancer (4). 

 

Outside of estrogen exposure, genetic aspects also play an important role in the 

development of breast cancer, giving rise to up to 10% of all cases (7, 8). The most 

common of these cases are related to inheritance and expression of mutations 

within the BRCA1 and BRCA2 genes, which are tumour suppressor genes that play 

an integral role in response to cellular stress via activation on DNA repair 

processes, and are typically transmitted in an autosomal dominant fashion (7, 9). 

Inheritance of the mutated form of these genes is associated with a significant 

increase in risk of developing breast cancer, with the lifetime risk of breast cancer 

development in these individuals in the region of 45-80% (10). Outside of breast 

cancer mutations within the BRCA genes also correspond to an increased risk of 

ovarian, colonic and endometrial cancer among others (7). Tumour development 
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tends to occur at a younger age when compared to non-genetic breast cancers (8), 

with an increased tendency for breast tumours to be of basal-like or “triple 

negative” subtype (7) 

 

Breast cancer incidence in the UK has been increasing over the last 30 years, a 

result of several factors. These include the ageing population and declining birth 

rate seen amongst Western societies and lifestyle factors, such as rising rates in 

obesity and the tendency of a sedentary lifestyle (11, 12). In addition the 

development of breast cancer screening programs amongst the individual nations 

of the UK have increased breast cancer detection rates, which has also contributed 

to this trend (13). Despite this increasing incidence, survival has improved 

significantly over this same period with age standardised 5-year survival in 

England and Wales improving from 53% in 1971-1972 to 87% during 2010-2011 

(3). While this figure represents an improvement in the curative rate for early 

stage breast cancer, it also indicates an increasing proportion of patients living 

longer with controlled recurrent and metastatic disease. 

 

Breast cancer is increasingly seen as a heterogeneous disease and can be classified 

by histological and molecular subtype. Histologically, invasive ductal carcinoma 

(IDC) is the most prevalent subtype, comprising around 80% of all breast cancers 

(14), and is mainly defined by its inability to demonstrate sufficient morphological 

characteristics to be classified into the other defined histological subtypes (15). 

The most common of these is lobular carcinoma, which accounts for around 15% 

of cases, and is characterised by the composition of non-cohesive cells individually 

dispersed or arranged in a single-file linear pattern amongst a fibrous stroma (15). 

Breast cancer can be further subdivided histologically, based on the tumours 

expression of the ER, PR and HER2 receptors. This classification is mainly based 

on immunohistochemistry (IHC) techniques to identify expression, is independent 

of the macroscopic cellular features of the tumour, and is generally a more useful 

classification as it helps guide treatment and prognosis on the basis of predicted 

response to ER and HER2 targeted therapies. 

More recently reclassification of breast cancer on the basis of microarray gene 

expression profiling has taken place, which in addition to traditional ER, PR and 
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HER2 status, also takes into consideration the expression of several others 

elements, such as cytokeratins, basal markers and proliferative markers, including 

Ki-67(16). This reclassification allows tumours to be divided into six intrinsic 

subtypes (Table 1.1), with each subtype demonstrating a different prevalence, 

prognosis, response to treatment and recurrence risk (16, 17). 

 

Intrinsic 

Subtype 

ER PR HER2 Ki67 Outcome Prevalence 

Luminal A + + - - Good 23.7% 

Luminal B 

(HER2-) 

+ +/- - + Intermediate 38.8% 

Luminal B 

(HER2+) 

+ +/- + + Poor 14% 

HER2+ (Non-

Luminal) 

- _ + +/- Poor 11.2% 

Basal-Like - - - +/- Poor 12.3% 

Normal-Like + + - - Intermediate 7.8% 

 

Table 1.1 – Characteristics of the molecular subtypes of breast cancer. 

Adapted from (16, 17). Breast cancer may be divided on a molecular basis into 

6 different subtypes based on microarray profiling. Important factors that help 

define the molecular subtype included ER, PR, HER2 and Ki67 expression, among 

others. 

 

All luminal subtypes express the ER, demonstrate a more favourable prognosis 

compared to their ER- counterparts, and account for around 70% of all breast 

cancers (17). Within this luminal subtype, luminal B tumours tend to show a 

higher expression of proliferative genes and relatively poorer 5 and 10-year 

survival data when compared to the luminal A subtype (18). Normal-like tumours 

also tend to have several key similarities with luminal A tumours, including ER 

and PR expression, with the key differences found in alternative expression 
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patterns, with normal-like tumours tending to resemble normal breast profiling 

more closely than their luminal A counterparts (16). Meanwhile, tumours with 

HER2 overexpression are found in around 20% of all breast cancers, have a worse 

prognosis when compared with luminal A tumours, but respond well to HER2-

targeted therapies (19). Within this HER2 subtype, ER+ tumours are also 

associated with increased disease-free survival when compared with ER- tumours 

(20). Meanwhile, the basal-like subtype of breast cancer, typically demonstrating 

a lack of ER and HER2 overexpression, is associated with the worst prognosis of 

all subtypes (17). 

 

The characterisation of these breast cancer subtypes based on ER and HER2 

expression is partly for simplicity purposes, as routine clinical use of molecular 

profiling at present is costly and impractical. Indeed, the actual picture is 

increasingly complex and does not always follow the patterns of expression laid 

out above. For example, within ER+/HER2- tumours, occurrence rates of non-

luminal tumours by gene expression are found in up to 11% of cases (21). A 

variety of tumour types also exist within the HER2+ subgroup, which may predict 

the degree of response to HER2 targeted treatments (22). Meanwhile, although 

the terms basal-like and triple-negative breast cancer (TNBC) is commonly used 

interchangeably, to denote absence of ER, PR and HER2 expression, only 86% of 

basal-like tumours demonstrate this pattern of expression (21). Despite these 

variations, classification based on ER and HER2 status still offers significant 

advantages due to its ease of application and its usefulness in making management 

plans for patients based on tumour biology. 

 

Whilst surgery to excise breast tumours and associated axillary lymph nodes 

remains the initial treatment of choice for most early stage breast cancers, helping 

to achieve local control of disease, both local and systemic non-surgical treatments 

are playing and ever more important role in treatment. Advances in such 

treatment have been primarily based on a better understanding of breast cancer 

biology and its associated molecular subtypes, as outlined above. This has helped 

by promoting the development of more personalised care, which has allowed 

clinicians to better define the benefits of treatments, based on tumour sub-type, 



 17 

and tailor therapies appropriately. One such example is the treatment of ER+ 

tumours with hormone manipulation or endocrine therapy.  Another is the 

development of HER2 targeted therapies, such as Trastuzamab (Herceptin ®), for 

the treatment of HER2+ disease, which given together with standard 

chemotherapy has improved the 3-year survival of HER2+ cancers by up to 50% 

(23). While systemic therapies were traditionally given to breast cancer patients 

in the adjuvant setting, following the completion of surgery, more recently the use 

of neoadjuvant chemotherapy for locally advanced and traditionally poor 

prognostic tumours has become more mainstream. This has allowed tumour 

down-staging prior to surgery (24), and in some cases may bring about a complete 

tumour pathological response (pCR), whereby residual tumour is no longer 

detectable on histology following surgical excision. This type of treatment is 

particularly common amongst patients with HER2+ and TNBC, due to the higher 

rates of pCR seen amongst these tumour subtypes as compared to luminal cancer 

subtypes (21).  Indeed, pCR is seen in around 25-35% of TNBC patients treated 

with neoadjuvant anthracycline/taxane chemotherapy (25), while the more 

recent advent of combination Pertuzamab/Trastuzamab therapy in the 

neoadjuvant setting for HER2+ disease has demonstrated pCR rates of up to 66% 

(26). 

 

Further advances in personalised treatment through microarray-based 

technology has been made through the development of commercially available 

prognostic signatures, such as the 70-gene MammaPrint® microarray assay, the 

21-gene Oncotype DX® assay and the 50-gene Prosigna® PAM50 assay (27). 

These signatures are each composed of a different set of genes but all are used to 

determine genetic features of the tumour, including proliferation and invasion. 

These features are then interpreted by computer algorithm to determine a 

predicted patient prognosis to help determine the benefit of adjuvant 

chemotherapy. These signatures have shown the highest discriminatory power 

amongst ER+ tumours, to which their role is currently confined. Meanwhile, their 

use in ER- disease is relatively limited, mainly due to the inherently high 

expression of pro-proliferative genes in these subtypes (27).  
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The improved understanding of tumour biology, as highlighted above, has 

resulted in a dramatic change in the landscape of breast cancer treatment over 

recent decades. Despite this, ongoing development is still required to build on this 

current understanding and develop further personalised treatment regimes, 

including those patients with TNBC, for whom currently no proven personalised 

treatment options exist. This will ultimately provide breast cancer patients with 

the best opportunity for long term survival, whilst avoiding the unnecessary 

morbidity of treatment that is inappropriate for their disease. 
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1.2 Estrogen and the Estrogen Receptor (ER) 

 

1.2.1  Estrogen 

 

While estrogens influence several physiological processes, such as reproduction, 

cardiovascular health, bone integrity, cognition, and behaviour, they are also 

implicated in the development and progression of a variety of different diseases 

(e.g. cancer, osteoporosis, neurodegenerative diseases, insulin resistance, 

endometriosis etc.) (28). 

 

In premenopausal females circulating estrogen is predominantly from secretion 

of 17β-estradiol (E2) by the ovaries (29), while in postmenopausal females the 

predominant estrogen is estrone (E1), produced from aromatase-mediated 

conversion of androgens via the adrenal glands, fat, muscle and breast tissue 

(Figure 1.1) (30). Estrone may then also be converted to estriol (E3) via a 16α-

hydroxyoestrone intermediate (31). 

 

Figure 1.1 –Estrogen synthesis/conversion in post-menopausal females, 

including the function of aromatase. Adapted from (32). Estrone (E1) is 

produced by the peripheral conversion of androgens by aromatase. 

 

The association between breast cancer and elevated levels of estrogen has been 

demonstrated in many studies over the last 40 years (33). This includes exposure 

from endogenous levels of estrogen (34), estrogen produced from endocrine 

associated conditions, such as obesity (35), and use of estrogens as part of 
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hormone replacement therapy in post-menopausal women (36). Such evidence 

has supported the hypothesis that increasing breast cancer risk is correlated with 

cumulative lifetime estrogen exposure. As such, research into estrogens 

mechanism of action has resulted in the development of endocrine therapies that 

have improved breast cancer survival significantly during this period (37, 38).  

 

Studies in rodents have demonstrated that estrogen has carcinogenic properties 

in a variety of tissues in addition to the breast, including the kidneys, liver and 

uterus (33). While in some cases this may be related to direct DNA damage from 

some its oxidative metabolites (33), the main focus of interest has been its ability 

as a steroid hormone to permeate the cell and nuclear membrane and interact 

with the appropriately named estrogen receptor (ER). 

 

1.2.2 The Estrogen Receptor (ER) 

 

The ER and its family are a large group of nuclear receptors primarily responsible 

for mediating signalling related to estrogen stimulation. The ER is found in 

approximately 70% of all breast cancers, which are thus referred to as ER positive 

(ER+) cancers (39). The remainder of breast cancers lack the ER receptor and are 

therefore defined as ER negative (ER-). The expression of ER is closely associated 

with the biology of breast cancer and thus intimately linked with treatment and 

prognosis. Since the advent of endocrine therapies that target the ER, it’s 

expression has generally been seen as a good prognostic factor with favourable 5-

year survival data of between 80-90%, depending on corresponding HER2 

expression (40). 

 

There are two known forms of the ER, ERα and ERβ. These are coded for by 

separate genes (ESR1 and ESR2), found at different loci on separate chromosomes 

(locus 6q25.1 and locus 14q23-24.1, respectively) (41). Despite this, ERα and ERβ 

have some similar homologies, particularly with regards to the DNA-binding 

domain (42). Both receptors may also be activated by 17β-estradiol in a dose 

dependent manner (43), although ligand binding homology is less similar at 

around 55% (44). In addition ERα and ERβ can be co-expressed in cells and may 
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interact and dimerize with each other (45). Despite these similarities however, 

each receptor has differing and varying physiological functions, predominantly as 

a result of selective ligand binding (46). As such, ERα appears to be the 

predominant protein associated with breast cancer cell signalling (47, 48) and will 

therefore be referred to as the ER in the remainder of this work.  

 

The ER is a 66kDa protein, consisting of 6 separate but interacting domains, and 

is a member of the nuclear receptor (NR) superfamily (Figure 1.2).  The A/B 

domain of the protein is located at the N terminus and is primarily involved with 

protein-protein interactions and transcriptional activation of target genes via an 

intrinsic activation function (AF-1) (49). The C region constitutes the DNA binding 

domains (DBD), which is the most highly conserved region of the receptor. These 

DBD’s are folded into a globular shape containing two zinc finger motifs, which 

are responsible for the binding of estrogen response elements (50). The D domain 

or hinge region is the most variable part of the ER and may be responsible for 

localisation of the ER to the nucleus (41). Finally, the E/F region of the receptor 

contains the ligand binding domain, or AF-2 region, located at the C terminus of 

the protein. This AF-2 region may undergo significant conformational changes in 

the presence or absence of different ligands, and therefore determines the 

subsequent binding of receptor co-activators or co-repressors. The AF-1 and AF-

2 domains therefore control transcriptional activity of the ER (51). 

 

 

 

 

 

 

 

DBD: DNA binding domain 
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LBD: Ligand binding domain 

AF-1: Ligand independent transactivation domain 

AF-2: Ligand dependent transactivation domain 

Figure 1.2 – Schematic representation of the ER. Adapted from (52). The ER 

can be divided into several domains, based on function. These include the AF-1 

and AF-2 domains, which control transcriptional activity, and the highly-

conserved DNA binding domain (DBD). 

 

The ER mediates cellular signalling through two distinct mechanisms, often 

referred to as genomic and non-genomic signalling. In the context of genomic 

signalling, estrogens bind to the ER located within the cell nucleus, resulting in a 

conformational change in the receptor, which in turn leads to a dissociation from 

chaperones, receptor dimerization and subsequent activation for transcription 

(53). This in turn may be a result of either a classical/direct or tethered pathway. 

In the classical pathway ligand activation leads directly to DNA, via estrogen 

response elements (ERE’s), allowing modulation of gene regulation to occur. 

Meanwhile in the tethered pathway, ligand binding results in further protein-

protein interactions with other transcription factors, therefore affecting gene 

regulation indirectly (54). Genomic actions of the ER that are independent of 

ERE’s include genes activated by the interaction of the ER with Fos and Jun 

proteins at its AF-1 binding site (55). Such genes include those for IGF-1, which is 

intricately involved in events that lead to pro-proliferative and anti-apoptotic 

effects (56), and cyclin D1, known for its role in cell cycle regulation (57). 

Stimulating protein-1 (SP-1) is another important mediator of ER-DNA binding, 

allowing the regulation of transcription for genes encoding the LDL-receptor, 

endothelial nitric oxide synthase (eNOS) and retinoic acid receptor-1 (58). The ER 

also interacts with NFkB, preventing NFkB from stimulating the expression of the 

cytokine IL-6, which has several pro and anti-oncogenic effects (59). 

 

In contrast, non-genomic signalling of the ER occurs where ligand binding leads to 

activation of signalling cascades carried out by secondary messengers that are 

independent of gene transcription and regulation. Interestingly, as the ER itself 
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has no intrinsic kinase activity, it is reliant on the presence of co-receptors, which 

facilitate non-genomic signalling activity. Such proteins include Src kinase, Shc, 

PELP-1, the p85 subunit of PI3K and receptor tyrosine kinases, such as EGFR and 

IGF-1R (58, 60). As a result, the ER may form large complexes by interacting with 

these proteins, allowing the downstream activation of several signalling 

pathways, including the PLC/PKC, Ras/Raf/MAPK and PI3K/AKT pathways (58). 

These pathways govern several key cellular responses, such as proliferation, 

migration and invasion, with the resultant cellular events occurring more rapidly 

when compared to those related to the genomic activity of the ER (61). As such, 

both the genomic and non-genomic consequences of ER signalling are crucial to 

the development and subsequent progression of ER+ breast cancer. 
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Figure 1.3 – Schematic representation of ER genomic and non-genomic 

signalling in breast cancer. Adapted from (62). In genomic signalling, the ER 

has a direct effect of transcriptional activity via either a direct or tethered 

pathway. In non-genomic signalling, the ER activates several signalling cascades 

within the cell that are independent of gene regulation and transcriptional. 
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1.3 Human Epidermal Growth Factor Receptor 2 (HER2) 

Human epidermal growth factor 2 (HER2) is one of four members of the HER 

family of tyrosine kinases and is overexpressed in approximately 20% of all breast 

cancers (63), having originally been discovered in relation to its role in breast 

cancer over 30 years ago (64). 

HER2 itself is a transmembrane glycoprotein, composed of 3 distinct domains; an 

N-terminus extracellular domain, a transmembrane domain and an intracellular 

tyrosine kinase domain. The N-terminus domain is the largest of these three 

sections of the HER2 complex and contains cysteine-rich subdomains, which are 

responsible for homodimerization and heterodimerization with other receptors 

(65). The N-terminus of the receptor may either be found in a closed (inactive), or 

more commonly open (active) configuration, and may switch between the two 

states upon ligand binding of other HER family members (63). The 

transmembrane domain is a single α-helix containing two dimerization motifs, 

thought to play a role in generating the necessary dimerization forces during 

receptor activation (66). The intracellular domain is composed of a 

juxtamembrane linker, a tyrosine kinase domains, which contains several 

important loops for the receptors enzyme active site, and carboxyl-terminal tail 

(63). 

Following dimerization, HER2 may signal through several intracellular pathways, 

including PI3K, MAPK and Src, with the pattern of dimerization with other HER 

family members thought to be responsible for the production of different 

intracellular signalling cascades (67). HER2 signalling may disrupt E-cadherin 

function via phosphorylation of β-catenin, leading to a weakening in E-cadherin’s 

tumour suppressor effects (63). In addition, estrogenic stimulation may activate 

HER2 signalling via cross talk with the non-genomic functions of the ER (68). 

Another function of HER2 is its ability to translocate to the nucleus to act as a 

transcription factor for several genes, including cyclin D1 and p53 (69). As such 

HER2 interacts with cellular controls governing proliferation, survival and 

invasion (70). 
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Figure 1.4 – Schematic representation of the HER2 tyrosine kinase receptor 

showing its distinct functional domain. Adapted from (71). The HER2 

receptor may be divided into several domains based on function. These include 

the extracellular domain containing the receptors binding site, alongside the 

intracellular tyrosine kinase activity site, responsible for the receptors 

downstream activity. 

 

HER2 expression appears to be inversely correlated with ER status, and usually 

confers a disadvantage in terms of survival outcome and pathological features 

(63).  Despite this, drugs have been developed to target HER2 that has resulted in 

an improvement in patient survival. The best recognised of these is trastuzamab 

(Herceptin ®), which is a humanized monoclonal antibody that recognizes the 

external domain of HER2, currently licensed for use in the adjuvant, neoadjuvant 

and metastatic setting in the UK. Although it’s exact mechanism of action remains 

unclear, it appears to inhibit downstream signalling from HER2 despite not 

blocking homodimerization itself (72). A newer drug that targets HER2 signalling 

is Pertuzamab, which is a HER dimerization inhibitor that prevents HER2 

interaction with other HER family members. Pertuzamab is currently licensed in 

the UK for use in the neoadjuvant setting only, in combination with Trastuzamab, 

and to date has shown impressive results in improving the downstaging, of 

disease and increasing the rate of complete tumour pathological response in 

HER2+ tumours (26). In addition to targeted monoclonal antibody therapy alone, 

newer antibody-drug conjugates (ADC’s) are becoming available in the setting of 

HER2+ breast cancer, including T-DM1 (ado-trastuzamab emtansine; T-MCC-DM-

1; Kadcyla®). This drug links the HER2 targeting capability of trastuzamab with a 

cytotoxic moiety, in this case DM-1, and therefore has a dual action whereby 
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trastuzamab initially triggers receptor mediated endocytosis, followed by 

intracellular lysis of the complex by lysosomal degradation. This process releases 

DM-1 with its linker within the cell cytoplasm then allows the drug to act by 

inhibiting microtubule formation, which in turn initiates cell death (73). While 

Kadcyla® has been approved in the UK for use in HER2+ metastatic disease, trials 

are currently underway to assess its role in both the adjuvant and neoadjuvant 

setting (74) 
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1.4 Endocrine Therapy 

Endocrine therapy is the name given to those treatments that target estrogen 

signalling and is a standard mode of treatment for patients with ER+ breast cancer 

in both the adjuvant and metastatic setting. 

Treatments work by either directly antagonizing the ER itself or by inducing 

estrogen deprivation to reduce circulating levels of the hormone to reduce 

interaction with the ER. The drugs that form the mainstay of endocrine therapy in 

current clinical practice are outlined below. 

1.4.1 Tamoxifen 

Tamoxifen is a type of non-steroidal anti-estrogen, but is better described as a 

selective estrogen receptor modulator (SERM), because of its agonist and 

antagonistic properties in relation to the ER. Although first marketed in the UK as 

a treatment for breast cancer in 1973 (75), tamoxifen was initially developed 

several years earlier as a potential antifertility agent (76), while other early 

applications included both induction of ovulation (77) and menometrorrhagia 

(78). 

Tamoxifen has a complex mechanism of action. While the drug competitively 

binds to the ligand binding domain of the ER in place of 17β-estradiol, its action is 

that of a partial agonist, in addition to its antagonistic properties (Figure 1.5). This 

paradox is complex but may be explained by the genomic signalling actions of the 

AF-1 and AF-2 domains of the ER (Figure 1.2). This relies on the fact that, within 

DNA, some promoter regions require the combined action of both the AF-1 and 

AF-2 domain for wild-type transcriptional activity, whereas for other promoter 

regions, the AF-1 and AF-2 domains may function independently (79). As 

Tamoxifen has been found to only activate the AF-1 region of the ER (79), 

tamoxifen may act as an agonist on those regions which only require AF-1 

activation for transcription, as opposed to acting as an antagonist in regions that 

require activation of both AF-1 and AF-2. This theory alone however is unlikely to 

give a full explanation of tamoxifen’s mechanism of action. Other studies have 

demonstrated for example, that the transcriptional activity produced by cell 
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stimulation with tamoxifen is equal to that produced by 17β-estradiol. Despite this 

the action of tamoxifen on the cell differs to that of estrogen and this may be due 

to different co-activators/suppressors that are recruited to the ER when each 

ligand binds (80).  

 

Figure 1.5 – Diagram depicting the chemical configuration of tamoxifen. 

Adapted from (81). Tamoxifen is similar in chemical structure to the steroid 

hormone estrogen, allowing it to act as a competitor at the ligand binding 

domain of the ER. 

Since its discovery, tamoxifen has remained a mainstay of treatment for both 

early-stage and metastatic breast cancer. In the adjuvant setting tamoxifen 

continues to be the first line endocrine agent for pre-menopausal women with 

early-stage disease (82). Its use is reserved as a second agent, after failed or poorly 

tolerated treatment with aromatase inhibitors, in post-menopausal patients, due 

to the increased risks of venous thromboembolism and endometrial carcinoma in 

this age group (83). The optimum duration for therapy with tamoxifen has evolved 

over recent years with several trials demonstrating a survival benefit when 

continuing tamoxifen beyond the standard 5 years of therapy (84-87). As such 

patients with relatively poor prognosis ER+ disease, are often offered extended 

endocrine therapy for up to 10 years (Figure 1.6). 
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Figure 1.6 – Survival and recurrence data from the ATLAS trial. Data and 

graphs have been adapted from (87). Adjuvant tamoxifen therapy extended 

for 10 years (as compared to 5 years) results in improved (A) recurrence and (B) 

breast cancer survival.  
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In advanced breast cancer tamoxifen has been used as an effective treatment since 

1969, with initial reports showing a remission rate of 22% when used as a 

monotherapy, despite no routine testing for ER status amongst patients (88). 

Later studies have also demonstrated either stability of disease or disease 

response in up to 53% in ER positive patients (89). This rate is of remission is 

often improved when combined with palliative chemotherapy. Despite this, even 

when treatment is successful for several years, disease often relapses due to the 

development of hormone resistance. 

1.4.2 Fulvestrant (Faslodex ®) 

Fulvestrant was originally developed as a pure ER antagonist in an attempt to 

overcome some of the drawbacks of tamoxifen, including the partial agonistic 

effects, which leads to endometrial stimulation and tumour growth, and in 

situations where tumours had become tamoxifen resistant (90). The structure of 

Fulvestrant is similar to that of estradiol, with fulvestrant having an additional 

alkylsulphinyl side chain, which is crucial for the antagonistic effects of the drug 

against the ER. Fulvestrant has a binding affinity for the ER 100 times greater than 

that of tamoxifen and has no agonistic effects in estrogen target tissues, including 

the uterus (90).  

The competitive binding of Fulvestrant results in the disabling of the AF-1 and AF-

2 regions of the ER, resulting in complete transcriptional inactivity. In addition, 

these changes also result in impaired dimerization, disrupted nuclear localization, 

increased turnover (91-93) and ultimately degradation of the ER (94). 

While pre-clinical studies have demonstrated the relative effectiveness of 

fulvestrant over tamoxifen in inhibiting in-vitro growth (95, 96), results from 

clinical data has been more disappointing, in part due to dosing discrepancies. 

Current guidelines and licensing  grant the use of fulvestrant as only a third-line 

agent in ER+ tumours in locally advanced or metastatic disease (97),  given that 

several trials have demonstrated promising results in patients that have failed 

treatment with both tamoxifen and aromatase inhibitors previously (98-100). 
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While initial studies demonstrated a dose response effect in the range of 50-

250mg of intramuscular fulvestrant (101), more recently a 500mg dose of the 

drug has been substantiated, based on results reported in the CONFIRM trial 

(102), which demonstrated improved overall survival with the higher dose. In 

comparison with other endocrine therapies in advanced breast cancer, the FIRST 

trial (103) demonstrated 500mg fulvestrant to be at least as effective as 1mg 

anastrozole, with the fulvestrant arm demonstrating a slightly longer time to 

progression than with the AI. Fulvestrant was also shown to be equally effective 

as tamoxifen in ER+ cancer (104), in terms of time to progression and overall 

response rate, although its intramuscular method of administration makes it a less 

practical option. The drug has also been shown to work well in combination with 

other agents, particularly in the metastatic setting, given the higher incidence of 

ER mutations, leading to hormone resistance to tamoxifen and aromatase 

inhibition (105). This includes combination treatment with the CDK4/6 inhibitors 

palbociclib® and ribociclib®, which have both impressively shown to almost 

double progression free survival when compared with fulvestrant therapy alone 

in phase III trials (106, 107). 

In summary, fulvestrant is a well-tolerated third-line agent for ER+ breast cancer, 

whose role is mainly evident in metastatic disease. At present the role of the drug 

is limited, partly a result of the inconvenient monthly intramuscular dosing 

regimens, although it remains an important option in selected patients who have 

failed or are unsuitable for treatment with tamoxifen or aromatase inhibitors. 

1.4.3 Aromatase Inhibitors (AI) 

While the development of drugs that interact with the ER itself have played an 

important role in the treatment of ER+ breast cancer, the pharmacological 

targeting of estrogen synthesis itself has been of equal significance. This has been 

particularly relevant to the treatment of postmenopausal patients. 

Following the menopause, approximately 90% of estrogens are produced by 

estradiol and oestrone biosynthesis from androgen compounds, by the 

cytochrome P450 enzyme aromatase (108, 109). Whilst this enzyme can be found 

at several sites, including the ovaries in pre-menopausal women, the placenta 
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during pregnancy (110), and within breast tissue itself (111, 112), its location 

within peripheral adipose tissue is of most crucial importance within the context 

of post-menopausal breast cancer. 

Drug development targeting the inhibition of aromatase has been ongoing since 

the 1970’s, with the first AI demonstrating anti-tumour effects developed for 

therapeutic use being aminoglutethimide (109). Since then the development of 

second-generation, and subsequently third-generation AI’s, such as letrozole, 

anastrozole and examestane have demonstrated increased potency of action and 

improved tolerability of treatment (113). These drugs all contain imidazole or 

triazole rings and can therefore act as non-steroidal reversible inhibitors to 

aromatase (Figure 1.7). 

 

Figure 1.7 – Diagram demonstrating the chemical structures of letrozole, 

anastrazole and examestane. Adapted from (81). Aromatase inhibitors 

exhibit either a steroidal (examestane) or non-steroidal (anastrazole/letrozole) 

type structure. 
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In the UK, AI’s are licensed for use as first line therapy in postmenopausal patients 

with ER+ breast cancer, in both the adjuvant and metastatic setting (97). Indeed, 

large trials have demonstrated better efficacy of AI’s over tamoxifen in this age 

group, with AI’s reducing breast cancer recurrence rates by about 30%, 

proportionally, over 5 years when given as adjuvant treatment (114).  This 

advantage of AI’s over tamoxifen also holds true in the metastatic setting, with 

improved clinical response rates (115).   

One major issue with the long-term use of AI’s are potential side effects and 

patient tolerability. Side effects include symptoms of arthralgia and hot flushes, 

while long term use may lead to a reduction in bone density and increased risk of 

osteoporosis (116). In addition, the development of resistance to AI’s after 

sustained use also remains of significant clinical importance, as will be discussed 

below.  
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1.5 Endocrine Resistance  

While endocrine therapy has played an important role in the management of ER+ 

breast cancer patients, clinical response, whether in the adjuvant or metastatic 

setting, is often finite due to the development of hormone resistance. While de-

novo resistance is also of clinical relevance, with up to 20% of ER+ tumours 

proving refractory to first line treatment (117), it is usually acquired resistance 

after previous successful treatment with endocrine agents that is responsible for 

disease relapse or progression in most cases. In such scenarios, while second or 

third-line agents may be trialled, it often that the clinical benefit rate declines with 

each new agent given, from around 70% for first line therapies to approximately 

30% when second-line agents are used (118, 119).  

There are several known mechanisms as to why resistance to endocrine therapies 

may arise, including mutation in the ER, ER cross-talk and expression of cancer 

cell pathways with control independent of the ER (Table 1.2). 

 

Cellular metabolic response ER-related response 

Decreased drug uptake Loss or mutation of ER 

Intra-cellular drug sequestration 
Aberrant post-translational 

modification 

Metabolism of tamoxifen to 

estrogenic compounds 
Agonist action of tamoxifen 

Alteration of transcription 

factors or ER co-regulators 

Alteration of the estrogen 

response element 

Modification of signalling 

pathways  
Epigenetic modification 

Autonomous growth factor 

production 
ER cross-talk  

Table 2.1 – Mechanisms of Endocrine Resistance in ER+ breast cancer. 

Adapted from (120). Endocrine resistance may be related to changes in the 

metabolic response to the drug, or due to inherent changes within the ER itself. 
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While loss ER expression itself is a relatively rare finding among hormone 

resistant cancers, accounting for only 10% of cases (121, 122), alternative 

mutations of the ESR1 gene, that merely effect the functioning of the ER, are more 

common. Indeed, mutations in ESR1 are relatively rare in the treatment naïve 

setting (123), but become more frequent, in up to 20% of metastatic and pre-

treated ER+ cancer (124).  

Endocrine resistance is often associated with overexpression/over-amplification 

of growth factor receptors, including HER2, HER3 and EGFR. These growth factors 

may become over-expressed through cross-talk mechanisms with the ER and tend 

to lead to the activation of several pathways in a Src-dependent manner, including 

the PI3K/AKT/mTOR and RAF/MEK/ERK pathways (125). As a result, PI3K 

hyper-activation may promote estrogen-independent ER transcriptional activity 

(126), as well as downregulating PR expression making the cell less responsive to 

tamoxifen (127). Meanwhile, ERK activation may phosphorylate the ER and 

activate various ER co-receptors to stimulate ER function despite anti-endocrine 

treatment (127). Outside of these mechanisms cell cycle checkpoint alterations 

mean cell cycle arrest is overcome by an increase in cyclin D1 and cyclin-

dependent kinases, features typically associated with endocrine resistance (128). 

As outlined, endocrine resistance is a significant problem in the long-term 

treatment of patients with ER+ breast cancer. Despite this, multiple new treatment 

strategies that use combination therapy are showing some signs of success in 

treating endocrine resistant disease (125). Such strategies include combining 

endocrine therapy with HER2-targeted therapy for those with HER2+ disease 

(129), or with an mTOR inhibitor, given that the PI3K/AKT/mTOR pathway has 

been shown as one of the mechanisms that confers endocrine resistance (127). In 

addition, given the prominent role of Src kinase expression in the context of 

endocrine resistance, combining endocrine therapy with a pharmacological Src 

inhibitor may also be a viable option, despite mixed results from clinical trials to 

date (130). 

 

1.6 Adverse response to endocrine therapy 
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Endocrine resistance typically leads to clinical relapse and/or disease 

progression. Importantly, in-vitro evidence reveals that acquisition of resistance 

is also accompanied by the development of aggressive cellular features that can 

likely favour tumour progression (131, 132). Continual exposure to endocrine 

agents may therefore promote adaptive mechanisms that sustain cellular growth 

and promote cellular migratory/invasive responses. Indeed recent data has 

demonstrated that tamoxifen actually promotes cellular invasion in hormone 

responsive, MCF-7 and T47D breast cancer cells that are deficient in E-cadherin 

(133, 134). In addition, this invasive phenotype appeared to be related to an 

increase in expression of Src kinase (133, 134). Intriguingly, others have also 

shown that tamoxifen itself may promote cellular invasion in ER+, MCF-7 cells 

(135, 136), which may be linked to the association of tamoxifen treatment with 

FAK-mediated cytoskeletal remodeling (137) and matrix metalloproteinase 

expression (138). Moreover, tamoxifen has also previously been reported to 

promote metastases development in tumors with a variant form of the ER (139), 

whilst further evidence has suggested that estrogen may play a protective role in 

terms of the invasive and migratory capacity of breast cancer cells (140). Whilst 

to date there is no readily available data depicting how these findings may 

translate into clinical practice, under-recognition of adverse responses to 

endocrine therapies may be partly responsible. Indeed, it may be that some 

patients with ER+ cancer who experience early relapse/disease progression 

whilst taking endocrine therapy are wrongly attributed as having developed 

endocrine resistance or inherently aggressive underlying disease. As such, further 

work to expand knowledge in this area would seem appropriate to help define the 

size of this problem, understand the underlying mechanisms that may be involved 

in its occurrence, and helping to guide management strategies to overcome this 

issue. 
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1.7 E-cadherin 

E-cadherin is one of a family of membrane-associated glycoproteins that mediate 

calcium-dependant cell-cell interactions (141). First described by Takeichi in 

1977 in Chinese hamster V79 cells (142), E-cadherin has been found to be equally 

important in both normal physiological and many pathological states. By forming 

an important part of adherens junctions between cells, E-cadherin helps to 

organize and tether microfilaments to maintain cell adhesive properties and 

integrate both inter and intracellular signalling (143). In addition to its necessity 

for cells to form solid tissues, E-cadherin is also functionally important in the 

maintenance of cell polarity and hence is crucial in the development of the 

polarized epithelial cell type seen in many tissues within the human body (144, 

145). 

E-cadherin is a 120Kd single-pass transmembrane glycoprotein, containing an 

extracellular region extending from the cell surface that binds to cadherins 

present on adjacent cells (Figure 1.8). Meanwhile, its intracellular domain 

contains binding sites for interactions with members of the catenin family, and 

other regulatory proteins that both directly and indirectly connect E-cadherin 

with the actin cytoskeleton (143). The association between E-cadherin and the 

catenin family is important in many cell regulatory mechanisms, including 

endocytosis, cell survival and growth. As such, any alterations in these binding 

molecules can affect cell-cell interactions, resulting in increased tumour 

aggressiveness and cell invasion (146). 
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Figure 1.8 – Schematic representation of E-cadherin and its role in 

adherens junctions. Adapted from (147). E-cadherin associates with its 

counterpart on adjacent cell membranes, while being linked to the actin 

cytoskeleton, through its association with catenins. 

One member of the catenin family of significant importance is p120 catenin, which 

stabilizes cadherin expression, while it’s disassociation results in the endocytic 

internalisation of the cadherin molecule (146). Loss of p120 has also been shown 

to lead to increase tumour aggressiveness and is associated with high tumour 

grade, increased mitotic rate and the absence of ER expression in breast cancer 

(148). Meanwhile, -catenin helps to strengthen the bond between adjacent E-

cadherin molecules and is also found to be downregulated in cancer, with its loss 

associated with the reduced mechanical stability of adherens junctions, which 

facilitates tumour progression and metastases (149). The other prominent 

member of the catenin family associated with E-cadherin is -catenin, whose 

expression within the cell may also have a role in tumour behaviour, and can vary 

depending on cancer subtype, with a more prominent nuclear as opposed to 

membranous localization noted amongst lobular tumours (150, 151). In addition, 

it is the nuclear translocation of -catenin seen following E-cadherin loss in the 

process of epithelial-mesenchymal transition (EMT), that may result in the 

enhanced cell proliferation and oncogenic expression associated with this state 

(152, 153).  

While EMT is a normal mechanism in many physiological events, such as 

embryogenesis and wound healing, it is a vital process the development of cancer 

metastases. During EMT, polarized epithelial cells lose their cell-cell adhesions, 
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along with their attachment to a basement membrane, adopting a mesenchymal 

phenotype, where they undergo invasion, intravasation and ultimately 

dissemination. Once located at a distant site, these cells reverse these cellular 

changes and can revert to their original epithelial subtype. During this transition, 

several key epithelial cell markers are suppressed, while mesenchymal markers 

are expressed. As a result, E-cadherin is downregulated during this process, while 

the mesenchymal marker N-cadherin is expressed, in a process known as the 

Cadherin switch (154-156).  

Downregulation of E-cadherin expression is more frequently associated with 

basal-like, as opposed to luminal breast cancer subtypes (146), and is generally 

associated with a poorer prognosis, with shorter overall and disease free survival 

(157). This downregulation is associated with surface E-cadherin loss, changes 

within the cytoskeleton and subsequent changes in gene expression. These 

changes may then confer the dissociation and dissemination of epithelial cells and 

dysregulation of the cell cycle, promoting cell survival, and angiogenesis (152, 

158-160). 

As one might therefore expect, E-cadherin is linked to several signalling pathways 

that regulate cell behaviour. These include interaction with several transcription 

factors such as Notch1, members of the Wnt family, and TGF-, which plays a 

central role in the control of EMT (161). In addition, the ErbB/EGF and EGFR 

pathways also play a role in downregulation of CDH1 gene expression, resulting 

in increased cell invasion and motility. Other molecules, such as focal adhesion 

kinase (FAK), -catenin, Ras, Raf, mitogen activated protein kinase (MAPK) and 

PI3K/Akt also play a role in this process by up-regulating transcription 

suppressors such as Snail, Twist and Zeb, ultimately downregulating CDH1 

expression as part of EMT (162, 163). 

