1 Supplementary Material File

2	
3	Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely
4	large multireplicon genomes
5	Running title: Industrial P. aeruginosa genomics
6	
7	Author names: Rebecca Weiser, ^{a*} Angharad E. Green, ^{a, c*} Matthew J. Bull, ^a Edward
8	Cunningham-Oakes, ^a Keith A. Jolley, ^b Martin C.J. Maiden, ^b Amanda J. Hall, ^c Craig Winstanley, ^c
9	Andrew J. Weightman, ^a Denise Donoghue, ^d Alejandro Amezquita, ^e Thomas R. Connor, ^a and
10	Eshwar Mahenthiralingam ^{a#}
11	* R.W and A.E.G contributed equally to this work
12	
13	Affiliation:
14	^a Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff
15	School of Biosciences, Cardiff University, Cardiff, Wales, UK.
16	^b Department of Zoology, The Tinbergen Building, University of Oxford, Oxford, UK.
17	^c University of Liverpool, Institute of Infection and Global Health, Liverpool, UK.
18	^d Unilever Research and Development, Port Sunlight, Wirral, UK.
19	^e Unilever Research and Development, Safety & Environmental Assurance Centre, Colworth
20	House, Sharnbrook, Bedford, UK.
21	
22	#Corresponding author: Eshwar Mahenthiralingam, <u>MahenthiralingamE@cardiff.ac.uk</u>
23	(ORCID: 0000-0001-9014-3790)
24	
25	Key words: Pseudomonas aeruginosa; Industry microbiology; Contamination;
26	Phylogenomics; Megaplasmids.
27	
28	

29 Table of Contents

Content	Title	Page
Suppleme	ntal Methods	
	Preservative susceptibility testing	3
	Extraction of DNA from P. aeruginosa	3
	Complete genome sequencing and annotation of <i>P. aeruginosa</i> RW109	3
	Assigning functional groups to the <i>P. aeruginosa</i> RW109 genome sequence	4
	Kyoto Encyclopedia of Genes and Genomes (KEGG) functional module assignment	5
	KEGG enrichment analyses in relation to preservative tolerance	5
Suppleme	ntary Results	
	The <i>P. aeruginosa</i> RW109 megaplasmid copy number.	6
	KEGG functional module enrichment and <i>P. aeruginosa</i> preservative tolerance	6
Suppleme	ntal References	7-9
Suppleme	ntal Tables	
Table S1	Collection of industrial and other <i>P. aeruginosa</i> strains assembled and	10-16
	analysed in this study	
Table S2	ArrayTube (AT) genotypes of industrial and reference testing P. aeruginosa	17
	strains	
Table S3	MLST allele and Sequence Type (ST) designations for industrial and reference	18
	testing P. aeruginosa strains	
Table S4	<i>P. aeruginosa</i> tolerance of the isothiazolinone preservatives MIT, CITMIT and BIT	19-20
Table S5	<i>P. aeruginosa</i> tolerance of the preservatives phenoxyethanol, chlorhexidine and benzoic acid	21-22
Table S6	Growth parameters of <i>P. aeruginosa</i> strains in liquid culture after 24 hours growth	23
Table S7	Swimming, swarming and twitching motilities of <i>P. aeruginosa</i>	24
Suppleme	ntal Figures	
Figure S1	Clustered RAPD-PCR profiles of 69 industrial <i>P. aeruginosa</i> isolates	25
Figure S2	Swimming, swarming and twitching motilities of the <i>P. aeruginosa</i> strains.	26
Figure S3	Biofilm formation by <i>P. aeruginosa</i> panel and industrial strains	27
Figure S4	The complete multireplicon genome of industrial <i>P. aeruginosa</i> strain RW109	28
Figure S5	KEGG functional module enrichment analysis in relation to <i>P. aeruginosa</i> tolerance of BIT, MIT and CITMIT	29
Figure S6	KEGG functional module enrichment analysis in relation to <i>P. aeruginosa</i> tolerance of PHE and CHX	30

32 Supplementary Methods

33

34 Preservative susceptibility testing. Broth MIC determination for individual preservatives was performed essentially as described [1]. Aqueous stock solutions of preservatives were diluted (serial 35 36 doubling dilutions) in TSB (Oxoid Ltd, Basingstoke, UK) to produce a range of concentrations: 0 – 0.01% Chloromethylisothiazolinone (CITMIT; Kathon CG, Dow Europe GmbH, Switzerland); 0 - 0.01% 37 38 Methylisothiazolinone (MIT; Neolone M10, Dow Europe GmbH, Switzerland); 0 – 0.08% 39 Benzisothiazolinone (BIT; Koralone B-120, Dow Europe GmbH, Switzerland); 0 – 2.5% phenoxyethanol 40 (PHE; Clariant Produkte GmbH, Germany); 0 - 0.1% Chlorhexidine (CHX; chlorhexidine digluconate; 41 Sigma-Aldrich Co. Ltd., Poole, UK); and 0 – 0.4% benzoic acid (BA; Sigma-Aldrich Co. Ltd., Poole, UK). Dilutions of BA were prepared in TSB at pH 5. Approximately 10⁵ cfu of *P. aeruginosa* isolates were 42 43 inoculated into 96-well microplates containing 200 µl of preservative concentration per well, followed 44 by shaking incubation (150 rpm) for 24 hours at 37°C. The optical density of each well at 600 nm was 45 recorded using a microplate reader (Tecan Infinite® 200 PRO; Tecan UK Ltd., Reading, UK). The MIC 46 was taken as the concentration of preservative at which there was an 80% reduction in OD from TSB 47 growth control wells. Two biological replicates, each with two technical replicates were performed. 48 The MIC data were analysed as discreet data using non-parametric statistical methods. The median of 49 the four replicates was recorded to obtain final MIC values. Boxplots summarised the distribution of 50 the MIC data for each preservative. Comparisons between strain groups from different isolation 51 sources were performed using a Kruskal-Wallis test and post-hoc Wilcoxon tests with Benjamini-52 Hochberg correction. The group medians were deemed statistically significantly different at the 53 p=0.05 level.

54

55 DNA extraction. Extraction of *P. aeruginosa* genomic DNA from fresh overnight cultures was achieved 56 as described [2] using the Maxwell[®] 16 instrument and the Maxwell[®] 16 Tissue DNA purification kit 57 (Promega, Southampton, UK) according to the manufacturer's instructions. DNA was RNase A treated 58 before long-term storage at - 20°C. DNA quality and quantity were assessed using a NanoDrop 59 Spectrophotometer (Thermofisher Scientific, Massachusetts, USA) and a Qubit[™] fluorometer with the 60 Qubit[™] dsDNA BR assay kit (Invitrogen, Massachusetts, USA), respectively.

61

62 **Complete genome sequencing and annotation of** *P.* **aeruginosa RW109**. Two Single Molecule, Real-63 Time (SMRT) cells with P6/C4 chemistry on a Pacific Biosciences (PacBio, California, USA) RSII, were 64 used to generate the raw sequence data. Subsequent assembly and bioinformatic analysis was carried 65 out using a virtual machine hosted by the Cloud Infrastructure for Microbial Bioinformatics (CLIMB)

66 consortium [3]. The following protocol was used to create FASTQ DNA sequence files from the raw 67 data PacBio files. From each sequencing run, three bax.h5 files and one bas.h5 file (a pointer file to 68 the three bax.h5 files) resulted from each SMRT cell. The bax.h5 files contained the base call 69 information from the sequencing run, and both sets from the two SMRT cells were converted into two 70 separate binary format (bam) files using the bax2bam tool (v0.0.8, PacBio). The two resulting bam files 71 were merged and a single FASTQ was extracted using the BamTools toolkit (v2.4.0, 72 https://github.com/pezmaster31/bamtools). Assembly of the FASTQ sequence data was carried out 73 as follows. The contigs were created from FASTQ files using the Canu Assembler (v1.3) [4]. Assembled 74 contigs were checked for overlapping ends and trimmed where necessary using Circulator (v1.2.1) [5]. 75 The resulting assembly was polished using the Genomic Consensus Package (v2.1.0, PacBio) The FASTA 76 sequence file of the RW109 genome was run though the Quality Assessment Tool for Genome 77 Assemblies (v4.5.5) [6]. The complete RW109 genome is available (QUAST), at 78 https://www.ebi.ac.uk/ena/data/view/GCA 900243355.1.

79

Assigning functional groups to the P. aeruginosa RW109 genome sequence. The COG functional 80 annotation [7] of the RW109 Prokka predicted coding sequences [8] (CDS; specifically translated 81 82 amino acid sequences) was carried out with the command line EggNOGmapper downloaded from the evolutionary genealogy of genes: Non-supervised Orthologous Groups (EggNOG) database (v4.5.1). 83 84 Functional orthologs were assigned using the EggNOG HMMER3 [9, 10] based homology search to the optimised bacterial database and the COG categories and accession numbers were extracted. COG 85 86 categories were divided into three well characterised functional classes' information storage and 87 processing, cellular processes and signalling and metabolism. A poorly characterised functional class 88 was also used where the COG category was unknown.

89

90 RW109 genomic islands (GIs) were predicted using Islandviewer (v4.0) [11] with the Prokka generated GeneBank file with default settings applied. The results from IslandViewer prediction methods SIGI-91 92 HMM and IslandPath-DIMOB was used to identify the total number of GIs within the RW109 whole 93 genome sequence. Prophage sequences within the RW109 genome were predicted using PHAge Search Tool Enhanced Release (PHASTER) (v1.0) [12]. Comparisons against the PHASTER databases 94 95 and feature identifications were carried out with the Prokka generated GeneBank file. Phage sequence regions were given a PHASTER score and were identified as being complete if the score was > 90, 96 97 questionable with a score of 70-90 and incomplete with a score < 70. The ABRicate tool (v0.5-dev, 98 https://github.com/tseemann/abricate.git) via the command line was used to screen the Prokka 99 annotated nucleotide sequence of RW109 to identify antimicrobial and virulence genes using the 100 Comprehensive Antibiotic Resistance Database (CARD) 2013) [13]. A ≥80% cut off was used for both
101 coverage and identity ABRicate scores.

102

103 Kyoto Encyclopedia of Genes and Genomes (KEGG) functional module assignment. KEGG Orthology 104 (KO) terms were assigned to the RW109 translated amino acid sequences from Prokka predicted CDS, 105 using the KEGG Automatic Annotation Server (KAAS) [14] through the NCBI BLAST single-directional 106 best hit search method, against the prokaryotes organism list. The Metabolic and Physiological 107 Potential Evaluator (MAPLE) tool (v2.1.0) [15], was subsequently used to map the groups of KO-108 assigned CDS to KEGG defined modules. These modules are a collection of functional units linked to 109 specific metabolic abilities and phenotypic features, and identified with M numbers. KEGG modules 110 are grouped into pathway modules, structural complexes, functional sets and signature modules [15]. 111 The percentage of a module's completeness was determined by calculating the module completion 112 ratio (MCR), which evaluated how many KO components of the module were present. If all KO 113 assigned CDS within each module were present, the MCR was equal to 100%, according to a Boolean algebra-like equation [15]. For each MCR, a Q-value was also calculated which indicated the 114 115 significance of the module completion. The MAPLE tool inferred that reaction modules with Q-values 116 of less than 0.5 were biologically feasible even if the MCR was less than 100% [15].

117

118 KEGG enrichment analyses in relation to preservative tolerance. For each preservative (BIT, MIT, 119 CITMIT, PHE and CHX), 4 isolates with the highest and 4 with the lowest MIC were selected for 120 comparative analysis of KEGG functional modules as follows. After repeat annotation with Prokka [8], 121 KEGG Orthology (KO) terms were assigned to the CDS of the translated amino acid sequences for each 122 strain, using the KEGG Automatic Annotation Server [14]. The Metabolic and Physiological Potential 123 Evaluator (MAPLE) tool (v2.1.0) [15] was subsequently used to map the groups of KO-assigned CDS to 124 KEGG defined modules (modules constituted collections of functional units linked to specific metabolic abilities and known phenotypic features). The KEGG modules were grouped by category and the 125 126 number of complete modules for each category were compared. A Two-way ANNOVA with Sidak's 127 multiple comparisons test was used to look for significantly different KEGG module numbers between 128 the strains with high versus low preservative MIC.