In summary, E-cadherin, and its associated downregulation, is a poor prognostic 

marker in breast cancer, and is an important component in the multi-step process 

in metastasis development. This appears to be related to both physical 

disassociation of cells through lack of adherens junctions, and through 

expressional and mechanistic changes within the cell itself. Despite this, its role in 
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the context of endocrine therapy and potential adverse cell response to such 

treatment is currently poorly defined, partly due to the inherent difficulty in 

targeting the functional absence of E-cadherin in a clinical context. 
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1.8 Src kinase  

Src is a 60 kDa non-receptor cytoplasmic tyrosine kinase, usually activated by 

upstream stimulation of plasma membrane receptors (164).  As the first 

discovered proto-oncogene (165), Src is the most widely studied member of a 

larger family Src kinases, which include Lyn, Fyn, Lck, Hck, Fgr, Blk, Yrk, and Yes 

(166, 167). 

The protein is composed of several recognised domains (Figure 1.9), including a 

N-terminal region, involved in localization to the inner surface of the cell 

membrane, a unique domain specific to each member of the Src family of kinases, 

and a SH2 domain, which binds phosphorylated tyrosine residues of other 

proteins, or with other regions of the Src protein itself. In addition, a linker domain 

provides binding sites for intramolecular binding with the SH3 domain, while the 

catalytic domain contains the “activation loop”, which controls substrate 

accessibility and harbours the kinase activity for enhanced phosphorylation of 

downstream molecules (166, 168). 

 

Figure 1.9 – Schematic representation of the structure of Src kinase. 

Adapted from (169).  Src may be divided into distinct domains based on 

function, including the SH2 domain, which allows the proteins to interact with 

the ER. 

The role of Src in breast cancer has become increasingly well-established over 

time. Elevated levels of Src activation has been demonstrated within breast cancer 

cells compared with normal breast tissue (170, 171).  Src expression is also noted 

to be higher in the presence of endocrine resistance in ER+ tumours and is 

associated with a poorer prognosis (172). As such, Src has been implicated in 

several critical cellular processes for cancer cell survival and dissemination, 

including proliferation, angiogenesis, motility and invasion (170, 171).  
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Src plays an important role in signalling cross-talk between several growth 

promoting pathways, including those mediated by the ER, EGFR and HER2 (164). 

As such, Src may become activated by steroid hormones, such as estrogen (173), 

indirectly through this method or even by direct activation by the steroid 

hormone itself (174). These mechanisms allow Src to act as a mediator for the 

many downstream effects of EGFR and ER, whereby phosphorylation of such 

RTK’s allows for the docking of Src. This initiates a complex set of cell-signalling 

pathways (Figure 1.10) that result in downstream pro-proliferative and pro-

invasive effects, mediated through signalling by MAPK and AKT among others 

(175). 

 

Figure 1.10 – Diagram demonstrating the downstream signalling cascades 

of Src kinase. Adapted from (164). Src kinase activity has many 

downstream effects via its interaction with cellular several signalling 

cascades.  

Src has also been implicated in the breast cancer metastasis through its role in 

processes such as angiogenesis, focal adhesion and invasion, in conjunction with 
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EMT. In terms of angiogenesis, hypoxia has been found to activate Vascular 

endothelial growth factor (VEGF) through a Src dependent mechanism (176, 177). 

While breast cancer cell lines have shown an increase in Src activity compared 

with normal breast tissue (178), conversely pharmacological Src inhibition results 

in decreased cell motility and a less invasive cellular phenotype (179). 

Suppression of Src also results in a reduction of cell migration and attachment in 

MCF-7 cells through a FAK dependent mechanism (180), whilst also preventing 

cell rounding and detachment via its interaction with integrin (181). 

Given the role of Src in breast cancer proliferation, invasion, angiogenesis and 

metastases, there has been growing interest in the development of suitable 

pharmacological inhibitors that may slow disease progression and be of use 

within the clinical environment. Indeed, preliminary pre-clinical studies have 

suggested Src inhibition may be a suitable therapeutic option, particularly in basal 

and triple-negative tumours (182, 183). One example is the small molecule multi-

kinase inhibitor, Dasatinib, which inhibits several members of the SFK family 

(184). While its primary use lies in treating basal/triple-negative cancers (183), 

Dasatinib also inhibits growth of luminal cell lines to some degree, indicating a 

potential role amongst ER+ tumours (182, 183). In addition, AZD0530 is another 

potent selective inhibitor of Src and Abl kinases (175) that has been shown to 

inhibit Src phosphorylation in MCF-7 cells (173). AZD0530 has also been shown 

to suppress cellular invasion in-vitro in tamoxifen-resistant cell lines (131), while 

clinical trials involving its use in combination with endocrine therapies are 

ongoing (185). 

In summary, Src kinase is a crucial component of cancer cell regulation that is 

central to several key pathways involved in proliferation, invasion and cancer cell 

metastases development. Its association with the ER and the development of 

endocrine resistance makes is a potential target when assessing adverse cancer 

cell response to endocrine agents. 
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1.9 3D cell culture and the tumour micro-environment  

 

The standard methods of assessing breast cancer, or cancer cells in general, 

typically involves cell culture within a 2D environment. This is particularly the 

case where immortalised cell lines are used as the primary instrument for study. 

Despite this, ongoing evidence suggests that this may not necessarily always be 

the best way to make such assessments on cell behaviour, particularly when trying 

to translate findings from in-vitro studies into clinical models (186). 

 

Traditional 2D cell culture relies on cell adherence to the flat surfaces of plastic of 

glassware, which provide physical support for the cells. Cells grown in such a way 

will have similar access to nutrients and growth factors from their surrounding 

medium, which results in homogenous growth and proliferation (187). While this 

may be a useful feature for the simplicity of scientific study, 2D culture provided 

no control of cell shape, which determines the biochemical cues that affects cell 

activity in-vivo (186). In addition, cells in our body perform activities in response 

to stimulation from a complex 3D microenvironment, containing the surrounding 

extracellular matrix (ECM), surrounding cells of similar type, as well as other cell 

types, such as fibroblast (188, 189). As such, natural nutrient gradients develop 

and waste gradients build up across such a 3D environment, affecting cell 

proliferation and cell death respectively (187). Given these crucial differences, 

interest in assessing cells in an in-vitro cell culture environment has grown over 

recent years. 

 

There are several potential approaches when undertaking 3D cell culture, 

depending on the desired observations that are to be made (186). The majority of 

techniques employ embedding cells in various formation, within either an 

organically-derived ECM, such as collagen, or synthetic-based ECM, such as 

Matrigel®; a solubilized basement membrane preparation extracted from the 

Engelbreth-Holm-Swarm (EHS) mouse sarcoma (190). Cells are then free to 

interact with surrounding cells and the ECM within a 3D spatial arrangement 

whilst receiving nutrients from culture medium that bathes the matrix. These 3D 

culture systems may modified as required by changing the ECM stiffness through 
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changes in the BM concentration, or by co-culturing the cell of interest with other 

cell types, such as fibroblasts, bringing the system closer to physiological 

arrangements encountered in-vivo (186). Many cellular outcomes may then be 

studied from such culture systems, including proliferation, invasion, and also 

signalling changes through the extraction and separation of cells from the 

surrounding ECM (186). 

 

The highlighted differences outlined above therefore make 3D cell culture a more 

realistic model of in-vivo conditions, particularly as significant differences have 

been shown to exist between cell behaviour in each type of culture system. Indeed, 

several studies have shown differences in cell proliferation, differentiation and 

gene expression between cells grown in 2D and 3D cell culture (191-193). In 

breast cancer, for example, the BCMPG have previously shown that culturing 

HER2+ breast cancer cells in a 3D environment can promote AKT to MAPK 

switching within the cell, causing a relative loss of therapeutic response to 

treatment (194). In terms of cell motion, migration has been shown to vary 

between 2D and 3D systems, likely due to the more complex interactions with the 

surrounding ECM with 3D culture and the additional obstacles created for cell 

movement (195, 196). 

 

Given the above, it would therefore be of interest to study the phenotypic response 

of breast cancer cells to endocrine treatments as part of this thesis, assessing 

whether any responses seen in 2D cell culture are also evident when cells cultured 

in a 3D environment. 
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1.10 Hypothesis and Aims  

 

Resistance to endocrine treatments is a major clinical problem, limiting the 

effectiveness of treatment and ultimately impacting on patient survival. Research 

has revealed several elements that may play a significant role with respect to 

resistance, which affects how breast cancers respond to endocrine therapy. 

Strikingly, recent data points to a loss of the cell-to-cell adhesion molecule, E-

cadherin, as a mechanism by which some endocrine agents promote an adverse 

phenotype in hormone responsive ER+ breast cancer cells.  

The primary hypothesis of this MD project is that ER-targeting endocrine agents 

induce an invasive phenotype in E-cadherin deficient models of ER+ breast cancer 

and that this response to endocrine agents may differ in 2D, compared with 3D 

cell culture. 

The aims of this project are therefore (i) to explore endocrine agents as promoters 

of invasion in ER+ breast cancer under conditions of E-cadherin deficiency, (ii) 

explore potential regulatory pathways that may underlie this phenomenon and 

(iii) compare changes in cell invasion, induced by endocrine agents, in 2D and 3D 

cell culture systems. 
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2.0 Materials and Methods 

 

2.1 Materials 

Table 2.1 lists all materials used to undertake the work involved in producing this 

thesis, including the relevant supplier. 

 

Material Supplier 

3-3’-Diaminobenzidine (DAB) 

chromogen 

Dako, Stockport, UK 

37% Formaldehyde Fisher Scientific Ltd, Loughborough, 

UK 

Acrylamide/bis-acrylamide (30%) Sigma-Aldrich, Poole, Dorset, UK 

Agarose Bioline Ltd, London, UK 

Ammonium Persulphate (APS) Sigma-Aldrich, Poole, Dorset, UK 

Amphotericin B (Fungizone) Invitrogen, Paisley, UK 

Anti-goat horseradish-peroxidase-

linked IgG 

Dako, Stockport, UK 

Anti-mouse horseradish-peroxidase-

linked IgG 

Cell Signalling Technology, Leiden, 

Holland 

Anti-rabbit horseradish-peroxidase-

linked IgG 

Cell Signalling Technology, Leiden, 

Holland 

Antibiotics (penicillin/streptomycin) Invitrogen, Paisley, UK 

Aprotinin Sigma-Aldrich, Poole, Dorset, UK 

BD Cell Recovery Solution 

(Matrisperse®) 

BD Biosciences, Oxford, UK 

BD FalconTM 50ml centrifuge tubes BD Biosciences, Oxford, UK 

Bio-Rad Dc Protein Assay Reagents Bio-Rad laboratories Ltd, Herts, UK 

Bovine Serum Albumin (BSA) Sigma-Aldrich, Poole, Dorset, UK 

Bromophenol Blue (BPB) PDH Chemicals Ltd, Poole, Dorset, UK 

Cell Culture Medium (RPMI 

1640/Phenol-red-free RPMI 1640) 

Invitrogen, Paisley, UK 
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Cell Scrapers Greinir Bio-One Ltd, Gloucestershire, 

UK 

Chemiluminescent (West Femto Max.) Fisher Scientific Ltd, Loughborough, 

UK 

Chemiluminescent Supersignal® West 

HRP (Dura) 

Bio-Rad laboratories Ltd, Herts, UK 

Chromatography Paper CHR 200 Fisher Scientific Ltd, Loughborough, 

UK 

Corning Standard Transwell® Inserts Fisher Scientific Ltd, Loughborough, 

UK 

Cotton Swabs Johnson and Johnson, Maidenhead, 

UK 

Coulter Counter Counting Cups and 

Lids 

Sarstedt AG and Co, Numbrecht, 

Germany 

Dharmafect Lipid Transfection 

Reagent 

Invitrogen, Dharmacon Inc, Chicago, 

USA 

Di-thiotreitol (DTT) Sigma-Aldrich, Poole, Dorset, UK 

Disposable Cuvettes Fisher Scientific Ltd, Loughborough, 

UK 

DPX Mounting Medium Fisher Scientific Ltd, Loughborough, 

UK 

Eppendorf 2ml Fisher Scientific Ltd, Loughborough, 

UK 

Ethidium Bromide (EtBr) Sigma-Aldrich, Poole, Dorset, UK 

Ethylene Diamine Tetracetic Acid 

(EDTA) 

Sigma-Aldrich, Poole, Dorset, UK 

Filter Paper Whatman, Maidstone, Kent, UK 

Foetal Calf Serum (FCS) Invitrogen, Paisley, UK 

General Laboratory Glassware Fisher Scientific Ltd, Loughborough, 

UK 

Gills Haemotoxylin Solution Sigma-Aldrich, Poole, Dorset, UK 

Glass Coverslips BDH Chemicals Ltd, Poole, Dorset, UK 
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Glass Slides Fisher Scientific Ltd, Loughborough, 

UK 

Glutamine Invitrogen, Paisley, UK 

Glycine Sigma-Aldrich, Poole, Dorset, UK 

Goat Serum 100% DAKO Cytomation, Denmark 

Histo-TEK® Cassette  Fisher Scientific Ltd, Loughborough, 

UK 

Hydrochloric Acid (HCL) Fisher Scientific Ltd, Loughborough, 

UK 

Hydrogen Peroxide Fisher Scientific Ltd, Loughborough, 

UK 

HyperladderTM I and IV Bioline Ltd, London, UK 

Isoton® II Azide-free Balanced 

Electrolyte Solution 

Beckham Coulter Ltd, High Wycombe, 

UK 

Kodak MXB Autoradiography Film 

(blue sensitive; 18x24cm) 

Genetic Research Instrumentation 

(GRI), Rayne, UK 

Leupeptin L0649 Sigma-Aldrich, Poole, Dorset, UK 

Lower Buffer for SDS-PAGE gels (Tris 

1.5M, pH8.8 

Bio-Rad Laboratories Ltd, Herts, UK 

Magnesium Chloride (MgCl2) Sigma-Aldrich, Poole, Dorset, UK 

Marvel® Skimmed Milk Powder Premier International Foods, UK 

Matrigel® Matrix Basement 

Membrane  

BD Biosciences, Oxford, UK 

MEK Inhibitor U0126 Cell Signalling Technology, Leiden, 

Holland 

Micro-centrifuge Tubes Elkay Laboratory Products, 

Basingstoke, UK 

Molony-murine Leukaemia Virus 

(MMLV) Reverse Transcriptase 

Invitrogen, Paisley, UK 

Monoclonal Anti-b-Actin-Peroxidase 

clone AC-15 A3854 200ml 

Sigma-Aldrich, Poole, Dorset, UK 
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N,N,N’,N’-tetramethylethylene-

diamine (TEMED) 

Sigma-Aldrich, Poole, Dorset, UK 

Nitrocellulose transfer Membrane 

(Protran® BA85; 0.45M Pore size) 

Schleicher and Schuell, Dassell, 

Germany 

Noble Agar Sigma-Aldrich, Poole, Dorset, UK 

ON-TARGET plus CDH1 siRNA 

SMARTpool 

Dharmacon, GE Healthcare, Little 

Chalfont, UK 

ON-TARGET plus Non-targeting (NT) 

siRNA 

Dharmacon, GE Healthcare, Little 

Chalfont, UK 

ON-TARGET plus PELP-1 (27043) 

siRNA SMARTpool 

Dharmacon, GE Healthcare, Little 

Chalfont, UK 

Paraplast Plus® Paraffin Wax Sigma-Aldrich, Poole, Dorset, UK 

Perifosine 14240 Cell Signalling Technology, Leiden, 

Netherlands 

pH Calibration Buffer Tablets (pH4.7 

and 10) 

Fisher Scientific Ltd, Loughborough, 

UK 

Phenylarsinine Oxide Sigma-Aldrich, Poole, Dorset, UK 

Phenylmethylsulfonyl Fluoride 

(PMSF) 

Sigma-Aldrich, Poole, Dorset, UK 

Pipette Tips Greiner Bio-one Ltd, Gloucestershire, 

UK 

Polyoxyethylene-sorbitan 

Monolaurate (Tween 20) 

Sigma-Aldrich, Poole, Dorset, UK 

Ponceau S Solution [0.1% (w/v) in 5% 

Acetic Acid] 

Sigma-Aldrich, Poole, Dorset, UK 

Potassium Chloride (KCL) Sigma-Aldrich, Poole, Dorset, UK 

Precision Plus Protein® All Blue 

Standards (10-250kDa) 

Bio-Rad laboratories Ltd, Herts, UK 

Protein Dye (500-0006) Bio-Rad laboratories Ltd, Herts, UK 

Random Hexamers (RH) Amersham, Little Chalfont, UK 

Restore Plus Western Blot Stripping 

Agent 46430 

Fisher Scientific Ltd, Loughborough, 

UK 
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RNase-free H20 Sigma-Aldrich, Poole, Dorset, UK 

RNAsin® Ribonuclease Inhibitor Sigma-Aldrich, Poole, Dorset, UK 

RPMI Medium 1640 Fisher Scientific Ltd, Loughborough, 

UK 

Sodium Azide Sigma-Aldrich, Poole, Dorset, UK 

Sodium Chloride (NaCl) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Dodecyl Sulphate (SDS) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Fluoride (NaF) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Hydroxide (NaOH) Fisher Scientific Ltd, Loughborough, 

UK 

Sodium Molybdate (Na2MoO4) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Orthovanadate (NaVO4) Sigma-Aldrich, Poole, Dorset, UK 

Solvents (i.e. Acetone, Chloroform, 

Ethanol, Formaldehyde, 

Paraformaldehyde, Isopropranol, 

Xylene, Methanol) 

Fisher Scientific Ltd, Loughborough, 

UK 

Sterile Phosphate Buffered Saline 

(PBS) 

Invitrogen, Paisley, UK 

Sterile Bijou Vials (5ml) Bibby Sterilin Ltd, Stone, UK 

Sterile Cell Culture Plastic ware Nunc International, Roskilde, 

Denmark 

Sterile Disposable Serological Pipettes 

(5ml, 10ml, 25ml)  

Sarstedt AG and Co. Numbrecht, 

Germany 

Sterile Falcon Tubes Sarstedt AG and Co. Numbrecht, 

Germany 

Sterile Syringe Filters (0.2m) Becton Dickinson (BD) UK Ltd, 

Oxford, UK 

Sterile Syringe Needles Sherwood-Davis & Geck, Gosport, 

Hampshire, UK 
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Sterile Syringes (BD PlastipakTM 2ml, 

5ml, 10ml, 20ml) 

Becton Dickinson (BD) UK Ltd, 

Oxford, UK 

Sterile Universal Containers (30ml) Greiner Bio-One Ltd, Gloucestershire, 

UK 

Sucrose Fisher Scientific Ltd, Loughborough, 

UK 

Taq DNA Polymerase (Bio TaqTM; 

5U/l) 

Bioline Ltd, London, UK 

Temed Sigma-Aldrich, Poole, Dorset, UK 

Tri Reagent Sigma-Aldrich, Poole, Dorset, UK 

Tris HCl Sigma-Aldrich, Poole, Dorset, UK 

Triton X-100 Sigma-Aldrich, Poole, Dorset, UK 

Trizma (Tris) Base Sigma-Aldrich, Poole, Dorset, UK 

Trypsin/EDTA 10x Solution Invitrogen, Paisley, UK 

TWEEN-20 BioXtra Sigma-Aldrich, Poole, Dorset, UK 

Upper Buffer for SDS-PAGE Gels (Tris 

0.5M, pH 6.8) 

Bio-Rad Laboratories Ltd, Herts, UK 

Vectorshield® Hard-set Mounting 

Medium inc. DAPI Nuclear Stain 

Vector Laboratories Inc, 

Peterborough, UK 

Vectorshield® Soft-set Mounting 

Medium inc. DAPI Nuclear Stain 

Vector Laboratories Inc, 

Peterborough, UK 

Western Blocking Reagent Roche, Mannheim, Germany 

X-ray Film Developer and Fixer 

Solutions (X-O-dev) 

Photon Imaging Systems, Ashton 

Keynes, UK 

 

Table 2.1 – Materials. All materials used to undertake the work involved in 

producing this thesis are listed in alphabetical order, including the relevant 

supplier. 
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2.2 Cell Lines and Cell Culture 

 

2.2.1 Cell Media 

 

RPMI 1640 containing phenol-red pH indicator (RPMI) was supplemented with 

5% or 10% (cell line dependent) foetal calf serum (FCS), penicillin 

(1000units/ml), streptomycin (100ug/ml) and amphotericin B (2.5g/ml), and 

used for routine cell culture (referred to at R5% or R10% respectively). 

 

Phenol-red-free RPMI 1640 (WRPMI) was supplemented with 5% FCS, L-

Glutamine (200mM), penicillin (1000units/ml), streptomycin (100ug/ml) and 

amphotericin B (2.5g/ml), and was used for experimental culture (referred to as 

W5%). 

 

Finally, Phenol-red-free RPMI 1640 (WRPMI) was supplemented with 5% 

charcoal stripped foetal calf serum (SFCS), L-Glutamine (200mM), penicillin 

(1000units/ml), streptomycin (100ug/ml) and amphotericin B (2.5g/ml), and 

was used for experimental culture (referred to as W5%s).  

 

2.2.2 Cell Lines 

 

Hormone sensitive MCF-7 wild type cell line, originally from the American Type 

Culture Collection (ATCC©), were maintained in R5%. The T47D cell line (ATCC©) 

was used as an alternative luminal A breast cancer cell line and were also 

maintained in R5%. The BT474 and MDA-MB-361 cell lines, both ER+ve and 

HER2+ve (ATCC©), were maintained in R10%. The ER-ve and HER2-ve cell line, 

MDA-MB-231 (ATCC©) was maintained in R5%, while the alternative ER-ve, 

HER2-ve cell line, MDA-MB-468 (ATCC©) was maintained in R10%. Finally, the 

tamoxifen resistant MCF-7 cell line (TamR) is an in-house cell line derived from 

prolonged exposure of MCF-7 cells to Tamoxifen, allowing the development on in-

situ resistance. TamR cells were grown in W5%s supplemented with 4-

hydroxytamoxifen (100nM), commonly referred to as tamoxifen. 
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Cell Line Routine Culture Medium Experimental Culture Medium 

MCF7 RPMI + 5%FCS WRPMI + 5%FCS 

T47D RPMI + 5%FCS WRPMI + 5%FCS 

BT474 RPMI + 10%FCS WRPMI + 10%FCS 

MDA-MB-361 RPMI + 10%FCS WRPMI + 10%FCS 

MDA-MB-231 RPMI + 5%FCS WRPMI + 5%FCS 

MDA-MB-468 RPMI + 10%FCS WRPMI + 10%FCS 

 

Table 2.2 – Cell Lines and Culture Media. Cells were generally cultured in 

medium containing RPMI during routine culture, while WRPMI was used during 

experimental procedures to eliminate the potential estrogenic activity of phenol 

red. 

 

2.2.3 Cell Culture Techniques 

 

All cell culture was undertaken under sterile conditions within a MDH Class II 

laminar-flow safety cabinet. Equipment and consumables were either purchased 

as sterile for single use or sterilized at 119°C using a Denley BA852 autoclave. 

Cell were maintained in 25cm2 (T25) flasks within a Sanyo MCO-17AIC incubator 

at a constant temperature of 37°C and within a humidified atmosphere containing 

5% CO2. Cells were assessed using a phase contrast microscope (Nikon UK Ltd, 

Kingston-Upon-Thames, UK) with culture medium changed every 3-4 days and 

cells passaged when 70-95% confluence was achieved. 

During routine passage, culture medium was removed from the incubating vessel 

and cells were dispersed from monolayer culture by adding 5ml of Trypsin 

(0.05%)/EDTA (0.02%) in PBS. Culture vessels were then incubated for 3-5 

minutes until cells were in suspension before the Trypsin/EDTA was neutralised 

with an equal volume of culture medium and the cells suspension transferred to a 

universal container. Cells were then pelleted by centrifugation (Jouan C312, 

Thermo Fisher Scientific Inc, MA, USA) at 1000rpm for 5 minutes. The supernatant 
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was then decanted and the cell pellet re-suspended in culture medium before 

seeding to further culture vessels containing an appropriate volume culture 

medium (usually at a 1:10 ratio). 

 

2.2.4 Cell Counting 

 

For each experimental procedure, the same technique as described above was 

followed, but in order to obtain a single cell suspension, cells were passed through 

a sterile 25G needle. Assessment of cell number was then made by adding 100μl 

of the re-suspended cell solution in 10ml of Isoton® II solution before cell 

counting was determined using a CoulterTM Multisizer II (Beckman Coulter UK Ltd, 

High Wycombe, UK). Cells were then re-seeded into media at an appropriate 

density based on the experiment design. 

 

2.2.5 3D cell culture techniques 

 

For work involving 3D cell culture, two different culture techniques were used. 

These were defined as “3D embedded cell culture” and “3D on top cell culture”, 

with both techniques described below. 

 

2.2.5.1 3D “Embedded” cell culture 

 

Pre-chilled culture dishes/plates were coated with an appropriate volume of 

phenol red free Matrigel® (Appendix 7.11), which had been thawed at 4°C 

overnight, using pre-chilled pipette tips. This Matrigel® coat was spread evenly 

across the surface of the culture vessel using a pipette tip, avoiding the 

development of bubbles, and the culture vessel was then incubated at 37°C for 30 

minutes to allow the matrix to set. 

 

Cells were then trypsinized and counted as per protocol and a dilution created for 

the desired cell concentration (0.5-0.6 x 106 cells/ml – cell line dependent). An 

appropriate volume of the diluted cell suspension (Appendix 7.11) was 
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transferred to a 1.5ml micro centrifuge tube, where the cells were pelleted by 

centrifugation at 1000rpm for 5 minutes at 4°C. The supernatant was decanted 

and the cells pellet carefully re-suspended in the appropriate volume of Matrigel® 

(Appendix 7.11). This cell/Matrigel® mix was then carefully pipetted onto the 

pre-coated surface of the culture vessel. The culture vessel was again incubated at 

37°C for 60 minutes to allow the Matrigel® to set, before an appropriate volume 

of experimental medium +/- treatment was added to overlie the Matrix (Appendix 

7.11). The cells were maintained in this culture at 37°C for up to a maximum of 6 

days, with the medium changed every 3 days. 

 

 

Figure 2.1– Schematic representation of 3D “embedded” cell culture. Cells 

were embedded within a Matrigel® matrix and bathed in the appropriate culture 

medium. 

 

2.2.5.2 3D “on top” cell culture 

 

Pre-chilled culture dishes/plates were coated with an appropriate volume of 

phenol red free Matrigel® (Appendix 7.11), which had been thawed at 4°C 

overnight, using pre-chilled pipette tips. This Matrigel® coat was spread evenly 

across the surface of the culture vessel using a pipette tip, avoiding the 

development of bubbles, and the culture vessel was then incubated at 37°C for 30 

minutes to allow the matrix to set. 
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Cells were then trypsinized and counted as per protocol and a dilution created for 

the desired cell concentration (0.175-0.2 x 105 cells/ml – cell line dependent). 

Cells were then pelleted by centrifugation at 1000 rpm for 5 minutes at 4°C and 

then re-suspended in half the “medium volume” (Appendix 7.11) and carefully 

pipetted onto the pre-coated surface of the culture vessel.  

 

The remaining medium was then chilled on ice and combined with 10% volume 

Matrigel® (1/10 dilution). This Matrigel®/medium mixture was then carefully 

added to overlay the cell layer. The cells were maintained in this culture at 37°C 

for up to a maximum of 6 days, with the medium changed every 3 days. 

 

To avoid cell aggregation and ensure equal seeding of cells across the Matrigel® 

bed of the culture surface, agitation of the plate/dish was performed in both the x 

and y axes at intervals during the first hour of the incubation period. 

 

 

Figure 2.2 – Schematic representation of 3D “on-top” cell culture. Cells were 

seeded onto a Matrigel® base layer, before being sandwiched by an overlying 

layer of Matrigel®, diluted with culture medium. 
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2.2.6 siRNA Transfection 

 

Cells were seeded in 35mm dishes (100,000 cells per well) and incubated at 37°C 

for 72 hours. After this period 1.5 ml micro-centrifuge tubes were labelled for both 

non-targeting (NT) and treatment (e.g. CDH1) siRNA variables as Tube A and Tube 

B. The appropriate volumes of siRNA (1μg/μl) and x1 siRNA buffer was thawed on 

ice and antibiotic and serum-free WRPMI was filter sterilised by passage through 

a 0.2μm Acrodisk® filter (Appendix 7.12).  

 

Appropriate volumes of siRNA, x1 siRNA buffer and WRPMI was added to Tube A, 

while WRPMI and Dharmafect® transfection lipid was added to Tube B, for both 

NT and treatment arms of the experiment. Tubes were left to incubate at room 

temperature for 5 minutes. After this time, the contents of Tubes A and B for each 

variable was gently added and left for a further incubation period of 20 minutes 

at room temperature. 

 

Following the incubation period this volume was aliquoted as necessary and 

mixed with experimental medium +/- treatments in a 1:5 ratio to create the final 

volume of transfection medium. The existing medium bathing the incubating cells 

was then removed and replaced with the appropriate volume of transfection 

medium. Cells were then incubated in this medium for 72 hours at 37°C to allow 

transfection to take place. 
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2.3 Analysis of Protein Expression 

 

SDS-Page electrophoresis and Western Blotting, followed by immunoblotting with 

phospho-specific antibodies, were used to assess changes in intra-cellular protein 

expression. 

 

2.3.1 Cell Lysis for Protein Extraction 

 

Cells were seeded in 35mm dishes and treated under appropriate experimental 

conditions for the appropriate time, dependent on experiment. After this period, 

the medium was removed and the cells were twice washed with 1ml of ice-cold 

PBS before the addition of lysis buffer (Appendix 7.1 and 7.2) containing protease 

inhibitors (volume 50-100μl depending on cell confluency). The cell material, 

contained within the added lysis buffer, was then collected using a cell scraper, 

transferred to a 1.5ml Eppendorf tube and left to rest on ice for 20 minutes. 

Lysates were then isolated by centrifugation of the Eppendorf contents at 

13,000rpm for 15 minutes at 4C), followed by separation of the supernatant, 

which was stored at -20C until later required. 

 

2.3.2 Protein Concentration Assay 

 

The concentration of soluble protein within lysate samples was determined using 

the Bio-Rad Micro Assay Procedure. A standard curve was created by performing 

multiple dilutions of a stock solution (1μg/μl) of Bovine Serum Albumin (BSA) in 

dH20 (Appendix 7.3), within Eppendorf tubes. Each protein lysate sample was 

simultaneously diluted at a 1:400 concentration with dH20 (i.e. 1μl of lysate with 

399μl of dH20), within Eppendorf tubes.  

 

Subsequently, 100μl of Bio-Rad dye was added to each Eppendorf tube (i.e. 

standard curve and protein lysate samples) and each tube was vortexed briefly to 

allow thorough mixing of the solution. A 150μl of each solution was then 

transferred in duplicate to a 96-well plate and readings for the optical density of 

each well was calculated using a ELISA plate reader.  
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A standard curve was constructed (Appendix 7.4) using the mean optical density 

measurements from the BSA standard samples. The undiluted protein 

concentration of each lysate sample was then calculated by multiplying the 

concentration, determined from the mean optical density of each sample using the 

standard curve, by a multiplier of 400. 

 

2.3.3 Protein Sample Preparation 

 

To prepare each protein lysate sample for use in SDS-Page, a standard final protein 

concentration in all samples of 1μg/μl was obtained.  An appropriate volume of 

lysate solution was therefore mixed with a solution of loading buffer (Appendix 

7.6) containing DTT, in quantities to ensure a final solution containing 100μg of 

protein in 100μl volume.  Each sample was gently mixed by pipette and then left 

at 95C on a hot-block for 5 minutes. Samples were then briefly spun with a 

centrifuge, to ensure no vapour remained in the lids of the Eppendorf tubes, and 

the samples were then used immediately for SDS-Page, or stored at -20C until 

later required. 

 

2.3.4 SDS-Page 

 

Sodium-Dodecyl-Sulphate-Polyacrylamide Gel Electrophoresis (SDS-Page) was 

performed using the Bio-Rad Mini Protean® III system, which was powered by a 

Powerpac® basic power pack. Gels used within this system were composed of an 

upper stacking gel, which held the samples within individual wells, alongside a 

lower resolving gel, which allowed proteins within samples to segregate based on 

molecular weights (Appendix 7.10). Glass plates were cleaned using ethanol and 

assembled in the apparatus provided. The resolving gel was then formed by the 

addition of the individual constituents within a universal container. The mixture 

was then poured between the plates, leaving an appropriate amount of space for 

the later addition of the upper stacking gel, overlaid with a small volume of 

isopropanol to prevent evaporation, and allowed to set at room temperature 

(approximately 20-25 minutes).  
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Once set, the overlying isopropanol was removed, and the stacking gel was then 

made by mixing the individual constituents within a universal container. The gel 

mixture was then added between the glass plates to overlay the resolving gel and 

a 10 or 15-well comb (depending on requirements) was inserted into the stacking 

gel mixture before allowing the gel to set at room temperature (approximately 30-

35 minutes). Gels were then either used for SDS-Page immediately or stored 

overnight for use the following day, by wrapping the gel in water soaked tissue 

and cling film. 

 

Each gel was then placed within the electrophoresis apparatus, and a x1 

concentration of SDS-Page running buffer was added to both the inner and outer 

reservoirs of the tank, in which the gels and apparatus was inserted (Appendix 

7.5). The comb for each gel was then gently removed and volumes of previously 

prepared cell lysates were mixed with sample loading buffer and DTT, equating to 

equal values of protein (usually 20g). Samples were then inserted into each lane 

of the gel as required. A protein molecular weight marker (Precision Plus All Blue 

Standards 10-250kDa, 3l) was added to a separate lane, and 20l of x1 sample 

loading buffer containing DTT was then added to any unused lanes within the gel, 

to ensure all samples ran vertically once a current is applied. 

 

Electrophoresis was then performed using a constant voltage of 120V (equating 

to around 80mA of current) until the sample/buffer dye front had run the length 

of the gel. 

 

2.3.5 Western Blotting 

 

Proteins were transferred from the SDS-PAGE gel to a pre-cut nitrocellulose 

membrane using the Bio-Rad® mini-protein system. Four pieces of filter paper 

and one piece of Protran® nitrocellulose membrane (pore size 0.45m) were cut 

to the same size of each gel to be transferred. These were then soaked in Western 

blot transfer buffer (Appendix 7.7) along with Teflon sponge pads (2 pads per gel). 

 



 63 

 

 

Upon completion of electrophoresis each gel was extracted from the 

electrophoresis apparatus, the upper stacking gel removed and the lower 

resolving gel was left to soak in Western blot transfer buffer. Each Western blot 

transfer cassette was then assembled with care taken to avoid the presence of air 

bubbles between the gel and overlying nitrocellulose membrane. Each cassette 

was then loaded into the transfer apparatus ensuring correct orientation of the 

cassette for transfer of the proteins from the gel and onto the nitrocellulose 

membrane. The transfer apparatus was then submerged in a tank containing 

Western blot transfer buffer. An ice block and magnetic flea were also added to 

the tank to prevent overheating of the tank during transfer. Transfer then took 

place with the tank placed upon a magnetic stirrer, to allow the magnetic flea to 

spin, by applying a constant voltage of 100V for 1 hour. 

 

2.3.6 Immunoprobing of Western blots 

 

Once the transfer was complete, the nitrocellulose membrane was removed from 

the cassette and stained with Ponceau-S solution, which would help confirm 

successful transfer of protein and provide an indication of the equal sample 

loading to each well. The membrane was then washed with Tris buffered saline 

containing Tween-20 (TBST, Appendix 7.9) on a rocking platform placed on a 

vigorous setting, until the Ponceau-S stain had been removed. The membrane was 

then submerged in a solution of 5% (w/v) Marvel made up in TBST and placed to 

rock gently on a rocking platform for 1 hour. Once blocking was complete, the 

membrane was incubated with the primary antibody on a roller, usually overnight 

at a temperature of 4C overnight, although this was dependent on the primary 

antibody used. 

 

Primary antibodies were made up by dilution (typically 1:1000) in TBST 

containing 5% (v/v) western blocking reagent and 0.05% (v/v) sodium azide. 

After incubation with the primary antibody the blot was washed with TBST on a 

rocking platform, placed on a vigorous setting for 20 minutes, and then incubated 
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with the correct horseradish peroxidase (HRP) conjugated secondary antibody on 

a roller for 1 hour at room temperature. Following secondary antibody incubation, 

the membrane was then washed with TBST on a rocking platform placed on 

vigorous setting for 20 minutes prior to antibody detection by 

chemiluminescence. 

 

After the TBST wash, excess moisture from the blot was gently removed by 

blotting on absorbent paper and blots were placed within a light-proof developing 

cassette. An appropriate amount of the mixed chemiluminescent agent (approx. 

200l per membrane) was applied to the membrane, which was then covered with 

a clean sterile plastic protective sleeve, ensuring homogenous spread of the 

chemiluminescent agent over the membrane and avoiding the presence of 

bubbles. In darkness, an x-ray film was placed over the membrane and left for a 

variable period, to provide optimum exposure, before the x-ray film was 

developed in darkness using an X-O-graph compact X2 developed (X-O-graph 

Imaging System, Telbury, UK). Exposure time and the choice of chemiluminescent 

agent (Enhanced Chemiluminescent (ECL) Reagent, Clarity®, SupersignalTM West 

Femto) was performed depending on the levels of expression of each protein of 

interest. The bands obtained were scanned and analysed using a Bio-Rad imaging 

densitometer. Blots shown are a representative of a minimum of 3 biological 

replicate sample. Densitometry was used for statistical analysis. 

 

 

 

 

 

 

 

 

 

 

Primary Antibody Source Dilution Company 
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E-cadherin Mouse 1:1000 R&D Systems 

pSrc Y418 Rabbit 1:1000 Invitrogen, Paisley, UK 

Src Total Rabbit 1:1000 Invitrogen, Paisley, UK 

pSTAT3 Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

STAT3 Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

pFAK tyr397 Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

FAK Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

pEGFR tyr1068 Rabbit 1:500 Cell Signalling Technology, MA, 

USA 

EGFR Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

c-erbB2 Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

pAKT ser473 Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

AKT Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

PTEN Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

pERK 1/2 Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

ERK Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

pMEK 1/2 Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

MEK Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 
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pER 118 (16J4) Mouse 1:1000 Cell Signalling Technology, MA, 

USA 

ER Total Rabbit 1:1000 Santa Cruz Biotechnology 

PELP-1 Total Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

Sema 3E Total Mouse 1:500 R&D Systems 

Human Plexin D1 

Total 

Rabbit 1:500 R&D Systems 

Neuropilin 1 Total Rabbit 1:1000 Abcam 

MMP-9 Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

RhoA Rabbit 1:1000 Abcam 

Cdc42 Rabbit 1:1000 Abcam 

Rac-1 Rabbit 1:1000 Abcam 

Slug Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

Snail Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

TWIST Rabbit 1:1000 Cell Signalling Technology, MA, 

USA 

 

Table 2.3 -List of Primary antibodies used in immunoprobing of Western 

blots (+/- use in Immunocytochemical analysis). All primary antibodies were 

typically incubated at 4C overnight. 
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Secondary Antibody Source Dilution Company 

GAPDH-HRP linked Mouse 1:10000 Abcam, Cambridge, UK 

-Actin-HRP linked Mouse 1:10000 Sigma-Aldrich, Poole, 

Dorset, UK 

Anti-goat horseradish-

peroxidase-linked IgG 

Goat 1:10000 Dako, UK 

Anti-mouse 

horseradish-

peroxidase-linked IgG 

Mouse 1:10000 Cell Signalling 

Technology, MA, USA 

Anti-rabbit 

horseradish-

peroxidase-linked IgG 

Rabbit 1:10000 Cell Signalling 

Technology, MA, USA 

 

Table 2.4 -List of secondary antibodies used in immunoprobing of Western 

blots (+/- use in Immunocytochemical analysis). All secondary antibodies 

were incubated at room temperature for 1 hour. 
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2.4 Cell Invasion Assays 

 

2.4.1 2D Boyden Chamber Cell Invasion Assay 

 

Matrigel® was defrosted on ice and diluted to a stock concentration of ~11mg/ml 

by mixing 1 part Matrigel with 2 parts sterile WRPMI (a 1 in 3 dilution). 50l of 

this Matrigel® dilution was then carefully pipetted, using cold pipette tips, into 

the upper chamber of each Boyden Chamber insert (Costar® 3422, 24-well plate 

with 6.5mm diameter, 8m pore inserts). The plate and associated inserts were 

then incubated at 37C for 2 hours to allow the Matrigel® to set.  

 

Once the Matrigel® had set, 650l of experimental medium was pipetted into the 

lower chamber of each well. Cells were then trypsinized and 5000 cells (within a 

volume of 200l) was pipetted into the upper chamber of each insert. The plate 

was then incubated at 37C for 72 hours to allow invasion to take place. 

 

After 3 days, inserts were removed from their corresponding well, the medium 

from the upper chamber removed by pipette and the layer of Matrigel® was 

carefully and gently removed from the upper chamber with a cotton bud. In a fume 

cabinet, the membrane of each insert was submerged in a 3.7% formaldehyde 

solution for 15 minutes for cell fixation. Each membrane was then twice washed 

by submersion in PBS and left to air dry briefly. The membrane of each insert was 

then carefully excised with a scalpel blade and the membrane was then mounted 

on a microscope slide (cell side up) with a single drop of DAPI (Vectorshield), 

followed by a coverslip. Slides were then left to set inside a dark room and then 

stored at 4C. 

 

For quantification cells were visualized under fluorescent microscopy using a x10 

lens, with a set wavelength of 461nm. Cell counts were taken from 10 fields 

viewed in a systematic fashion for each membrane. 

As an alternative measure of quantification using a clonal population EGFP-

expressing MCF-7 cells, inserts were fixed with 3.7% formaldehyde, stained with 
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DAPI and mounted using a coverslip as previously mentioned, but cells were 

alternatively counted by detecting EGFP-expressed cells under fluorescent 

microscopy, with a set wavelength of 395nm. As recorded previously, cell counts 

were taken from 10 fields viewed in a systematic fashion for each membrane. 

 

2.4.2 Development of a 3D cell invasion assay  

 

The standard methods of assessing cells in-vitro typically involves cell culture 

within a 2D environment. This is particularly the case where immortalised cell 

lines are used as the primary instrument for study. Despite this, ongoing evidence 

suggests that this may not necessarily always be the best way to make such 

assessments on cell behaviour, particularly when trying to translate findings from 

in-vitro studies into clinical models (186). 

 

Traditional 2D cell culture relies on cell adherence to the flat surfaces of plastic of 

glassware, which provide physical support for the cells. Cells grown in such a way 

will have similar access to nutrients and growth factors from their surrounding 

medium, which results in homogenous growth and proliferation (187). While this 

may be a useful feature for the simplicity of scientific study, 2D culture provides 

no control over cell shape, which determines the biochemical cues that affects cell 

activity in-vivo (186). In addition, cells in our body perform activities in response 

to stimulation from a complex 3D microenvironment, containing the surrounding 

extracellular matrix (ECM), surrounding cells of similar type, as well as other cell 

types, such as fibroblast (188, 189). As such, natural nutrient gradients develop 

and waste gradients build up across such an environment, affecting cell 

proliferation and cell death respectively (187). Given these crucial differences, 

interest in assessing cells in a 3D in-vitro cell culture environment has grown over 

recent years. 

 

There are several potential approaches when undertaking 3D cell culture, 

depending on the desired observations that are to be made (186). The majority of 

techniques employ embedding cells in various formations, within either an 

organically-derived ECM, such as collagen, or synthetic-based ECM, such as 
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Matrigel®; a solubilized basement membrane (BM) preparation extracted from 

the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (190). Cells are then free to 

interact with surrounding cells and the ECM within a 3D spatial arrangement 

whilst receiving nutrients from culture medium that bathes the matrix. These 3D 

culture systems may be modified as required by changing the ECM stiffness 

through changes in the BM concentration, or by co-culturing the cell of interest 

with other cell types, such as fibroblasts, bringing the system closer to 

physiological arrangements encountered in-vivo (186). Many cellular outcomes 

may then be studied from such culture systems, including proliferation, invasion, 

and also signalling changes through the extraction and separation of cells from the 

surrounding ECM (186). 

 

The highlighted differences outlined above therefore make 3D cell culture a more 

realistic model of in-vivo conditions, particularly as significant differences have 

been shown to exist between cell behaviour in each type of culture system. Indeed, 

several studies have shown differences in cell proliferation, differentiation and 

gene expression between cells grown in 2D and 3D cell culture (191-193). In 

breast cancer, for example, the BCMPG have previously shown that culturing 

HER2+ breast cancer cells in a 3D environment can promote AKT to MAPK 

switching within the cell, causing a relative loss of therapeutic response to 

treatment (194). In terms of cell motion, migration has been shown to vary 

between 2D and 3D systems, likely due to the more complex interactions with the 

surrounding ECM with 3D culture and the additional obstacles created for cell 

movement (195, 196). 

 
Given the above, it would therefore be of interest to study the phenotypic response 

of breast cancer cells to endocrine treatments as part of this thesis, assessing 

whether any responses seen in 2D cell culture are also evident when cells cultured 

in a 3D environment. 

.  

 

One may argue that the previously described Boyden chamber assay, used to 

assess invasion, is in effect assessing invasion in 3D, as cells invade through a 3D 
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layer of Matrigel®. While this may be true, this assay is a better measure of single 

cell invasion as cell-cell contacts are limited in this setting, as cells are initially 

seeded as a single cell monolayer of the surface of the Matrigel®. The idea of a true 

3D invasion therefore, would be one where cells are cultured in a 3-dimensional 

configuration, allowing interaction with surrounding cells in a true 

circumferential fashion. This would be a better in-vitro representation of an in-

vivo breast tumor and allow more physiological interaction of breast cancer cells 

with the tumor microenvironment. 

 

As a starting point for this task, a 3D invasion assay developed by Vinci et al. (197) 

was utilized and subsequently modified. This assay essentially involves the 

culture of cells within an ultra-low adherent, U-bottom plate, which prevents cells 

from adhering to the well bottom, and therefore allows cells to adhere to each 

other within a 3D “spheroid” configuration.  After a suitable period of culture to 

allow spheroid formation, some of the culture medium is carefully removed from 

the well and replaced with an equal volume of Matrigel®. Mixing of the Matrigel® 

with existing culture medium within the well is then aided by centrifugation of the 

plate, creating an ECM of desired stiffness to maintain 3D architecture whilst 

allowing cell invasion to occur from the central spheroid into the periphery of the 

surrounding ECM. Invasion can then be assessed at a suitable endpoint by light 

microscopy, to visualize the extent of invasion (Figure 2.3a). Quantitatively this 

can be represented using imaging software, such as Fiji®, to determine the 

relative change in either the perimeter or area (Figure 2.3b) of the spheroid during 

the course of the experiment. 
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a. 

 

b. 

Figure 2.3 – Calculation of the relative change in spheroid area using Fiji® 

computer software. (a) MDA-231 cells cultured within a 3D spheroid assay for 

6 days imaged by 2D light microscopy (day 0 = left image, day 6 = right image). 

(b) The same images modified by Fiji® via the threshold adjust tool to identify 

the extent invasion through measurement of relative spheroid perimeter change 

or relative spheroid area change. 

 

This system was trialed and optimized with several breast cancer cell lines with 

variable success. During the optimization period variables, such as cell seeding 

density, culture period for spheroid formation, Matrigel®: culture medium ratio, 

centrifugation settings and assay time were modified systematically to attempt to 

develop an assay that is rigorous, reproducible and fit for purpose. Below is a 

summary of the significant findings during this period of optimization for each cell 

line. 

ER+ cell lines 
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1. MCF-7 

 

MCF-7 cells formed relatively compact, non-uniform, friable spheroids when 

grown in ULA-plates for 3 days, using a seeding density of 5,000 cells/well. Cells 

were poorly invasive, and invasion could not be adequately imaged with bright 

field (Figure 2.4) or time-lapse microscopy (Supplemental File 1), despite 

attempts of optimization through adapting the Matrigel®: medium ratio, or 

stimulation of cells with estradiol, tamoxifen and EGF. 

 

 

Figure 2.4 – MCF-7 spheroid invasion assay. MCF-7 cells grown within the 3D 

spheroid invasion assay (5000 cells/well) after day 0 (left) and day 6 (right) of 

cell culture.  

 

SiRNA-mediated CDH-1 knockdown MCF-7 cells grown in ULA-plated for 3 days 

tended to form more uniform, but less compact spheroids, compared to their wild-

type counterparts. E-cadherin knockdown cells were relatively more invasive, 

although this was poorly demonstrated by light microscopy due to limitations in 

the sensitivity of this method of detection (Figure 2.5). Attempts at optimization 

of the assay through adapting the Matrigel®: medium ratio, or stimulation of cells 

with estradiol or EGF, failed to significantly enhance invasion using this cell line. 
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Figure 2.5 – MCF-7 cell spheroid invasion assay following treatment with 

CDH1 siRNA. MCF-7 cells, treated with anti-CDH1 siRNA, grown within the 3D 

spheroid invasion assay (5000 cells/well) after day 0 (left) and day 6 (right) of 

cell culture. 

 

2. T47D 

 

T47D cells formed relatively compact, non-uniform spheroids when grown in 

ULA-plates for 3 days, using a seeding density of 5,000 cells/well. In a similar 

fashion to MCF-7 cells, T47D cells were also poorly invasive, and invasion could 

not be adequately imaged using bright field microscopy (Figure 2.6). Attempts to 

optimize the assay, through adapting the Matrigel®: medium ratio, or stimulation 

of cells with estradiol or EGF, failed to demonstrate reliable cell invasion. 

 

Figure 2.6 – MCF-7 spheroid invasion assay. T47D cells grown within the 3D 

spheroid invasion assay (5000 cells/well) after day 0 (left) and day 6 (right) of 

cell culture. 
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3. BT474 

 

BT474 cells formed dense, compact, uniform spheroids when grown in ULA-plates 

for 3 days, using a seeding density of 5,000 cells/well. Cells were very poorly 

invasive, and invasion was not evident with bright field microscopy (Figure 2.7) 

after 6-days, despite attempts of optimization through adapting the Matrigel®: 

medium ratio, or stimulation of cells with estradiol, EGF or Heregulin. 

 

 

Figure 2.7 – BT474 spheroid invasion assay. BT474 cells grown within the 3D 

spheroid invasion assay (5000 cells/well) after day 0 (left) and day 6 (right) of 

cell culture. 

 

SiRNA-mediated CDH-1 knockdown BT474 cells grown in ULA-plated for 3 days 

tended to form uniform, but less compact spheroids, compared to their wild-type 

counterparts (Figure 2.8). Despite E-cadherin knockdown, cells remained poorly 

invasive after 6 days, and invasion could not be significantly increased after 

adapting the Matrigel®: medium ratio, or stimulating of cells with estradiol, EGF 

or Heregulin. 
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Figure 2.8 – BT474 cell spheroid invasion assay following treatment with 

CDH1 siRNA. BT474 cells, treated with anti-CDH1 siRNA, grown within the 3D 

spheroid invasion assay (5000 cells/well) after day 0 (left) and day 6 (right) of 

cell culture. 

 

4. MDA-MB-361 

 

As with the BT474 cell line, MDA-MB-361 cells formed dense, compact, uniform 

spheroids when grown in ULA-plates for 3 days, using a seeding density of 5,000 

cells/well. These cells were also poorly invasive, and invasion was not evident 

with bright field microscopy (Figure 2.9) after 6-days, despite attempts of 

optimization through adapting the Matrigel®: medium ratio, or stimulation of 

cells with estradiol, EGF or Heregulin. 

 

 

Figure 2.9 – MDA-MB-361 spheroid invasion assay. MDA-MB-361 cells grown 

within the 3D spheroid invasion assay (5000 cells/well) after day 0 (left) and 

day 6 (right) of cell culture. 
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ER- cell lines 

 

1. MDA-MB-231 

 

MDA-231 cells formed tight, compact, uniform spheroids when grown in ULA-

plates for 3 days, using a seeding density of 5,000 cells/well. Invasion was evident 

for up to 6 days and could be imaged adequately by both bright field (Figure 2.10) 

and time-lapse microscopy (Supplemental File 2), using a 1:3 Matrigel®: medium 

ratio.  

 

 

Figure 2.10 – MDA-MB-231 spheroid invasion assay. MDA-MB-231 cells 

grown within the 3D spheroid invasion assay (5000 cells/well) after day 0 (left) 

and day 6 (right) of cell culture. 

 

2. MDA-MB-468 

 

MDA-468 cells formed loose, friable but uniform spheroids, when grown in ULA-

plates for 3 days, using a seeding density of 5,000 cells/well. Invasion was evident 

for up to 6 days, although was less pronounced than for MDA-231 cells, and could 

also be imaged by bright field microscopy (Figure 2.11), using a 1:3 Matrigel®: 

medium ratio.  

 



 78 

 

Figure 2.11 – MDA-MB-468 spheroid invasion assay. MDA-MB-468 cells 

grown within the 3D spheroid invasion assay (5000 cells/well) after day 0 (left) 

and day 6 (right) of cell culture. 

 

 

In summary, given the variable success following the optimization of the above 

assay, reliability was demonstrated among the ER negative cell lines assessed 

(MDA-MB-231, MDA-MB-468), while less success found when using ER positive 

cell lines (MCF-7, T47D, BT474, MDA-MB-361). As a result, a variation on the 

above technique was trialed to see if the assay could be improved. 

 

This technique was developed following collaboration with Dr Aled Clayton and 

his group, based at Cardiff University, who had experience in working with 3D cell 

culture in the context of assessing invasion (see acknowledgments). This 

technique, termed the 3D “fried egg” assay due to the appearance of the spheroid 

following cell invasion is based on a similar principle to the assay described above, 

whereby cells are cultured as spheroids within ULA plates. Within the “fried egg” 

assay however, after spheroid formation spheroids are carefully transferred from 

the ULA plates to a flat bottom 96-well plate, pre-coated with a Matrigel® bed. 

 

After allowing the transferred spheroid to settle on the Matrigel® bed, each well 

was then supplemented with additional culture medium +/- treatments. 

Spheroids were then observed by light microscopy, daily, for a period of up to 6 

days, to assess cell invasion from the central spheroid into the Matrigel® 

periphery. Again, in a similar manner to the original assay, quantification of 
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invasion can be demonstrated using imaging software, such as Fiji®, to determine 

the relative change in either the perimeter or area of the spheroid at the end of the 

assay.  

 

This assay was again trialed and optimized using several breast cancer cell lines 

with the following summary highlighting the important findings for each breast 

cancer cell line. 

 

ER+ cell lines 

 

1. MCF-7 

 

As demonstrated previously MCF-7 cells formed relatively compact, non-uniform, 

friable spheroids when grown in ULA-plates for 3 days, using a seeding density of 

5,000 cells/well. Spheroid transfer to Matrigel® coated plates resulted in some 

disruption to the spheroid architecture however. Cells were also poorly invasive, 

and invasion could not be adequately imaged with bright field (Figure 2.12) 

microscopy after a period of 6 days. 

 

 

Figure 2.12 – MCF-7 “fried egg” invasion assay. MCF-7 cells grown within the 

3D “Fried Egg” invasion assay (5000 cells/well) after day 0 (left) and day 6 

(right) of cell culture. 

 

siRNA-mediated knockdown of E-cadherin in MCF-7 cells led to the formation of 

more uniform, but less compact spheroids when grown in ULA plates. This led to 
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an increase in the fragility of the spheroid, which meant spheroid transfer to 

Matrigel® coated plates resulted in spheroid fracture and complete disruption to 

spheroid architecture (Figure 2.13). 

 

 

Figure 2.13 – MCF-7 spheroid fracture. Spheroid fracture occurred frequently 

after attempted transfer of MCF-7 spheroid, treated with anti-CDH1 siRNA, 

during 3D “Fried Egg” assay. 

 

2. T47D 

 

As shown previously, T47D cells formed relatively compact, non-uniform 

spheroids when grown in ULA-plates for 3 days, using a seeding density of 5,000 

cells/well. Although spheroid transfer to Matrigel® coated plates did not disrupt 

the spheroid architecture, cells were poorly invasive, and invasion could not be 

adequately imaged using bright field microscopy (Figure 2.14). 

 

Figure 2.14 – T47D “fried egg” invasion assay. T47D cells grown within the 3D 

“Fried Egg” invasion assay (5000 cells/well) after day 0 (left) and day 6 (right) of 

cell culture. 
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3. BT474 

 

As shown previously, BT474 cells formed dense, compact, uniform spheroids 

when grown in ULA-plates for 3 days, using a seeding density of 5,000 cells/well. 

Spheroid transfer to Matrigel® coated plates did not disrupt spheroid 

architecture, but transferred cells remained poorly invasive, and invasion was not 

evident with bright field microscopy after 6-days (Figure 2.15). 

 

 

Figure 2.15– BT474 “fried egg” invasion assay. BT474 cells grown within the 

3D “Fried Egg” invasion assay (5000 cells/well) after day 0 (left) and day 6 

(right) of cell culture. 

 

In a similar fashion to MCF-7 cells, siRNA-mediated knockdown of E-cadherin in 

BT474 cells led to the formation of uniform, but less compact spheroids. This led 

to an increase in the fragility of the spheroid, with transfer of the spheroid 

resulting in fracture and disruption to spheroid architecture (Figure 2.16). 
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Figure 2.16 – BT474 spheroid fracture. Spheroid fracture after attempted 

transfer of BT474 spheroid, treated with anti-CDH1 siRNA, during 3D “fried egg” 

assay. 

 

4. MDA-MB-361 

 

MDA-MB-361 cells formed dense, compact, although slightly less uniform 

spheroids, when grown in ULA-plates for 3 days, using a seeding density of 5,000 

cells/well. Although spheroid transfer to Matrigel® coated plates did not disrupt 

spheroid architecture, cells remained poorly invasive, and invasion was not 

evident with bright field microscopy after 6-days (Figure 2.17). 

 

 

Figure 2.17 – MDA-MB-361 “fried egg” invasion assay. MDA-MB-361 cells 

grown within the 3D “Fried Egg” invasion assay (5000 cells/well) after day 0 

(left) and day 6 (right) of cell culture. 
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ER- cell lines 

 

1. MDA-MB-231 

 

As shown previously, MDA-MB-231 cells formed tight, compact, uniform 

spheroids when grown in ULA-plates for 3 days, using a seeding density of 5,000 

cells/well. Spheroid transfer to Matrigel® coated plates did not disrupt spheroid 

architecture. Invasion was evident for up to 6 days and could be imaged 

adequately by both bright field (Figure 2.18) and time-lapse microscopy 

(Supplemental File 3).  

 

 

Figure 2.18 – MDA-MB-231 “fried egg” invasion assay. MDA-MB-231 cells 

grown within the 3D “Fried Egg” invasion assay (5000 cells/well) after day 0 

(left) and day 6 (right) of cell culture. 

 

2. MDA-MB-468 

 

As shown previously, MDA-468 cells formed loose, friable but uniform spheroids, 

when grown in ULA-plates for 3 days, using a seeding density of 5,000 cells/well. 

Due the friable nature of these spheroids, spheroid transfer to Matrigel® coated 

plates resulted in spheroid fracture and complete disruption to spheroid 

architecture (Figure 2.19). This result meant that further use of the assay to assess 

invasion in this cell line was inappropriate. 
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Figure 2.19 – MDA-MB-468 spheroid fracture. Spheroid fracture after 

attempted transfer of MDA-MB-468 spheroid, during 3D “fried egg” assay. 

 

 

Following the development and optimization of both assays described above, their 

use was deemed suitable for assessing cell invasion in ER negative cell lines alone, 

as quantifiable cell invasion was demonstrable and reliable with MDA-MB-231 

and MDA-MB-468 cells. Their use for assessing invasion in ER+ cells meanwhile 

was deemed unsuitable as invasion could not be reliably confirmed using any of 

the cell lines tested. This was partly due to the relatively friable nature of ER 

positive spheroids, as compared to spheroids using the MDA-MD-231 cell line, 

making calculation of the spheroid area (both assays) and spheroid transfer 

(“fried egg” assay) difficult. The lack of demonstrable invasion using these assays 

was also felt to be due to the inherent poor invasive phenotype of the ER+ cell lines 

relative to their ER- counterparts, as can be demonstrated using the previously 

described Boyden chamber invasion assay. This relative poorly invasive 

phenotype for ER+ cell lines may mean the sensitivity of the described 3D invasion 

assays are not sufficient to demonstrate invasion in this context. As such, use of 

these assays within this research are focused on assessing ER negative breast 

cancer cell line alone based upon the following formalized protocols. 
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Cell Line ER/HER2 

status 

Spheroid 

Description 

Invasion in 

Spheroid 

assay 

Invasion in 

Spheroid 

assay 

MCF-7 ER+, HER2- compact, non-

uniform, friable  

No No 

T47D ER+, HER2- compact, non-

uniform 

No No 

BT474 ER+, HER2+ dense, 

compact, 

uniform 

No No 

MDA-MB-

361 

ER+, HER2+ dense, 

compact, 

uniform 

No No 

MDA-MB-

231 

ER-, HER2- tight, compact, 

uniform 

Yes Yes 

MDA-MB-

468 

ER-, HER2- loose, friable, 

uniform 

Yes No 

 

Table 2.5 – Summary of outcomes following optimisation of the 3D 

Spheroid invasion and 3D “fried egg” invasion assays. MDA-MB-231 cells 

showed signs of invasion in both assays, whiles MDA-MB-468 cells were deemed 

only suitable for use in the spheroid invasion assay. ER+ cell lines were poorly 

invasive and showed no evidence of invasion in either assay. 

 

2.4.2.1 3D Spheroid Cell Invasion Assay 

 

Cells were trypsinized and seeded (5000 cells per well in 150l of W5% +/-

treatments) into an Ultra-Low Adherent (ULA) round-bottom 96-well plate and 

incubated at 37C for 72 hours to allow for spheroid formation. 

 

After 72 hours, the plate was inspected by light microscopy to assess the success 

of spheroid formation. Within chosen wells, 50l of medium was carefully 

removed ensuring not to damage the spheroid and was replaced with 50l of 
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Matrigel®, which had been previously defrosted on ice, being careful to avoid the 

introduction of air bubbles. The plate was kept on ice throughout this procedure 

and then subsequently spun by centrifugation at 500/min for 10 minutes at 4C 

to allow adequate mixing of the Matrigel® with the medium and help create a 

central location for the spheroid within the well. The plate was then incubated at 

37C for 2 hours to allow the Matrigel® to set before 100l of medium +/-

treatments was added to each well to overlie the Matrigel® layer. The plate was 

again then incubated at 37C for a further 6 days. Wells were visually inspected by 

light microscopy using a x5 lens at 24 hour periods for signs of invasion of cells 

from the spheroid into the surrounding matrix. 

 

To quantify invasion, the total area of the spheroid (in pixels) on day 0 and day 6 

was calculated from still light microscopy images taken with a x5 lens, using Fiji 

version 2.0. To compare the invasion between replicates and different treatment 

conditions, the relative change in spheroid area was expressed by dividing the 

spheroid area at day 6 by the calculated spheroid area at day 0.  

 

2.4.2.2 3D “Fried Egg” Cell Invasion Assay 

 

Cells were trypsinized and seeded (5000 cells per well in 150l of W5% +/-

treatments) into an Ultra-Low Adherent (ULA) round-bottom 96-well plate and 

incubated at 37C for 72 hours to allow for spheroid formation. 

After 72 hours, the plate was inspected to assess the success of spheroid 

formation. Matrigel® was thawed on ice, and in a separate flat-bottom 96-well 

plate, 50l of Matrigel® was carefully added to coat the bottom of each well to be 

used, ensuring even coverage and avoiding the creation of air bubbles. This plate 

was then incubated at 37C for 2 hours to allow this Matrigel® coating to set. 

 

Once the Matrigel® had set, chosen spheroids were carefully transferred, using a 

1ml pipette, from the ULA round-bottomed plate into the Matrigel® coated wells 

of the flat-bottom plate, along with the accompanying medium. Care was taken to 

avoid spheroid fracture during this procedure. The plate was then incubated for a 

further 2 hours at 37C to allow the spheroid to settle and embed into the 
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Matrigel® base of each well before supplementing each well with a further 150l 

of experimental medium +/-treatments. The plate was then incubated at 37C for 

a further 6 days. Wells were visually inspected by light microscopy using a x5 lens 

at 24 hour periods for signs of invasion of cells from the spheroid into the 

surrounding matrix. 

 

To quantify invasion, the total area of the spheroid (in pixels) on day 0 and day 6 

was calculated from still light microscopy images taken with a x5 lens, using Fiji 

version 2.0. To compare invasion between replicates and under different 

treatment conditions, the relative change in spheroid are was expressed by 

dividing the spheroid area at day 6 by the calculated spheroid area at day 0.  

 

2.4.3 3D spheroid fixation, sectioning and staining  

 

As part of developing the above 3D invasion assays, cells were observed via time-

lapse microscopy during the spheroid formation phase of the procedure, following 

cell seeding in ULA round bottom wells. This was initially done to observe how 

cells became uniformly configured within a 3D spheroid structure from the initial 

random configuration of cells seen within the well immediately after cell seeding 

(Figure 2.20). These time lapse microscopy images, using the MCF-7, T47D and 

BT474 cell lines respectively (Supplemental Files 4-6), were taken over a 72-hour 

period following cell seeding within the ULA round bottom well and demonstrated 

an initial gradual congregation of cells within the centre of the well. In addition to 

this however, these congregated cells appeared to demonstrate a more complex 

interaction with one another, whereby cells present on the outside of the spheroid 

appeared to move centrally via a “folding” action. This was most notable during 

the formation on MCF-7 cell spheroids (Supplemental File 4) and contributed to 

high density appearance of the resultant spheroid. 
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Figure 2.20 – T47D cell spheroid formation. T47D cells seeded into ULA 

round bottom wells (5,000 cells/well) on day 0 (left) formed a relatively 

compact central spheroid on day 3 (right). 

 

Following this observation of complex cell-cell interactions, it was decided to 

design a process that may help further explore the structure of these 3D spheroids. 

This process would involve cell fixation, agar embedment, sectioning and staining 

of the spheroid, without compromising its 3D architecture, allowing its structure 

to be examined in cross-section by microscopy. To achieve this a suitable protocol 

was developed and optimised as described. 

 

Cells were seeded into ULA round bottom wells (5,000 cells/well), as previously 

described, and cultured at 37C for 72 hours to allow spheroid development. 

Following visual inspection by light microscopy to determine spheroid formation, 

spheroids were carefully retrieved from each well using a 1ml pipette, ensuring 

not to disrupt the spheroid architecture, transferred into a sterile Eppendorf 

containing 3.7% formaldehyde in PBS and left to incubate at 40C for 1 hour. 

Meanwhile, a vial of agar was left to melt within a water bath at 37C and a 1ml 

syringe was prepared, by cutting off the tip using a scalpel and partly withdrawing 

the plunger to the 1ml mark, allowing the barrel to fill with air. Following 

incubation, the supernatant was gently decanted from the Eppendorf and the 

spheroids gently transferred using a 1ml pipette into the cut 1ml syringe. Molten 

agar was then quickly transferred to fill the remaining volume of the syringe 

barrel and the plunger gently depressed to remove any excess air. The syringe 
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containing the embedded spheroids were refrigerated at 4C overnight to allow 

the agar to set fully.  

 

The following day the set agar was removed from the 1ml syringe, 3-4mm slices 

were sectioned using a blade before mounting these slices within a cassette. This 

cassette was then submerged in a tank 3.7% formaldehyde for 2 hours at room 

temperature. Following this period, the cassette was removed from the 

formaldehyde and submerged in 10% ethanol for 45 minutes. Subsequently, the 

cassette was transferred through increasing concentration ethanol solutions (i.e. 

20%, 30% etc.) for 45 minute periods each time, until a final concentration 

solution of 70% was reached, where cassettes were left submerged overnight.  

 

The following day the cassettes were again re-submerged in increasing 

concentrations of ethanol solution for 45 minutes each time, until a final 

concentration of 100% ethanol was reached. The cassette was then submerged in 

100% xylene for a total of 150 minutes, refreshing the xylene solution every 30 

minutes before embedding the cassette into 3 consecutive beakers, containing 

molten wax, for 30 minutes each time. A wax mould was then filled with molten 

wax and the pellets transferred from the cassettes into the wax mould before 

allowing the mould to set overnight at room temperature. 

 

The next day 3m sections were cut from the wax mould and were assessed for 

the presence of spheroids by polarised, high contrast light microscopy. Sections 

showing evidence of spheroids were retained and dewaxed by submergence in 

xylene for 14 minutes. These sections were then hydrated by passage through 

graded ethanol solutions (100-70%) being washed in water then finally PBS. 

Sections were then stained in haematoxylin for 5 minutes, washed under running 

tap water for 5 minutes and differentiated in 1% acid alcohol (1% HCl in 70% 

ethanol) for a further 5 minutes. These sections were then again washed under 

running tap water, dipped in ammonia water and then again washed under tap 

water for 5 minutes. Sections were then stained with 1% eosin for 10 minutes 

before undergoing a final wash with running tap water for 5 minutes. Sections 
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were left to air dry and mounted in DPX mounting media before being viewed by 

light microscopy. 

 

The above process was carried out on spheroids grown using a panel of ER+ breast 

cancer cell lines (MCF-7, T47D, BT474 and MDA-MB-361). Images obtained 

through H+E staining of these spheroids (Figures 2.21 and 2.22) demonstrated 

some intrinsic differences between each cell line. Interestingly, images appeared 

to suggest that spheroids formed from MCF-7 cells (Figure 2.21) have a more 

complex and less compact architecture, with evidence of acellular spaces within 

the spheroids structure. In contrast, spheroids formed from T47D, BT474 and 

MDA-MB-361 cells (Figure 2.22) appeared to form more compact homogenous 

spheroids with a relative lack of acellular spaces contained with the spheroid 

architecture. 

 

While these images and the underlying process involved helps to provide a better 

understanding of spheroid architecture, it may also have potential future practical 

applications. This may include allowing a cross section of the spheroid to be 

examined by ICC in future assays, allowing for the assessment of differential 

protein expression, based on cellular response to its environment, including the 

location of the cell within this 3D structure. 
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Figure 2.21 – MCF-7 spheroid cross section architecture. MCF-7 cell 

spheroids grown for 72 hours before being fixed, sectioned and stained with 

H+E. MCF-7 cell spheroids demonstrated a complex architecture with acellular 

areas contained within the spheroid structure. 

 

 

Figure 2.22 – Cross sectional architecture of alternative ER+ cell line 

spheroids. T47D, BT474 and MDA-MB-361 cell spheroids grown for 72 hours 

before being fixed, sectioned and stained with H+E. T47D, BT474 and MDA-MB-

361 cell spheroids demonstrated a compact homogenous architecture. 
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2.5     Cell Migration Assays 

 

2.5.1 2D Boyden Chamber Cell Migration Assay 

 

The bottom surface of Boyden Chamber inserts (Costar® 3422, 24-well plate 

with 6.5mm diameter, 8m pore inserts) were submerged in a 1/100 dilution of 

fibronectin in WRPMI (10g/ml, 300l per well) and incubated for 2 hours at 37C 

to achieve a fibronectin coating of the porous membrane of the insert. After 2 

hours, the inserts were removed and the fibronectin allowed to air dry by being 

placed upside down within a sterile cabinet for 15 minutes.  

 

Once dry the inserts were then returned into the empty wells of the 12-well plate 

and 650l of experimental medium was pipetted into the lower chamber of each 

well. Cells were then trypsinized and 4000 cells (within a volume of 200l) was 

pipetted into the upper chamber of each insert. The plate was then incubated at 

37C for 24 hours to allow cell migration to take place. 

 

After 24 hours, inserts were removed from their corresponding well, the medium 

from the upper chamber removed by pipette and remaining cells within the inside 

of the insert carefully and gently removed with a cotton bud. In a fume cabinet, the 

membrane of each insert was submerged in a 3.7% formaldehyde solution for 15 

minutes for cell fixation to take place. Each membrane was then twice washed by 

submersion in PBS and left to air dry briefly. The inserts were then submerged in 

0.5% crystal violet solution for 15 minutes for staining. Following this step, the 

inserts were twice washed by submersion in PBS, followed by a final wash with 

distilled water before being allowed to air dry. 

 

For quantification, cells were visualized under light microscopy using a x10 lens. 

Cell counts were taken from 10 fields viewed in a systematic fashion for each 

membrane. 
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2.6   Cell Growth Assays  

 

2.6.1 MTT Cell Proliferation/Metabolism Assay 

 

The MTT cell proliferation/metabolism assay relies on the metabolism of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium dehydrogenase enzymes 

within cellular mitochondria to produce formazan crystals. The cells are then 

lysed to release these crystals, which are dissolved within the lysate solution. The 

optical density of the solution is then measured to produce a figure that is 

considered proportional to cellular metabolism for comparison between 

variables. 

 

Cells were harvested and seeded into a 96-well plate at a density of 5000 

cells/well and maintained under experimental conditions over a period of 6 days. 

The medium from each well was then removed and wells were washed gently with 

warm PBS (150l per well), taking care not to disrupt cells attached to the bottom 

of the well. The PBS was then removed and replaced with 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl-2H-tetrazolium dehydrogenase (MTT). The plate was then 

incubated at 37C for 4 hours. After this time, the MTT was removed and replaced 

with Triton-X-100 (100l/well) and the plate kept in a sealed plastic bag at 4C 

overnight. Data was obtained by recording the optical density (wavelength 

560nm) of each well using an ELISA plate reader (mean of eight separate wells per 

condition), with experiments repeated using a minimum of three biological 

replicates. 

 

 

 

 

 

 

 

 

2.6.2 Cell Counting Assay 
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Cells were harvested and seeded in 35mm dishes at a density of 100,000 cells/dish 

and maintained under experimental conditions to grow over a period of 6 days. 

The medium from each dish was then removed and cells were incubated with 1ml 

of Trypsin (0.05%)/EDTA (0.02%) in PBS for 3-5 minutes at 37C. The cell/trypsin 

suspension was then neutralised with an equal volume of culture medium and the 

cells suspension transferred to a universal container. Cells were then pelleted by 

centrifugation (Jouan C312, Thermo Fisher Scientific Inc, MA, USA) at 1000rpm 

for 5 minutes. 

 

The cell pellet was then re-suspended in 1ml of warm culture, before being passed 

through a 25G syringe needle, to create a single cell suspension. Assessment of cell 

number was then made by adding 100μl of the re-suspended cell solution in 10ml 

of Isoton® II solution before cell counting was determined using a CoulterTM 

Multisizer II (Beckman Coulter UK Ltd, High Wycombe, UK). Total cell number 

within the initial dish was then calculated by determining the number of cells per 

ml of cell suspension. 
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2.7 Immunocytochemistry Analysis 

 

2.7.1 Estrogen Receptor Immunocytochemistry Analysis (ER-ICA) Fixation 

 

Cells were seeded in 35mm dishes (100,000 cells per dish), containing 3-

triethoxysilylpropylamine (TESPA) coated coverslips, and incubated at 37C for 

the desired time-course of each individual experiment, with and without 

appropriate treatments. 

 

For ER-ICA fixation coverslips were removed from the growth medium and 

inserted into a coverslip rack, which was immediately submerged in a tank of 3.7% 

formaldehyde at room temperature for 15 minutes. The rack was then removed 

and submerged in a tank of PBS, at room temperature, for 5 minutes. Following 

this PBS wash the rack was transferred and submerged into a tank of methanol for 

5 minutes, followed by a tank of acetone for 3 minutes, both maintained at a 

temperature of -10C to -30C by surrounding each tank with dry ice. Finally, the 

rack was submerged for a further 5 minutes in a tank of PBS kept at room 

temperature for a final wash, before storing each of the coverslips in sucrose 

storage medium, at -20C, ready for future use. 

 

2.7.2 ICC staining of TESPA coated coverslips for Total ER 

 

Following ER-ICA fixation of coverslips (see method above), coverslips were 

washed three times by submersion in PBS for 3 minutes each. The coverslips were 

then blocked by submersion in a solution of 0.03% PBS/Tween for 3 minutes. 

Excess solution was then removed prior to application of the primary antibody. 

The NCL ER clone 6F11 (Mouse) antibody was then added to each to each 

coverslip (1:150 dilution on PBS, 50l per coverslip) and left to incubate at room 

temperature for 60 minutes. The coverslips were then rinsed with PBS and 

washed twice, for 5 minutes, with a solution of 0.03% PBS/Tween. A drop of DAKO 

Mouse Envision secondary antibody was then added to each coverslip and left to 

incubate at room temperature for 60 minutes, before again rinsing with PBS, 
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followed by two washes with 0.03% PBS/Tween for 5 minutes each. 50l of DAKO 

DAB Chromogen (1 drop of DAB combined with 1ml of substrate) was then 

applied to each of the coverslips and left to incubate at room temperature for 10 

minutes. Coverslips were then washed twice with distilled water, for 5 minutes 

each. Counterstaining was subsequently performed by applying 4% Ehrlich’s 

haematoxylin, followed by two washes with tap water, for 2 minutes each. 

Coverslips were left to air dry completely before mounting on slides using DPX 

mounting medium. 

 

2.7.3 ICC staining of TESPA coated coverslips for PELP-1 

 

Following ER-ICA fixation of coverslips (see method above), coverslips were 

washed three times by submersion in PBS for 3 minutes each. The coverslips were 

then blocked by submersion in a solution of 0.03% PBS/Tween for 3 minutes. 

Excess solution was then removed prior to application of the primary antibody. 

The PELP-1 polyclonal (Rabbit) antibody was then added to each to each coverslip 

(1:100 dilution on PBS, 50l per coverslip) and left to incubate at room 

temperature for 60 minutes. The coverslips were then rinsed with PBS and 

washed twice, for 5 minutes, with a solution of 0.03% PBS/Tween. A drop of DAKO 

Rabbit Envision secondary antibody was then added to each coverslip and left to 

incubate at room temperature for 60 minutes, before again rinsing with PBS, 

followed by two washes with 0.03% PBS/Tween for 5 minutes each. 50l of DAKO 

DAB Chromogen (1 drop of DAB combined with 1ml of substrate) was then 

applied to each of the coverslips and left to incubate at room temperature for 10 

minutes. Coverslips were then washed twice with distilled water, for 5 minutes 

each. Counterstaining was subsequently performed by applying 4% Ehrlich’s 

haematoxylin, followed by two washes with tap water, for 2 minutes each. 