129

130 Supplementary Results

131

The *P. aeruginosa* RW109 megaplasmid copy number. Mapping of short reads to the complete
 RW109 sequence using the EDGE software [16] derived fold coverage metrics of 36 ± 9.9, 67 ± 25 and

100 ± 30 (standard deviation) for the main chromosome, megaplasmid and large plasmid respectively.
The copy number of the megaplasmid was estimated to be less than 2 since the sequence coverage
was 1.8-fold greater than that of the main chromosome. The Inc-P2 plasmids that were
phylogenetically closely related to the *P. aeruginosa* RW109 megaplasmid (pJB37 and p0Z176; Figure
4) are also predicted to be low copy number [17, 18]. The RW109 large plasmid (Figure S4) was also
likely a low copy number given that plasmid sequence coverage was 2.7-fold greater than that for the
main chromosome.

141

142 KEGG functional module enrichment and P. aeruginosa preservative tolerance. KEGG functional 143 module pathway analysis was carried out on the four *P. aeruginosa* isolates with the highest MICs and 144 four with the lowest MICs for the preservatives BIT, MIT, CITMIT, PHE and CHX (Figure 1; Table S4 and 145 S5). The modules were grouped by category and the number of complete modules for each category 146 were compared for the isolates with high MIC versus the isolates with low MIC for each preservative. 147 Overall, there were minimal differences in the numbers of complete modules assigned to the 148 categories between P. aeruginosa with high and low preservative MICs, although significant 149 differences were identified for a small number of categories (Figure S5 and S6). Isolates with higher 150 BIT and MIT MICs had a significantly higher number of modules assigned to the drug resistance 151 category (Figure S5). Interestingly this was due to the addition of the complete multidrug resistance 152 efflux pump BpeEF-OprC module in the isolates RW176 and RW146, which had high BIT and MIT MICs. P. aeruginosa isolates with low MICs for BIT and MIT were found to have a significantly higher number 153 154 of complete modules assigned to central carbohydrate metabolism when compared to those with 155 higher MICs for these preservatives (Figure S5). Isolates with high CITMIT (Figure S5) and PHE (Figure 156 S6) MICs had significantly more modules categorised as two component regulatory systems. A higher 157 number of modules were identified in the bacterial secretion system category for isolates with high 158 BIT and MIT MICs (Figure S5). Isolates with high CHX MICs were found to have significantly higher 159 modules identified in the central carbohydrate metabolism category (Figure S6). Detailed functional 160 analysis of the implicated pathways and screening of additional *P. aeruginosa* strains is required to 161 expand on these interesting preliminary findings.

- 162 Supplementary References
- 163
- 164 1. Rushton L, Sass A, Baldwin A, Dowson CG, Donoghue D et al. Key role for efflux in the 165 preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob Agents Chemother 2013;57(7):2972-2980. 166 2. Song L, Jenner M, Masschelein J, Jones C, Bull MJ et al. Discovery and Biosynthesis of 167 168 Gladiolin: A Burkholderia gladioli Antibiotic with Promising Activity against Mycobacterium 169 tuberculosis. J Am Chem Soc 2017;139(23):7974-7981. 170 3. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the Cloud 171 Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016;2(9):e000086. 172 173 4. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-174 read assembly via adaptive k-mer weighting and repeat separation. *bioRxiv* 2017:071282. 175 5. Hunt M, De Silva N, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization 176 of genome assemblies using long sequencing reads. Genome biology 2015;16(1):294. 177 6. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome 178 assemblies. Bioinformatics 2013;29(8):1072-1075. 179 7. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale 180 analysis of protein functions and evolution. Nucleic Acids Res 2000;28(1):33-36.
- 1818.Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014;30(14):2068-1822069.
- Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C et al. Fast genome-wide
 functional annotation through orthology assignment by eggNOG-mapper. *bioRxiv* 2016:076331.
- Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Res* 2016;44(D1):D286-D293.
- Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction
 of genomic islands for larger-scale datasets. *Nucleic Acids Res* 2017:doi:
 10.1093/nar/gkx1343.
- Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the
 PHAST phage search tool. *Nucleic Acids Res* 2016;44(W1):W16-W21.
- McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The Comprehensive Antibiotic
 Resistance Database. *Antimicrob Agents Chemother* 2013;57(7):3348-3357.
- Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome
 annotation and pathway reconstruction server. *Nucleic Acids Res* 2007;35(suppl 2):W182 W185.
- Takami H, Taniguchi T, Arai W, Takemoto K, Moriya Y et al. An automated system for
 evaluation of the potential functionome: MAPLE version 2.1. 0. *DNA Res* 2016;23(5):467 475.
- Li PE, Lo CC, Anderson JJ, Davenport KW, Bishop-Lilly KA et al. Enabling the democratization
 of the genomics revolution with a fully integrated web-based bioinformatics platform.
 Nucleic Acids Res 2017;45(1):67-80.
- 17. Botelho J, Grosso F, Quinteira S, Mabrouk A, Peixe L. The complete nucleotide sequence of
 an IncP-2 megaplasmid unveils a mosaic architecture comprising a putative novel blaVIM-2 harbouring transposon in Pseudomonas aeruginosa. J Antimicrob Chemother
 2017;72(8):2225-2229.
- Xiong J, Alexander DC, Ma JH, Deraspe M, Low DE et al. Complete sequence of pOZ176, a
 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from
 outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother
 2013;57(8):3775-3782.