Coverslips were left to air dry completely before mounting on slides using DPX 

mounting medium. 

 

The intensity of staining by ICC for PELP-1 (and ER) was determined by 

calculating a Histoscore (H-score) for each slide examined. This would allow for 

an objective comparison when assessing protein expression between different 
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experimental variables. To determine a H-score the proportion of cells in each 

slide examined that stained (1) weakly, (2) moderately, and (3) strongly for PELP-

1 (or ER) was manually assessed. The H-score for each slide was then calculated 

using the following equation (giving a score within a range of 0-300): 

 

H-score = (3 x % strongly staining cells) + (2 x % moderately staining cells)  

+ (1 x % weakly staining cells) 

 

2.7.4 Use of confocal microscopy to detect protein co-localization 

 

MCF7 cells were grown in the presence and absence of endocrine agents to 70% 

confluency on size 0 coverslips. Coverslips were then fixed in 4% (vol./vol.) 

formaldehyde/PBS for 15 minutes, followed by ice-cold (-20C) methanol for 5 

minutes and ice cold (-20C) acetone for 3minutes. Cells were then further 

permeabilized with 2% (vol./vol.) Triton-X-100 for 5 minutes. An overnight 

incubation at 21°C was performed with a mixture of rabbit anti-PELP1 (1:100 Cell 

Signalling Technology, clone D5Q4W in PBS) and monoclonal anti-ER (1:100 

Vector, clone 6F11,) antibodies. After primary antibody incubation, cells were left 

for 90 minutes to incubate at room temperature with the secondary antibody (ER 

= goat anti mouse-594 antibody, PELP-1 = Alexa-fluor goat anti-rabbit-488 

antibody) (1:1000 vol/vol in PBS). Cells were then washed and mounted on glass 

slides. Confocal fluorescence microscopy analysis was conducted on a Leica SP5 

inverted confocal laser scanning microscope equipped with a 63x oil-immersion 

objective, 488/633 nm excitation laser lines and 545 nm beam-splitter. Images 

were recorded using the sequential scanning mode to prevent fluorescence 

channel crosstalk/ bleed-through. Images were scanned at 100 Hz with a line 

average of three to reduce noise. Co-localization of PELP1 and ER was visualized 

as areas of yellow/orange within the microscopic field. 
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2.8 GM generation of stable EGFP-expressing MCF-7 cell line 

 

2.8.1 Plasmid Preparation 

 

The bacteria containing the plasmid of interest were purchased within an agar 

slab (Figure 2.23). Bacteria were retrieved from the slab and streaked across an 

agar plate using an inoculation loop. The plates were then incubated overnight at 

37C with 5% CO2. 

 

The following morning a single colony from the agar plate was selected and placed 

within a starter culture, containing 5ml of Lysogeny broth (LB) medium with the 

appropriate selective antibiotic (ampicillin). This starter culture was then 

incubated for 8 hours at 37C within an orbital shaker set at a frequency of 

300rpm. The starter culture was then diluted into a larger volume of selective LB 

medium (200l of starter medium into 100ml LB broth – 1/500 dilution), which 

was then incubated overnight at 37C within an orbital shaker set at a frequency 

of 300rpm. 
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Figure 2.23 – Representation of the pcDNA3-EGFP plasmid used in the 

creation of EGFP-expressing MCF-7 breast cancer cells. The plasmid consists 

of 6160bp, with a 5446bp backbone. Contained within the plasmid are a 700bp 

EGFP insert, along with sites corresponding to ampicillin and geneticin (G418) 

resistance for use as selectable markers. 
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2.8.2 Plasmid Purification 

 

Plasmid Purification was performed via the Endofree® Plasmid Purification Kit 

(Qiagen®). The bacterial cells produced from the previously mentioned overnight 

culture were harvested by centrifugation of the flask at 6000xg for 15 minutes at 

4C. The supernatant was then discarded and the bacterial cells re-suspended in 

10ml of Buffer P1 (with added RNAase A) to induce cell lysis. The lysate was then 

transferred from the culture flask to a 50ml Falcon® tube. Once the cells had been 

completely re-suspended, 10ml of buffer P2 was added and mixed thoroughly by 

vigorous inverting and the suspension was then left to incubate at room 

temperature for 5 minutes. During this incubation period the QIAfilter Maxi 

Cartridge was prepared within a separate 50ml Falcon® tube. Chilled buffer P3 

(10ml) was then added to the lysate and mixed immediately by vigorous inverting 

to aid precipitation of genomic DNA, proteins and cell debris. The lysate was then 

carefully poured into the barrel of the QIAfilter cartridge and left to incubate at 

room temperature for 10 minutes, allowing a precipitate containing proteins, 

genomic DNA and detergent to float to the top of the cartridge. The cap at the 

bottom of the QIAfilter Maxi Cartridge was then removed and the plunger gently 

inserted to filter the lysate into the 50ml Falcon® tube. At this stage, a 120l 

sample of the filtered lysate (Sample 1) was collected and saved for later 

assessment on an analytical gel to determine whether growth and lysis conditions 

were optimal.  

 

The QIAfilter Maxi Cartridge was then disposed of and 2.5ml of Buffer ER was 

added to the filtered lysate (containing the plasmid of interest) and the lysate left 

to incubate on ice for 30 minutes. During this incubation period the Qiagen-tip 500 

was equilibrated by applying 10ml of Buffer QBT to the column and allowing this 

to empty completely by gravity flow. After incubation, the filtered lysate was then 

passed through the Qiagen-tip 500 and allowed to empty by gravity flow, allowing 

the plasmid DNA to be trapped by passing through the QIAGEN resin at the bottom 

of the device. At this stage, a 120l sample of the flow through was collected and 

saved (Sample 2) for later assessment by the analytical gel, to determine the 

efficiency of plasmid binding to the QIAGEN resin. The Qiagen-tip was then twice 
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washed by passing 30ml (x2) of Buffer QC through its column, removing all 

contaminants within the resin. At this point a 240l sample from the combined 

fractions of the wash was taken and saved for the analytical gel (Sample 3). 

 

The plasmid DNA was then eluted from the Qiagen resin by passing 15ml of Buffer 

QN through the column and collected in an endotoxin free tube, with a 60l sample 

of the eluate kept for analysis by the analytical gel (Sample 4). 

The DNA plasmid was then precipitated by adding 10.5ml of room-temperature 

isopropanol, which was mixed, and then the solution immediately centrifuged at 

15000xg for 30 minutes at 4C. The supernatant was then carefully decanted to 

leave a pellet of Plasmid DNA, which was washed with 5ml of endotoxin-free, 70% 

ethanol and again centrifuged at 15000xg for 10 minutes (ensuring all traces of 

isopropanol are removed) and the supernatant carefully decanted. The pellet was 

then air dried for 10 minutes and re-dissolved in endotoxin-free Buffer TE.  

 

To determine the plasmid yield, DNA concentration was determined by UV 

spectrophotometry at 260nm. Qualitative analysis was determined by running the 

plasmid on an agarose gel, after cleavage with the restriction enzymes BamH1 and 

EcoR1 respectively, at variable dilutions (Figure 2.24). On the same gel, the 

samples taken and stored (1-4) during the various steps of the purification 

process, were analyzed to assess the efficiency of each step of the technique. 

Following adequate quantitative and qualitative assessment, the dissolved DNA 

plasmid was aliquoted and stored at -20C until needed. 
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Figure 2.24 – Agarose gel demonstrating expression on non-cleaved EGFP 

plasmid at 1:10, 1:100 and 1:1000 dilution, alongside cleaved form of EGFP 

plasmid using restriction enzymes BamH1 and EcoR1. The non-cleaved form 

of the plasmid demonstrates several bands on the gel, based upon migration of 

its folded and un-folded forms. The plasmid signal becomes weaker with 

dilution. Cleavage forms of the plasmid, using restriction enzymes BamH1 and 

EcoR1, reveal a single band, corresponding to the 6160bp plasmid size. 

 

2.8.3 Plasmid Transfection 

 

Plasmid transfection was performed using the lipid based Fugene 6® transfection 

reagent. The appropriate volume(s) of plasmid DNA, transfection reagent and 

medium used for each transfection were identified using the table shown in 

Appendix 7.14. The transfection procedure was initially optimised for the MCF-7 

cell line by varying the Fugene 6®: plasmid DNA ratio and transfection incubation 

time. Following this period of optimization, the final transfection protocol was as 

follows: 
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Initially, the Fugene 6® reagent was diluted with an appropriate volume of serum-

fee medium within an Eppendorf tube, by pipetting the Fugene 6® reagent 

directly into the medium without allowing contact with the walls of the tube. The 

Eppendorf was then tapped to allow mixing and then the Eppendorf incubated at 

room temperature for 5 minutes. An appropriate volume of plasmid DNA was the 

then added to the diluted Fugene 6® reagent using a 3:1 ratio (i.e. 1g of plasmid 

DNA for every 3l of concentrated Fugene 6® reagent). The Eppendorf contents 

were then mixed once more by tapping the tube gently and left to incubate at room 

temperature for 15 minutes.  

 

MCF-7 cells grown to 70% confluence within 35mm dishes, in preparation for 

transfection were then removed from the incubator and the lipid/Plasmid DNA 

complex added in a dropwise manner whilst swirling the plate/flask to ensure 

coverage of the entire surface. The cells were then returned to the incubator for 

culture at 37C for 72 hours prior to identification of successful transfection, 

through detection of EGFP expression by fluorescent microscopy. 

 

2.8.4 Selection and Clonal Expansion of Transfected EGFP Cell Line 

 

Selection of EGFP-expressing cells within the transfected cohort of MCF-7 cells 

was performed by culturing cells in the antibiotic Geneticin (G418). This would 

cause cellular toxicity and cell death of wild-type MCF-7 cells, while preserving 

EGFP-expressing cells due to the presence of a G418 resistant gene encoded on 

the transfected plasmid.  

 

The optimum G418 dose was determined by constructing a kill curve using wild-

type MCF-7 cells. To do this MCF-7 cells were seeded in 35mm culture dishes 

(100,000 cell/dish) and cultured in W5% medium overnight at 37C. The 

following day medium was replaced with W5% medium containing staggered 

doses of Geneticin (G418) antibiotic (0 – 1.1mg/ml) in duplicate, and cells were 

cultured at 37C for a further 6 days, with the medium replaced every 3 days. Cells 

were then trypsinized and counted using a Coulter counter to determine the 

surviving cell number. Based on the resulting kill-curve (Figures 2.25), the 
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Geneticin dose necessary to produce relative cell survival of less than 20% was 

determined as 0.6mg/ml. This dose was also confirmed by repeating the 

experiment using an MTT assay in place of cell counting. 

 

Transfected cells were cultured in W5% medium containing 0.6mg/ml of 

Geneticin, changing the culture medium every 3 days, for 7 days in total, after 

which the cells were maintained in routine culture of R5% medium containing a 

lower dose of 0.1mg/ml Geneticin.  

 

To develop a clonal cell line of uniformly expressing EGFP-transfected MCF-7 cells, 

this heterogeneous group of cells was trypsinized, diluted and re-seeded into a 96-

well plate at a density of 1 cell per well. Cells were maintained in culture at 37C 

in R5% medium, containing 0.1mg/ml of G418, with the culture medium changed 

every 3 days. Each well was then inspected after 24 hours using both bright-field 

and fluorescent microscopy to identify wells containing a single EGFP-expressing 

cell. These wells were marked and then observed daily to visually assess the rate 

of cell proliferation and cell number. After 7-days incubation in this environment 

these wells were again visualised with fluorescent microscopy to detect 3 wells 

containing cells with the brightest expression of EGFP, determined visually. Cells 

within each of these 3 wells were trypsinized and re-suspended in culture flasks 

containing R5% medium, containing 0.1mg/ml G418, labelled as clones 1, 2 and 3 

respectively, and grown and maintained in routine cell culture at 37C until 

needed (Figure 2.26). 
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a. 

 

b. 

 

Figure 2.25 – Kill curve demonstrating survival effect of MCF-7 cells 

following treatment with a varying dose of G418, assessed using (a) MTT 

and (b) cell counting assays. Cell survival is reduced as the dose of G418 

increased. 
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Figure 2.26 - Evidence of EGFP expression at each stage of cell line 

development. EGFP-transfected MCF-7 cells were diluted and re-seeded into a 

96-well plate (1 cell/well). Cells were maintained in culture and each inspected 

to detect wells containing cells with the brightest expression of EGFP.   
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2.9 Graphics and Statistical Analysis 

 

All graphical data is presented using Prism Graphpad® version 6 statistical 

software. Pictorial data, such as cell counting from still images and 3D spheroid 

analysis, was assessed using ImageJ ® version 2.0.0. Densitometry of Western 

blotting data was performed using Image Studio®. Statistical analysis was 

performed using SPSS® 20. Statistical significance was determined by a p-value 

of <0.05. For analysis of data comparing two independent variables an 

independent samples t-test was performed where data followed a normal 

distribution, while a Mann-Whitney test was performed in cases where the data 

was deemed to be non-parametric. For comparison of multiple variables, a one-

way ANOVA test was performed to assess for a significance across the dataset, 

with a post-hoc Bonferroni test used to assess significance between two of the 

variables within the dataset. 
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3.0 Results 

 

3.1 Exploring the effect of endocrine therapies in an E-

cadherin deficient model of Luminal A breast cancer 

 

3.1.1 Introduction 

 

Previous work from the BCMPG intriguingly revealed that (i) endocrine agents 

consistently stimulate a modest increase in cellular invasion and migration in 

endocrine-responsive, ER+ breast cancer cells and that (ii) these effects are 

greatly augmented when E-cadherin expression is lost (133, 134).  

 

These observations have potential clinical ramifications as they demonstrate that 

the response to endocrine therapy is variable amongst endocrine responsive, ER+ 

tumours. Further to this, they may represent that at least a subset of ER+ tumours 

demonstrate an adverse response to some endocrine therapy, such as tamoxifen, 

and patients with such tumours may be better served with an alternative 

endocrine therapy. If so, further knowledge of this response along with any 

underlying mechanisms involved would be invaluable in trying to optimise and 

personalise adjuvant therapy based on tumour biology. 

 

The initial aim of this thesis was therefore to establish a model of E-cadherin 

deficiency in ER+ MCF-7 breast cancer cells with which to explore, at a 

mechanistic level, the processes underlying this phenomenon. Prior to this 

however, the response to endocrine therapies as described above would need to 

be validated, both within the MCF-7 cell line and amongst other ER+ breast cancer 

cell lines, to determine the relative generality/specificity of these findings. 
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3.1.2 Establishment of an E-Cadherin deficient ER+ breast cancer 

cell model using siRNA mediated knockdown of the CDH1 

gene 

 

To investigate the response of breast cancer cells to endocrine therapy in the 

setting of E-Cadherin deficiency, gene-silencing technology using siRNA was used 

to create E-Cadherin knockdown in ER+ breast cancer models.  

 

A 72-hour lipid-based transfection system was utilized using Dharmafect 

smartpool® CDH1 siRNA (methods 2.2.6). Initially, transfection was optimized 

using a range of concentrations of siRNA (100nm, 150nm, 200nm) to determine 

the most effective dose of siRNA for knockdown of the target (assessed by Western 

blot analysis). siRNA dose-optimization was performed initially using the luminal 

A, MCF-7 cell line (Figure 3.1), where Western blot data revealed successful 

knockdown of E-cadherin at all doses tested; no difference was seen in the level of 

suppression when using the 100nm, 150nm or 200nm siRNA concentrations. 

Successful knockdown of E-cadherin was also achieved using the ER+, HER2+, 

BT474 cell line (Figure 3.2). Western blot data again confirmed no significant 

difference in the level of E-cadherin knockdown between siRNA doses. Based on 

this data, experiments would proceed using the 100nm anti-CDH1 siRNA to 

produce optimum knockdown of E-cadherin, whilst avoiding the potential 

consequences of cellular siRNA toxicity from using a higher dose. 

 

Given that some of the proposed assays to be completed in this work required a 

prolonged treatment time, it was next necessary to determine whether E-cadherin 

knockdown could be sustained for an appropriate period, using the siRNA 

transfection method described. A time course experiment was therefore designed 

where cells, transfected with control (non-targeting/NT) or CDH1-specific 

(CDH1) siRNA, were lysed for analysis by Western blot on 6 sequential days from 

the end of the 72-hour transfection period, to evaluate if suppression of E-

cadherin expression was sustained over this period. This experiment was again 

performed again using both the MCF-7 and BT474 cell lines (Figures 3.3 and 3.4). 
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Results for both cell lines showed that E-Cadherin expression continued to be 

suppressed using this method for up to 6 days following siRNA withdrawal, 

indicating the suitability of this method for use in future assays of a similar time 

course. 

 

As a further aim of this work was to explore the consequences of E-cadherin 

deficiency and endocrine response in a 3D matrix-enriched context, it was next 

appropriate to determine that this siRNA approach was suitable for this. MCF-7 

cells, transfected with NT and CDH1-specific siRNA, were cultured in 3 different 

conditions before cells were lysed for analysis with Western blotting (Figure 3.5). 

The three conditions were: (i) cells lysed immediately following the 72hrs siRNA 

transfection period; (ii) cells harvested following siRNA transfection and re-

seeded in 2D culture for a further 6 days and (iii) cells harvested after 72hrs siRNA 

treatment and used in Matrigel© 3D embedded cell culture for a further 6 days 

prior to cell lysis and Western blotting. Results showed that knockdown of E-

cadherin was adequately sustained for 6 days in both 2D and 3D cell culture, 

indicating this method of knockdown is also suitable for use in similar future 3D 

cell culture experiments. 
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Figure 3.1 – E-cadherin expression in MCF-7 cells following CDH1 siRNA 

treatment. Western blotting and densitometry data demonstrating the 

expression of E-cadherin and Actin in MCF-7 cells, 72 hours after NT and CDH1 

siRNA transfection, using 100nm, 150nm and 200nm dose of siRNA respectively. 

E-cadherin expression is suppressed using 100nm, 150nm and 200nm dose of 

CDH1 siRNA in MCF-7 cells. 

  



 112 

 

 

 

 

Figure 3.2 – E-cadherin expression in BT474 cells following CDH1 siRNA 

treatment. Western blotting and densitometry data demonstrating the 

expression of E-cadherin and Actin in BT474 cells, 72 hours after NT and CDH1 

siRNA transfection, using 100nm, 150nm and 200nm dose of siRNA respectively. 

E-cadherin expression is suppressed using 100nm, 150nm and 200nm dose of 

CDH1 siRNA in BT474 cells. 
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Figure 3.3 – Time course of E-cadherin expression in MCF-7 cells following 

CDH1 siRNA treatment. Western blotting and densitometry data demonstrating 

the expression of E-cadherin and Actin in MCF-7 cells on 6 consecutive days 

following the withdrawal of NT and CDH1 siRNA treatment (100nm). E-cadherin 

suppression is maintained for up to 6 days following withdrawal of siRNA 

treatment in MCF-7 cells. 
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Figure 3.4 - Time course of E-cadherin expression in BT474 cells following 

CDH1 siRNA treatment. Western blotting and densitometry data demonstrating 

the expression of E-cadherin and Actin in BT474 cells on 6 consecutive days 

following the withdrawal of NT and CDH1 siRNA treatment (100nm). E-cadherin 

suppression is maintained for up to 6 days following withdrawal of siRNA 

treatment in BT474 cells. 
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Figure 3.5 - Time course of E-cadherin expression in MCF-7 cells 

maintained in 2D and 3D cell culture following CDH1 siRNA treatment. 

Western blotting and densitometry data demonstrating the expression of E-

cadherin and Actin in MCF-7 cells grown in 2D and 3D cell culture following the 

withdrawal of NT and CDH1 siRNA treatment (100nm). E-cadherin suppression 

is maintained for up to 6 days following withdrawal of siRNA treatment in in 

both 2D and 3D cell culture, in MCF-7 cells. 
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3.1.3 Tamoxifen induces invasion in wild type and E-cadherin 

(CDH1) deficient MCF-7 cells  

 

After establishing a model of E-cadherin deficiency in MCF-7 cells, the next step 

was to confirm the findings previously described by the BCMPG (134), whereby 

tamoxifen therapy increased the invasiveness of E-cadherin deficient MCF-7 cells, 

and subsequently to expand on these observations by exploring additional 

endocrine treatments. To assess this, E-cadherin expression was suppressed in 

MCF-7 cells (+/-endocrine treatment) and the cells seeded into Matrigel®-coated 

trans-well invasion chambers, with invasion assessed after 3 days. 

 

These data revealed that wild-type MCF-7 cells were poorly invasive (Figure 3.6), 

although intriguingly tamoxifen treatment consistently resulted in a modest, yet 

statistically significant, increase in invasion (p=0.015) compared with untreated 

cells. In contrast, E-cadherin knockdown resulted in a significant gain in the 

number of cells invading, compared to cells transfected with NT siRNA (p=0.002); 

this increase in invasiveness was dramatically augmented in the presence of 

tamoxifen (p<0.001) with more than a 20-fold increase in the number of invading 

cells seen compared to control. 
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Figure 3.6 – Cell invasion in MCF-7 cells treated with tamoxifen (TAM) +/- 

CDH1 siRNA. MCF-7 cells were treated with non-targeting (NT) or CDH1 

targeting (CDH1) for 72 hours before assessing their invasive capacity in control 

or tamoxifen (1x10-7M) containing medium. Both wild-type (NT) and E-cadherin 

deficient (CDH1) cells treated with tamoxifen promoted an increase in cell 

invasion through Matrigel©. The graph shows the results for the mean of three 

separate experiments. 
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3.1.4 Establishment and optimization of a new 2D cell invasion 

assay, utilizing a stably transfected EGFP-expressing MCF-7 

cell line 

 

Whilst the trans-well invasion assay used described above (Methods 2.4.1) 

demonstrated reliable results when investigating the effect of endocrine therapy 

on breast cancer cell invasion, an assessment as to whether this assay could be 

further improved was undertaken. The original assay involved assessing the 

number of cells invading through an ECM within the setup of a Boyden Chamber. 

The final part of this assay involved fixing and then staining the invasive cells 

within the Boyden chamber insert with DAPI to visualize the nuclei of cells using 

fluorescent microscopy, which allowed for cell counting. 

 

Whilst this was an effective assay, in an aim to improve the assay efficiency, 

particularly by avoiding the need for nuclei staining as part of this final step, an 

alternative method for cell counting was trialed. This involved the generation and 

maintenance of a stable fluorescent MCF-7 cell line, whereby cells could be 

individually counted using fluorescent microscopy set at the appropriate 

wavelength, avoiding the need for fixing and staining altogether. A stable clonal 

EGFP-tagged MCF-7 cell line was therefore developed for this purpose (Methods 

2.8). 

 

To assess the effectiveness of this method of cell counting, as compared to cell 

counting via DAPI staining, an invasion assay to assess the capacity of EGFP-

tagged MCF-7 cells, grown in 2D cell culture, to invade through a Matrigel® matrix 

over a 48-hour period, was employed. As previously described, E-cadherin 

knockdown cells (CDH1) were compared with wild-type cells (NT) grown in the 

presence and absence of 6-day tamoxifen treatment (1x10-7M). To clarify the 

accuracy and effectiveness of the different methods of cell counting, invasive cells 

present of the underside of the Boyden chamber insert after 72 hours of invasion 

was initially counted using fluorescent microscopy to detect EGFP expression 

(wavelength 488nm) of live cells, prior to formaldehyde fixation, following gentle 
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removal of the overlying Matrigel® matrix with a cotton bud. Inserts were then 

fixed with 3.7% formaldehyde, stained with DAPI, and mounted as previously 

described (Methods 2.4.1), before cell counts were again taken by fluorescent 

microscopy, using settings to detect both EGFP (wavelength 488nm) and DAPI 

(wavelength 358nm) expression. Results using all three methods for cell detection 

and counting in the context of this assay were then compared (Figure 3.7). 

 

Results demonstrated that while all 3 methods of counting appeared to provide a 

similar pattern of results as described previously (Results 3.2), it was clear that 

there was an undercounting of cells using techniques that utilized EGFP 

expression. Reasons for this relative undercount can be explained by difficulty in 

assessing and differentiating cell numbers when cells are located in clusters using 

the EGFP technique, as opposed to the more defined nuclear staining using DAPI. 

In addition, due to the convexity of the Boyden chamber membrane, counting in-

situ EGFP-expressed cells required constant re-focusing of the microscope 

depending which part of the membrane is visualized, which could account for 

some cells not being counted. While this was not a problem when the cells were 

fixed and the membrane mounted using a coverslip, fixation in 3.7% 

formaldehyde did have a delayed bleaching effect on EGFP-expression, which 

required slides to be counted within 24 hours of fixation. While the relative 

undercounting of cells using the EGFP technique would not preclude this method 

being used in future parts of the project, as the trend in invasion was not dissimilar 

to the DAPI-staining technique, due to the time delay from optimization of EGFP 

cell counting, and for consistency purposes, the original DAPI-staining technique 

was chosen for the remainder of the project. 
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Figure 3.7 – Cell invasion in MCF-7 cells treated with tamoxifen (TAM) +/- 

CDH1 siRNA, determined by cell counting methods utilizing EGFP and DAPI 

expression. MCF-7 cells were treated with non-targeting (NT) or CDH1 

targeting (CDH1) siRNA for 72 hours before assessing their invasive capacity in 

control or tamoxifen containing medium. Both wild-type (NT) and E-cadherin 

deficient (CDH1) cells treated with tamoxifen promoted an increase in cell 

invasion through Matrigel©. Counting via EGFP-tagged cells showed similar 

results to DAPI staining, but led to relative undercounting of the cell number. The 

graph shows the results for the mean of three separate experiments. 
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3.1.5 Tamoxifen induces migration in wild type and E-cadherin 

(CDH1) deficient MCF-7 cells 

 

In addition to assessing the consequences of E-cadherin loss on the invasive 

response of ER+ breast cancer cells to tamoxifen, it was also desirable to 

determine whether tamoxifen could induce a migratory phenotype in cells lacking 

E-cadherin. To do this trans-well chambers with membranes coated with 

fibronectin were employed. 

 

Non-migratory wild-type MCF-7 cells were seen to shown an increase in their 

migratory capacity in response to tamoxifen (Figure 3.8; p=0.017), and when E-

cadherin expression was suppressed (p<0.001). The combined action of E-

cadherin suppression and tamoxifen treatment resulted in a dramatic increase in 

cellular migration (~5-6 fold vs. control; p<0.001). 
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Figure 3.8 - Cell migration in MCF-7 cells treated with tamoxifen (TAM) +/- 

CDH1 siRNA. MCF-7 cells were treated with non-targeting (NT) or CDH1 

targeting (CDH1) siRNA for 72 hours before assessing their migratory capacity in 

control or tamoxifen (1x10-7M) containing medium. Both wild-type (NT) and E-

cadherin deficient (CDH1) cells treated with tamoxifen promoted an increase in 

cell migration. The graph shows the results for the mean of three separate 

experiments. 
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3.1.6 Tamoxifen inhibits proliferation in wild-type and E-

Cadherin deficient MCF-7 cells 

 

One possible explanation for the increase in invasion and migration seen with 

tamoxifen treatment of E-cadherin deficient cells is that tamoxifen induces 

cellular proliferation, which accounts for the increase in observed cell numbers. 

To explore whether this hypothesis was true, the effects of tamoxifen on cellular 

proliferation +/- CDH1 knockdown was investigated using two different 

approaches. 

 

The hypothesis was initially investigated by assessing 3-day cellular growth in the 

presence and absence of tamoxifen +/- CDH1 knockdown within a 96-well plate 

using an MTT assay (Figure 3.9a). This data showed no significant difference in 

cellular proliferation between E-cadherin competent and E-cadherin deficient 

MCF-7 cells. In both cases however, tamoxifen treatment resulted in a reduction 

in growth compared to control (p<0.0001). 

 

MTT data was further confirmed using cell counting experiments. Cells were 

grown for 3 days in 35mm culture dishes under each of the studied conditions in 

duplicate, with formal cell counts taken using a Coulter counter. When using this 

technique, we see similar results to that produced by the MTT assay (Figure 3.9b), 

whereby there is no significant difference in final cell number when comparing 

wild-type with E-cadherin deficient cells both with and without tamoxifen. A 

suppression in the final cell number was again seen with tamoxifen therapy in 

both arms of the experiment however (p<0.0001). 
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a. 

 

b. 

 

Figure 3.9 - Cell proliferation in MCF-7 cells treated with tamoxifen (TAM) 

+/- CDH1 siRNA, determined by (a.) MTT and (b.) cell counting assays. MCF-

7 cells were treated with non-targeting (NT) or CDH1 targeting (CDH1) siRNA 

for 72 hours before assessing 3-day proliferation in control or tamoxifen (1x10-

7M) containing medium via MTT and cell counting assays. Tamoxifen therapy 

resulted in a reduction in cellular proliferation in both wild type and E-cadherin 

knockdown MCF-7 cells. 
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3.1.7 Fulvestrant (Faslodex ®) therapy induces invasion and 

migration in the MCF-7 cell line, in the presence and 

absence of E-Cadherin expression 

 

After noting the effect of tamoxifen therapy on the phenotype of MCF-7 cells, it 

was decided to extend these observations to a second endocrine agent, fulvestrant 

(FAS); a pure ER antagonist. 

 

Invasion was again assessed by comparing E-cadherin deficient (CDH1) with wild-

type cells (NT) grown in the presence and absence of fulvestrant. In a similar 

manner to that previously seen with tamoxifen, these data again demonstrated a 

small, yet significant, increase in invasion amongst wild-type cells treated with 

fulvestrant (Figure 3.10a, p<0.001). In addition, this invasive response was 

notably augmented when cells deficient in E-cadherin were treated with 

fulvestrant as compared to the control (p<0.001). 

 

The effect of fulvestrant on cell migration was also investigated as before, using 

trans-well chambers with fibronectin coated membranes. Again, it was observed 

that fulvestrant treatment resulted in a small but significant increase in migration 

in wild-type cells (NT) (Figure 3.10b, p=0.001), with a more dramatic increase in 

migration observed with treatment in E-cadherin deficient cells (p<0.001). 

 

To confirm the observed effects of fulvestrant treatment on cell invasion and 

migration is not a consequence of unintended effects of cell proliferation, these 

effects were assessed using an MTT assay (Figure 3.11). As demonstrated 

previously, E-cadherin knockdown alone had no significant effect on proliferation, 

while fulvestrant therapy had a negative effect on proliferation in both wild-type 

and E-cadherin deficient cells (p<0.001). 
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a. 

 

 

b. 

 

Figure 3.10 - Cell (a.) invasion and (b.) migration in MCF-7 cells treated 

with fulvestrant (FAS) +/- CDH1 siRNA. MCF-7 cells were treated with non-

targeting (NT) or CDH1 targeting (CDH1) siRNA for 72 hours before assessing 

their (a.) invasive, (b.) migratory capacity in control or fulvestrant (1x10-7M) 

containing medium. Both wild-type (NT) and E-cadherin deficient (CDH1) cells 

treated with fulvestrant promoted an increase in cell invasion and migration. 

The graphs show the results for the mean of three separate experiments. 
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Figure 3.11 - Cell proliferation in MCF-7 cells treated with fulvestrant (FAS) 

+/- CDH1 siRNA. MCF-7 cells were treated with non-targeting (NT) or CDH1 

targeting (CDH1) siRNA for 72 hours before assessing proliferation in control or 

fulvestrant (1x10-7M) containing medium via MTT assay. Both wild-type (NT) 

and E-cadherin deficient (CDH1) cells treated with fulvestrant demonstrated 

suppressed proliferation as compared to controls. The graph show the results for 

the mean of three separate experiments. 

  

N
T

N
T F

A
S

C
D
H
1 

 

C
D
H
1 

FA
S

0.0

0.5

1.0

1.5

Treatment Condition

O
p

ti
c

a
l 
D

e
n

s
it
y

 (
5

6
0

n
m

)
**

* p<0.001



 128 

3.1.8 Estradiol (E2) therapy results in an increase in invasion, 

migration and proliferation in MCF-7 cells, in the presence 

and absence of E-cadherin expression 

 

Following the above findings with regards to the effects of tamoxifen (a selective 

ER modulator) and fulvestrant (a pure ER antagonist) on cell invasion and 

migration, it was felt appropriate to next assess the effects of a pure ER agonist, 

by treating cell with estradiol (E2). 

 

As described previously, invasion was first assessed using Matrigel® coated 

trans-well invasion chambers, assessing the invasive response of wild-type (NT) 

or E-cadherin deficient (CDH1) MCF-7 with or without estradiol therapy. Results 

demonstrate a significant increase in invasion amongst wild-type cells treated 

with E2 (Figure 3.12a), when compared to control (p<0.001). In addition, the 

number of invading cells was greatly increased with E2 treatment in the E-

cadherin deficient cell model (p<0.001). 

 

The effect of E2 on migration was similar (Figure 3.12b), whereby a significant 

increase in cell migration was observed amongst wild-type cells treated with E2, 

as compared to controls (p=0.031). Again however, a larger and more exaggerated 

pro-migratory response was observed when E2 treatment was given to E-

cadherin deficient cells (p<0.001). 

 

The effect of E2 therapy on cell proliferation was also investigated by MTT assay 

(Figure 3.13). Here, results demonstrated a small yet significant increase in 

cellular metabolism with E2 treatment in E-cadherin competent (p<0.001) and E-

cadherin deficient cells (p<0.001).  
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a. 

 

b. 

 

Figure 3.12 – Cell (a.) invasion and (b.) migration in MCF-7 cells treated 

with estradiol (E2) +/- CDH1 siRNA. MCF-7 cells were treated with non-

targeting (NT) or CDH1 targeting (CDH1) siRNA for 72 hours before assessing 

their (a.) invasive and (b.) migratory capacity in control or estradiol (1x10-6M) 

containing medium. Both wild-type (NT) and E-cadherin deficient (CDH1) cells 

treated with estradiol promoted an increase in cell invasion and migration. The 

graphs show the results for the mean of three separate experiments. 
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Figure 3.13 – Cell proliferation in MCF-7 cells treated with estradiol (E2) 

+/- CDH1 siRNA.  MCF-7 cells were treated with non-targeting (NT) or CDH1 

targeting (CDH1) siRNA for 72 hours before assessing their proliferative capacity 

in control or estradiol (1x10-6M) containing medium, via MTT assay. Both wild-

type (NT) and E-cadherin deficient (CDH1) cells treated with estradiol promoted 

an increase in cell proliferation. The graphs show the results for the mean of 

three separate experiments. 
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3.1.9 Estrogen withdrawal (-E2) suppresses cell invasion and 

migration in the MCF-7 cell line, in the presence and 

absence of E-cadherin expression 

 

The above results have suggested that targeting the ER with either estradiol, 

fulvestrant or tamoxifen results in increased invasion and migration within the 

MCF-7 cell line, an effect more pronounced in in the setting of E-cadherin 

suppression. It was therefore decided to assess the effects of aromatase inhibitors 

(AI), which as opposed to targeting the ER directly, work by depriving the ER of 

stimulation by estrogens. To achieve the effects of AI in-vitro, cells were 

maintained during culture in wRPMI medium containing 2% glutamine and 5% 

charcoal-stripped fetal calf serum (SFCS). This would effectively mimic the effects 

of AI, by removing all estrogen and estrogenic stimuli (e.g. arising from phenol 

red) within the cell culture environment.  

 

This model for AI treatment was used as part of the trans-well chamber invasion 

assay, to assess the effects of estrogen withdrawal (-E2) in conjunction with that 

of E-cadherin deficiency, as described previously (Figure 3.14a). Interestingly, 

these data demonstrated that invasion is suppressed amongst cells grown in –E2 

conditions as compared to controls, both in the presence and absence of E-

cadherin expression (p<0.001).  

 

In a similar fashion, the effects of –E2 conditions on cell migration was also 

investigated (Figure 3.14b). Correspondingly, these data also demonstrate a 

significant suppression in migration amongst both wild-type (p=0.036) and E-

cadherin deficient cells (p<0.001) grown in –E2 conditions, as compared to 

controls.  

 

Once again, MTT (Figure 3.15) and cell counting (Figure 3.15b) assays were used 

to assess the effects of –E2 conditions on cell proliferation. This time however, a 

further arm to the experiment was added to assess the combined effects of culture 

in –E2 conditions with tamoxifen therapy. This was to assess whether 
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combination treatment may lead to a compounding effect on cell proliferation. 

Results from these data a significant suppression in cell proliferation with both 

tamoxifen treatment (p<0.001) and culture in –E2 conditions (p<0.001). 

Meanwhile the effect of tamoxifen therapy in combination with –E2 conditions 

had no significant additional effect on cell proliferation as compared to –E2 

conditions alone.  
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a. 

 

b. 

 

Figure 3.14 – Cell (a.) invasion and (b.) migration in MCF-7 cells cultured in 

estrogen-deprived conditions (-E2) +/- CDH1 siRNA. MCF-7 cells were 

treated with non-targeting (NT) or CDH1 targeting (CDH1) siRNA for 72 hours 

before assessing their (a.) invasive and (b.) migratory capacity in control or 

estrogen withdrawal containing medium. Both wild-type (NT) and E-cadherin 

deficient (CDH1) cells treated with estrogen withdrawal demonstrated 

suppressed cell invasion and migration. The graphs show the results for the 

mean of three separate experiments. 
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a. 

 

b. 

 

Figure 3.15 – Cell proliferation in MCF-7 cells cultured in estrogen-

deprived conditions +/- CDH1 siRNA, assessed by (a.) MTT and (b.) cell 

counting assays.  MCF-7 cells were treated with tamoxifen and/or cultured in 

estrogen deprived conditions (-E2) before assessing cell proliferation by (a.) 

MTT and (b.) cell counting assays. Cells cultured in –E2 conditions showed 

suppressed levels of proliferation as compared to control. Proliferation after 

combined tamoxifen/-E2 treatment was similar cells cultured in –E2 conditions 

alone.  The graphs show the results for the mean of three separate experiments. 
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3.1.10 Tamoxifen has no significant effect on invasion and 

migration within a panel of alternative ER+ cell lines 

 

The results in this chapter to date have demonstrated that endocrine agents that 

target the ER, result in increased invasion and migration in MCF-7 cells. It was 

therefore of interest to assess whether similar findings could also be 

demonstrated in other ER+ breast cancer cell lines, to determine the 

generality/specificity of this adverse endocrine response. A panel of alternative 

ER+ cell lines were therefore chosen for this purpose. The cell lines chosen within 

this panel included an alternative luminal A breast cancer cell line (T47D), 

alongside two ER+, HER2+ cell models (BT474, MDA-MB-361).  

 

As was the case with MCF-7 cells, the previously described invasion and migration 

assays were employed to assess the invasive and migratory response to E-

cadherin suppression (+/- tamoxifen treatment) in each of these cell lines. 