213 19. Naughton S, Parker D, Seemann T, Thomas T, Turnbull L et al. Pseudomonas aeruginosa 214 AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis 215 lung. PLoS One 2011;6(9):e24526. 216 20. Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L. Deletion and acquisition of genomic 217 content during early stage adaptation of Pseudomonas aeruginosa to a human host 218 environment. Environ Microbiol 2012;14(8):2200-2211. 219 21. Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C et al. Newly 220 introduced genomic prophage islands are critical determinants of in vivo competitiveness in 221 the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res 2009;19(1):12-23. 222 22. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome 223 sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 224 2000;406:959-964. 225 23. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL et al. Genomic analysis reveals that 226 Pseudomonas aeruginosa virulence is combinatorial. Genome biology 2006;7(10):R90. 227 24. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al. Dynamics of Pseudomonas 228 aeruginosa genome evolution. Proceedings of the National Academy of Sciences 229 2008;105(8):3100-3105. 230 25. O'Carroll MR, Syrmis MW, Wainwright CE, Greer RM, Mitchell P et al. Clonal strains of 231 Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur Respir J 232 2004;24(1):101-106. 233 26. Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC. Virulence gene distribution in 234 clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med 235 Microbiol 2010;59(8):881-890. 236 27. Totten PA, Lory S. Characterization of the type a flagellin gene from Pseudomonas 237 aeruginosa PAK. J Bacteriol 1990;172(12):7188-7199. 238 28. Toussaint B, Delic-Attree I, Vignais PM. Pseudomonas aeruginosa contains an IHF-like 239 protein that binds to the algD promoter. Biochem Biophys Res Commun 1993;196(1):416-240 421. Cramer N., Wiehlmann L., Ciofu O., Tamm S., Høiby N. et al. Molecular epidemiology of 241 29. 242 chronic Pseudomonas aeruginosa airway infections in cystic fibrosis. PLoS ONE 243 2012;7(11):e50731. doi:50710.51371/journal.pone.0050731 244 30. Stewart RMK, Wiehlmann L, Ashelford KE, Preston SJ, Frimmersdorf E et al. Genetic 245 Characterization Indicates that a Specific Subpopulation of Pseudomonas aeruginosa Is 246 Associated with Keratitis Infections. J Clin Microbiol 2011;49(3):993-1003. 247 Pirnay J, Bilocg F, Pot B, Cornelis P, Zizi M et al. Pseudomonas aeruginosa population 31. 248 structure revisited. PLoS ONE 2009;4(11):e7740. 249 32. Rakhimova E, Wiehlmann L, Brauer AL, Sethi S, Murphy TF et al. Pseudomonas aeruginosa 250 Population Biology in Chronic Obstructive Pulmonary Disease. J Infect Dis 251 2009;200(12):1928-1935. 252 33. Karna SR, Chen T, Chen P, Peacock TJ, Abercrombie JJ et al. Genome Sequence of a Virulent 253 Pseudomonas aeruginosa Strain, 12-4-4 (59), Isolated from the Blood Culture of a Burn 254 Patient. Genome announcements 2016;4(2):e00079-00016. 255 34. Boyle B, Fernandez L, Laroche J, Kukavica-Ibrulj I, Mendes CM et al. Complete genome 256 sequences of three *Pseudomonas aeruginosa* isolates with phenotypes of polymyxin B 257 adaptation and inducible resistance. J Bacteriol 2012;194(2):529-530. 258 Ichise Y-k, Kosuge T, Uwate M, Nakae T, Maseda H. Complete genome sequence of 35. 259 Pseudomonas aeruginosa strain 8380, isolated from the human gut. Genome 260 announcements 2015;3(3):e00520-00515. Feng Y, Jonker MJ, Moustakas I, Brul S, ter Kuile BH. Dynamics of mutations during 261 36. 262 development of resistance by Pseudomonas aeruginosa against five antibiotics. Antimicrob 263 Agents Chemother 2016;60(7):4229-4236.

264 37. Valot B, Rohmer L, Jacobs MA, Miller SI, Bertrand X et al. Comparative genomic analysis of 265 two multidrug-resistant clinical isolates of ST395 epidemic strain of Pseudomonas 266 aeruginosa obtained 12 years apart. Genome announcements 2014;2(3):e00515-00514. 267 38. Nakano K, Terabayashi Y, Shiroma A, Shimoji M, Tamotsu H et al. First complete genome 268 sequence of Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 (DSM 50071T), 269 determined using PacBio single-molecule real-time technology. Genome announcements 270 2015;3(4):e00932-00915. 271 Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa 39. 272 in cystic fibrosis lung infections. Eur Respir J 2012;40(1):227-238. Wu D-Q, Ye J, Ou H-Y, Wei X, Huang X et al. Genomic analysis and temperature-dependent 273 40. 274 transcriptome profiles of the rhizosphere originating strain *Pseudomonas aeruginosa* M18. 275 BMC Genomics 2011;12(1):438. 276 41. Ohtsubo Y, Sato T, Kishida K, Tabata M, Ogura Y et al. Complete genome sequence of 277 Pseudomonas aeruginosa MTB-1, isolated from a microbial community enriched by the technical formulation of hexachlorocyclohexane. Genome announcements 278 279 2014;2(1):e01130-01113. 280 42. Miyoshi-Akiyama T, Kuwahara T, Tada T, Kitao T, Kirikae T. Complete genome sequence of 281 highly multidrug-resistant Pseudomonas aeruginosa NCGM2. S1, a representative strain of a 282 cluster endemic to Japan. J Bacteriol 2011;193(24):7010-7010. 283 Tada T, Miyoshi-Akiyama T, Shimada K, Shiroma A, Nakano K et al. A Carbapenem-43. 284 Resistant Pseudomonas aeruginosa Isolate Harboring Two Copies of blaIMP-34 Encoding a 285 Metallo-β-Lactamase. *PloS one* 2016;11(4):e0149385. 286 44. Lu S, Le S, Li G, Shen M, Tan Y et al. Complete genome sequence of Pseudomonas 287 aeruginosa PA1, isolated from a patient with a respiratory tract infection. Genome 288 announcements 2015;3(6):e01453-01415. 289 45. Li G, Lu S, Shen M, Le S, Tan Y et al. Complete genome sequence of Pseudomonas 290 aeruginosa phage-resistant variant PA1RG. Genome announcements 2016;4(1):e01761-291 01715. 292 Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S et al. Complete genome sequence of 46. 293 the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PloS one 294 2010;5(1):e8842. 295 47. Jeukens J, Boyle B, Bianconi I, Kukavica-Ibrulj I, Tümmler B et al. Complete genome 296 sequence of persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73. Genome 297 announcements 2013;1(4):e00568-00513. 298 48. Miller CL, Chen T, Chen P, Leung KP. Genome sequence of highly virulent *Pseudomonas* 299 aeruginosa strain VA-134, isolated from a burn patient. Genome announcements 300 2016;4(1):e01662-01615. 301 49. Murugan N, Malathi J, Umashankar V, Madhavan H. Unraveling genomic and phenotypic 302 nature of multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04 isolated from 303 keratitis patient. Microbiol Res 2016;193:140-149. 304 50. Chan K-G, Yin W-F, Lim YL. Complete genome sequence of Pseudomonas aeruginosa strain 305 YL84, a quorum-sensing strain isolated from compost. Genome announcements 2014;2(2). 306 51. Déraspe M, Alexander DC, Xiong J, Ma JH, Low DE et al. Genomic analysis of Pseudomonas 307 aeruginosa PA96, the host of carbapenem resistance plasmid pOZ176. FEMS Microbiol Lett 308 2014;356(2):212-216. 309 52. Roy AS, Baruah R, Gogoi D, Borah M, Singh AK et al. Draft genome sequence of 310 Pseudomonas aeruginosa strain N002, isolated from crude oil-contaminated soil from 311 Geleky, Assam, India. Genome announcements 2013;1(1):e00104-00112. 312 53. Liu H, Liang R, Tao F, Ma C, Liu Y et al. Genome sequence of Pseudomonas aeruginosa strain 313 SJTD-1, a bacterium capable of degrading long-chain alkanes and crude oil. J Bacteriol 314 2012;194(17):4783-4784.

- S4. Chugani S, Kim BS, Phattarasukol S, Brittnacher MJ, Choi SH et al. Strain-dependent
 diversity in the *Pseudomonas aeruginosa* quorum-sensing regulon. *Proceedings of the* National Academy of Sciences 2012;109(41):E2823-E2831.
- Stewart L, Ford A, Sangal V, Jeukens J, Boyle B et al. Draft genomes of 12 host-adapted and
 environmental isolates of *Pseudomonas aeruginosa* and their positions in the core genome
 phylogeny. *Pathogens and disease* 2014;71(1):20-25.
- 321 56. Gao C, Hu C, Ma C, Su F, Yu H et al. Genome sequence of the lactate-utilizing *Pseudomonas* 322 aeruginosa strain XMG. J Bacteriol 2012;194(17):4751-4752.

											Analysis perforr	ned		
Strain Name	Type of strain	Isolation source and comments	Isolation date	Isolation region (country)	Isolation region (continent)	Reference	GenBank accession number	Genome comparison	RAPD	AT	MLST, rMLST, wgMLST	Phenotypic testing	IPARP	SPAdes genome assembly
AES-1R- 2482	Clinical	Australian epidemic strain isolated from sputum of a 14 month old infant with cystic fibrosis		Australia		[19]	CP013680							
DK2	Clinical	CF sputum		Denmark	Europe	[20]	CP003149							
LESB58	Clinical	CF sputum, Liverpool epidemic strain	1988	UK	Europe	[21]	FM209186							
PAO1	Clinical	Wound				[22]	AE004091							
UCBPP- PA14	Clinical	Burn patient				[23]	CP000438							
C3719	Clinical	CF; Manchester epidemic strain		UK	Europe	[24]	AAKV00000000							
AUS23	Clinical	CF; Austrialian epidemic strain 2 (AES-2)		Australia		[25]	Not available							
AUS52	Clinical	CF; Austrialian epidemic strain 3 (AES-3)		Australia		[26]	Not available							
PAK	Clinical	Widely studied; expresses pili, flagella and glycosylation islands				[27]	GCA_000568855.1							
CHA	Clinical	Detailed phenotypic characterisation available				[28]	Not available							
NN2	Clinical	Detailed phenotypic characterisation available; Clone C		Germany	Europe	[29]	LT883143							
39016	Clinical	Keratitis eye isolate		UK	Europe	[30]	NZ_CM001020							
1709-12	Clinical	Multidrug resistance; Serotype O12	2004	Belgium	Europe	[31]	NZ_LZQH0000000 0							
Mi 162	Clinical	Multidrug resistance; Serotype O11	1997	Michigan, USA	North America	[31]	Not available							
Jpn 1563	Environmental	Lake water	2003	Japan	Asia	[31]	Not available							
LMG 14084	Environmental	Water	1960-1964	Romania	Europe	[31]	Not available							
Pr335	Clinical/ Environmental	Nosocomial environment	1997	Czech Republic	Europe	[31]	Not available							
CPHL 9433	Environmental	Tobacco plant		Phillipines	Asia	[31]	Not available							
RP1	Clinical	CF		Germany	Europe	[29]	LNBU0000000							
57P31P A	Clinical	Chronic obstructive pulmonary disease		USA	North America	[32]	Not available							
39177	Clinical	Keratitis		UK	Europe	[30]	Not available							
12-4- 4.59	Clinical	Blood culture of a burn patient				[33]	CP013696							

Table S1: Collection of industrial and other *P. aeruginosa* strains assembled and analysed in this study

19BR	Clinical	Collected as part of a Brazilian surveillance study between 2002 and 2004	2002-2004	Brazil	South America	[34]	AFXJ00000000				
213BR	Clinical	Collected as part of a Brazilian surveillance study between 2002 and 2004	2002-2004	Brazil	South America	[34]	AFXK00000000				
8380- 3922	Clinical	Human gut				[35]	AP014839				
ATCC- 15692	Clinical	Infected wound				Not published	CP017149				
ATCC- 27853	Clinical	Unknown				[36]	CP015117				
B136-33	Clinical	Infant with community acquired diarrhoea				Not Published	CP004061				
BAMC- 07-48	Clinical	Combat injury wound				(Sanjar et al. 2016)	CP015377				
Carb01- 63	Clinical	Unknown				Not published	CP011317				
DHS01	Clinical	Nose of a patient				[37]	CP013993				
DN1	Environmental	Soil, China		China		Not published	CP017099				
DSM- 50071	Clinical	Hospital, Japan		Japan	Asia	[38]	CP012001				
F9676	Environmental	Diseased rice, China		China	Asia	Not published	CP012066				
F22031	Clinical	Pubic bone				Not published	CP007399				
FA-HZ1	Environmental	Wastewater, dibenzufuran_degrading bacterium				Not published	CP017353				
FRD1	Clinical	CF sputum				Not published	CP010555				
IOMTU- 133	Clinical	Female participant in the dbGaP microbiome study				Not published	AP017302				
F9670	Clinical	Unknown				Not published	CP008873				
F23197	Clinical	Unknown				Not published	CP008856				
F30658	Clinical	Unknown				Not published	CP008857				
F63912	Clinical	Unknown				Not published	CP008858				
H5708	Clinical	Unknown				Not published	CP008859				
H27930	Clinical	Unknown				Not published	CP008860				
H47921	Clinical	Unknown				Not published	CP008861				
M1608	Clinical	Unknown				Not published	CP008862				
M37351	Clinical	Unknown				Not published	CP008863				
S86968	Clinical	Unknown				Not published	CP008865			1	
T38079	Clinical	Unknown				Not published	CP008866				
T52373	Clinical	Unknown				Not published	CP008867				