 

When examining invasion in these cell lines, it was interesting to note that the 

observed pattern of invasion appeared to differ compared to that observed in 

MCF-7 cells. With regards to the HER2+ cell lines (BT474, MDA-MB-361) we see 

that there appears to be a trend towards an increase in invasion in E-cadherin 

deficient cells compared to wild-type cells (Figures 3.16a and 3.16b), although this 

fails to reach statistical significance. Meanwhile, there was a non-statistical trend 

suggesting tamoxifen may have more of a suppressive effect on invasion in both 

wild-type and E-cadherin deficient cells. Similar results were also seen in the 

alternative luminal A cell line (T47D), whereby there was a non-statistical trend 

towards increased invasion amongst E-cadherin knockdown cells, whilst 

tamoxifen appeared to have suppressive effect (Figure 3.16c). 

 

When examining cell migration in the same panel of alternative ER+ cell lines, a 

different pattern of results was again observed in comparison to MCF-7 cells. In 

BT474 and MDA-MB-361 cells there was a trend towards increased migration 

with E-cadherin deficiency (Figures 3.16d and 3.16e), while tamoxifen had no 



 136 

significant effect on migration. A similar pattern was also observed in T47D cells 

with E-cadherin deficiency leading to a non-significant increase in migration 

(Figure 3.16f), while tamoxifen treatment had no significant effect on cell 

migration. 
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Figure 3.16 – Cell invasion and migration in BT474, MDA-MB-361 and T47D  

cells treated with tamoxifen (TAM) +/- CDH1 siRNA. BT474, MDA-MB-361 

and T47D cells were treated with non-targeting (NT) or CDH1 targeting (CDH1) 

siRNA for 72 hours before assessing their (a-c.) invasive, (d-f.) migratory in 

control or tamoxifen containing medium. Tamoxifen treatment had no significant 

effect on cell invasion and migration in any of these 3 cell lines. The graphs show 

the results for the mean of three separate experiments. 
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3.1.11 Discussion 

 

In this section, we demonstrate that (i) some endocrine agents may enhance the 

ability of ER+ breast cancer cells to migrate over, and invade through, extra-

cellular matrix components and (ii) that these adverse responses are significantly 

augmented in the absence of E-cadherin expression. 

 

While these results may be somewhat surprising, given the desired intent of 

tamoxifen therapy clinically, they perhaps should not be completely unexpected 

as it is becoming clearer that administering such endocrine agents may have 

effects that go beyond their originally described mechanism of action. As such, 

while the selective estrogen receptor modulatory functions of tamoxifen may 

cause changes in the cell that result in suppressed proliferation, it may also be 

possible that tamoxifen inadvertently promotes pathways that promote migration 

and invasion. Evidence supporting this rationale, for example, suggests tamoxifen 

may induce FAK-mediated cytoskeletal remodeling (137) and expression of 

matrix metalloproteinases (138). In addition, while the majority of signaling 

changes induced following estrogen stimulation are largely felt to be repressive in 

nature (198), tamoxifen and other anti-hormones may promote re-expression of 

genes, including those linked with resistance such as EGFR and HER2 (199). These 

changes may ultimately lead to undesired consequences within the cell (200), 

including the potential development of a pro-invasive phenotype. Finally, with 

some evidence suggesting a protective role of estrogen on the invasive and 

motility properties of breast cancer cells (140), although not demonstrated here, 

it may be logical to suggest anti-hormone therapy would have an opposing effect.  

 

Others have also shown an increase in single cell migration with tamoxifen,  as 

assessed by Boyden chamber assay (135), along with increased healing in MCF-7 

cell wounds with tamoxifen (136), while the BCMPG have previously 

demonstrated a pro-invasive effect with tamoxifen in MCF-7 cells (134), yet only 

in the setting of poor cell to cell contact. In this current project however a smaller, 

but still significant, increase in invasion and migration is evident with tamoxifen 

therapy alone in MCF-7 cells. The difference between these findings therefore 
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raise the question as to whether a specific set of signaling events occur in cells 

with low E-cadherin expression treated with tamoxifen, which subsequently 

promote invasion. Alternatively, it may be possible that tamoxifen alone is 

responsible for the underlying signaling changes that drive invasion, while the 

downregulation of E-cadherin simply creates an environment where these 

signaling changes are more effective in bringing about cell invasion, through 

removal of a “physical barrier” in the form of adherens junctions. 

 

E-cadherin loss may be present in up to 40% of all non-lobular breast cancers 

(201), and is a marker of poor clinical prognosis (202, 203). The downregulation 

of E-cadherin reduces the strength of intercellular homophillic adhesion, which 

enhances cell motility (158), and is a crucial step during the process of epithelial 

to mesenchymal transition. Adherens junction disruption alone however is not 

sufficient to facilitate this process, as loss of E-cadherin has been shown to be 

associated with several other functional changes that are crucial in this process. 

These include changes in -catenin, along with the expression of multiple 

transcription factors, such as Twist and ZEB-1(204). In addition, loss of E-cadherin 

has been found to activate other pathways responsible for a higher 

migratory/invasive phenotype in cells, through a similar mechanism, involving 

both the T cell factor (TCF) and lymphocyte enhancer factor (LEF) signaling 

pathways (205). Meanwhile an increase in cytoplasmic p120 catenin levels is also 

observed, through the dissociation of the E-cadherin-catenin complex, resulting in 

activation of Rac1 and Cdc42 and inhibition of RhoA (206, 207), promoting the 

function of lamellopodia and inhibiting cell adhesion. As a result, the mechanism 

explaining the invasive phenotype demonstrated by tamoxifen in E-cadherin 

negative breast cancer cells may be more complex than it first appears. 

 

In addition to tamoxifen treatment, fulvestrant also revealed similar results, 

whereby a pro-invasive/pro-migratory phenotype was demonstrated with 

treatment, which was more pronounced amongst MCF-7 cells with suppressed E-

cadherin expression. Again, previous results by the BCMPG (134) revealed a 

similar picture, although a significant increase in invasion was again only 

demonstrated amongst E-cadherin deficient MCF-7 cells treated with fulvestrant. 
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In a similar manner to that shown previously with tamoxifen, fulvestrant therapy 

resulted in a suppression in cell proliferation, a result which would suggest, if 

anything, the pro-invasion/pro-migratory effects observed may be under-

represented by the results of these experiments. Fulvestrant-induced invasion in 

breast cancer is less clearly documented in the literature. While some of those that 

have addressed this issue previously have found no difference in cell migration 

with fulvestrant, it is notable that fulvestrant (and tamoxifen) appeared to reverse 

the protective effect of E2 in cell invasion (135). In addition, both fulvestrant (and 

tamoxifen) may facilitate invasion through the modulation of matrix 

metalloproteinases (MMP’s) and activation of the transcription factor snail (135). 

In a similar fashion, antiestrogens may also reduce the number of cell-cell contacts 

through the loss of intercellular junctions, desmosomes (208) while others have 

noted that anti-estrogen therapy results in increased expression of P-cadherin, 

which may increase cell invasion (209). 

 

As was the case with both tamoxifen and fulvestrant, a pro-invasive and pro-

migratory effect in MCF-7 cells was demonstrated using estradiol therapy. This 

response was again more exaggerated in the setting of poor cell-cell contact 

through E-cadherin knockdown. This result was perhaps surprising as evidence 

in the literature has supported a suppressive role for estradiol in invasion and 

migration amongst several breast cancer cell lines (210-214). Estradiol was found 

to inhibit invasion by 2-fold in ER-transfected MDA-231 cells (215, 216), an effect 

reversed by tamoxifen. These results suggest that some estrogen-regulated genes 

negatively influence invasion, including the matrix degradation protein 1-anti-

chymotrypsin and E-cadherin (210). 

 

While the results from this project appear to contrast these findings, 

demonstrating a pro-invasive and pro-migratory effect of estradiol, there are 

several potential explanations for this. Firstly, it is noticeable from the results of 

the MTT analysis that estradiol exerts a pro-proliferative effect on MCF-7 cells, a 

finding that is heavily supported in the literature (140). As a result, it may be that 

the pro-proliferative effects of estradiol act to increase cell number during the 

time-course of experiments, falsely elevating the number of invasive/migratory 
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cells demonstrated at the end-point of the assay(s). Secondly, as noted previously, 

the effect of ER signaling on E-cadherin may have a key role in the inhibitory 

effects on invasion. In our assay, E-cadherin knockdown may therefore prevent 

the normal suppressive effect of estradiol and instead promote invasion and 

migration through an alternative means of signaling, such as EGFR or Src kinase  

(175).  

 

Cell culture under conditions of estrogen withdrawal was used to mimic the 

effects aromatase inhibitors within an in-vitro environment. This was achieved by 

cell culture in WRPMI media, containing 5% charcoal-stripped fetal calf serum 

(SFCS), removing all estrogen/steroidal compounds which may stimulate ER 

signaling. Cells cultures under these conditions demonstrated suppressed 

invasion and migration in both wild-type and E-cadherin knockdown MCF-7 cells, 

in contrast to the effects of all other endocrine therapies.  

 

These findings would correspond with those of others (134), who have previously 

suggested a potential clinical benefit in treating ER+ tumors with low E-cadherin 

expression, with aromatase inhibitors as opposed to tamoxifen or other ER 

modulators/antagonists. These findings may be the result of inhibitory effects of 

ER signaling, independent of ligand binding, a result of the first zinc finger of the 

DNA-binding domain (140). Other studies have also confirmed an inverse 

correlation between ER expression and invasion in hormone-deprived conditions 

among MCF-7, ZR75.1 and T47D breast cancer cell lines (216). In addition, pure 

anti-estrogens which decrease total ER levels within MCF-7 cells, such as 

fulvestrant may increase levels of invasion (216, 217). 

 

To identify whether the invasive/migratory response to tamoxifen seen in MCF-7 

cells is representative across all ER+ breast cancers, we repeated the initial 

invasion and migration assays using a panel of alternative ER+ cell lines. These 

included an alternative luminal A cell line (T74D), the closest direct comparison 

to MCF-7 cells, along with two ER+, HER2+ cell lines (BT474 and MDA-MB-361). 

While there was a trend towards an increase in invasion and migration with E-

cadherin knockdown amongst these alternative cell lines, albeit not to a level of 
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statistical significance, tamoxifen therapy had no statistical effect and tended to 

inhibit invasion and migration if anything. This variable effect of tamoxifen 

implies that that the pro-invasive/migratory response is not generic across all 

ER+ breast cancers, and may be more specific to a subset of ER+ disease. While a 

pro-invasive response with tamoxifen has been demonstrated by several others 

in MCF-7 cells (134-136, 218, 219), reports of a similar effect in other cell lines are 

less well recognized. While there is limited evidence supporting a similar pro-

invasive response with tamoxifen in T47D cells  (134, 216, 217), there appears to 

be little evidence demonstrating an effect in HER2+ cell lines, such as BT474 and 

MDA-MB-361.   

 

While the presence of HER2 signaling, and subsequent cross-talk with the ER in 

HER2+ cell lines, may represent an obvious reason for a differing response in 

invasion and migration to tamoxifen, significant differences between MCF-7 and 

T47D cells are subtler. Although 2D gel analysis of these cell lines are similar, 

T47D cells were found to express a higher number of proteins, compared to the 

MCF-7 cell line, with several proteins identified as specific to one single cell line 

(220). In addition, T47D cells have been noted to have a differential response to 

estradiol, as compared to MCF-7 cells. As such, this may lead one to speculate that 

there is likely to be a similar differential response to other ER-targeting agents, 

such as tamoxifen and fulvestrant. 

 

In summary, this chapter demonstrates that endocrine agents may invoke an 

adverse pro-invasive/pro-migratory response in subtypes of ER+ breast cancer 

and that this phenotype is augmented in the presence of E-cadherin loss. This 

response is not demonstrated in conditions of estrogen deprivation and does not 

appear to be generic across all ER+ breast cancer cell lines. The signaling that 

drives this response, and whether this signaling is (i) specific to the endocrine 

effects on the ER, (ii) related to signaling through E-cadherin, or (iii) is secondary 

to a combination of these effects, is unclear and will therefore be explored further. 

In addition, the cell line specific effects of tamoxifen that have been demonstrated 

lead to questions about potential differences in signaling between these cell lines 
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that may result in a different response to treatment and should therefore also be 

explored in greater detail. 
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3.2 Exploring the mechanisms of endocrine-induced 

invasion and migration if ER+ breast cancer 

 

3.2.1 Introduction 

 

The previous section presented intriguing data that ER-targeting anti-hormone 

therapies promote a pro-invasive and pro-migratory phenotype in ER+ MCF-7 

breast cancer cells, and that this response is more exaggerated amongst cells 

lacking E-cadherin. 

 

While there are several known signalling pathways that govern invasion and 

migration in breast cancer, the cellular mechanisms that underlie the above 

response to anti-hormone therapy are less clearly understood. Moreover, the data 

suggests one of two hypotheses may be relevant:  

(i) that the combined effect of E-cadherin loss and endocrine treatment 

activates specific pro-migratory/invasive pathways that are not 

activated/fully activated in the context of either E-cadherin loss or 

endocrine treatment alone, 

or 

(ii) endocrine treatments activate signalling pathways that govern cell 

aggressiveness but the cellular consequence of this is not fully seen 

until the physical barrier to migration/invasion (i.e. cadherin-mediated 

cell-cell adhesion) is removed. 

 

As part of this chapter, these hypotheses were investigated as follows: 

 

(i) Interrogation of microarray data, made available through from 

previous work by the BCMPG, was performed. This microarray data 

represented expressional changes of a large panel of cellular proteins 

in both wild-type and E-cadherin deficient MCF-7 cells treated 

with/without tamoxifen. This data, along with a review of all available 

relevant literature, was used to identify potential cellular targets 
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responsible for changes in cell migration and invasion that were 

influenced by E-cadherin expression and/or tamoxifen therapy in MCF-

7 cells. 

(ii) Cellular targets identified through this process were chosen for further 

assessment by Western blotting, using cell lysates from wild-type and 

E-cadherin deficient cells treated with a range of endocrine treatments. 

(iii) The phenotypic effects on invasion, migration and proliferation of key 

cellular targets, confirmed by Western blotting to have altered 

expression with either E-cadherin deficiency and/or endocrine 

treatment, were tested by the introduction of pharmacological 

inhibitors to manipulate the relevant cell pathway(s). 

(iv) These expressional changes of these same key cellular targets, in 

response to E-cadherin manipulation and endocrine therapy, were 

assessed in an alternative ER+ cell line that does not exhibit the same 

adverse response to tamoxifen reported in the previous chapter. 
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3.2.2 Src kinase mediates endocrine-induced ER+ cell invasion 

and migration 

 

As previous studies had suggested a possible role of Src kinase in mediating 

tamoxifen induced invasion within MCF-7 cells (134), it was decided to assess this 

relationship further in the context of findings within this project. 

 

Western blot data revealed increased levels of Src phosphorylation at Y148 in 

both wild-type and E-Cadherin knockdown MCF-7 cells treated with both 

tamoxifen and fulvestrant (Figure 3.17) after culture for 6 days, while total-Src 

expression remained unaltered. Conversely, 6-day culture of MCF-7 cells under 

conditions of estrogen withdrawal led to a suppression in Src activity, 

independent of E-cadherin status (Figure 3.17). 

 

Given these findings, it was decided to assess the functional relevance of Src kinase 

in relation to cell invasion and migration by pathway manipulation with a 

pharmacological inhibitor. The pharmacological Src inhibitor, Sarcanitib 

(AZD0530) (221), was therefore chosen for treatment in MCF-7 cells within the 

context of the invasion and migration assays previously described.  

 

Prior to assessing the functional effects of Src inhibition, dose optimization of 

Sarcanitib was conducted by performing 6-day treatment in MCF-7 cells, with and 

without tamoxifen therapy, analyzed by Western blotting (Figure 3.18a). The 

effect of the pharmacological inhibitor on cellular proliferation was also assessed 

on MCF-7 cells, treated with and without tamoxifen, by MTT assay (Figure 3.18b). 

From these data, a Sarcanitib dose of 1g/ml was chosen as the minimum dose 

required to achieve a knockdown of Y418 p-Src expression, while having the least 

possible impact in terms of its effect of cellular proliferation.  

 

Invasion and migration of MCF-7 cells was then re-examined to assess the impact 

of 6-day treatment with Sarcanitib. These results showed that the addition of the 

pharmacological inhibitor suppressed both invasion (p=0.015, Figure 3.19a) and 

migration (p<0.0001, Figure 3.19b) in E-cadherin knockdown cells treated with 
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tamoxifen. The effect in this arm of the experiment appears to be independent to 

the anti-proliferative effect of Sarcanitib, shown by the effect of this inhibitor on 

proliferation with subsequent MTT assays. Here we see that while the 

pharmacological inhibitor had a suppressive effect on proliferation in both wild-

type and E-cadherin knockdown MCF-7 cells, when combined with tamoxifen 

therapy the effect on proliferation is similar to that seen where cells are treated 

with tamoxifen alone (Figure 3.20). 
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Figure 3.17 – Src expression in MCF-7 cells treated with tamoxifen and 

fulvestrant, or cultured under conditions of estrogen withdrawal, +/- CDH1 

siRNA. Western Blot Analysis of pSrc, pan-Src and Actin expression in MCF-7 

cells under conditions of 6-day estrogen withdrawal, tamoxifen or fulvestrant 

therapy, with and without E-cadherin suppression. Tamoxifen and fulvestrant 

promote an increase in pSrc expression, while Estrogen withdrawal suppresses 

pSrc expression, in MCF-7 cells. E-cadherin knockdown has no effect of pSrc 

expression. Differences in expression were assessed formally by densitometry. 
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a. 

 

b. 

 

Figure 3.18 – Dose effect of sarcanitib treatment on (a.) pSrc expression 

and (b.) cellular proliferation in MCF-7 cells. Western Blot Analysis of pSrc, 

pan-Src and Actin expression in MCF-7 cells was performed following 6-day 

treatment with Sarcanitib, at an incremental dose. Differences in expression 

were assessed formally by densitometry. Cellular proliferation following 

Sarcanitib treatment, using the same dosing regimen, was also assessed by MTT 

assay. Sarcanitib treatment suppresses pSrc expression and cellular proliferation 

in a dose dependent manner. 
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a. 

 

b. 

 

Figure 3.19 – The effect of sarcanitib treatment on (a.) cell invasion and (b.) 

cell migration in MCF-7 cells treated with tamoxifen +/- CDH1 siRNA. MCF-7 

cells were treated with non-targeting (NT) or CDH1 targeting (CDH1) siRNA for 

72 hours before assessing their (a.) invasive and (b.) migratory capacity in 

response to 6-day tamoxifen (1x10-7M) and/or Sarcanitib (1g/ml) treatment. 

Sarcanitib therapy reversed the previously observed pro-invasive/pro-

migratory response to tamoxifen. The graphs show the results for the mean of 

three separate experiments. 
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Figure 3.20 – The effect of sarcanitib treatment on cellular proliferation in 

MCF-7 cells treated with tamoxifen +/- CDH1 siRNA. MCF-7 cells were treated 

with non-targeting (NT) or CDH1 targeting (CDH1) siRNA for 72 hours before 

assessing cell proliferation, via MTT assay, in response to 6-day tamoxifen (1x10-

7M) and/or Sarcanitib (1g/ml) treatment. Sarcanitib treatment suppresses 

cellular proliferation. The effect of combined tamoxifen/sarcanitib treatment on 

cellular proliferation is similar to that of either treatment given in isolation. 
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3.2.3 Exploring Src-based signaling pathways involved in 

endocrine-induced ER+ breast cancer cell 

invasion/migration 

 

Given that Src kinase appears to be a key component in endocrine-induced 

invasion/migration, it was next decided to explore the substrates of Src in broader 

detail. As part of this analysis the intra-cellular kinases ERK 1/2 and AKT were 

next assessed. 

 

3.2.3.1 ERK 1/2 mediates endocrine-induced ER+ cell invasion 

and migration 

 

As outlined above, one area of interest within the remit of Src-related substrates 

is the Ras-Raf-MEK-ERK pathway, which is mediated by Src activation of RTK’s 

(164). Within this pathway, the role of ERK 1/2 in relation to several key cellular 

processes, such as proliferation and actin cytoskeletal migration (222), was of 

particular interest. 

 

When exploring this pathway, data from Western Blotting revealed an increased 

expression of phospho-ERK 1/2 with tamoxifen therapy (Figure 3.21) in both 

wild-type and E-cadherin deficient MCF-7 cells (while total ERK 1/2 expression 

remained unchanged). The functional relevance of this increased expression, in 

relation to invasion and migration, was therefore explored in a similar manner to 

that of Src, by pharmacological manipulation. The pharmacological MEK inhibitor, 

U0126 (223), was chosen to inhibit downstream ERK 1/2 phosphorylation and 

assess the effect introduction of this had on the pattern of endocrine-induced 

invasion and migration. Dose optimization of U0126 was first determined by 

giving MCF-7 cells 6-day treatment with a range of doses, with the suppression of 

pERK 1/2 expression determined by Western Blotting (Figure 3.22a). The effect 

of U0126 on cellular proliferation was also assessed by MTT assay (Figure 3.22b). 

From these assays, a dose of 10g/ml was chosen as the minimum dose required 
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to provide adequate suppression of pERK 1/2, while minimizing unwanted effects 

of the inhibitor on cellular proliferation.  

Once this optimization of the MEK inhibitor was complete, Boyden chamber 

invasion and migration assays were again used to assess the effect of the inhibitor 

on invasion and migration in MCF-7 cells following 6-day tamoxifen therapy with 

and without E-cadherin knockdown. 

 

From these experiments the results from the invasion (Figure 3.23a) and 

migration (Figure 3.23b) assays revealed a significant decrease in 

invasion/migration amongst all treatment conditions using the MEK inhibitor, 

reversing the previously seen effects of tamoxifen, E-cadherin knockdown and 

combination treatment. 

 

The effect of using the MEK inhibitor in combination with tamoxifen therapy and 

E-cadherin knockdown on cellular proliferation was also assessed by MTT assay 

(Figure 3.24). Interestingly, while MEK inhibitor treatment resulted in reduced 

cellular proliferation amongst both wild-type (p=0.003) and E-cadherin 

knockdown MCF-7 cells (p=0.002), there appeared to be no additional effect on 

cellular metabolism when the combination of the MEK inhibitor and tamoxifen 

was used when compared to the anti-proliferative effect of tamoxifen therapy 

alone. 
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Figure 3.21 – ERK 1/2 expression in MCF-7 cells treated with tamoxifen and 

fulvestrant, or cultured under conditions of estrogen withdrawal, +/- CDH1 

siRNA. Western Blot Analysis of pERK 1/2, pan-ERK 1/2 and Actin expression in 

MCF-7 cells under conditions of estrogen withdrawal, tamoxifen or fulvestrant 

therapy, with and without E-cadherin suppression. Tamoxifen and fulvestrant 

promote an increase in pERK 1/2 expression, while estrogen withdrawal 

suppresses pERK 1/2 expression, in MCF-7 cells. E-cadherin knockdown has no 

effect of pERK 1/2 expression. Differences in expression were assessed formally 

by densitometry. 
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a. 

 

b. 

Figure 3.22 – Dose effect of U0126 treatment on (a.) pERK expression and 

(b.) cellular proliferation in MCF-7 cells. Western Blot Analysis of pERK 1/2, 

pan-ERK 1/2 and Actin expression in MCF-7 cells was performed following 6-day 

treatment with U0126, at an incremental dose. Differences in expression were 

assessed formally by densitometry. Cellular proliferation following U0126 

treatment, using the same dosing regimen, was assessed by MTT assay. U0126 

treatment suppresses (a) pERK 1/2 expression and (b) cellular proliferation in a 

dose dependent manner. 
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a. 

 

b. 

Figure 3.23 – The effect of U0126 treatment on (a.) cell invasion and (b.) 

cell migration in MCF-7 cells treated with tamoxifen +/- CDH1 siRNA. MCF-7 

cells were treated with non-targeting (NT) or CDH1 targeting (CDH1) siRNA for 

72 hours before assessing their (a.) invasive and (b.) migratory capacity in 

response to 6-day tamoxifen (1x10-7M) and/or U0126 (10g/ml) treatment. 

U0126 therapy reversed the previously observed pro-invasive/pro-migratory 

response to tamoxifen. The graphs show the results for the mean of three 

separate experiments. 



 157 

 

 

 

 

Figure 3.24 – The effect of U0126 treatment on cellular proliferation in 

MCF-7 cells treated with tamoxifen +/- CDH1 siRNA. MCF-7 cells were treated 

with non-targeting (NT) or CDH1 targeting (CDH1) siRNA for 72 hours before 

assessing cell proliferation, via MTT assay, in response to 6-day tamoxifen (1x10-

7M) and/or U0126 (10g/ml) treatment. U0126 treatment suppresses cellular 

proliferation. The effect of combined tamoxifen/ U0126 treatment on cellular 

proliferation is similar to that of either treatment given in isolation. 
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3.2.3.2 AKT has no significant effect on endocrine-induced cell 

invasion/migration in ER+ breast cancer 

 

Another pathway of interest that is closely associated with Src signaling is the 

PI3K-AKT pathway (164). AKT itself is known to play a critical role in cancer 

development as a key regulator of cell survival, proliferation (224) and may also 

play a role inhibiting cancer cell motility via the transcription factor Nuclear 

Factor of Activated T Cell (NFAT) (225). 

 

From exploration of this pathway by Western Blotting, expression of phospho-

AKT (Ser 473) was found to be suppressed by tamoxifen and fulvestrant therapy, 

in addition to conditions of estrogen withdrawal, in both wild-type and E-cadherin 

MCF-7 cells (Figure 3.25a). Reciprocally, expression of Phosphatase and Tensin 

Homolog (PTEN), a tumour suppressor gene whose loss usually leads to AKT 

activation (226), was increased by tamoxifen in keeping with the changes in AKT 

(Figure 3.25b). 

 

Given these findings the role of AKT within a potential pathway contributing to 

the pro-invasive effect of tamoxifen in E-cadherin knockdown MCF-7 cells was 

explored. This was initially performed by the introduction of a pharmacological 

AKT inhibitor and assessing the effect on invasion and migration within the 

previously used cell models. For this purpose, the AKT inhibitor Perifosine (227), 

which inhibits AKT at both Ser 473 and Thr308, was chosen. 

 

As was the case previously in relation to the pharmacological inhibitors for Src 

kinase and MEK, dose optimization of Perifosine was determined by giving 6-day 

treatment to MCF-7 cells, using a range of doses, and assessing the suppression of 

pAKT expression using Western Blotting (Figure 3.26a). Similarly, the effect of 

Perifosine on cellular metabolism was also assessed by MTT assay (Figure 3.26b). 

Following the results from both assays, a dose of 10m was chosen as the 

minimum dose perifosine required to provide adequate suppression of pAKT, 

while aiming to minimize the effects on cellular proliferation. 
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Following this period of optimization, the effect of perifosine on invasion and 

migration was studied in MCF-7 cells in the context of tamoxifen therapy and E-

cadherin knockdown. From assessing these results, it was interesting to note that 

Perifosine appeared to have no significant effect of either invasion (Figure 3.27a) 

and migration (Figure 3.27b) in MCF-7 cells, with preservation of a pro-

invasive/pro-migratory phenotype with tamoxifen therapy in both wild-type and 

E-cadherin knockdown cells. 

 

In conjunction with this data, the effect of perifosine therapy, in tandem with 

tamoxifen and E-cadherin knockdown, on cellular metabolism was assessed by 

MTT assay (Figure 3.28). Results demonstrated a significant reduction in cellular 

metabolism with perifosine in both wild-type (p<0.001) and E-cadherin 

knockdown (p<0.001) MCF-7 cells. When perifosine was combined with 

tamoxifen therapy however, the effect on cellular metabolism was not 

significantly different to that caused by tamoxifen therapy alone.  
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a. 

 

b. 

 

Figure 3.25 – AKT and PTEN expression in MCF-7 cells treated with 

tamoxifen and fulvestrant, or cultured under conditions of estrogen 

withdrawal, +/- CDH1 siRNA. Western Blot Analysis of pAKT, pan-AKT, PTEN 

and Actin expression in MCF-7 cells under conditions of estrogen withdrawal, 

tamoxifen or fulvestrant therapy, with and without E-cadherin suppression. 

Tamoxifen, fulvestrant and estrogen withdrawal (a) suppress pAKT expression 

and (b) tamoxifen increases PTEN expression in MCF-7 cells. E-cadherin 

knockdown has no effect of pAKT or PTEN expression. Differences in expression 

were assessed formally by densitometry. 
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a. 

 

b. 

 

Figure 3.26 – Dose effect of perifosine treatment on (a.) pAKT expression 

and (b.) cellular proliferation in MCF-7 cells. Western Blot Analysis of pAKT, 

pan-AKT and Actin expression in MCF-7 cells was performed following 6-day 

treatment with Perifosine, at an incremental dose. Differences in expression 

were assessed formally by densitometry. Cellular proliferation following 

Perifosine treatment, using the same dosing regimen, was assessed by MTT 

assay. Perifosine treatment suppresses (a) pAKT expression and (b) cellular 

proliferation in a dose dependent manner. 



 162 

 

a. 

 

b. 

 

Figure 3.27 – The effect of perifosine treatment on (a.) cell invasion and 

(b.) cell migration in MCF-7 cells treated with tamoxifen +/- CDH1 siRNA. 

MCF-7 cells were treated with non-targeting (NT) or CDH1 targeting (CDH1) 

siRNA for 72 hours before assessing their (a.) invasive and (b.) migratory 

capacity in response to 6-day tamoxifen (1x10-7M) and/or Perifosine (10g/ml) 

treatment. Perifosine therapy had no significant effect on cell invasion of 

migration. The graphs show the results for the mean of three separate 

experiments. 
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Figure 3.28 – The effect of perifosine treatment on cellular proliferation in 

MCF-7 cells treated with tamoxifen +/- CDH1 siRNA. MCF-7 cells were treated 

with non-targeting (NT) or CDH1 targeting (CDH1) siRNA for 72 hours before 

assessing cell proliferation, via MTT assay, in response to 6-day tamoxifen (1x10-

7M) and/or Perifosine (10g/ml) treatment. Perifosine treatment suppresses 

cellular proliferation. The effect of combined tamoxifen/Perifosine treatment on 

cellular proliferation is similar to that of either treatment given in isolation. 

 

  

N
T

N
T T

A
M

 

C
D
H
1

C
D
H
1 

TA
M

N
T A

K
Ti

N
T T

A
M

 A
K
TI

C
D
H
1 

A
K
TI

C
D
H
1 

TA
M

 A
K
TI

0.0

0.5

1.0

1.5

O
p

ti
c

a
l 
D

e
n

s
it
y

 (
5

6
0

n
m

)

*
*

*

*

*  p<0.001



 164 

3.2.4 The effect of endocrine agents and E-cadherin suppression 

on EMT markers and cytoskeletal regulators in ER+ breast 

cancer  

 

Outside of Src kinase and its substrates within the Ras-Raf-MEK-ERK and PI3K-

AKT pathways, several other targets were assessed for potential expressional 

changes related to endocrine-induced invasion. 

 

One such group are potential markers of epithelial to mesenchymal transition 

(EMT), which include the transcription factors Snail, Slug and Twist (152, 153). As 

previously mentioned, loss of E-cadherin expression is one of the hallmarks of 

EMT (121-123).  In addition, Src kinase is also known to be a regulator of breast 

cancer (228) and may therefore also play a role in the expression of these 

transcription factors. As such it would be interesting to see if the expression of this 

panel of EMT markers would be affected by endocrine therapy or induced E-

cadherin loss. When exploring the expression of these transcription factors in this 

way, by Western blotting (Figure 3.29), we see that there was a significant 

increase in the expression of all these transcription factors with tamoxifen 

therapy. Meanwhile, E-cadherin expression appeared to have no significant effect 

on the expression of any of these transcription factors. 

 

A second group of protein targets are a group of intracellular kinases known for 

their underlying role in cellular invasion and migration as part of several signaling 

pathways, including the Wnt signaling pathway. These include GTPase’s such as 

RhoA, Rac1 and Cdc42. The Wnt signaling pathway and its associated intracellular 

kinases have previously been an area of interest for the BCMPG research group, 

and were also shown to be over-expressed by tamoxifen in the groups microarray 

data. Given that the Wnt pathway also has strong links with EMT (229) and that 

some of these intracellular kinases have been shown to be regulated by both Src 

and MEK signaling (230), these targets were felt to be of interest to explore further 

with Western blotting. When doing so, in a similar manner to that previously 

mentioned, data revealed an increase in expression of all three kinases with 
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tamoxifen therapy (Figure 3.30). Contrastingly, E-cadherin expression had no 

significant effect on the expression of these proteins. 

 

The semaphorin pathway encompasses a complex set of cell surface and secreted 

proteins, which have a role in axon guidance and cell migration (231). 

Interestingly some elements of this pathway appear to be regulated by Src kinase 

and the PI3K-AKT pathway (232), while certain GTPase activity, whose expression 

has already been shown above to be regulated by tamoxifen, have been shown to 

interact with Semaphorin family members (233). Interestingly the BCMPG dataset 

also demonstrated an increase in expression of some members of this pathway 

with tamoxifen. As a result, the expression of both Sema 3E and Neuropilin 1, two 

components of the pathway upregulated on this microarray data were assessed 

by Western blotting (Figure 3.31). Results confirmed an increase in expression of 

both proteins with tamoxifen therapy, with expression unaltered by E-cadherin 

status. 

 

The expression of matrix metalloproteinases (MMP’s) was also assessed in the 

above context given its important role in the digestion and degradation of the cell’s 

surrounding ECM as part of cell invasion (234).  Several of the MMP members, 

including MMP-9 showed evidence of increased expression with tamoxifen 

therapy on microarray data, while MMP-9 is also noted to be regulated by MAPK 

(235). Western blotting data for MMP-9 (Figure 3.32) revealed that tamoxifen 

therapy increased its expression, while E-cadherin expression had no significant 

effect on detected levels. 

 

Finally, the expression of the two other cytoskeletal regulators, the cytoplasmic 

non-receptor tyrosine kinase FAK, and transcription factor STAT3, were assessed 

given their respective roles in cell invasion and migration (132, 236), relationship 

with Src (132, 237), and regulation of MMP synthesis (238). Through the same 

assessment as described above, using Western blotting, it was notable that both 

FAK and STAT3 expression was upregulated by tamoxifen therapy (Figure 3.33). 

Meanwhile, E-cadherin expression again had no significant effect on the detected 

levels of either protein. 
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Figure 3.29 – Changes in the expression of Slug, Snail and TWIST in MCF-7 

cells treated with tamoxifen +/- CDH1 siRNA. Western Blot Analysis of Slug, 

Snail, TWIST and Actin expression in MCF-7 cells under conditions of 6-day 

tamoxifen treatment, with and without E-cadherin suppression. Differences in 

expression were assessed formally by densitometry. Tamoxifen promotes an 

increase in EMT-associated transcription factor expression in MCF-7 cells. E-

cadherin knockdown has no effect on the expression of EMT transcription 

factors. 
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Figure 3.30 – Changes in the expression of Rac-1, RhoA and Cdc42 in MCF-7 

cells treated with tamoxifen +/- CDH1 siRNA. Western Blot Analysis of Rac1, 

RhoA, Cdc42 and Actin expression in MCF-7 cells under conditions of 6-day 

tamoxifen treatment, with and without E-cadherin suppression. Differences in 

expression were assessed formally by densitometry. Tamoxifen promotes an 

increase in the expression of intracellular kinases in MCF-7 cells. E-cadherin 

knockdown has no effect intracellular kinase expression. 
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Figure 3.31 – Changes in the expression of Npn-1 and Sema 3E in MCF-7 

cells treated with tamoxifen +/- CDH1 siRNA. Western Blot Analysis of Npn-1, 

Sema 3E and Actin expression in MCF-7 cells under conditions of 6-day 

tamoxifen treatment, with and without E-cadherin suppression. Differences in 

expression were assessed formally by densitometry. Tamoxifen promotes an 

increase in the expression of semaphorin family members in MCF-7 cells. E-

cadherin knockdown has no effect of semaphorin expression. 
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Figure 3.32 – Changes in the expression of MMP-9 in MCF-7 cells treated 

with tamoxifen +/- CDH1 siRNA. Western Blot Analysis of MMP-9 and Actin 

expression in MCF-7 cells under conditions of 6-day tamoxifen treatment, with 

and without E-cadherin suppression. Differences in expression were assessed 

formally by densitometry. Tamoxifen promotes an increase in the expression of 

MMP-9 in MCF-7 cells. E-cadherin knockdown has no effect on MMP-9 

expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 170 

 

 

Figure 3.33 – Changes in the expression of pFAK and pSTAT3 in MCF-7 cells 

treated with tamoxifen +/- CDH1 siRNA. Western Blot Analysis of pFAK, 

pSTAT3 and Actin expression in MCF-7 cells under conditions of 6-day tamoxifen 

treatment, with and without E-cadherin suppression. Differences in expression 

were assessed formally by densitometry. Tamoxifen promotes an increase in the 

expression of pFAK and pSTAT3 in MCF-7 cells. E-cadherin knockdown has no 

effect on pFAK and pSTAT3 expression. 
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3.2.5 Discussion 

 

This section has explored some of the signaling pathways that may be associated 

with the pro-invasive response found when treating ER+ breast cancer cells with 

ER-targeting endocrine treatment, particularly when cells exhibited low 

expression of E-cadherin. Specifically, the chapter has aimed to address the two 

hypotheses, drawn from results so far, that may explain this phenomenon: 

(i) that the combined effect of E-cadherin loss and endocrine treatment 

activates specific pro-migratory/invasive pathways that are not 

activated/fully activated in the context of either E-cadherin loss or 

endocrine treatment alone, 

or 

(iii) endocrine treatments activate signalling pathways that govern cell 

aggressiveness but the cellular consequence of this is not fully seen 

until the physical barrier to migration/invasion (i.e. cadherin-mediated 

cell-cell adhesion) is removed. 

 

The initial focus of this investigation involved the protein kinase Src, which is 

intimately involved in cancer invasion (164) and whose expression has previously 

been shown to be upregulated by tamoxifen in ER+ breast cancer in the context of 

an adverse response to such treatment (134). Indeed, results here also 

demonstrated a significant increase in Src expression with both tamoxifen and 

fulvestrant therapy, while estrogen suppression appeared to have the opposite 

effect. Interestingly, while previous reports suggest that the combination of 

tamoxifen with E-cadherin suppression results in elevated Src expression to a 

greater degree than with either treatment alone (134), findings in this chapter 

demonstrated no difference in Src expression based on E-cadherin status. 

 

Src is a non-receptor tyrosine kinase, whose overexpression or aberrant 

activation is reported in a variety of tumors, including breast cancer (239-242), 

and plays an important role in many cellular processes, such as proliferation, 

survival, motility, invasion and angiogenesis (166, 242). Src kinase activity is 

known to be increased in breast cancer as compared to normal breast tissue (171) 
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and is intimately involved in breast cancer progression and metastasis 

development (243). Indeed, cell lines expressing higher levels of Src have been 

found to be more invasive in-vitro (244). 