T63266	Clinical	Unknown			Not published	CP008868				
W16407	Clinical	Unknown			Not published	CP008869				
W36662	Clinical	Unknown			Not published	CP008870				
W45909	Clinical	Unknown			Not published	CP008871				
W60856	Clinical	Unknown			Not published	CP008864				
X78812	Clinical	Unknown			Not published	CP008872				
LES431	Clinical	CF sputum, Liverpool epidemic strain	UK	Europe	[39]	CP006937				
M18	Environmental	Plant isolate, China	China	Asia	[40]	CP002496				
MTB-1	Environmental	Hexachlorocyclohexane contaminated soil			[41]	CP006853				
N17-1	Environmental	Soil			Not published	CP014948				
NCGM2. S1	Clinical	lsolated from a hospital in Japan	Japan	Asia	[42]	AP012280				
NCGM2 57	Clinical	Urine, Japan			Not published	AP014651				
NCGM1 900	Clinical	Urinary catheter			Not published	AP014622				
NCGM1 984	Clinical	Urinary catheter			[43]	AP014646				
NCTC10 332	Clinical	Unknown			Not published	LN831024				
D1	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012585				
D2	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012578				
D5	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012579				
D9	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012580				
D16	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012581				
D21	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012582				
D22	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012583				
D25	Clinical	Clinical isolate from ventilator associated pneumonia patient			Not published	CP012584				
PA1	Clinical	Respiratory tract infection			[44]	CP004054				
PA1R	Clinical	Respiratory tract infection			[44]	CP004055				
PA1RG	Clinical/enviro nmental	Hospital sewage			[45]	CP012679				

PA7	Clinical	Non_respiratory clinical				[46]	CP000744				
DA4046	Clinical	isolate				Nataublished	00040044				
PA1216 17	Clinical	CF Sputum				Not published	CP016214				
PACS2	Clinical	CF Sputum				Not published	AAQW01000001				
RP73	Clinical	CF Sputum				[47]	CP006245				
SCV202 65	Clinical	CF Lung				(Eckweiler et al. 2014)	CP006931				
USDA- ARS- USMAR C-41639	Environmental	Nasopharynx of a cow in Kansas, USA		Kansas, USA	North America	Not published	CP013989				
VA-134	Clinical	Skin wound of burn human patient				[48]	CP013245				
VRFPA0 4	Clinical	Corneal button from patient with corneal keratitis				[49]	CP008739				
YL84	Environmental	Compost				[50]	CP007147				
PA96	Clinical	Clinical isolate from Guangzhou, China		China	Asia	[51]	CP007224				
S04-90	Environmental	Microbial mat material				Not published	NZ_CP011369				
N002	Environmental	Crude oil contaminated soil				[52]	ALBV0000000				
SJTD-1	Environmental	Soil				[53]	CP015877				
ATCC- 700888	Environmental	Industrial water system				[54]	AKZF00000000				
E2oS	Environmental	Soil				[55]	ASQV0000000				
MSH-3	Environmental	Environmental, Mount St. Helens		Washington, USA	North America	[55]	ASQU00000000				
ATCC- 14886	Environmental	Soil				[54]	AKZD0000000				
MSH-10	Environmental	Environmental				[55]	ASWW00000000				
XMG	Environmental	Soil, China		China	Asia	[56]	AJXX0000000				
ATCC- 12903 (NCTC 12903)	Clinical	Antibiotic efficacy testing reference strain; originally isolated from blood				This study	GCA_001374435.1				
RW 18	Clinical	Chronic prostatitis isolate		UK	Europe	This study	GCA_001374635.1				
RW27	Clinical	CF sputum		BC, Canada	North America	This study	GCA_001373635.1			1	
RW 30	Clinical	CF sputum		BC, Canada	North America	This study	GCA_001373875.1				
RW 99	Environmental	Domestic isolate, washing machine drawer biofilm		UK	Europe	This study	GCA_001374955.1				
RW 109	Industrial	Personal care product; preservative efficacy testing strain	2003		Europe	This study	GCA_900243355.1				
RW110	Industrial	Household cleaner; preservative efficacy testing strain				This study	GCA_001374115.1				
RW 113	Industrial	Household cleaner	2011	Unknown	Unknown	This study	Not available				

RW 114	Industrial	Household cleaner	2011	Unknown	Unknown	This study	Not available				
RW 115	Industrial	Household cleaner	2011	Unknown	Unknown	This study	Not available				
RW 116	Industrial	Household cleaner	2011	Unknown	Unknown	This study	Not available				
RW 117	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 118	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 119	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 120	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 121	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 122	Industrial	Household cleaner	2009		Europe	This study	Not available				
RW 123	Industrial	Household cleaner	2011		Asia	This study	Not available				
RW 124	Industrial	Household cleaner	2009		Europe	This study	Not available				
RW 125	Industrial	Household cleaner	2009		Europe	This study	Not available				
RW 126	Industrial	Household cleaner	2009		Europe	Not published	Not available				
RW 127	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 128	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 129	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 130	Industrial	Household cleaner	2010		Europe	This study	GCA_001374355.1				
RW 131	Industrial	Household cleaner	2010		Europe	This study	GCA_001374455.1				
RW 132	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 133	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 134	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 135	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 136	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 137	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 138	Industrial	Household cleaner	2001	Unknown	Unknown	This study	GCA_001374655.1				
RW 139	Industrial	Household cleaner	2001	Unknown	Unknown	This study	Not available				
RW 140	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 143	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 144	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				

RW 145	Industrial	Household cleaner	2010	Unknown	Unknown	This study	Not available				
RW 146	Industrial	Household cleaner	2004		Europe	This study	GCA_001373655.1				
RW 147	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	Not available				
RW 148	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	Not available				
RW 149	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	GCA_001373895.1				
RW 150	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	Not available				
RW 168. 2	Industrial	Laundry liquid	Unknown	Unknown	Unknown	This study	GCA_001375215.1				
RW172	Industrial	Household cleaner	2009	Unknown	Unknown	This study	GCA_001374135.1				
RW 173	Industrial	Household cleaner	2011		Asia	This study	Not available				
RW 174	Industrial	Household cleaner	2010		Europe	This study	Not available				
RW 175	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 176	Industrial	Household cleaner	2010		Asia	This study	GCA_001374375.1				
RW 177	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 178	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 179	Industrial	Household cleaner	2010		Asia	This study	Not available				
RW 180	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 181	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 182	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 184	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	GCA_001373595.1				
RW 185	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 187	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	Not available				
RW 188	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	Not available				
RW 189	Industrial	Personal care product	Unknown	Unknown	Unknown	This study	Not available				
RW 190	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 191	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	Not available				
RW 192	Industrial	Household cleaner	Unknown	Unknown	Unknown	This study	GCA_001374675.1				
RW 193	Industrial	Personal care product	2003	Unknown	Unknown	This study	Not available				
RW 194	Industrial	Household cleaner	2011		South America	This study	Not available				
RW 195	Industrial	Household cleaner	2006	Unknown	Unknown	This study	Not available				

RW 199	Industrial	Metal working fluid product	Unknown	Unknown	Unknown	This study	GCA_001374995.1				
RW200	Industrial	Timber care product	Unknown	Unknown	Unknown	This study	GCA_001375235.1				
RW202	Industrial	Household cleaner	2012	Europe	Europe	This study	GCA_001374155.1				
RW204	Industrial	Household cleaner	2012	Unknown	Unknown	This study	GCA_001374395.1				
ATCC- 9027 (RW 151)	Reference strain (clinical)	Reference strain used in industrial testing; isolated from an outer ear infection	Unknown	Unknown	Unknown	This study	GCA_001374975.1				
ATCC- 13388 (RW 196)	Reference strain (unknown)	Reference strain used in industrial testing (ISO 846C)	Unknown	Unknown	Unknown	This study	GCA_001373675.1				
ATCC 10145 (RW197)	Reference strain (unknown)	Reference strain used in industrial testing	Unknown	Unknown	Unknown	This study	Not available				
ATCC- 15442 (RW 198)	Reference strain (environmenta I)	Reference strain used in industrial testing; isolated from an animal room water bottle	Unknown	Unknown	Unknown	This study	GCA_001373915.1				

Strain	~			Hexadecimal code	-
(RW#)	Other names	Isolation source/comment	16 digit code	(AT-genotype)	Database match and comments
109*		IND; PC; North America; isolated 2003; Strain used in preservative	0110-1100-0010-0010	6C22	Clone Y, previously associated with CF, CLIN, ENV
109	-	efficacy testing	0110-1100-0010-0010	0022	Cione 1, previously associated with CI, CLIN, LINV
110*	_	IND; HC; Europe; isolated 2003; Strain used in preservative efficacy	1111-0100-0110-1001	F469	Clone D, previously associated with CF, CLIN, COPD, KER,
110	-	testing		1403	ENV
130*	-	IND; HC; Europe; isolated 2010	1010 -1111-1010-1010	AFAA	Genotype previously associated with CF
131*	-	IND; HC; Europe; isolated 2010	1010 -1111-1010-1010	AFAA	Genotype previously associated with CF
138*	-	IND; HC; Europe; isolated 2001	0110-1101-1001-0010	6D92	Clone H, previously associated with CF, CLIN, COPD, ENV
146*	-	IND; HC; Europe; isolated 2004	1010 -1111-1010-1010	AFAA	Genotype previously associated with CF
149*	-	IND; PC; origin unknown; isolated 2003	0010-1100-0101-0010	2C52	Novel type
168.2	-	IND; LL; origin and isolation date unknown; typing unsuccessful	-	-	-
172*	_	IND; HC; Asia: isolated 2009	1110-0100-0010-1001	E429	Clone B, previously associated with CF, CLIN, COPD, KER,
172				2423	ENV
176*	-	IND; HC; Asia; isolated 2010	0010-1100-0101-0010	2C52	Novel type
184*	-	IND; HC; Europe; isolated 2006	0001-1011-1010-1010	1BAA	Novel type
192*	-	IND; SC; origin unknown; isolated 2012	0110-1100-0010-0010	6C22	Clone Y, previously associated with CF, CLIN, ENV
199*	-	IND; MWF; origin and isolation date unknown	0010-1111-1010-1010	2FAA	Genotype associated with CF and ENV
200*	-	IND; TC; origin and isolation date unknown	0010-1011-1001-0010	2B92	Novel type
202*	-	IND; HC; Europe isolated 2012	1011-0100-0110-1001	B469	Genotype associated with CLIN, KER
204*	-	IND; HC; isolated 2012	0010-1100-1001-1010	2C9A	Genotype associated with CF, ENV
151*	ATCC 9027	CLIN; reference strain used in industrial testing; originally isolated from	0101-1100-0001-1010	5C1A	Novel type
		an outer ear infection			
196*	ATCC 13388; NCTC 8060	Origin unknown; reference strain used in industrial testing (ISO 846C)	0000-1011-1001-0010	0B92	Clone X, previously associated with ENV
198*	ATCC 15442	ENV; reference strain used in industrial testing, originally isolated from	0000-0101-1001-1010	059A	Genotype previously associated with CF, CLIN
		an animal room water bottle			

Table S2. ArrayTube (AT) genotypes of industrial and reference testing *P. aeruginosa* strains

Abbreviations: CLIN, clinical; CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; KER, keratitis; ENV, environ mental; IND, industrial; HC, household cleaner; PC, personal care product; LL, laundry liquid; MWF, metal working fluid; TC, timber care. *AT-genotypes for these strains (as strains associated with industry) are highlighted in Figure 2