 

Underlying these findings is the importance of Src in ER-mediated gene 

transcription (245-248) and cross talk with growth factor signaling pathways, 

such as EGFR (249). Elevated Src expression has been associated with endocrine 

resistance, enhancing cell invasion (131), while tamoxifen itself has also 

previously been shown to increase Src expression in endocrine-sensitive cells 

(134, 172, 250), as has been demonstrated in this chapter. Interestingly, whether 

this change in Src expression is a result of the agonistic or antagonistic properties 

of tamoxifen appears controversial, with both potential mechanisms observed by 

others (250, 251). Results from this chapter would suggest however that it may 

be the antagonistic actions of tamoxifen that results in this increase in Src 

signaling, as similar results were also observed when replacing tamoxifen with 

fulvestrant, a pure ER antagonist. In addition, it is interesting to note that culture 

in estrogen deprived conditions, hence a relative lack of ER activation as opposed 

to ER antagonism, led to the opposite effect whereby Src activation was 

suppressed. 

 

Given the apparent role of Src kinase in the described adverse response to 

endocrine treatment, it was next felt appropriate to investigate some substrates 

of Src. This included the role of MAPK, and specifically ERK 1/2 (175, 252), 

particularly given its known functions in cell migration and invasion (253). In a 

similar fashion to Src, ERK 1/2 signaling was activated by both tamoxifen and 

fulvestrant, but suppressed with estrogen withdrawal, which corresponds the 

invasion/migration data obtained with these treatments in the previous chapter. 

Again, these changes in expression appeared to be independent of E-cadherin 

status. 

 

In breast cancer, the ER is known to be a major regulator of ERK expression, with 

previous reports demonstrating that estradiol (E2) and the ER complex activates 

ERK expression in several cell line models (252, 254). In MCF-7 cells this 
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activation is brought about by phosphorylation of Shc and p190, both substrates 

of Src (252, 255). As such, it is therefore likely that a similar method of activation 

is initiated through the binding of tamoxifen and fulvestrant to the ER, modulating 

this signaling pathway as previously described. Indeed, ERK expression has also 

been shown to be influenced by pharmacological Src and MEK inhibition in this 

chapter, which had subsequent negative effects on cell invasion and migration. 

The ERK 1/2 pathway is then ultimately activated by growth factors through Ras-

Raf-MEK phosphorylation or via the PKC-Raf-MEK pathway (235). Activation of 

MAPK by these methods ultimately result in its translocation to the nucleus, where 

it may activate additional transcription factors, such as activating protein 1 (AP-

1), through their phosphorylation (256, 257). Signaling from tyrosine kinases, 

involving the Ras/MAPK pathway (258, 259), also implicate a direct role for ERK 

1/2 in activating the intracellular motility machinery through myosin light-chain 

kinase (MLCK) activation (260). 

Via these processes, ERK 1/2 has been previously shown to be associated with 

tumor invasion, migration and metastasis development through several cellular 

processes. As such, ERK activity has been reported to be higher in metastatic, as 

compared to non-metastatic cancer cells (261-263). 

 

A second pathway under the regulation of Src is the PI3K-AKT pathway (166). As 

such, AKT expression was also explored in relation to the endocrine-induced pro-

invasive/migratory MCF-7 cell phenotype. While the PI3K-AKT pathway has been 

shown to be implicated in breast cancer, it is traditionally associated with 

deregulated cell growth and proliferation, as opposed to cell invasion/migration 

(224, 225). Indeed, results from this chapter demonstrated a suppression in AKT 

signaling with endocrine therapies, while pharmacological inhibition of AKT 

resulted in suppressed cell proliferation, whilst having no significant effect on 

migration and invasion. 

 

AKT may be influenced by ER signaling through several mechanisms. The ER itself 

promotes the transcription of several genes that are upstream effectors of the 

PI3K/AKT/mTOR pathway, such as receptor ligands, RTK’s, including Src, and 

several signaling adaptors (264, 265). In addition, PI3K/AKT signaling may be 
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activated through extra-nuclear functions of the ER, by the ER itself binding to the 

p85a subunit of PI3K (266), or via ER-mediated activation of IGF-1R (267). 

Considering this, the influence of tamoxifen and fulvestrant on AKT expression 

may therefore be anticipated. Consistent with this, estrogen deprivation, which 

has been used to mimic the effect of in-vivo aromatase inhibition, also suppressed 

AKT activity in a similar manner to that reported by others,  both in-vitro and 

within clinical trials (265, 268, 269). 

 

It is interesting to note from the results concerning Src, ERK and AKT in this 

chapter that there appears to be somewhat of an inverse relationship with respect 

to ER-targeting agents, which upregulate Src and ERK, while downregulating AKT 

expression, in comparison with estrogen deprivation, which suppresses the 

expression of all three proteins. In contrast, the effect of an agonistic agent on the 

ER would tend to promote increased signaling through Src, MAPK and PI3K/AKT 

(270, 271). This complex relationship between Src, MAPK and AKT, in response to 

changes within the ER from its ligands may therefore be critical to understanding 

the adverse response to endocrine treatments that has been observed. It is 

interesting to note that while this adverse response promotes a pro-invasive 

phenotype, proliferation is at the same time suppressed. It would therefore be 

interesting to know the clinical effects this may have on patient disease, 

particularly as to whether this may be in part responsible for the late development 

of distant metastatic disease several years after the initial treatment of patients 

with ER+ disease. 
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Figure 3.34 – Diagram demonstrating signaling pattern in MCF-7 cells with 

tamoxifen and fulvestrant treatment, as compared to culture under 

conditions of estrogen withdrawal (-E2). Treating cells with ER targeting 

agents resulted in an increase in Src and ERK expression, while AKT was 

suppressed. Meanwhile, estrogen withdrawal (-E2) resulted in reduced 

expression of all 3 proteins.  

 

Following the identification of Src and some of its substrates as potential 

regulators of endocrine induced invasion, the effects of tamoxifen on the 

expression of FAK and STAT3 was assessed, given their known roles in cancer cell 

invasion/migration (272, 273), and regulation through Src-mediated signalling 

(274, 275). Interestingly, expression of both these elements were increased with 

tamoxifen treatment. 

 

FAK is a cytoplasmic non-receptor tyrosine kinase that is activated by several 

growth factor receptors and integrins in several types of cancer (276). In cancer 

cell migration and invasion, FAK activation through ECM-induced integrin 

clustering promotes necessary cytoskeletal re-organisation (272, 273), which is 

partly mediated by FAK/Src complex formation and subsequent kinase activity 

(274, 275). Part of this actin remodelling is also mediated through the effect of 

FAK on several GTPases, including RhoA, Rac1 and Cdc42 (277-280). Indirectly 

through these methods, FAK signalling is responsible for the production and 

release of MMP’s via its activation of Rac1, which in turn activates JNK protein 
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(277, 281). In addition, FAK activation and FAK/Src complex formation may drive 

the interruption of E-cadherin-mediated adherens junctions, therefore having a 

role in EMT (282, 283), although interestingly FAK expression appeared unaltered 

by E-cadherin expression from the results within this chapter. 

 

STAT3 is a member of the STAT family of transcription factors, which is generally 

located within the cytoplasm in resting cells, and becomes activated by tyrosine 

residue phosphorylation, allowing its translocation to the nucleus (238). In 

normal physiology, it has essential functions in embryonic development, cell 

differentiation and immune response (284), while in cancer its aberrant activation 

is associated with cell proliferation, survival, invasion, angiogenesis and 

metastasis development (285). Activation of STAT3 can be brought about through 

multiple routes, including phosphorylation by EGFR and VEGFR (238). 

Importantly however, in the context of this current work, STAT3 may also be 

activated through non-receptor tyrosine kinases, such as Src (286), and several 

serine kinases, including MAPK (237), via serine 727 phosphorylation. Once 

activated the transcriptional activity of STAT3 has several important effects, 

including the regulation of MMP expression, which governs an important aspect 

of cell invasion (238), as well as the regulation of microtubule dynamics (287) and 

expression of intracellular kinases, such as Rac-1 (236), which help control cell 

migration. 

 

Both FAK and STAT3 regulate the production of matrix metalloproteinases 

(MMP’S), which are responsible for ECM degradation as part of cell invasion (235). 

Interestingly, ERK 1/2 also plays a role in basement membrane degradation, 

acting on several of these proteolytic enzymes, including MMP-1, MMP-9, MMP-11 

and urokinase-type plasminogen activator (uPA) (235), all of which have been 

implicated in cancer progression and invasion (288, 289). Given that microarray 

data also demonstrated a potential upregulation in some MMP members, this area 

was further investigated. Indeed, it was therefore interesting to note the results 

within this chapter suggesting a correlation between tamoxifen therapy, ERK 1/2, 

FAK and STAT3 phosphorylation, and an upregulation of MMP-9 in MCF-7 cells. 
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The semaphorin pathway, which has also been associated with cell migration in 

cancer as multi-faceted guidance proteins (231), was also investigated given that 

a number of proteins that function within this pathway appeared to have altered 

expression on microarray data. Interestingly, semaphorin pathway members may 

also have an element of cross talk with E-cadherin in their role as supplementary 

regulators of epithelial junctions (290), while some elements of this pathway also 

appear to be regulated by Src and AKT (232).Whilst the semaphorin pathway itself 

is complex and relatively poorly understood, it was interesting to note the 

expression of Sema 3E and neuropilin 1, both known pro-metastatic components 

of the pathway which derive their effects through binding with Plexins (231, 291, 

292), were unaffected by E-cadherin expression but again appeared to be 

upregulated by tamoxifen.  

 

Until this point, all the investigated targets have tended to show a relationship in 

their expression with endocrine treatments and signaling that involves targeting 

of the ER. Meanwhile E-cadherin expression appeared to have no significant effect 

on the signaling events in any of these pathways. As such, an assessment of several 

subsequent target proteins was undertaken, all of which have traditionally been 

associated with E-cadherin itself, or with the process of EMT, of which E-cadherin 

loss is usually a key feature (121-123). 

E-cadherin has been inherently linked with tumor invasiveness and metastases 

development in multiple cancers and is hence associated with poor prognosis 

(293-295). Whilst it forms the core of the epithelial adherens junction, at its 

cytoplasmic domain E-cadherin associates with several proteins, such as catenins, 

which link it to the actin cytoskeleton. Therefore, while E-cadherin loss allows for 

disaggregation of tumour cells from one another, it may also mediate intracellular 

signaling functions via some of these associated proteins (296-299). 

E-cadherin may interact functionally with both RhoA and Rac1 intracellular 

kinases, through its association with p120, which in turn play a role in coupling 

receptor signaling to changes in the actin cytoskeleton and cell contractility (300). 

E-cadherin may also indirectly interact with the Wnt signaling pathway, via its 

association with β-catenin (301), resulting in cell migration mediated through 
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several components, including intracellular kinases RhoA, Rac1 and Cdc42. It is 

interesting to note however that several of these intracellular kinases studied in 

this chapter appear to show no significant change in expression with E-cadherin 

status and instead appear to be upregulated by tamoxifen.  

E-cadherin loss has also been associated with the upregulation of several 

transcription factors associated with epithelial to mesenchymal transition (EMT), 

such as Slug, Snail and Twist (302-305), which are also known to play a role in 

tumour progression (306). In addition, other mesenchymal markers affected by 

E-cadherin loss include N-Cadherin, vimentin, fibronectin and ZEB-1 (204). 

Despite these findings by others E-cadherin loss alone is insufficient to induce 

EMT in cells, with several other factors required (156). Indeed, within the context 

of this chapter several markers of EMT appeared unaffected by E-cadherin loss, 

while some transcription factors, including Slug and Snail, appeared to be again 

upregulated by tamoxifen and fulvestrant. 

 

The fact that expression of several of the above targets, which one would normally 

associate with signaling related to E-cadherin, appear to be influenced by ER-

targeting endocrine treatment as opposed to E-cadherin modulation itself, may be 

due to overriding control of these elements from ER, or more specifically Src 

signaling. To confirm this however, it would be helpful to assess the expressional 

response of these signaling elements following treatment with a pharmacological 

Src inhibitor, which would be a potential avenue for ongoing work. 

 

In the context of current findings, it would therefore appear that E-cadherin itself 

may not necessarily play a significant role in pro-invasive signaling changes 

within this cell model. Instead, it may be more likely that E-cadherin loss creates 

a permissive environment, where cell signaling resultant from ER-targeting 

endocrine treatments is able to have a more significant effect on cell phenotype. 

 

A further interesting point to note from this chapter is that all the data on signaling 

events outlined above come from assessing the MCF-7 cell line, in which a pro-

invasive response to endocrine treatments were previously described. It would 
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therefore be interesting to compare signaling changes to endocrine treatment in 

an alternative ER+ cell line to assess if similar expressional changes would be seen. 

As a result, the T47D cell line, which was previously shown to not exhibit the same 

pro-invasive response to tamoxifen in the previous chapter, was chosen for 

supplementary analysis. As such, the expressional changes of Src, ERK 1/2 and 

AKT were assessed in T47D cells, in response to tamoxifen therapy +/- E-cadherin 

suppression, with Western blotting (Figure 3.34). It was interesting to note from 

this data that the expressional changes of these targets appeared different to what 

was seen in MCF-7 cells, with Src and ERK signaling unaltered by tamoxifen 

treatment, while AKT expression was still suppressed. 

 

These findings appear to reinforce the idea that an adverse response to endocrine 

therapy is not a generic phenomenon across all ER+ breast cancer. Instead, there 

must be some key elemental differences within certain ER+ tumours, outside of 

ER expression alone, which promote signaling associated with an adverse 

response to treatment. As such, the attention of this thesis will turn to addressing 

this hypothesis in the next section.  
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Figure 3.35 – Changes in the expression of pSrc and pERK 1/2 and pAKT in 

T47D cells treated with tamoxifen +/- CDH1 siRNA. Western Blot Analysis of 

pSrc, pERK 1/2, pAKT and Actin expression in T47D cells under conditions of 6-

day tamoxifen treatment, with and without E-cadherin suppression. Differences 

in expression were assessed formally by densitometry. Tamoxifen has no effect 

on the expression of pSrc and pERK 1/2, but suppresses pAKT expression in 

T47D cells. E-cadherin knockdown has no effect on expression. 
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3.3 Exploring the role of proline, glutamate and leucine 

rich protein 1 (PELP-1) in ER+ breast cancer 

 

3.3.1 Introduction 

 

Data within the previous chapters pointed to the ability of ER-targeting agents to 

induce cellular invasion and migration in ER+ MCF-7 breast cancer cells. This did 

not appear to be a generic effect however, as a similar response was not observed 

in a second model of ER+ breast cancer (i.e. T47D cells). As such, the aim of this 

chapter is to attempt to identify key molecular determinants of an adverse 

response to endocrine agents in ER+ breast cancer. 

 

To achieve this, a review of the literature was undertaken, using the National 

Center for Biotechnology Information (NCBI) online search engine (307), to 

identify key molecular differences between MCF-7 and T47D cells. Search terms 

used included combination of, “MCF-7”, “T47D”, “breast cancer” and “molecular 

differences”. Searches conducted using these terms revealed a total of 92 results, 

which were further assessed by reviewing the abstract of each paper where 

available, followed by a review of the full paper itself in those results deemed to 

be of suitable interest. Results from this literature review revealed over 100 

potential molecular targets demonstrating variable expression between MCF-7 

and T47D cell (Appendix 7.15). 

 

To refine the number of valid molecular targets suitable for further investigation, 

several criteria were applied to the expanded list, based on findings drawn from 

the data presented within previous chapters. These criteria stipulate that a 

suitable target for further investigation would be one which: 

i. Demonstrates a significant differential in expression between the MCF-7 

and T47D cell lines 

ii. Has a body of evidence that suggests a role in direct/indirect regulation of 

cell invasion and/or migration 

iii. Is regulated by conformational changes of the ER 
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iv. Regulates/is regulated by changes in expression of Src kinase 

 

When taking these criteria into consideration, one protein of potential interest 

that conforms to these ideals was the proto-oncogene, proline-, glutamic acid- and 

leucine-rich protein 1 (PELP-1).  

 

PELP-1, also known as modulator of non-genomic activity of estrogen 

receptor (MNAR) or transcription factor HMX3, is a large multi-domain protein 

which plays an important role in the modulation of several signalling cascades, 

including mediating the non-genomic actions of the ER (308). The protein has 

several known functions, such as interaction with nuclear receptors via its nuclear 

receptor (NR)-interacting boxes (LXXLL motifs) (309), and histone activation, 

through a histone binding regions located at the C-terminus (310, 311). 

Importantly, PELP-1 contains several PXXP motifs which facilitate interaction 

with proteins containing Src homology 3 (SH3) domains (308) permitting PELP-

1-mediated activation of Src family kinases. Through this interaction PELP-1 can 

interact with several proteins that control the cell cytoskeleton, cell migration and 

metastases (312). In addition, basal expression of PELP-1 has been noted to be 

significantly higher amongst MCF-7 cells, compared with the T47D cell line (309). 

These facts would therefore appear to make PELP-1 an ideal candidate for 

investigation as a potential regulator of the adverse invasive response to ER-

targeting endocrine agents, as previously described. As such, this chapter will 

explore the role of PELP-1 within ER+ breast cancer, concentrating of the 

following aspects: 

i. The differential expression of PELP-1 among ER+ breast cancer cell lines 

ii. The contribution of PELP-1 expression on the invasive and migratory 

capacity of ER+ breast cancer in response to endocrine treatments and/or 

E-cadherin suppression 

iii. The effect of PELP-1 expression on key cellular signalling pathways found 

previously to be implicated in the adverse cell response to ER-targeting 

endocrine treatments  
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3.3.2 Basal PELP-1 expression in MCF-7 cells is high when 

compared to a panel of alternative ER+ cell lines 

 

Basal levels of total PELP-1 expression was determined by Western Blot among 

the previously examined panel of ER positive cell lines, grown in standard 

experimental conditions for 6 days (Figure 3.35). These findings indicated a 

higher expression of PELP-1 amongst MCF-7 cells compared to the T47D, BT474 

and MDA-MB-361 cell lines. 
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Figure 3.35 – Variation in the basal expression of total PELP-1 amongst a 

panel of ER+ cell lines. Western Blot Analysis of PELP-1 and Actin expression in 

MCF-7, T47D, BT474 and MBA-MB-361 cells. Differences in expression were 

assessed formally by densitometry. Total PELP-1 expression is significantly 

higher amongst MCF-7 cells, as compared to the T47D, BT474 and MDA-MB-361 

cell lines. 
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3.3.3 Endocrine therapy alters PELP-1 expression in MCF-7, but 

not T47D cells 

 

Once the basal level of PELP-1 expression was established, the influence of 

endocrine therapies, in the presence and absence of E-cadherin, was assessed by 

Western Blotting (Figure 3.36). These results confirmed that 6-day tamoxifen 

therapy appears to be associated with an increase in total PELP-1 expression, both 

in the presence and absence of E-cadherin expression. These results were also 

replicated when tamoxifen was replaced with 6-day fulvestrant therapy. 

Meanwhile, 6-day cell culture in conditions of estrogen withdrawal (-E2) led to a 

suppression of total PELP-1 expression, both in the presence and absence of E-

cadherin expression. 

 

In contrast, in the T47D cell line, total PELP-1 expression was not significantly 

affected by 6-day tamoxifen or fulvestrant therapy, either in the presence or 

absence of E-cadherin expression (Figure 3.37). Similarly, 6-day culture of T47D 

cells in conditions of estrogen withdrawal (-E2) had no significant effect of total 

PELP-1 expression, independent of E-cadherin expression. 
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Figure 3.36 – Changes in PELP-1 expression in MCF-7 cells with tamoxifen, 

fulvestrant or estrogen withdrawal +/- CDH1 siRNA. Western Blot Analysis of 

PELP-1 and Actin under conditions of 6-day estrogen withdrawal, tamoxifen or 

fulvestrant treatment, with and without E-cadherin suppression. Differences in 

expression were assessed formally by densitometry. Tamoxifen and fulvestrant 

increase total PELP-1 expression, while estrogen withdrawal suppresses total 

PELP-1 expression in MCF-7 cells. 
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Figure 3.37 – Changes in PELP-1 expression in T47D cells with tamoxifen, 

fulvestrant or estrogen withdrawal +/- CDH1 siRNA. Western Blot Analysis of 

PELP-1 and Actin under conditions of 6-day estrogen withdrawal, tamoxifen or 

fulvestrant treatment, with and without E-cadherin suppression. Differences in 

expression were assessed formally by densitometry. Tamoxifen, fulvestrant and 

estrogen withdrawal has no effect on total PELP-1 expression in T47D cells. 
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3.3.4 Optimization of siRNA-mediated PELP-1 knockdown in 

MCF-7 cells 

 

Prior to investigating the effects of PELP-1 suppression in relation to cell invasion 

and migration, optimization of the siRNA transfection protocol was required.  

 

A 72-hour lipid-based transfection system was again utilized using Dharmafect 

smartpool® PELP-1 siRNA (Methods 2.2.6). The transfection procedure was 

optimized using a range of concentrations of anti-PELP-1 siRNA (100nm, 150nm, 

200nm) to determine the dose that would achieve most efficient knockdown of 

PELP-1, assessed by Western blotting. Optimization was performed using the 

MCF-7 cell line, given its high basal level of PELP-1 expression. Data from Western 

blotting revealed no significant difference in knockdown of PELP-1 between the 

100nm, 150nm and 200nm dose of siRNA (Figure 3.38). As a result, the 100nm 

dose of PELP-1 siRNA for all future experiments, as this produced adequate 

knockdown of PELP-1, while avoiding potential cellular siRNA toxicity from 

higher dose. 
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Figure 3.38 – Dose effect of PELP-1 siRNA on PELP-1 expression in MCF-7 

cells. Western blotting and densitometry data demonstrating the expression of 

PELP-1 and Actin in MCF-7 cells, 72 hours after NT and PELP-1 siRNA 

transfection, using 100nm, 150nm and 200nm dose of siRNA respectively. PELP-

1 expression is suppressed using 100nm, 150nm and 200nm dose of CDH1 

siRNA in MCF-7 cells. 
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3.3.5 PELP-1 suppression reduces the pro-invasive effects of 

tamoxifen and fulvestrant in MCF-7 cells 

 

The effect of PELP-1 expression in relation to cell invasion was assessed by 

investigating the invasive capacity of MCF-7 cells, grown in 2D cell culture, to 

invade through a Matrigel® matrix, as performed in earlier chapters.  

 

Initially, the effects of tamoxifen on cell invasion were compared in PELP-1 

positive (NT) and PELP-1 deficient (PELP-1) cells (Figure 3.39a). Results from this 

assay demonstrated a significant increase in the invading number of cells with 

tamoxifen treatment, both with (p=0.002) and without (p<0.001) PELP-1 

knockdown. Knockdown of PELP-1 in cells treated with tamoxifen did however 

result in a decrease in cellular invasion compared to wild-type (NT) counterparts 

(p<0.001), while no significant difference in invasion was observed when 

comparing PELP-1 knockdown with wild-type cells (NT) in the absence of 

endocrine therapy.  

 

In a similar fashion, the effects of fulvestrant on cell invasion were also compared 

in PELP-1 positive (NT) and PELP-1 deficient (PELP-1) cells (Figure 3.39b). As 

seen in the case of tamoxifen, fulvestrant treatment resulted in a significant 

increase in the invading number of cells, both with and without PELP-1 

knockdown (p<0.001). Knockdown of PELP-1 in fulvestrant-treated cells did 

result in a decrease in cellular invasion compared with fulvestrant-treated wild-

type (NT) cells (p=0.002). Meanwhile, as was the case previously, no significant 

difference in invasion was observed when comparing PELP-1 knockdown alone 

with wild-type cells (NT) in the absence of endocrine therapy.  
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a. 

 

b. 

 

Figure 3.39 – Cell invasion in MCF-7 cells treated with (a.) tamoxifen and 

(b.) fulvestrant +/- PELP-1 siRNA. MCF-7 cells were treated with non-targeting 

(NT) or PELP-1 targeting (PELP-1) siRNA for 72 hours before assessing their 

invasive capacity in response to 6-day (a) tamoxifen (1x10-7M) and (b) 

fulvestrant (1x10-7M) treatment. PELP-1 suppression reduced the previously 

observed pro-invasive response to endocrine treatments. The graphs show the 

results for the mean of three separate experiments.  
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3.3.6 PELP-1 suppression reduces the pro-migratory effects of 

tamoxifen and fulvestrant in MCF-7 cells 

 

To assess migration, the capacity of MCF-7 cells grown in 2D cell culture, to 

migrate through a fibronectin coated membrane, was assessed in the same 

manner as previously described in earlier chapters.   

 

In a similar fashion to when investigating changes in invasion, the effects of 6-day 

tamoxifen treatment on cell migration were compared in PELP-1 positive (NT) 

and PELP-1 deficient (PELP-1) cells (Figure 3.40a). These results again 

demonstrated a significant increase in migration amongst wild-type (NT) cells 

treated with tamoxifen (p<0.001), as described previously. In addition, while 

PELP-1 knockdown alone had no significant effect on migration when compared 

to wild-type cells (NT), a significant reduction the number of migratory cells was 

observed in PELP-1 knockdown cells treated with tamoxifen, compared to wild-

type cells (NT) treated with tamoxifen (p=0.014). In contrast to the results seen 

when investigating invasion however, there was no observed difference in 

migration between PELP-1 knockdown cells treated with and without tamoxifen, 

indicating that PELP-1 knockdown may have a more potent effect on cell 

migration as compared to cell invasion in this respect. 

 

The effect of fulvestrant on cell migration was also compared in PELP-1 positive 

(NT) and PELP-1 deficient (PELP-1) cells (Figure 3.40b). As seen previously, 

fulvestrant treatment resulted in a significant increase in the number of migratory 

cells (p<0.001). Knockdown of PELP-1 in fulvestrant-treated cells did result in a 

decrease in cellular migration (p<0.001). Meanwhile, no significant difference in 

migration was found when comparing PELP-1 knockdown alone with wild-type 

cells (NT) in the absence of any endocrine therapy.  
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a. 

 

b. 

 

Figure 3.40 – Cell migration in MCF-7 cells treated with (a.) tamoxifen and 

(b.) fulvestrant +/- PELP-1 siRNA. MCF-7 cells were treated with non-targeting 

(NT) or PELP-1 targeting (PELP-1) siRNA for 72 hours before assessing their 

migratory capacity in response to 6-day (a) tamoxifen (1x10-7M) and (b) 

fulvestrant (1x10-7M) treatment. PELP-1 suppression reduced the previously 

observed pro-migratory response to endocrine treatments. The graphs show the 

results for the mean of three separate experiments.  
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3.3.7 PELP-1 suppression has no effect on proliferation in MCF-7 

cells 

 

While previous results suggest PELP-1 suppression has a significant effect in 

inhibiting endocrine induced invasion and migration, it may be possible that 

incidental effects on cellular proliferation could mask the results of these assays. 

 

To assess the effects of PELP-1 knockdown on cell proliferation therefore, a 6-day 

cell growth assay was performed, assessed by MTT assay (Figures 3.41a and 

3.41b). This compared the proliferation of wild-type (NT) and PELP-1 knockdown 

MCF-7 cells, treated with and without tamoxifen or fulvestrant. Results from this 

assay demonstrated that while, as seen previously, both tamoxifen and fulvestrant 

therapy resulted in reduced cellular proliferation (p<0.001), PELP-1 knockdown 

had no effect in both endocrine-treated and untreated MCF-7 cells.   

 

These results were confirmed by performing a 6-day growth assay, assessed by 

end-point cell counting (Figures 3.42a and 3.42b). This again compared the 

proliferation of wild-type (NT) and PELP-1 knockdown MCF-7 cells, treated with 

and without tamoxifen or fulvestrant. Results mirrored those of the MTT assay, 

whereby both tamoxifen and fulvestrant therapy reduced cellular proliferation 

(p<0.001), while PELP-1 knockdown had no effect on proliferation in endocrine-

treated and untreated MCF-7 cells. 
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a. 

 

b. 

 

Figure 3.41 – Cell proliferation in MCF-7 cells treated with (a.) tamoxifen 

and (b.) fulvestrant +/- PELP-1 siRNA. MCF-7 cells were treated with non-

targeting (NT) or PELP-1 targeting (PELP-1) siRNA for 72 hours before assessing 

cell proliferation after either 6-day (a) tamoxifen (1x10-7M) or (b) fulvestrant 

(1x10-7M) treatment. PELP-1 suppression had no significant effect of cell 

proliferation. The graphs show the results for the mean of three separate 

experiments. 
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a. 

 

b. 

 

Figure 3.42 – Cell proliferation in MCF-7 cells treated with (a.) tamoxifen 

and (b.) fulvestrant +/- PELP-1 siRNA MCF-7 cells were treated with non-

targeting (NT) or PELP-1 targeting (PELP-1) siRNA for 72 hours before assessing 

cell proliferation after either 6-day (a) tamoxifen (1x10-7M) or (b) fulvestrant 

(1x10-7M) treatment. PELP-1 suppression had no significant effect of cell 

proliferation. The graphs show the results for the mean of three separate 

experiments. 
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3.3.8 PELP-1 suppression reduces the pro-invasive and pro-

migratory effects of tamoxifen in MCF-7 cells within a low 

cell-cell contact environment 

 

Having established that siRNA mediated PELP-1 knockdown inhibits invasion and 

amongst MCF-7 cells treated with tamoxifen and fulvestrant, the next step was to 

assess whether this effect would also be evident in the setting of E-cadherin 

suppression, given that a more dramatic pro-invasive/pro-migratory response to 

endocrine agents was demonstrated under these conditions previously. 

 

To assess this a double-knockdown (E-cadherin/PELP-1) experiment was first 

designed and optimized. A double siRNA transfection with anti-CDH1 and anti-

PELP-1 siRNA was performed using the same transfection protocol as previously 

used for each siRNA individually. In the case of double-transfection however, the 

siRNA dose for CDH1 and PELP-1 was halved to allow the total siRNA dose (and 

lipid dose) to remain the same. To assess the effectiveness of knockdown MCF-7 

cells grown in antibiotic-free experimental medium was transfected with 100nm 

(50nm CDH1, 50nm PELP-1), 150nm (75nm CDH1, 75nm PELP-1) and 200nm 

(100nm CDH1, 100nm PELP-1) respectively, for 72 hours. Dishes were then lysed 

for protein extraction and lysates analyzed by SDS-PAGE and Western Blotting to 

determine the effectiveness of knockdown of E-cadherin and PELP-1. Results 

demonstrated effective knockdown of both E-cadherin and PELP-1 using the 

100nm, 150nm and 200nm doses of combined siRNA (Figure 3.43). As a result, 

the 100nm combined siRNA dose was used in future experiments. 

 

Following this period of optimization, this siRNA transfection protocol was 

incorporated into the Boyden chamber invasion and migration assays, to assess 

the functional effects of the double-knockdown of both proteins. Therefore, to 

assess invasion, siRNA mediated wild-type (NT), E-cadherin knockdown and 

PELP-1/E-cadherin knockdown MCF-7 cells were compared in the presence and 

absence of 6-day tamoxifen treatment (Figure 3.44a). The results from this assay 

revealed, as shown previously, the pro-invasive response of cell treated with 
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tamoxifen (p=0.020), augmented by E-cadherin suppression (p<0.001). 

Interestingly however, combined PELP-1/E-cadherin knockdown cells treated 

with tamoxifen showed no significant change in invasion, suggesting a reversal in 

the previously seen tamoxifen-induced pro-invasive response. 

 

In similar fashion, to assess migration, siRNA mediated wild-type (NT), E-cadherin 

knockdown and PELP-1/E-cadherin knockdown MCF-7 cells were compared in 

the presence and absence of 6-day tamoxifen treatment (Figure 3.44b). As was the 

case when assessing invasion, results from this assay revealed the previously seen 

pro-migratory response of cell treated with tamoxifen, again augmented by E-

cadherin suppression (p<0.001). Meanwhile, combined PELP-1/E-cadherin 

knockdown cells treated with tamoxifen revealed suppressed cell migration, as 

compared to corresponding tamoxifen-treated E-cadherin knockdown cells. 

Again, this result suggests that the incorporation of PELP-1 suppression within 

the assay results in inhibition of tamoxifen-induced migration. 
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Figure 3.43 – Dose effect of combined CDH1/PELP-1 siRNA on E-cadherin 

and PELP-1 expression in MCF-7 cells. Western blotting and densitometry 

data demonstrating the expression of PELP-1, E-cadherin and Actin in MCF-7 

cells, 72 hours after NT and CDH1/PELP-1 siRNA transfection, using 100nm, 

150nm and 200nm dose of siRNA respectively. Both E-cadherin and PELP-1 

expression is suppressed using combined 100nm, 150nm and 200nm dose of 

CDH1/PELP-1 siRNA in MCF-7 cells. 
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a. 

 

b. 

 

Figure 3.44 - Cell (a.) invasion and (b.) migration in MCF-7 cells treated 

with tamoxifen +/- CDH1 siRNA or combined CDH1/PELP-1 siRNA. MCF-7 

cells were treated with non-targeting (NT) or combined CDH1/PELP-1 targeting 

(CDH1/PELP-1) siRNA for 72 hours before assessing their (a.) invasive and (b.) 

migratory capacity following 6-day tamoxifen (1x10-7M) treatment. PELP-1 

suppression reduces the (a) pro-invasive and (b) pro-migratory effects of 

tamoxifen in MCF-7 cells within a low cell-cell contact environment. The graphs 

show the results for the mean of three separate experiments. 
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3.3.9 Endocrine therapy has no effect on PELP-1 subcellular 

localization in MCF-7 cells 

 

Results from this chapter to date indicate that PELP-1 signaling is implicated in 

the observed pro-invasive and pro-migratory response to ER-targeting endocrine 

agents in MCF-7 cells, and that endocrine agents themselves may be involved in 

up-regulation of PELP-1 expression, which may drive this response. 

 

In addition to this however, given that others have noted that subcellular 

localization of PELP-1 may have an implication on function (313), it was decided 

to investigate whether endocrine therapies themselves may also play a role in 

regulating PELP-1 localization. To address this a time-course experiment was 

conducted whereby MCF-7 cells were grown on TESPA coated coverslips under 

control conditions, conditions of estrogen deprivation (mimicking aromatase 

inhibition), or treated with tamoxifen (1 x 10-7M) or fulvestrant (1 x 10-7M). Cells 

were cultured under these conditions for 3, 6, 9 and 12 days respectively and then 

fixed and stained for PELP-1 and ER by ICC. Cells were then visualized for PELP-1 

and ER sub-cellular localization by light microscopy. 

 

The results from this assay demonstrated that the sub-cellular location of PELP-1 

was almost exclusively nuclear, with particularly high density within nucleoli, 

within the control arm of the study at all time points (Mean H-Score=280 [SD 5.1]; 

Figure 3.45a). This nuclear distribution of PELP-1 was also evident, and overall 

appeared unaltered, where cells were treated with tamoxifen (Mean H-score=275 

[SD 5.1]; p=ns), fulvestrant (Mean H-score=280 [SD 8.22]; p=ns) or grown under 

conditions of estrogen deprivation (Mean H-score=275 [SD 6.2]; p=ns; Figure 

3.3.9 a). Interestingly however, with tamoxifen and fulvestrant treatment, there 

were occasional cells showing a cytoplasmic staining pattern for PELP-1 at all time 

points (Figure 3.45b), albeit at a very low frequency (approx. 1:500-1:1000 cells). 

In contrast the pattern of staining amongst cells cultured in conditions of estrogen 

deprivation appeared to be entirely nuclear. 
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Staining for ER was also performed to determine ER expression amongst cells 

treated under each condition over the 12-day time course. ER localization was 

predominantly nuclear in each experimental arm, with minimal staining in the 

cytoplasm (Figure 3.46). While tamoxifen had little effect of ER expression over 

the experiments time course (Mean H-score=290 [SD 5.2]; p=ns), treatment with 

fulvestrant resulted in reduced expression of ER from 6 days of treatment 

onwards (Day 3 H-score=290 [SD 7.6]; Day 12 H-score=190 [SD 15.1]; p<0.01), 

although sub-cellular location remained unaltered (Figure 3.46).  

 

Finally, given the predominant nuclear staining of both PELP-1 and the ER, 

confocal microscopy was used to try to identify potential interaction between the 

two proteins. To do this, MCF-7 cells were cultured under control conditions or 

treated with tamoxifen for 6 days, followed by fixation and ICC staining for PELP-

1 and ER. Cells were then visualized by confocal microscopy to determine co-

localization of PELP-1 and the ER. Results from this assay demonstrated a 

moderate level of PELP-1/ER co-localization (Figure 3.47a), which did not alter 

significantly with tamoxifen therapy (Figure 3.47b). 
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a. 

 

b. 

 

Figure 3.45 – PELP-1 subcellular localization in MCF-7 cells treated with 

tamoxifen, fulvestrant or under conditions of estrogen withdrawal. 

(a.)MCF-7 cells were cultured under control conditions or treated with tamoxifen 

(1x10-7M), fulvestrant (1x10-7M), or estrogen withdrawal for 3, 6, 9 and 12 days 

before being fixed and stained for PELP-1 expression. PELP-1 staining is uniform 

and predominantly nuclear under all treatment conditions. (b.) Occasional 

cytoplasmic staining for PELP-1 was identified amongst MCF-7 cells treated with 

tamoxifen and fulvestrant. 
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Figure 3.46 –  ER subcellular localization in MCF-7 cells treated with 

tamoxifen, fulvestrant or under conditions of estrogen withdrawal. MCF-7 

cells were cultured under control conditions or treated with tamoxifen (1x10-

7M), fulvestrant (1x10-7M), or estrogen withdrawal for 3, 6, 9 and 12 days before 

being fixed and stained for ER expression. ER staining is predominantly nuclear 

under all treatment conditions. ER staining was weaker in MCF-7 cells treated 

with fulvestrant, as compared to control conditions, in a time-dependent 

manner. 
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             PELP-1        ER           PELP-1/ER 
a. 

 

PELP-1        ER           PELP-1/ER 

b. 

 

Figure 3.47 – Evidence of ER/PELP-1 co-localization under (a.) control and 

(b.) tamoxifen treated conditions. MCF-7 cells were cultured under control 

conditions or treated with tamoxifen (1x10-7M) or estrogen withdrawal 6 days 

before being fixed and stained for ER (red) and PELP-1(green) expression. Cells 

were then imaged with confocal microscopy to assess for the co-localization of 

both proteins. ER and PELP-1 demonstrate a predominantly nuclear distribution. 

High PELP-1 signal is evident within cell nucleoli. Co-localization between ER 

and PELP-1 is moderate and not significantly affected by tamoxifen therapy. 
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3.3.10 PELP-1 suppression reverses   endocrine-induced 

intra-cellular signaling changes in MCF-7 cells 

 
The previous chapter demonstrated that tamoxifen and fulvestrant induced a 

series of intra-cellular signaling changes in MCF-7 cells, which were associated 

with an adverse cellular phenotype. Given that siRNA-mediated PELP-1 

suppression inhibited this pro-invasive/pro-migratory phenotype, it was decided 

to re-assess these signaling pathways in the context of PELP-1 suppression, to 

assess whether these signaling pathways would be altered. 

 

To achieve this, the effects of siRNA mediated knockdown of PELP-1 on MCF-7 

cells was explored by Western Blot analysis, in the presence and absence of 6-day 

tamoxifen therapy (1 x 10-7M). The signaling pathways explored in the previous 

chapter were then re-examined, using phospho-specific antibodies, to re-examine 

targets of interest.  

 

When performing this analysis, the pathways involving the axis of Src kinase, AKT 

and ERK 1/2 were initially re-investigated by assessing changes in total and 

phosphorylated expression of these proteins in MCF-7 cells treated with and 

without tamoxifen for 6-days, and with non-targeting (NT) or anti-PELP-1 (PELP-

1) siRNA for 72 hours (Figure 3.48). While tamoxifen had previously resulted in 

an increase in pSrc kinase expression, a suppression in Src was seen with PELP-1 

knockdown. In addition, a similar picture was seen with ERK signaling, whereby a 

suppression in pERK 1/2 was seen with PELP-1 knockdown, as opposed to the 

previously seen increase in signaling with tamoxifen. Meanwhile, AKT signaling, 

which was previously suppressed by tamoxifen therapy, was further suppressed 

by PELP-1 knockdown.  

 

In addition to these proteins of interest, alternative targets that were previously 

shown to be modulated by tamoxifen therapy were also interrogated. These 

included the regulatory protein focal adhesion kinase (FAK) and transcription 

factor STAT3. As such, changes in total and phosphorylated expression of these 

proteins were examined in MCF-7 cells treated with and without tamoxifen for 6-
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days, and with non-targeting (NT) or anti-PELP-1 (PELP-1) siRNA for 72 hours 

(figure 3.49). Results showed that while tamoxifen had previously resulted in an 

increase in pFAK and pSTAT 3 expression, reduced expression in the 

phosphorylated forms of both these proteins was observed with PELP-1 

suppression. 
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Figure 3.48 – Src, AKT and ERK 1/2 expression in MCF-7 cells treated with 

tamoxifen +/- PELP-1 siRNA. Western Blot Analysis of pSrc, pAKT, pERK 1/2 

and Actin expression in MCF-7 cells grown under conditions of 6-day tamoxifen 

therapy, with and without PELP-1 suppression. PELP-1 knockdown suppresses 

Src, AKT and ERK 1/2 expression in tamoxifen treated MCF-7 cells. 
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Figure 3.49 – FAK and STAT3 expression in MCF-7 cells treated with 

tamoxifen +/- PELP-1 siRNA. Western Blot Analysis of pFAK, pSTAT3 and Actin 

expression in MCF-7 cells grown under conditions of 6-day tamoxifen therapy, 

with and without PELP-1 suppression. PELP-1 knockdown suppresses FAK and 

STAT3 expression amongst tamoxifen treated cells. 
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3.3.11 Discussion 

The aim of this chapter was to try and identify key molecular determinants of an 

adverse response to endocrine agents in ER+ breast cancer cells. Driving this was 

the observation that tamoxifen and fulvestrant induced an invasive phenotype in 

MCF-7, but not T47D cells, despite both cell lines being ER+ and endocrine 

sensitive. 

Following a literature review, numerous molecular differences were found 

between the MCF-7 and T47D cell lines (Appendix 7.15). Potential determinants 

for the observed adverse response to endocrine treatments in MCF-7 cells were 

identified from this list by applying criteria designed to refine this selection based 

on findings described in previous chapters. This included identifying targets that 

may be implicated in the regulation of cell invasion/migration, regulated by 

conformational changes of the ER, and has an association with Src kinase 

signaling. Following the application of these criteria to the extended list of 

expressional differences, PELP-1 was identified as a potential target. 

PELP-1 is a large multi-domain proto-oncogene (314), that functions as a co-

regulatory protein that confers cancer cells with a growth and survival advantage 

(315, 316). PELP-1 related signalling has been identified in the progression of 

several cancers in-vitro (317-321), including breast (322, 323). As such, 

overexpression of PELP-1 in transgenic mice has been shown to contribute to the 

development of mammary tumours (324). In relation to breast cancer, PELP-1 

was initially reported as an estrogen receptor co-activator in relation to the non-

genomic functions of the ER, hence its alternative name of non-genomic action of 

estrogen receptor (MNAR) in some parts of the literature. PELP-1 has been shown 

to be exhibit high expression in >60% of both ER positive and ER negative tumours 

(314). Expression has been shown to be an independent prognostic predictor for 

poor breast cancer-specific and disease-specific survival (308), and predicts poor 

response to tamoxifen in ER positive tumours (325). Node-positive and metastatic 

tumours have also been shown to have greater PELP-1 expression than node 

negative specimens (314), and as such PELP-1 may be considered a useful 

biomarker to predict poor outcome (326, 327). PELP-1 expression also correlates 
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with tumour stage in non-small cell lung cancer (320) and may also be of use a 

prognostic marker in astrocytic tumours (328) and colorectal cancer (329). 

PELP-1 contains a total of 10 nuclear receptor (NR)-interacting boxes (LXXLL 

motifs), which facilitate the proteins interaction with nuclear receptors (330). The 

protein also contains a 70 acidic amino acid chain located at the C-terminus, which 

functions as a histone binding region (310, 311). In addition, PELP-1 contains 

several PXXP motifs, which importantly facilitate the interaction with proteins 

containing the Src homology 3 (SH3) domain. Finally, the protein contains a 

number of other conserved protein-protein interaction motifs that allows binding 

with the domains of other proteins, including forkhead associated (FHA) domain, 

Src homology 2 (SH2), SH3, PDZ and WW domains (308), while 2 nucleolar 

domains are also found, which play an important role in ribosomal functions 

(331). Interestingly, mass spectrometry data appears to suggest that PELP-1 

remains as a stable component of several multi-complex formations (332, 333), 

indicating that the protein lacks enzymatic activity and instead is more likely to 

act as a scaffold protein that brings other proteins in contact with both 

transcription factors and nuclear receptors. Importantly, these factors allow 

PELP-1 to interact with both with the ER and the SH3 domain of Src kinase. This 

interaction may propagate signalling between the ER and Src kinase, via the SH2 

domain of the Src molecule, in cells where PELP-1 is highly expressed.  

PELP-1 may be activated by phosphorylation from several hormonal and growth 

factor signals, which allows the signals from these mechanisms to be transferred 

to both nuclear receptors and transcription factors. These signalling molecules 

include epidermal growth factor (EGF) (313), protein kinase A (PKA) (334) and 

glycogen synthase kinase 3 β (GSK3β) (335). PELP-1 may also be phosphorylated 

by cyclin dependent kinases (CDK’s) in a cell cycle dependent manner (336), while 

the DNA damage induced kinases ATM and ATR may also phosphorylate PELP-1, 

helping to mediate the p53-mediated DNA damage response (337). PELP-1 

primarily acts as a co-regulator of several nuclear receptors, including the ER 

(309, 317), as outlined above. The protein also functions as a co-regulator of 

several transcription factors, including activator protein 1 (AP1), specificity 

protein 1 (SP1), nuclear factor κB (NF-κB) (310) and signal transducer and 
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activator of transcription (STAT3) (338). While the LXXLL motifs help the 

interaction of PELP-1 with liganded steroid receptors, PELP-1 may also interact 

with non-liganded steroid receptors suggesting protein-protein interactions 

independent of the LXXLL motifs. Indeed, results in this chapter demonstrate the 

negative effect of PELP-1 suppression on ER-dependent, Src-mediated signalling. 

This project has demonstrated that PELP-1 is variably expressed amongst 

different ER+ breast cancer cell lines and that this differential expression may 

have an implication in its function. MCF-7 cells were found to have a relatively 

high basal level of PELP-1 expression, whereas an alternative luminal A cell line, 

T47D, alongside BT474 and MDA-MB-361, both of which over-express HER2, had 

much lower levels of expression. This is consistent with the findings of others, who 

have previously demonstrated high PELP-1 expression amongst a similar panel of 

breast cancer cell lines, with T47D cells contrastingly showing very little in the 

way of basal expression (309). Meanwhile, clinical breast tumour samples report 

PELP1 overexpression in 60-80% of all tumours (339), with high expression 

associated with tumour grade, proliferation, node positivity and metastasis 

development, equating to poorer disease free survival (314, 325, 339). What is 

less clear from reviewing the literature however, is whether this variability in 

PELP-1 expression may have an impact on the significance of its function. 

In addition to variable expression amongst different breast cancer cell lines, this 

project also reports that endocrine therapies may influence total levels of PELP-1 

expression in MCF-7 cells, with tamoxifen and fulvestrant increasing PELP-1 

expression, while estrogen deprivation (mimicking aromatase inhibition) 

supressing levels of PELP-1. From reviewing the literature, while this finding 

appears to be novel, others have found that PELP-1 may regulate estrogenic 

effects through autocrine estrogen synthesis and local aromatase expression (340, 

341). In MCF-7 cells, PELP-1 has been shown to increase aromatase expression as 

mediated by PI3K and Src, which may regulate estrogen levels (309). It may 

therefore be possible that a similar relationship between the ER/estrogen and 

PELP-1 holds true in reverse, whereby exogenous stimulation of the ER, through 

estrogen or drugs targeting the ER, positively influence PELP-1 levels, which in 

turn dampens local estrogen synthesis via a feedback loop. Alternatively, it may 
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be possible that either PELP-1 is directly activated through an unanticipated effect 

of ER modulation and antagonism and/or that total levels PELP-1 levels are 

upregulated via a nuclear function of the ER cascade. Interestingly, tamoxifen and 

fulvestrant appeared to have no effect on total levels of PELP-1 in T47D cells, 

indicating that such a relationship is not generic and may be determined by basal 

PELP-1 expression. 

Results within this chapter implicate PELP-1 as a regulator of the invasion and 

migration in MCF-7 cells, a finding corroborated by other studies. For example, 

invasive breast cancer and metastatic tumours have been shown to have 

increased levels of PELP-1 expression, as compared to node-negative tumours 

(314). In addition, PELP-1 alters several EMT markers, including those that govern 

cell adhesion, migration and motility. In lung cancer, PELP-1 knockdown reduced 

the development of metastatic lung nodules in xenografts (342), while in 

endometrial cancer, PELP-1 suppression led to significant reduction in invasion 

and migration (343).  

In-vitro studies in breast cancer have shown that motility of MCF-7 cells 

stimulated with E2 is increased compared to control, while siRNA PELP-1 

knockdown resulted in suppression of this aggressive phenotype (270). 

Metastases in ZR75 and MCF-7 cells, overexpressing PELP-1, was also greater than 

in controls, within tail vein and cardiac injection models (270). Additionally, 

PELP1 expression has been found to have a positive correlation with metastatic 

potential in MCF10A cells (314). 

Interestingly, while these mentioned studies have all implicated the involvement 

of PELP-1 alone in cancer metastases, through its effects on invasion and 

migration, the findings expressed in this project are subtly different. While PELP-

1 suppression alone often led to a small yet non-significant reduction in cell 

invasion and migration in the previous experiments, PELP-1 knockdown had a 

significant effect on reversing enhanced invasion and migration induced by 

endocrine therapies; a finding which to date is unique. This was also the case in 

the context of corresponding E-cadherin deficiency, where the invasion and 

migration response of cells to tamoxifen/fulvestrant was previously shown to be 
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enhanced. As such, it would seem logical that loss of PELP-1 within the cell may 

either result in the reversal of some of the endocrine-induced pro-

invasive/migratory signalling events within the cell, or alternatively induce a set 

of competing changes within the cell. 

Whilst this project has demonstrated that PELP-1 suppression has a negative 

effect on breast cancer cell invasion and migration, it appears that there was no 

effect on cell proliferation metabolism as assessed by cell counting and MTT assay. 

Interestingly, this result appears to contrast with findings reported elsewhere 

where PELP-1 has been shown to play a role in estrogen dependent and 

independent proliferation in several tumour types (314, 342-345). In endometrial 

cancer, PELP-1 downregulation was found to significantly suppress cell 

proliferation (343). Others have also demonstrated that PELP-1 contributes to 

estrogen-mediated G1/S-phase cell cycle progression, increasing the rate of 

inherent proliferation in breast tumours (346). Additionally, PELP-1 expression 

was correlated with tumour size and mitotic count in ER+ breast tumours (339). 

Meanwhile, knockdown of PELP-1 reduced growth in both ER positive and ER 

negative breast and ovarian cancer (342, 344, 345). The finding of increased 

PELP-1 expression within normal breast tissue during pregnancy, where cell 

proliferation is known to be higher, also supports a role for PELP-1 in estrogen 

mediated cell cycle progression (309). More specifically in MCF-7 cells, PELP-1 

overexpression has been shown by others to result in increased cell proliferation 

(314). 

While these findings appear to conflict with the results in this project there may 

be several reasons for this. Firstly, although siRNA knockdown of PELP-1 was 

robust, it may be that the level of knockdown required to promote a phenotypic 

response in cell proliferation was not achieved and that a change in siRNA dosage 

may have given rise to different results. Secondly, a more prolonged cell growth 

assay may have been more likely to show a change in underlying proliferation. 

Finally, while others may have shown overexpression of PELP-1 promotes 

increased proliferation in MCF-7 cells, the opposite effect need not hold true. 

Indeed, it may be the case that under conditions of PELP-1 suppression alternative 
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pathways, that promote proliferation, are activated that compensate for the 

absence of PELP-1. 

Although PELP-1 is predominantly localized within the nucleus of cells, 

localization within the cytoplasm has also been observed in a subset of breast 

cancers (313, 347). Within the cytoplasm, PELP1 may interact with steroid 

receptors, such as the ER, and trigger signalling cascades involving previous 

proteins of interest, such as G proteins (348) and Src (349). As such, 

overexpression of cytoplasmic PELP-1 has been shown to result in enhanced, 

hormone-independent, AKT and MAPK signalling (313, 347) as part of the non-

genomic functions of the ER. 

While it therefore seems apparent that sub-cellular localization may define PELP-

1 function, what is less clear is whether treatment with endocrine therapies can 

affect the distribution of PELP-1 within the cell and lead to potential changes in 

signalling, which will later be discussed. Results within this chapter demonstrated 

that neither treatment with tamoxifen, fulvestrant or estrogen withdrawal 

appeared to significantly affect PELP-1 localization, which was predominantly 

with the nucleus of MCF-7 cells.  Results within the literature suggest that PELP-1 

expression is inversely associated with ER, PR and luminal cytokeratins , whilst 

being positively associated with basal cytokeratins and P53 expression (339). 

While PELP-1 is therefore found localized to the nucleus in normal breast tissue, 

aberrant cytoplasmic localization has been shown in some breast tumours 

however (313, 325). In this chapter, while cytoplasmic staining for PELP-1 was 

also seen, albeit less frequently, endocrine treatment did not significantly affect 

its occurrence. Despite these findings, there are reasons why these results alone 

may be inconclusive, as PELP-1 has been shown to interact with both the genomic 

and non-genomic functions of the ER in MCF-7 cells. One such reason may be that 

cytoplasmic re-location of PELP-1 may be a transient, dynamic process within the 

cell, such that simple end-point ICC staining is insufficient to demonstrate. 

Secondly, while endocrine therapy may not significantly alter subcellular 

localization of PELP-1, cytoplasmic PELP-1 is still expressed at sufficient levels, 

albeit much lower than nuclear PELP-1 levels, to play a role in non-genomic ER 
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signalling. As such, it’s interaction with the ER, and it’s downstream signalling 

components within the cytoplasm, may still be crucial. 

Given the role that PELP-1 suppression played in reversing the pro-

invasive/migratory effect of tamoxifen and fulvestrant on MCF-7 cells, one might 

also expect PELP-1 suppression to reverse the signalling changes that were 

previously thought to be associated with such a change in cell phenotype. Indeed, 

when explored with Western blotting there were changes in patterns associated 

with both the genomic and non-genomic signalling of the ER.  

While results in the previous section revealed that tamoxifen and fulvestrant 

therapy increased Src kinase and MAPK activity in MCF-7 cells, PELP-1 

suppression appeared to reverse these effects. These findings would fit with 

reports that PELP-1 acts as a scaffolding protein required for extra nuclear actions 

of the ER (270), which links the ER with Src kinase, resulting in activation of the 

ER-Src-MAPK pathway (313, 350). PELP-1 was initially identified as a Src SH3 

domain-binding protein (351) via its N terminus PXXP motif. The ER is then able 

to interact with Src’s SH2 domain at phosphotyrosine 537, while the PELP-1/ER 

interaction further stabilizes interaction, sequestering PELP-1 in the cytoplasm, 

leading to MAPK activation (352). As such, others have shown that mutations in 

the PXXP domains in PELP-1 result in loss of interaction between ER and Src and 

reduce estrogen-induced MAPK activation (353), meanwhile it has been 

demonstrated that overexpression of PELP-1 results in rapid stimulation of MAPK 

though this route (313, 352). Outside of its functions through MAPK, PELP-1 also 

modulates ER-Src-ILK1 signalling, promoting cytoskeletal arrangements, motility 

and subsequently metastases (270), while it has also been shown to interact and 

activate mTOR signalling (315).  

Meanwhile, data from this chapter reveals that AKT signalling, which was 

previously shown to be suppressed by tamoxifen, fulvestrant and estrogen 

withdrawal, was further suppressed when levels of PELP-1 were reduced. Again, 

this finding may be explained through the known extra-nuclear functions of PELP-

1, where it facilitates E2 and growth factor-mediated formation of multiprotein 

complexes with the ER (344), resulting in activation and signalling through PI3K 
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(354, 355). Indeed, overexpression of cytoplasmic PELP-1 has been shown by 

others to increase AKT signalling (313, 352). 

Outside of the axis of the ER, Src kinase/MAPK and PI3K/AKT results in this 

chapter demonstrate that PELP-1 suppression negatively influences signalling 

involving STAT3 and FAK. These findings would be consistent with the previously 

described PELP-1 interactions as a co-regulator of several transcription factors, 

including activator protein 1 (AP1), specificity protein 1 (SP1), nuclear factor κB 

(NF-κB) (310), STAT3 and FAK (338). Growth factor signals have also been shown 

to promote PELP1- interactions with STAT3, and PELP-1 mediated genomic and 

non-genomic functions play a role in STAT3 transactivation functions (356). In 

addition, FAK signalling may be affected by limiting FAK activation via Src kinase, 

as previously described (357). 

Interestingly, changes in PELP-1 are also implicated in endocrine resistance. 

Tumours with predominantly cytoplasmic localization of PELP-1 has been shown 

to contribute to tamoxifen resistance in breast tumours (313, 325, 326), while 

PELP-1 and Src have been shown to form complexes in prostate cancer that 

demonstrates androgen independence. Clinically, as determined by recurrence-

free survival, ER positive breast cancer patients with high cytoplasmic levels of 

PELP-1 responded poorly to tamoxifen treatment, as compared to those with low 

cytoplasmic PELP-1 levels (325). 

In conclusion, PELP-1 is a crucial co-regulator, which interacts with multiple 

nuclear regulators and transcription factors, providing cancer cells with several 

survival advantages, including enhanced invasion. Here we demonstrate that its 

expression may also be a determinant for adverse response to endocrine 

therapies in ER positive breast tumours and have postulated its non-genomic 

interactions with Src, MAPK and AKT as an explanation for this. Since PELP-1 itself 

lacks enzymatic activity, there is a need to develop therapeutic agents that 

interfere with the interactions of PELP-1, thus developing novel targets for future 

therapies. In addition, PELP-1 itself may be useful as a prognostic marker in breast 

cancer patients and may help determine optimal endocrine therapy, aiding 

clinicians in decision making.  
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3.4 Exploring the role of proline, glutamate and leucine 

rich protein 1 (PELP-1) in triple negative breast 

cancer 

 

3.4.1 Introduction 

 

The previous section identified PELP-1 as a key regulator of invasion and 

migration in the context of ER+ breast cancer. While the importance of PELP-1 in 

ER+ disease may be anticipated, given that the proteins function as an ER co-

receptor, it is also important to note that PELP-1 has several other roles, many 

outside of its relationship with the ER itself (308, 342). It was therefore of interest 

to assess whether these alternative functions of PELP-1 may also relate to its role 

in invasion and migration, by assessing PELP-1 in ER negative disease. This would 

help to clarify some of the functions and mechanistic behavior of PELP-1, as well 

as to assess its importance outside of ER+ disease. 

 

Subsequently, it was decided to explore the role of PELP-1 in the context of cell 

models depicting “triple negative” breast cancer (TNBC). To achieve this, two 

appropriate TNBC cell lines, MDA-MB-231 and MDA-MB-468, were chosen for 

investigation. From the use of these cell lines this chapter aims to assess: 

 

(i) The variability of basal PELP- expression amongst “triple negative” 

breast cancer cell lines 

(ii) The effect of PELP-1 modulation on cell invasion and migration in the 

context of “triple negative” disease 

(iii) The underlying mechanisms associated with phenotypic changes in cell 

invasion and migration 

 

A secondary aim of this thesis at the outset was to assess observed cellular 

responses in the context of 3D cell culture, given previous work from the BCMPG 

that identified cell signaling and cell phenotype in response to treatments may be 
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altered when culturing cells in a 3D, as opposed to 2D environment (194).  As such, 

assays to assess invasion in response to cell treatment were developed and 

optimized (Methods 2.4.2). Whilst this optimization period proved unable to 

develop an assay suitable for use with ER+ cell lines that may have been 

implemented in previous chapters, an assay that produced reliable results using 

triple negative breast cancer cell lines was developed. As such this assay will be 

utilized here to assess the invasive response of PELP-1 modulation in 3D cell 

culture, in the context of TNBC. 
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3.4.2 Basal PELP-1 expression is higher among MDA-MB-231 

cells, when compared to MDA-MB-468 cells 

 

Given that results contained within the previous chapter demonstrated that the 

basal expression of total PELP-1 was variable amongst a panel of ER+ breast 

cancer cell lines, it was of interest to assess if a similar picture is seen amongst 

TNBC cell lines. 

 

As a result, the basal expression of PELP-1 amongst MDA-MB-231 and MDA-MB-

468 cells, grown under standard cell culture conditions for 6 days, was assessed 

by Western blotting (Figure 3.50a). Results demonstrated a variable expression in 

PELP-1 between cell lines, with PELP-1 expression found to be significantly higher 

amongst MDA-231 cells. Interestingly, in direct comparison to MCF-7 cells, basal 

PELP-1 expression appeared higher amongst MDA-MB-231 cells. In contrast 

PELP-1 expression in MDA-MB-468 cells was significantly less, as compared to 

MCF-7 cells (Figure 3.50b). 
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a. 

 

b. 

 

Figure 3.50 – The variability in basal PELP-1 expression amongst the 

MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cell lines. 

Western Blot Analysis of total PELP-1 and Actin expression in MCF-7, 

MDA-MB-231 and MDA-MB-468 breast cancer cell lines grown under 

control conditions for 6 days. Differences in expression were assessed 

formally by densitometry. Total PELP-1 expression is significantly higher 

amongst MDA-MB-231, as compared to (a.) MDA-MB-468 cells and (b.) 

MCF-7 cells. 
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3.4.3 Optimization of siRNA transfection and subsequent 

knockdown of PELP-1 in TNBC cell lines 

 

Prior to investigating the effect of PELP-1 suppression in TNBC, optimization of 

the siRNA transfection procedure using anti-PELP-1 siRNA, was required.  

 

As used previously, a 72-hour lipid-based transfection system was utilized using 

Dharmafect smartpool® PELP-1 siRNA (Methods 2.26). Transfection was 

optimized using a range of concentrations of siRNA (100nm, 150nm, 200nm) to 

determine a dose that would achieve efficient knockdown of PELP-1 expression, 

assessed by Western blotting. Results demonstrated that PELP-1 knockdown was 

achieved in MDA—MB-231 cells at all doses (Figure 3.51), while in MDA-MB-468 

cells (Figure 3.52), higher doses of 150nm or 200nm were required. Subsequently, 

all experimental transfection procedures with MDA-MB-231 and MDA-MB-468 

cells were performed using the minimum required dose of PELP-1 siRNA (i.e. 

100nm for MDA-MB-231 cells and 150nm for MDA-MB-468 cells) to make best 

use of resources and avoid potential siRNA toxicity with higher doses. 
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Figure 3.51 – Dose effect of PELP-1 siRNA on PELP-1 expression in 

MDA-MB-231 cells. Western blotting and densitometry data 

demonstrating the expression of PELP-1 and Actin in MDA-MB-231 cells, 

72 hours after NT and PELP-1 siRNA transfection, using 100nm, 150nm 

and 200nm dose of siRNA respectively. PELP-1 expression is suppressed 

using 100nm, 150nm and 200nm dose of CDH1 siRNA in MDA-MB-231 

cells. Differences in expression were assessed formally by densitometry. 
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Figure 3.52 – Dose effect of PELP-1 siRNA on PELP-1 expression in 

MDA-MB-468 cells. Western blotting and densitometry data 

demonstrating the expression of PELP-1 and Actin in MDA-MB-468 cells, 

72 hours after NT and PELP-1 siRNA transfection, using 100nm, 150nm 

and 200nm dose of siRNA respectively. PELP-1 expression is suppressed 

using 150nm and 200nm dose of CDH1 siRNA in MDA-MD-468 cells. 

Differences in expression were assessed formally by densitometry. 
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3.4.4 PELP-1 knockdown suppresses invasion in MDA-MB-231 

cells, but not MDA-MB-468 breast cancer cells 

 

To explore whether PELP-1 contributed to the invasive nature of MDA-MB-231 

cells, these cells were treated with PELP-1 siRNA prior to performing the trans-

well invasion chamber assay, as previously described.  

 

When using this assay however, the initial seeding density of cells into the upper 

chamber of each wells insert was lowered in the case of MDA-MB-231 (from 

50,000 cells/insert to 10,000 cells/insert) to account for the more aggressive 

phenotype and allow for a more accurate counting of invasive cells at the end of 

the assay. Meanwhile, the seeding density for MDA-MB-468 cells was left 

unchanged, given its relatively less aggressive phenotype. 

 

Results from this assay showed that while the baseline invasion of MDA-MB-231 

cells was much higher than that previously seen in the MCF-7 cell line, there was 

a significant suppression of invasion in PELP-1 deficient MDA-MB-231 cells as 

compared to controls (Figure 3.53a; p=0.002). In contrast, while MDA-MB-468 

cells were relatively less invasive as compared to MDA-MB-231 cells, PELP-1 

suppression had no effect on invasion in this cell line (Figure 3.53b). 
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a. 

 

 

b. 

 

Figure 3.53 – The effect of PELP-1 siRNA treatment on cell invasion in MDA-

MB-231 and MDA-MB-468 cells. MDA-MB-231 and MDA-MB-468 cells were 

treated with non-targeting (NT) or PELP-1 targeting (PELP-1) siRNA for 72 

hours, before assessing their invasive capacity. PELP-1 knockdown (a.) 

suppresses invasion in MDA-MB-231 but (b.) not MDA-MB-468 breast cancer 

cells. The graphs show the results for the mean of three separate experiments. 
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3.4.5 PELP-1 suppression reduces invasion in 3D cell culture in 

MDA-231 cells, but not MDA-468 cells 

 

The role of PELP-1 in cell invasion in a 3D context was further investigated in both 

TNBC cell lines using the Matrigel®-based spheroid and “fried egg” assays. The 

extent of invasion was measured by visualization (bright field microscopy) of the 

periphery of the spheroids. At the end of the experiment, cells were harvested 

from the 3D cultures, lysed and probed for PELP-1 protein using Western blotting. 

 

Results confirmed that PELP-1 knockdown suppressed invasion amongst MDA-

MB-231 cells compared to the control by up to a 3-fold difference (p<0.001, 

Figures 3.54a and 3.54b). Unlike the MDA-231 cell line however, MDA-468 cells 

tended to form more friable spheroids, which could not be transferred from the 

ULA-plate to Matrigel® coated wells because of resultant spheroid fracture. As a 

result, the “Fried Egg” assay was deemed unsuitable for use in this cell line and 

instead the original 3D spheroid assay was employed. Invasion was subsequently 

determined through visualization by light microscopy, by assessing the relative 

change in area of each spheroid during the 6-day period of the experiment. Results 

demonstrated that, while invasion appeared less conspicuous compared to MDA-

231 cells, invasion was demonstrated over the 6-day period using this assay 

(Figure 3.55a).  No significant difference in invasion could be demonstrated 

however, when comparing wild-type MDA-468 cells and PELP-1 knockdown 

counterparts over this same time-period (Figure 3.55b). 
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a. 

 

b. 

 

Figure 3.54 – The effect of PELP-1 siRNA treatment on MDA-MB-231 cells in 

3D cell culture. MDA-MB-231 cells were treated with non-targeting (NT) or 

PELP-1 targeting (PELP-1) siRNA for 72 hours, before assessing their invasive 

capacity within 3D cell culture. Invasion was assessed by a relative change in 

area of the spheroid. PELP-1 suppression reduces invasion in 3D cell culture of 

MDA-MB-231 cells. The graphs show the results for the mean of three separate 

experiments. 
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a. 

 

b. 

 

Figure 3.55 - The effect of PELP-1 siRNA treatment on MDA-MB-468 cells in 

3D cell culture. MDA-MB-468 cells were treated with non-targeting (NT) or 

PELP-1 targeting (PELP-1) siRNA for 72 hours, before assessing their invasive 

capacity within 3D cell culture. Invasion was assessed by a relative change in 

area of the spheroid. PELP-1 suppression has no effect on invasion in 3D cell 

culture on MDA-MB-468 cells. The graphs show the results for the mean of three 

separate experiments. 
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3.4.6 Exploring PELP-1 signaling in TNBC 

 

The data in previous chapters suggested that PELP-1 may play an important role 

in cellular invasive responses induced by endocrine agents in ER+ breast cancer 

cells. This may occur through modulation of signaling pathways involving Src. To 

begin to explore mechanistically how PELP-1 might regulate cellular invasion in 

TNBC cell models an immunoblotting approach was taken. 

 

Initially, changes in signaling previously elicited by PELP-1 knockdown in ER 

positive cell lines were re-examined. These included the key cellular proteins Src 

kinase, ERK and AKT, known to play a role in the non-genomic functions of PELP-

1. Changes in total and phosphorylated expression of these proteins were 

therefore examined in MDA-MB-231 and MDA-MB-468 cells treated in with non-

targeting (NT) or anti-PELP-1 (PELP-1) siRNA for 72 hours (Figures 3.56, 3.57 and 

3.58). Results demonstrated reduced expression of pSrc in MDA-MB-231 cells 

with PELP-1 knockdown, while no significant difference in expression was 

observed in MDA-MB-468 cells. Meanwhile both total and phosphorylated ERK 

1/2 and AKT expression was unaltered by PELP-1 suppression in both MDA-MB-

231 and MDA-MB-468 cell lines. 

 

In addition to the proteins of interest highlighted above, other targets concerned 

with the regulation of alternative functions of PELP-1 were investigated, including 

expression of FAK and STAT3, whose expression was found to be influenced by 

PELP-1 in ER+ cell lines.  Again, changes in total and phosphorylated expression 

of these proteins were examined in MDA-MB-231 and MDA-MB-468 cells treated 

in with non-targeting (NT) or anti-PELP-1 (PELP-1) siRNA for 72 hours (Figures 

3.59 and 3.60). Results demonstrated that expression of phosphorylated FAK and 

STAT3 were reduced by PELP-1 suppression in the MDA-MB-231 cells. Meanwhile 

in the MDA-MB-468 cell line there was no significant difference in total or 

phosphorylated FAK and STAT3 expression when comparing wild-type cells with 

their PELP-1 knockdown counterparts.  
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Figure 3.56 – Src expression in MDA-MB-231 and MDA-MB-468 cells 

treated with PELP-1 siRNA. Western Blot analysis of pSrc, total Src and 

Actin expression in MDA-MB-231 and MDA-MB-468 cells, with and 

without PELP-1 suppression. Differences in expression were assessed 

formally by densitometry. PELP-1 knockdown suppresses Src expression 

in MDA-MB-231, but not MDA-MB-468 cells. 
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Figure 3.57 – ERK 1/2 expression in MDA-MB-231 and MDA-MB-468 

cells treated with PELP-1 siRNA. Western Blot analysis of pERK 1/2, 

total ERK 1/2 and Actin expression in MDA-MB-231 and MDA-MB-468 

cells, with and without PELP-1 suppression. Differences in expression 

were assessed formally by densitometry. PELP-1 knockdown has no effect 

on ERK 1/2 expression in MDA-MB-231 and MDA-MB-468 cells. 
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Figure 3.58 – AKT expression in MDA-MB-231 and MDA-MB-468 cells 

treated with PELP-1 siRNA. Western Blot analysis of pAKT, total AKT 

and Actin expression in MDA-MB-231 and MDA-MB-468 cells, with and 

without PELP-1 suppression. Differences in expression were assessed 

formally by densitometry. PELP-1 knockdown has no effect on AKT 

expression in MDA-MB-231 and MDA-MB-468 cells. 
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Figure 3.59 – FAK expression in MDA-MB-231 and MDA-MB-468 cells 

treated with PELP-1 siRNA. Western Blot analysis of pFAK, total FAK 

and Actin expression in MDA-MB-231 and MDA-MB-468 cells, with and 

without PELP-1 suppression. Differences in expression were assessed 

formally by densitometry. PELP-1 knockdown suppresses FAK expression 

in MDA-MB-231, but not MDA-MB-468 cells. 
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Figure 3.60 – STAT3 expression in MDA-MB-231 and MDA-MB-468 

cells treated with PELP-1 siRNA. Western Blot analysis of pSTAT3, total 

STAT3 and Actin expression in MDA-MB-231 and MDA-MB-468 cells, with 

and without PELP-1 suppression. Differences in expression were assessed 

formally by densitometry. PELP-1 knockdown suppresses STAT3 

expression in MDA-MB-231, but not MDA-MB-468 cells. 
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3.4.7 Discussion 

 

Breast cancers that demonstrate lack of expression of ER, PR and HER2, so called 

triple-negative cancers (TNBC), represent approximately 15% of all cases (358).  

Based on the Stanford “intrinsic” system of breast cancer classification (359), the 

term TNBC is often used clinically as a surrogate for the basal-like subtype, as 

triple-negative tumors make up approximately 80% of this group (360).  These 

triple negative cancers tend to be more aggressive than their hormone responsive 

counterparts, and are more likely to be poorly differentiated, of higher histological 

grade, and associated with a higher rate of recurrence and reduced overall 

survival (361-363). Population based data has also determined that a higher 

proportion of TNBC tends to affect younger pre-menopausal women, and is 

associated with increasing parity and shorter duration of breast feeding (364). 

Within these limits, TNBC can be thought of as a heterogeneous group of tumors, 

although several biological markers may help predict response to treatment and 

guide prognosis. These include loss of androgen receptor and E-cadherin, along 

with expression of basal cytokeratins, P-cadherin, p53 and EGFR (365). 

 

In addition to the known functions of PELP-1 in relation to the ER, there are 

several of the proteins functions that act in an ER-independent fashion. Studies 

have shown that PELP1 functions as a co-regulator for a number of nuclear 

receptors, such as ERb, ERR, GR, and AR (366). Within the nuclear compartment, 

PELP1 interacts with histones and therefore plays a role in chromatin remodeling 

(367). PELP1 may also couple nuclear receptors to cytosolic signaling axes, such 

as Src-MAPK, PI3K-Akt, and EGFR/Her2, outside of its interaction with the ER 

(366). In addition, the expression of PELP-1 remains present in ER negative 

tumors (314, 339) and it may therefore be possible that expression has a 

significant effect on the cell phenotype in this breast cancer subtype. 

 

PELP-1 expression was found to be variable across a panel of ER+ cell lines 

previously, and it might therefore be expected that its expression across ER 

negative cell lines would also be non-uniform. Basal expression of PELP-1 among 

MDA-MB-231 cells was significantly higher compared to MDA-MB-468. It was also 
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interesting to note that in comparison to the MCF-7 cell line, expression was 

significantly higher in MDA-MB-231, but lower in MDA-468. Given that PELP-1 

expression has been associated clinically with a higher histological, tumour grade, 

higher incidence of nodal metastasis and poorer survival (368-370), this pattern 

perhaps depicts the relative aggressiveness, in terms of behavior, for each these 

cell lines. Variability of PELP-1 expression amongst different breast cancer cell 

lines have been reported by others (309), and although poorly understood this 

variability in expression may dictate the cellular events that control cell behavior.  

 

Findings in this chapter demonstrated that PELP-1 suppression in MDA-MB-231 

cells resulted in a significant reduction in invasion. This finding has been reported 

both in-vitro and in-vivo by others previously (342), whereby PELP-1 signaling 

was found to confer advantages to cell migration and invasion in ER-negative cell 

lines. Interestingly, this paper also demonstrates a growth advantage in MDA-MB-

231 cells exhibiting PELP-1 expression, although this has not been demonstrated 

in the results of this chapter in either of the ER negative cell lines assessed here. 

In correlation with results from the 2D Boyden chamber invasion assay, PELP-1 

suppression was also found to inhibit invasion in MDA-MB-231, but not MDA-MB-

468 cells, in 3D cell culture. Confirmation of these results within a 3D environment 

was important within the context of this work for several reasons as in addition 

to individual internal cell signalling events, external biophysical and biochemical 

cues play an important role in cell behaviour (371-374). As such cells can 

therefore behave differently when grown in a 3D as opposed to a 2D monolayer 

environment (375-377). 

As compared to culture within a 2D monolayer, cells cultured within a 3D 

extracellular matrix (ECM) may bind to surrounding adhesive molecules, such as 

fibronectin or laminin. As such, cells are therefore supported by the surrounding 

ECM network on all surfaces, as opposed to its basal surface only (378). As a result, 

cells tend to form smaller focal adhesion complexes when grown in 3D cell culture 

(375) and therefore exhibit differences in adherence and migration (374-376). 

Cell migration across a 2D surface consists of 3 processes: (i) protrusion of the 

leading cell edge (ii) contraction of the cell body and (iii) detachment of the 
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trailing edge.  In 3D culture however, the biophysics of tissues require cellular 

strategies to overcome matrix resistance, such as changing cell shape or ECM 

degradation, through protease secretion (376).  Therefore, in addition to adhesion 

and tractile forces, matrix stiffness is also a key factor that influences cell 

movement in 3D (376, 379-381). Indeed, others have shown that in conditions 

where biochemical parameters, such as matrix ligand and receptor levels are held 

constant, cell movement tends to increase in conditions of increased matrix 

stiffness (379, 382). These findings would fit with the experience gained from the 

optimization of the invasion assay in this work, whereby there was a tendency for 

cell invasion to be more pronounced (amongst MDA-MB-231 cells particularly) 

with increasing matrix stiffness. 

Matrix stiffness and cellular binding sites also play an important role in cell 

proliferation, as cells are required to anchor themselves within the ECM to create 

sufficient traction to divide (383, 384). Results from others imply that optimum 

matrix stiffness for proliferation is likely to be cell type dependent, as glioma cells 

appeared to grow faster in stiffer substrates (382) while fibroblasts preferred 

softer substrates (379, 385). 

 

While research into the function of PELP-1 in the context of ER negative disease is 

relatively less well understood, it may therefore be assumed from these findings 

that it may still play an important, albeit not essential, role in the regulation of key 

cellular processes in cancer cell survival and metastases development. Indeed, 

studies have demonstrated no significant difference in PELP-1 expression 

between ER positive and ER negative tumors, but that its expression may 

implicate a more aggressive phenotype (314). To understand the mechanisms that 

may implicate PELP-1 in producing this phenotype, some of the key cellular 

pathways involved in metastasis development have been evaluated. PELP-1 

suppression had a negative effect on cellular Src signaling, in similar fashion to 

ER+ cell lines, although in contrast MAPK and AKT signaling remained unaffected. 

Also, in a similar fashion to ER positive cell lines, PELP-1 suppression affected 

signaling involving STAT3 and FAK. 
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Interestingly, while these changes were observed in MDA-MB-231 cells, which 

exhibited high basal expression of PELP-1, MDA-MB-468 cells, which lower basal 

expression of the protein, were unaffected. These findings appear novel in the 

literature and are therefore currently poorly understood, but may implicate 

alternative mechanisms governing cellular functions in each cell line. As such, it 

may be possible that in cell lines lacking intrinsic PELP-1 expression, alternative 

cellular controls are in place that negate the need for PELP-1 mediated regulation. 

Clearly further work is required to demonstrate such events. 

 

Studies have previously indicated that nuclear receptor interacting co-regulators, 

may play a role in cellular proliferation and metastases development in ER-

negative breast tumors, through modulation of target gene transcription (386, 

387). Although PELP-1 was initially described as an ER co-regulator (330), more 

recent studies have described PELP-1 as a more generic co-regulator for several 

nuclear receptors, such as the ER, PR, AR, and transcription factors, such as E2F, 

FHL2 and STAT3 (366). This larger scope of action for PELP-1 may therefore 

suggest that its deregulation may result in more widespread cellular response 

than perhaps initially anticipated. 

 

Others have previously demonstrated that PELP-1 plays a crucial role in the 

expression of several genes involved in EMT and metastases development (342), 

such as MMP9 and MMP2, TWIST, SNAIL and Zeb. Outside of EMT itself, PELP-1 

interacts with histones and histone-modifying enzymes, and therefore has action 

in chromatin remodeling at specific target genes (311). PELP-1 also modulates the 

function of metastasis-associated antigens 1 and 3 (MTA1 and MTA3), which are 

both implicated in invasion in human breast cancer (388). In addition, as 

previously mentioned in the last chapter, studies demonstrate that PELP-1 

interacts with several proteins involved into cytoskeletal remodeling, including 

Src (313) and PI3K (344). Interestingly, while these latter signaling changes have 

previously been described in ER+ breast and ovarian tumors, we show that at least 

in relation to Src, similar findings may be found in ER negative disease.  
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Overall, findings within this chapter complies with the growing body of evidence 

that implicate PELP-1 as an important regulator of invasion in ER-negative, as well 

as ER+  breast cancer. Signaling behind this phenomenon is likely to be complex, 

utilizing the role of PELP-1 as nuclear receptor and transcription factor co-

regulator, but appears to act, in part through changes in Src, STAT3 and FAK 

signaling. While similar findings would need to be replicated in both animal and 

human models, the potential of these results could identify PELP-1 as a key target 

for future therapies in both ER positive and ER negative breast cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

4.0 General Discussion 
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Endocrine therapy remains a key mode of treatment for ER+ breast cancer, in both 

the adjuvant and metastatic setting (82). Although several new endocrine agents 

have been developed over the last 30 to 40 years, such as the third-generation 

aromatase inhibitors (113), many of the original drugs developed for these 

purposes, including tamoxifen, remain in mainstay use. In the UK, tamoxifen 

remains the first-line endocrine agent of choice, in both the adjuvant and 

metastatic setting for pre-menopausal patients with ER+ disease, and is routinely 

given to patients for a minimum of 5 years after diagnosis in the adjuvant setting 

(82). More recently the use of tamoxifen has broadened with evidence suggesting 

better outcomes with prolonged use in the adjuvant setting for up to 10 years after 

diagnosis (389, 390), and potential use as a prophylactic drug in cancer 

prevention in high risk groups (391, 392) . Alongside these developments our 

understanding of breast cancer is currently going through a period of evolution, 

whereby rather than classifying the disease by histological criteria, new genomic 

techniques, such as next generation sequencing, real-time reverse transcriptase 

PCR (RT-PCR) and microarrays, have allowed tumours to be classified more 

accurately on a molecular basis (393). 

 

This greater understanding of breast cancer, alongside the introduction of 

screening programs, and advances in surgical and oncological treatments have all 

contributed to improved breast cancer survival over the last 30 years (394). 

Despite this, disease progression and relapse remain as common findings in ER+ 

disease (2), either after the completion of adjuvant endocrine therapy (395) or 

whilst patients are still taking prescribed endocrine treatment. Indeed the risk of 

recurrence appears highest around 2-3 years after the time of curative surgery 

(396). Whilst relapse of ER+ disease is often related to the development of true 

hormone resistance (127), this need not always necessarily be the case. Indeed, 

the clinical response to endocrine therapy is known to be variable and can be 

dependent on the type of endocrine agent used (114). As a result, it may be 

possible that some methods of endocrine therapy are superior to others, based 

upon tumour biology, with some types of endocrine agent even exhibiting an 

adverse response (134). 
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Such observations were previously described by the BCMPG (133, 134), who 

demonstrated a pro-invasive response to tamoxifen in ER+ breast cancer cell lines, 

in the setting of a low E-cadherin environment. Indeed, this work has confirmed 

these findings, but has been able to go one stage further and demonstrate a pro-

invasive response with tamoxifen that is independent of E-cadherin status, albeit 

the invasive response is augmented in an E-cadherin deficient environment. 

Similar findings have been demonstrated by others previously (135, 136), 

although the significance of such findings have remained unclear. 

 

In addition to tamoxifen, this work has also demonstrated similar findings when 

using the pure ER antagonist, fulvestrant, while culture of cells in estrogen-

deprived conditions, mimicking conditions of aromatase inhibitor use, did not 

demonstrate the same pro-invasive phenotype. These results would suggest that 

it is likely to be the antagonistic actions of tamoxifen on the ER resulting in any 

adverse cellular events, whilst also pointing towards the possibility of some ER+ 

breast cancers that may be better treated with aromatase inhibitors, as opposed 

to ER-targeting agents.  

 

Despite these findings, the cellular mechanisms leading to this adverse cell 

response were unclear and therefore warranted further investigation. Pertinent 

to this investigation was to decipher whether: (i) the combined effect of E-

cadherin loss and endocrine treatment activates specific pro-invasive pathways 

that are not activated in the context of either E-cadherin loss or endocrine 

treatment alone, or (ii) endocrine treatments activate signalling pathways that 

govern cell invasion but the consequence of this are not fully seen until the 

physical barrier to invasion (i.e. cadherin-mediated cell-cell adhesion) is removed. 

Findings from these investigations appeared to show strong evidence for the 

involvement of Src kinase in the underlying signalling responsible for this process, 

a finding replicated by the BCMPG previously (133, 134).  

In addition to Src kinase itself, further evaluation of Src-mediated signalling 

pathways revealed several Src substrates, such as ERK 1/2, FAK and STAT3, were 

also over-expressed in response to tamoxifen therapy, implicating their 

involvement in the underlying process. Interestingly, these elements are known 



 244 

to exhibit control over some critical cell invasion processes, including regulation 

of MMP synthesis (235), which aids ECM degradation, and stimulation of the 

semaphorin pathway (232), which guide cytoskeletal movements. Data shown 

here also demonstrates that both these pathways also contain members that 

demonstrate upregulated expression with tamoxifen treatment. While all the 

above elements are known to be important in cancer cell invasion or migration, 

their role as part of a combined response to tamoxifen treatment appear novel. 

 

Interestingly, none of the pathways interrogated in this work demonstrated a 

significant association with E-cadherin expression, despite previous findings that 

Src itself may be relatively over-expressed in E-cadherin deficient MCF-7 cells 

treated with tamoxifen, when compared with either E-cadherin deficient cells or 

tamoxifen treated MCF-7 cells alone (133, 134). This was despite the interrogation 

of EMT markers and several intracellular kinases that have previously been shown 

to have an association with E-cadherin expression (121-123). Indeed, several of 

these elements appeared to, contrastingly, be associated with changes in 

expression based on tamoxifen therapy. This may indicate an overriding role of 

ER signalling and hence Src expression on these pathways. To prove this, it would 

be interesting to reassess the expression of proteins in some of these pathways 

following the introduction of a pharmacological Src inhibitor, and this should be 

the scope for further work. Given these findings however, it would appear E-

cadherin itself does not play a significant role in the cellular mechanics governing 

endocrine-induced invasion but that its loss provides a physical means by which 

stimulated cells may invade more easily 

 

It is important to stress at this point that while absent E-cadherin expression is a 

hallmark of lobular carcinoma (397), the E-cadherin deficient breast cancer model 

that has been created during this project should not be considered as a model for 

lobular breast cancer as such.  This is because, in addition to absent E-cadherin 

expression, lobular carcinomas exhibit a variety of additional variations in gene 

expression when compared with ductal carcinomas, including differing 

expression in ER (398), AKT and Src (399), as well as changes in other markers 

related to angiogenesis and hormone dependence (400). Instead this model 
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should be considered to represent a subset of ductal carcinomas that exhibit 

aberrant E-cadherin expression, which have been found to account for up to 50% 

of ductal tumours in some studies (401). 

 

While these findings would appear to indicate that ER-targeted endocrine 

therapies are a poor means of treating ER+ breast cancer, the clinical results 

achieved by tamoxifen and fulvestrant therapy would suggest otherwise  (98-

100). Indeed, rather than an adverse response from ER-targeted therapies being 

a generic feature across all ER+ breast cancers, it would appear more likely that 

this would affect a smaller subset of ER+ tumours. Indeed, a similar pro-invasive 

response to tamoxifen was not seen amongst an alternative ER+ cell line (T47D), 

while an absence of the previously seen pro-invasive signalling changes was also 

evident. 

 

Given the above, an exploration into factors that may differentiate the cellular 

response to tamoxifen between different ER+ cell lines, was conducted. This 

focussed on identifying: (i) key molecular differences between MCF-7 and T47D 

cells, (ii) elements related to ER and Src kinase signalling and (iii) elements with 

a known existing role in cancer cell invasion/migration. Following a literature 

review the ER co-receptor, PELP-1, was identified as a potential target, given its 

known role in regulating Src-mediated invasion/migration (402), and the fact that 

it is relatively highly expressed in MCF-7 cells, as compared to the T47D cell line 

(309). Interestingly, data from this thesis corroborates these findings, while also 

noting that the knockdown of PELP-1 in MCF-7 cells appears to reverse the 

previously seen pro-invasive/pro-migratory effects of tamoxifen, both in the 

presence of E-cadherin deficiency. In line with these effects, PELP-1 suppression 

also appeared to reverse the pattern of Src-mediated signalling in these cells. 

While others have observed the relationship between PELP-1 expression and 

cellular invasion (316), this specific function of PELP-1 in relation to ER-targeted 

treatments would appear novel. 

 

PELP-1 is a large multi-domain protein involved in modulating several signalling 

pathways (308). Importantly, PELP-1 contains several PXXP motifs, allowing its 
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interaction with the SH3 domain of Src, while having a separate binding site for 

interaction with the ER (Figure 4.1). This, essentially enhances the ability of ER 

and Src to interact via SH2 domain linkage (350). While this may enhance Src-

mediated signalling in PELP-1 expressed ER+ cells under normal conditions, it was 

interesting to assess whether the presence of PELP-1 further modulates this 

interaction between Src and the ER, with respect to the binding of tamoxifen or 

other ER-targeted treatments. Such hypotheses could include increased ER-

mediated Src activation via PELP-1 association, or indeed aberrant Src activation 

through PELP-1 alone when the ER is inactivated/downregulated by ligand 

binding. If so, such mechanisms could potentially explain the enhanced Src-

mediated signalling in PELP-1 expressed cell lines with such treatment, and the 

resultant pro-invasive effects on the cell. While some evidence of co-localisation 

between the ER and PELP-1 has been observed in this thesis, to assess these 

hypotheses further, a more detailed investigation into this relationship would be 

required to identify and observe the interactions of these PELP-1, Src and the ER 

under different treatment conditions.  

 

 

 

 

 

 

Figure 4.1 – Conformational relationship between the ER, PELP-1 and Src 

kinase. Adapted from (350). PELP-1 functions as an ER co-regulator by 

interacting with both the ER and the SH3 subunit of Src kinase. 
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It is recognised that the view of PELP-1 expression being the sole determinant of 

adverse cellular response to endocrine treatments is probably too simplistic, and 

that other signalling elements are also likely to be involved. As such, perhaps a 

more realistic hypothesis is that PELP-1 is just one part of a more widespread 

molecular profile that may help predict response to various endocrine therapies. 

Indeed, in a similar fashion to predictive gene testing tools, such as Oncotype DX© 

and MammaPrint©, which are used to assess the likely benefit of adjuvant 

chemotherapy based on tumour biology (403), it may be possible to devise such 

similar tools for adjuvant endocrine treatments. 

 

In addition to its potential use as a prognostic marker, PELP-1 may act as a 

possible therapeutic target for future therapies. Indeed, findings within this thesis, 

alongside those of others (342), have identified PELP-1 to also be a regulator of 

invasion in TNBC, indicating a potential wider application for targeted therapies, 

outside of ER+ disease alone. Despite this, there are currently no pharmacological 

agents that directly target PELP-1 itself.  One problem of therapeutic targeting of 

PELP-1 is potential toxicity because, although PELP-1 is prominent in breast 

cancer cells, it is still found in normal breast tissue (308). As such, more selective 

targeting of PELP-1 within tumour cells themselves would provide better 

specificity of treatment. In line with this, nano-liposomal formulations of anti-

PELP-1 siRNA have been shown to reduce tumour growth and the development of 

tumour nodules in ovarian and breast xenograft models (345, 404). Given the lack 

of an agent directly targeting PELP-1 itself, an alternative approach may be to 

target specific PELP-1-coupled signalling pathways. Data in this thesis showed 

that Src was activated in response to endocrine treatment is a PELP-1 dependent 

manner. Thus, targeting the ER-PELP-1-Src axis might be fruitful, as has been 

demonstrated previously with dasatinib in PELP-1-mediated hormone resistant 

tumours (405). Similarly, the CDK2 inhibitor roscovitine, which downregulates 

expression of the ER and PELP-1, has the potential to abolish the growth of PELP-

1 driven, hormone resistant cells (406). Rapamycin and AZD8055, both mTOR 

inhibitors, also suppressed proliferation in breast cancer cells in-vitro and within 

xenograft models, which overexpress PELP-1 (315). Meanwhile PR antagonists 

may also play a role in treating a subset of PELP-1 deregulated ER, PR positive 
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breast cancer (407). Finally, inhibition of KDM1 (345, 408) and arginine 

methyltransferases (409) may also be promising therapeutic agents for targeting 

PELP-1. Another approach in targeting PELP-1 is exhibited via peptidomimetics 

to inhibit prostate cancer proliferation by blocking the interactions of PELP-1 with 

the AR in vitro and in xenografts (410). 

 

Outside of the findings and overall conclusions of this thesis, there is a recognition 

of some of the potential limitations in the current data, including areas where 

future work would enhance current knowledge. Initially, this thesis aimed to 

explore the invasive response of ER+ cancer cells to endocrine agents in the 

presence and absence of E-cadherin expression. E-cadherin loss was induced by 

siRNA transfection, resulting in a temporal loss of expression. While this method 

met the requirements for the purposes of the designed experiments, it would have 

been interesting to have explored the possibility of more stable knockdown of E-

cadherin, either via shRNA or even CRISPR technology. A similar rationale could 

also have been implemented when later examining PELP-1 and combined PELP-

1/ E-cadherin knockdown effects. In addition, a contrasting approach could have 

been taken by assessing if a pro-invasive phenotype could be induced by 

endocrine treatments in cells that are naturally deficient in PELP-1 (i.e. T47D), 

following upregulated PELP-1 expression through plasmid transfection. It is also 

accepted that this work has concentrated on luminal A and TNBC. As a result, 

exploration of adverse endocrine response and PELP-1 signalling in relation to 

HER2+ disease has played a limited role. As such, it would be interesting to assess 

the role of HER2 signalling, particularly in relation to its cross-talk with the ER, as 

data from this thesis seems to suggest that the pro-invasive response to ER-

targeting treatment is not observed in ER+/HER2+ cell lines (i.e. BT474 and MDA-

MB-361), despite these cell lines exhibiting a strong basal expression of PELP-1. 

Assessing cell invasion in the context of 3D cell culture has played a lesser role in 

this thesis than initially anticipated. This is because of the relative difficulty in 

adapting and optimizing a 3D cell culture invasion assay for use in ER+ cell lines. 

As such, while the effect of PELP-1 suppression on cell invasion in 2D cell culture 

was mirrored in the 3D cell culture for TNBC, similar findings cannot be assumed 
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for ER+ disease. The continued development of an appropriate 3D invasion assay 

to explore PELP-1 mediated invasion in ER+ disease would therefore be of merit. 

 

Finally, this research has concentrated on working with immortalised cell lines to 

develop and manipulate breast cancer cell models for experimental purposes. 

While this approach is valid, there is a known limitation as to how well changes 

seen in these models correlate with disease clinically. As such, future work to test 

the hypotheses generated by this research in animal models and human tissue 

samples would undoubtedly help strengthen the validity of results demonstrated 

in this work. 

 

In terms of the validity of this work from a clinical perspective, the BCMPG has 

retrospectively examined a series of clinical breast cancers from the Adjuvant 

Breast Cancer trial (411) and the Nottingham 2000 series (412) as part of a larger 

collaboration. This data suggests that patients with ductal cancers, lacking E-

cadherin expression and treated with tamoxifen, demonstrate poor overall 5-year 

survival as compared to E-cadherin expressing tumours (133). While this data 

points to the possibility of a differential clinical response to tamoxifen based on E-

cadherin expression, perhaps a more interesting analysis would be to assess the 

outcomes of patients with low E-cadherin tumours, comparing those treated with 

agents that target the ER (i.e. tamoxifen) with those that suppress circulating 

estrogen (i.e. ovarian suppression or aromatase inhibition). Of equal interest 

would be to assess the outcome of patients treated with tamoxifen therapy based 

on the intrinsic PELP-1 expression of the tumour to validate the hypothesis of 

PELP-1 being a key determinant of adverse endocrine response. 
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Figure 4.2 – Diagram demonstrating possible signalling cascade governing 

adverse cellular response to ER-targeting agents. PELP-1 regulates the 

relationship between ligand-bound ER with Src and AKT respectively, resulting 

in increased Src expression and decreased AKT expression. This results in 

downstream activation of elements, such as STAT3, FAK and AKT, which in turn 

regulate the expression of other key proteins and signalling cascades related to 

cell invasion and migration. 
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5.0 Conclusion(s) and future work 

 

In conclusion, this pre-clinical data supports the hypothesis that patients with ER+ 

breast cancers that also exhibit a high basal expression of PELP-1, and who receive 

ER-targeted agents (tamoxifen and fulvestrant), may develop an adverse 

phenotype that could have an impact on disease recurrence and survival.  

 

Given that current trends in breast cancer are moving towards more personalised 

therapy based on individual tumour biology, measures that help predict response 

to treatment is likely to be of benefit in either aiding treatment decisions or as part 

of outcome prognostication. PELP-1 and/or E-cadherin may thus represent 

important biological predictive markers for further evaluation in clinical tissue. 

 

Following on from this thesis, future work could take place in several forms. 

Firstly, in terms of work that utilizes immortalised cell lines, it would be useful to 

explore a wider selection of ER+ cell lines to determine if other cell lines also 

exhibit the same  adverse response to ER-targeting agents described in MCF-7 

cells. In addition, ongoing development of 3D cell culture models is also 

warranted, particularly to assess invasion in ER+ cell lines, building upon some of 

the work that has been included here. Outside of in-vitro culture, it would also be 

useful to explore the findings of this thesis in-vivo, using xenograft models, by 

assessing the effects of endocrine therapy on tumour progression in the setting of 

E-cadherin and PELP-1 modulation. Demonstrating a response to endocrine 

therapies similar to that described here in such a model would ultimately add 

further weight to the findings of this thesis. Finally, to determine a clinical 

relevance to the role of PELP-1 and E-cadherin in relation to endocrine therapy, it 

would be ideal to assess any independent effect these markers may have on 

disease free survival amongst a cohort of patients with ER+ breast cancer, 

comparing those treated with ER-targeted (tamoxifen) or estrogen suppressive 

(ovarian suppression/AI) therapies, respectively. 
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7.0 Appendix 

 

7.1 Cell lysis buffer to obtain total soluble protein 

 

Component Mass/Volume for 

100ml Lysis Buffer 

Final Concentration 

Tris Base 0.61g 50mM 

EGTA 0.19g 5mM 

NaCl 0.87g 150mM 

Trixton X-100 1ml 1% (v/v) 

H2O 100ml - 

 

 Final solution was adjusted to pH 7.7 and stored at 4C 

 Protease inhibitors were added to the cell lysis buffer immediately before 

use 

 

7.2 Protease inhibitors used in conjunction with cell lysis 

buffer 

 

Inhibitor Stock 

Conc. 

Solvent Volume in 10ml 

cell lysis buffer 

Final 

Conc. 

Sodium 

Orthovanadate 

100mM H2O 200l 2mM 

PMSF 100mM Isopropranol 100l 1mM 

Sodium Fluoride 2.5M H2O 100l 25mM 

Sodium 

Molybdate 

1M H2O 100l 10mM 

Phenylarsinine 20mM Chloroform 10l 20M 

Leupeptin 5mg/ml H2O 20l 10g/ml 

Apoprotinin 2mg/ml H2O 40l 8g/ml 
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7.3 BSA standard curve for Bio-Rad® micro-assay procedure 

(96-well plate) – based on the Bradford Assay 

 

BSA Conc. (mg/ml) Volume (l) of BSA 

Stock (1mg/ml) 

Volume of dH2O (l) 

0 0 400 

5 2 398 

10 4 396 

15 6 394 

20 8 392 

25 10 390 
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7.4 Excel spreadsheet used to calculate standard curve and 

stock protein concentration of samples as part of the Bio-

Rad Micro assay procedure 
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7.5 SDS-PAGE Running Buffer 

 

Component Mass/Volume for 1L 

Running Buffer 

Final Conc. 

Tris Base 3.03g 0.25M 

Glycine 14.4g 1.92M 

SDS 1g 0.1% (v/v) 

H20 1L - 

 

 Final solution was adjusted to pH 8.3 and stored at room temperature 

 

7.6 Laemmli 4x Sample Loading Buffer 
 

Component Mass/Volume for 10ml of Loading 

Buffer 

SDS 800mg 

Glycerol 4ml 

0.5M Stacking gel buffer (pH 6.8) 4.8ml 

dH20 1.2 

Bromophenol Blue 0.001 – 0.002% (w/v) 

 

 3.08mg of DTT was added and dissolved per ml of loading buffer 

immediately before use 
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7.7 Western Blot Transfer Buffer 

 

Component Mass/Volume for 1L of 

Transfer Buffer 

Final Conc. 

Tris Base 3.03g 0.25M 

Glycine 14.4g 1.92M 

Methanol 200ml 20% (v/v) 

H20 800ml - 

 

 Transfer Buffer was made and used immediately for Western Blotting 

 

7.8 Tris-buffered saline (TBS) 

 

Component Mass/Volume for 1L of 

TBS 

Final Conc. 

Tris Base 1.21g 10mM 

NaCl 5.8g 100nM 

H20 1L - 

 

7.9 Tris-buffered saline with Tween (TBST) 

 

Component Mass/Volume for 1L of 

TBST 

Final Conc. 

Tris Base 1.21g 10mM 

NaCl 5.8g 100nM 

Tween 20 0.5ml 0.05% (v/v) 

H20 1L - 
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7.10 SDS-PAGE Gel Components 

 

Stacking Gel 

 

Reagent Volume 

dH20 6.1ml 

Tris-HCL Buffer (Ph6.8) 2.5ml 

30% Acrylamide 1.3ml 

10% SDS 100l 

10% APS 50l 

TEMED 10l 

 

 The table provides volumes needed to make enough solution for 2 gels 

 

Resolving Gel 

 

Reagent % Gel 

5% 7.5% 10% 12% 17% 18% 20% 

dH20 11.2ml 9.6ml 8ml 6.6ml 3ml 2.4ml 1ml 

Tris-HCL Buffer  

(Ph8.8) 

5ml 5ml 5ml 5ml 5ml 5ml 5ml 

30% Acrylamide 3.4ml 5ml 6.8ml 8ml 11.6ml 12.2ml 13.6ml 

10% SDS 200l 200l 200l 200l 200l 200l 200l 

10% APS 200l 200l 200l 200l 200l 200l 200l 

TEMED 12l 12l 12l 12l 12l 12l 12l 

 

 The table provides volumes needed to make enough solution for 2 gels 
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7.11 Volumes for 3D Cell Culture 

 

 

 3D Embedded 
3D on-

top 

No. 

Wells 

Diameter 

(mm) 

Area 

(cm2) 

Medium 

Volume 

(l) 

Matrix 

Coat 

(l) 

Matrix 

Plate 

(l) 

Matrix 

Coat 

(l) 

Dish - 60 28.3 5000 250 3600 850 

Plates 

6 35 9.6 2000 120 1200 500 

24 16 2.0 500 50 300 120 

48 10 0.75 200 30 150 80 

96 6 0.26 60 5 75 15 
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7.12 siRNA Transfection Reagents 

 

 100nm working solution 

 Tube A Tube B Tubes A + B 

Require

d 

Volume 

(ml) 

siRN

A (l) 

x1 

siRNA 

Buffe

r (l) 

WRPM

I (l) 

WRPM

I (l) 

Lipi

d 

(l) 

Total 

Volum

e A + B 

(l) 

Experimenta

l Medium 

(l) 1:5 

dilution 

Final 

Volum

e (l) 

1 5 45 50 98.4 1.6 200 800 1000 

2 10 90 100 196.8 3.2 400 1600 2000 

3 15 135 150 295.2 4.8 600 2400 3000 

4 20 180 200 393.6 6.4 800 3200 4000 

5 25 225 250 492 8 1000 4000 5000 

6 30 270 300 590.4 9.6 1200 4800 6000 

7 35 315 350 688.8 11.2 1400 5600 7000 

8 40 360 400 787.2 12.8 1600 6400 8000 

9 45 405 450 885.6 14.4 1800 7200 9000 

10 50 450 500 984 16 2000 8000 100000 

 

 150nm working solution 

 Tube A Tube B Tubes A + B 

Require

d 

Volume 

(ml) 

siRN

A (l) 

x1 

siRNA 

Buffe

r (l) 

WRPM

I (l) 

WRPM

I (l) 

Lipi

d 

(l) 

Total 

Volum

e A + B 

(l) 

Experimenta

l Medium 

(l) 

Final 

Volum

e (l) 

1 7.5 67.5 25 97.6 2.4 200 800 1000 

2 15 135 50 195.2 4.8 400 1600 2000 

3 22.5 202.5 75 292.8 7.2 600 2400 3000 

4 30 270 100 390.4 9.6 800 3200 4000 

5 37.5 328.5 125 488 12 1000 4000 5000 

6 45 405 150 585.6 14.4 1200 4800 6000 

7 52.5 472.5 175 683.2 16.8 1400 5600 7000 

8 60 540 200 780.8 19.2 1600 6400 8000 

9 67.5 607.5 225 878.4 21.6 1800 7200 9000 

10 75 675 250 976 24 2000 8000 100000 
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 200nm working solution 

 Tube A Tube B Tubes A + B 

Require

d 

Volume 

(ml) 

siRN

A (l) 

x1 

siRNA 

Buffe

r (l) 

WRPM

I (l) 

WRPM

I (l) 

Lipi

d 

(l) 

Total 

Volum

e A + B 

(l) 

Experimenta

l Medium 

(l) 

Final 

Volum

e (l) 

1 10 90 0 97.6 2.4 200 800 1000 

2 20 180 0 195.2 4.8 400 1600 2000 

3 30 270 0 292.8 7.2 600 2400 3000 

4 40 360 0 390.4 9.6 800 3200 4000 

5 50 450 0 488 12 1000 4000 5000 

6 60 540 0 585.6 14.4 1200 4800 6000 

7 70 630 0 683.2 16.8 1400 5600 7000 

8 80 720 0 780.8 19.2 1600 6400 8000 
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7.13 siRNA Target Sequences 

 

7.13.1 DharmaconTM, L-003877-00-0005, ON-TARGET plus 

Human CDH1 (999) siRNA– SMARTpool 

 

ON-TARGETplus SMARTpool siRNA J-003877-08, CDH1 

Target Sequence: GGCCUGAAGUGACUCGUAA 

Mol. Wt: 13,444.8 (g/mol) 

Ext. Coeff: 366,057 (L/mol.cm) 

 

ON-TARGETplus SMARTpool siRNA J-003877-09, CDH1 

Target Sequence: GAGAACGCAUUGCCACAUA 

Mol. Wt: 13,429.9 (g/mol) 

Ext. Coeff: 368,905 (L/mol.cm) 

 

ON-TARGETplus SMARTpool siRNA J-003877-10, CDH1 

Target Sequence: GGGACAACGUUUAUUACUA 

Mol. Wt: 13,399.9 (g/mol) 

Ext. Coeff: 383,679 (L/mol.cm) 

 

ON-TARGETplus SMARTpool siRNA J-003877-11, CDH1 

Target Sequence: GACAAUGGUUCUCCAGUUG 

Mol. Wt: 13,429.9 (g/mol) 

Ext. Coeff: 369,628 (L/mol.cm) 
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7.13.2 DharmaconTM, L-004463-00-0005, ON-TARGET plus 

Human PELP-1 (27043) siRNA – SMARTpool 

 

ON-TARGETplus SMARTpool siRNA J-004463-05, PELP-1 

Target Sequence: GACCAAGGUGUAUGCGAUA 

Mol. Wt: 13,429.9 (g/mol) 

Ext. Coeff: 372,821 (L/mol.cm) 

 

ON-TARGETplus SMARTpool siRNA J-004463-06, PELP-1 

Target Sequence: GAGGAUUUGACAGUUAUUA 

Mol. Wt: 13,384.9 (g/mol) 

Ext. Coeff: 386,527 (L/mol.cm) 

 

ON-TARGETplus SMARTpool siRNA J-004463-07, PELP-1 

Target Sequence: GUAAUGCACGUCUCAGUUC 

Mol. Wt: 13,429.8 (g/mol) 

Ext. Coeff: 370,863 (L/mol.cm) 

ON-TARGETplus SMARTpool siRNA J-004463-08, PELP-1 

Target Sequence: GCGAGAAGAUAGCCUUGAG 

Mol. Wt: 13,444.8 (g/mol) 

Ext. Coeff: 364,722 (L/mol.cm) 
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7.14 Plasmid DNA transfection reagents 

 

Container 

Surface 

area 

(cm2) 

Typical 

total 

volume 

of 

medium 

(ml) 

Starting volume of 

FuGENE 6 Reagent 

(μl) 

Starting mass of DNA 

(μg) 
Approximate total 

volume of complex 

(μl) μl 

Amoun

t 

μl Range 
μg 

Amount 
μg Range 

96 well 

(1 well) 

0.3 0.1−0.2 0.15 0.1−0.3 0.05 0.03−0.06 5 

24 well 

(1 well) 

1.9 0.5−2.0 0.6 0.6−1.8 0.2 0.2−0.4 20 

12 well 

(1 well) 

3.8 0.5−1.0 1.5 1.2−3.6 0.5 0.4−0.8 50 

35 mm dish 8 2.0 3.0 3.0−9.0 1.0 1.0−2.0 100 

6 well 

(1 well) 

9.4 2.0 3.0 3.0−9.0 1.0 1.0−2.0 100 

60 mm dish 21 4.0−6.0 6.0 6.0−20.0 2.0 2.0−4.5 200 

10 cm dish 55 10.0 18.0 17.0−51.0 6.0 5.6−11.0 600 

T-25 flask 25 5.0−7.0 7.5 7.5−24.0 2.5 2.5−5.3 250 

T-75 flask 75 
15.0−30.

0 
24.0 24.0−72.0 8.0 8.0−16.0 800 
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7.15 List of proteins identified by literature review with 

differences in molecular expression between MCF-7 and 

T47D cell lines. 

 Phosphoserine phosphatase 
 Heat shock protein beta-1 
 Peroxiredoxin-4 
 Protein CDV3 homolog 
 N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 
 Uncharacterized protein EIF4E 
 cDNA FLJ76387 
 N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 
 Prohibitin 
 Glutathione S-transferase Mu 2 
 5′(3′)-deoxyribonucleotidase 
 17β-Hydroxysteroid dehydrogenase 10 
 Protein-L-isoaspartate(D-aspartate) O-methyltransferase 
 Cathepsin B 
 Heat shock protein 
 Nicotinate-nucleotide pyrophosphorylase 
 Malate dehydrogenase 
 L-lactate dehydrogenase A chain 
 cDNA, FLJ93804 
 Proteasome subunit alpha type-2 
 Ras-related protein Rab-7a 
 Beta-hexosaminidase subunit beta chain A 
 StAR-related lipid transfer protein 5 
 Molybdenum cofactor synthesis protein 2 large subunit 
 RAB1B protein 
 cDNA FLJ75516, highly similar to Xenopus tropicalis ubiquitin C, mRNA 
 cDNA, FLJ92406 
 Heme-binding protein 1 
 RNA polymerase II subunit A C-terminal domain phosphatase SSU72 
 cDNA FLJ78235 
 Proteasome subunit beta type-4 
 Glutathione S-transferase theta-2 
 Proteasome subunit beta type-3 
 NADH dehydrogenase flavoprotein 2, mitochondrial 
 Brain type mu-glutathione S-transferase(3095) 
 Farnesyltranstransferase 
 Splicing factor 
 Actin, cytoplasmic 1 
 EF-hand domain-containing protein D 
 3-hydroxyisobutyrate dehydrogenase, mitochondri 
 STIP1 homology and U box-containing protein 1 
 Heterogeneous nuclear ribonucleoproteins A2/B1 
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 39S ribosomal protein L3 
 Cathepsin D 
 cDNA, FLJ92320 
 Uncharacterized protein PSME2 
 Inositol monophosphatase 
 Chloride intracellular channel protein 1 
 Density-regulated protein 
 Heat shock 70 kDa protein 1 
 A-kinase anchor protein 3 
 Caspase-3 subunit p12 
 Nuclear protein Hcc-1 
 Guanine nucleotide-binding protein subunit beta-2-like 1 
 G1/S-specific cyclin-D3 
 ATP synthase subunit gamma 
 Carbonyl reductase [NADPH] 1 
 Electron transfer flavoprotein subunit alpha 
 Voltage-dependent anion-selective channel protein 1 
 Pyrroline-5-carboxylate reductase 
 FK506-binding protein 5 
 Vacuolar ATP synthase subunit B, brain isoform 
 cDNA FLJ75447, highly similar to Homo sapiens peptidase D, mRNA 
 Tubulin beta chain 
 Uncharacterized protein WARS 
 Cytosolic non-specific dipeptidase 
 Adenylyl cyclase-associated protein 2 
 Translation initiation factor eIF-2B subunit gamma 
 Charged multivesicular body protein 2a(4364) 
 Desmoplakin 
 Junction plakoglobin 
 Oligoribonuclease, mitochondrial(2399) 
 Ras-related protein Rab-5C 
 Cell division control protein 2 homolog 
 2,4-dienoyl-CoA reductase 
 Elongation factor Ts 
 cDNA FLJ76011 
 Destrin 
 Cofilin-1(4492) 
 Pyridoxine 5'-phosphate oxidase 
 Isopentenyl-diphosphate Delta-isomerase 1 
 Calcyphosin 
 Protein S100-A14 
 Calmodulin-like 5 
 NADP-dependent malic enzyme 
 T-complex protein 1 subunit alpha 
 Prolyl 4-hydroxylase subunit alpha-1 
 Heterogeneous nuclear ribonucleoprotein K 
 Triosephosphate isomerase 
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 Protein ETHE1 
 Heterogeneous nuclear ribonucleoprotein H3 
 Aflatoxin B1 aldehyde reductase member 2 
 Glycerol-3-phosphate dehydrogenase 1-like 
 Heterogeneous nuclear ribonucleoprotein D-like 
 Latexin 
 Proteasome activator complex subunit 1 
 cDNA, FLJ96310 
 cDNA, FLJ94267 
 NAD-dependent deacetylase sirtuin-3 
 SH3 domain-binding glutamic acid-rich-like 
 Myosin regulatory light chain 2 
 Profilin 
 Cellular retinoic acid-binding protein 1 
 TRM112-like protein 
 Chromobox protein homolog 3 
 BH3-interacting domain death agonist p11 
 Proline-, glutamic acid- and leucine-rich protein 1 
 Chromobox protein homolog 5 
 Beta-galactosidase 
 REST corepressor 1 
 Nitrilase homolog 2 
 Reticulocalbin-1(1904) 
 Human P37 AUF1 
 cAMP response element-binding protein 
 Coiled-coil domain-containing protein 
 CHD9 protein 
 Transcriptional repressor NF-X1 
 MHC class I antigen 
 Probable global transcription activator 
 Thioredoxin-dependent peroxide reductase, mitochondrial 
 Transgelin-2 
 Interleukin-10 
 Telomerase-binding protein EST1A 
 Bullous pemphigoid antigen 1 
 cDNA, FLJ94446 
 Cytochrome c-releasing factor 21 
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7.16 Supplemental Files 

 

 Supplemental File 1 – Time lapse microscopy of spheroid invasion 

assay using the MCF-7 cell line. MCF-7 cells were seeded into ULA round 

bottom wells (5.000 cells/well) to form spheroids before being embedded 

in a Matrigel® matrix. Spheroids were imaged by time lapse microscopy at 

5-minute time intervals for 72 hours. 

 

 Supplemental File 2 – Time lapse microscopy of spheroid invasion 

assay using the MDA-MD-231 cell line. MDA-MB-231 cells were seeded 

into ULA round bottom wells (5.000 cells/well) to form spheroids before 

being embedded in a Matrigel® matrix. Spheroids were imaged by time 

lapse microscopy at 5-minute time intervals for 72 hours. 

 

 Supplemental File 3 – Time lapse microscopy of “fried-egg” invasion 

assay using the MDA-MD-231 cell line. MDA-MB-231 cells were seeded 

into ULA round bottom wells (5.000 cells/well) to form spheroids before 

being transferred to Matrigel® membrane. Spheroids were imaged by time 

lapse microscopy at 5-minute time intervals for 72 hours. 

 

 Supplemental File 4 – Time lapse microscopy of spheroid formation 

using MCF-7 cells. MCF-7 cells were seeded into ULA round bottom wells 

(5.000 cells/well) and imaged using time lapse microscopy at 5-minute 

time intervals for 72 hours. 

 

 Supplemental File 5 – Time lapse microscopy of spheroid formation 

using T47D cells. T47D cells were seeded into ULA round bottom wells 

(5.000 cells/well) and imaged using time lapse microscopy at 5-minute 

time intervals for 72 hours. 
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 Supplemental File 6 – Time lapse microscopy of spheroid formation 

using BT474 cells. BT474 cells were seeded into ULA round bottom wells 

(5.000 cells/well) and imaged using time lapse microscopy at 5-minute 

time intervals for 72 hours. 

 

 

 

 