Strain	Isolation source				MLST loci				ST	ST isolation sources ^a
Strain		acs	aro	gua	mut	nuo	pps	trp		ST ISOIdtion Sources"
RW109	IND; PC; North America; isolated 2003;	17	5	5	4	4	4	3	111	CF, CLIN, ENV, OTHER
KWI09	Strain used in preservative efficacy testing	17	5	5	4	4	4	3		CF, CLIN, ENV, OTHER
RW110	IND; HC; Europe; isolated 2003; Strain	5	141	65	151	1	33	50	2729	Novel
NW110	used in preservative efficacy testing	5	141	00	151		55	50	2123	NOVEI
RW130	IND; HC; Europe; isolated 2010	15	48	20	142	4	7	7	2730	Novel
RW131	IND; HC; Europe; isolated 2010	15	48	20	142	4	7	7	2730	Novel
RW138	IND; HC; Europe; isolated 2001	17	5	5	4	4	4	3	111	CF, CLIN, ENV, OTHER
RW146	IND; HC; Europe; isolated 2004	15	48	20	142	4	7	7	2730	Novel
RW149	IND; PC; origin unknown; isolated 2003	1	5	26	3	1	10	3	1342	OTHER
RW168.2	IND; LL; origin and isolation date unknown	40	5	3	162	73	75	2	2733	Novel
RW172	IND; HC; Asia; isolated 2009	13	8	9	3	1	6	9	316	CF, CLIN, ENV, OTHER
RW176	IND; HC; Asia; isolated 2010	1	5	26	3	1	10	3	1342	OTHER
RW184	IND; HC; Europe; isolated 2006	28	5	36	3	3	13	7	155	CF, ENV, OTHER
RW192	IND; HC; origin unknown; isolated 2012	17	5	5	4	4	4	3	111	CF, CLIN, ENV, OTHER
RW199	IND; MWF; origin and isolation date unknown	17	22	11	3	3	15	3	800	CF
RW200	IND; TC; origin and isolation date unknown	6	5	6	5	4	4	7	641	CLIN
RW202	IND; HC; Europe isolated 2012	5	141	65	151	1	33	50	2729	Novel
RW204	IND; HC; isolated 2012	6	5	5	3	3	13	1	645	CF, CLIN,ENV
RW151;	CLIN; reference strain used in industrial									
ATCC	testing; originally isolated from an outer ear	23	5	12	30	1	4	7	1105	CF
9027	infection									
RW196;	Origin unknown; reference strain used in									
ATCC	industrial testing (ISO 846C)	17	5	12	3	14	4	7	244	CF, CLIN, ENV, OTHER
13388										
RW198;	ENV; reference strain used in industrial									
ATCC	testing, originally isolated from an animal	6	28	4	3	3	4	7	252	CF, CLIN, ENV, OTHER
15442	room water bottle									

Table S3. MLST allele and Sequence Type (ST) designations for industrial and reference testing *P. aeruginosa* strains

Abbreviations: CLIN, clinical; ENV, environmental; IND, industrial; HC, household cleaner; PC, personal care product; LL, laundry liquid; MWF, metal working fluid; TC, timber care;

^aIsolation source from PubMLST database; coloured cells are STs found more than once

					Μ	IC values (%)		
Strain	Other names	Isolation source		MIT	(CITMIT	В	IT
	namoo	000100	Median	Range ^a	Median	Range	Median	Range
LESB58	-	CF	0.0000781	-	0.0002345	0.000156-0.000313	0.000313	-
C3719	-	CF	0.000313	-	0.0007815	0.00313-0,00125	0.000625	-
DK2	-	CF	0.001875	0.00125-0.0025	0.0009375	0.000625-0.000125	0.005	-
AES-1R	-	CF	0.0025	-	0.0007815	0.00313-0.00125	0.005	-
AUS23	-	CF	0.000313	-	0.0007815	0.00313-0.00125	0.00375	0.0025-0.005
AUS52	-	CF	0.000625	-	0.000313	-	0.0015625	0.000625-0.0025
PAO1	-	CLIN	0.001875	0.00125-0.005	0.0009375	0.000625-0.000125	0.0075	0.005-0.01
UCBPP-PA14	-	CLIN	0.00125	-	0.0009375	0.000625-0.000125	0.005	-
PAK	-	CLIN	0.00125	0.00125-0.0025	0.0007815	0.000625-0.000125	0.00375	0.0025-0.005
CHA	-	CF	0.0025	-	0.0009375	0.000625-0.000125	0.005	-
NN2	-	CF	0.001875	0.00125-0.005	0.0007815	0.000625-0.00025	0.005	-
39016	-	CLIN	0.0025	-	0.0009375	0.00313-0.00125	0.01	-
1709-12	-	CF	0.0025	0.0025-0.005	0.0007815	0.00313-0.00125	0.01	-
Mi 162	-	CLIN	0.00125	-	0.0007815	0.00313-0.00125	0.005	0.005-0.01
Jpn 1563	-	ENV	0.00375	0.0025-0.005	0.0015625	0.000625-0.00025	0.01	
LMG 14084	-	ENV	0.0025	-	0.0009375	0.000625-0.00025	0.005	-
Pr335	-	ENV	0.001875	0.00125-0.0025	0.0009375	0.000625-0.00025	0.00375	0.0025-0.005
CPHL 9433	-	ENV	0.00375	0.0025-0.005	0.0009375	0.000625-0.00025	0.01	0.005-0.01
RP1	-	CF	0.00375	0.0025-0.005	0.0015625	0.000625-0.00025	0.005	-
57P31PA	-	CLIN	0.0025	-	0.0015625	0.000625-0.000125	0.01	-
39177	-	CLIN	0.001875	0.00125-0.0025	0.0009375	0.000625-0.000125	0.005	-
NCTC 12903; ATCC 27853	RW11	CLIN	0.00375	0.0025-0.005	0.0015625	0.000625-0.00025	0.01	0.005-0.01
RW109	-	IND; PC	0.0025	0.0025-0.005	0.001875	0.00125-0.0025	0.01	-

Table S4. *P. aeruginosa* tolerance of the isothiazolinone preservatives MIT, CITMIT and BIT

RW110	-	IND; HC	0.0025	0.0025-0.005	0.0015625	0.000625-0.00025	0.005	0.005-0.01
RW130	-	IND; HC	0.00375	0.0025-0.005	0.0015625	0.000625-0.00025	0.02	-
RW131	-	IND; HC	0.00375	0.0025-0.005	0.001875	0.00125-0.0025	0.02	-
RW138	-	IND; HC	0.005	-	0.0009375	0.000625-0.000125	0.04	-
RW146	-	IND; HC	0.005	-	0.0015625	0.000625-0.00025	0.02	-
RW149	-	IND; PC	0.00375	0.0025-0.005	0.0009375	0.000625-0.000125	0.01	-
ATCC 9027	RW151	CLIN	0.0025	-	0.0015625	0.000625-0.00025	0.01	-
RW172	-	IND; HC	0.0025	-	0.001875	0.00125-0.0025	0.005	-
RW176	-	IND; HC	0.005	-	0.005	-	0.02	-
RW184	-	IND; HC	0.00125	0.00125-0.0025	0.0009375	0.000625-0.00025	0.005	0.0025-0.005
RW192	-	IND; HC	0.00375	0.0025-0.005	0.0015625	0.000625-0.00025	0.04	-
ATCC 13388; NCTC 8060	RW196	UNKNOWN	0.001875	0.00125-0.0025	0.00125	0.000625-0.000125	0.00375	0.0025-0.005
ATCC 15442	RW198	ENV	0.0025	0.0025-0.005	0.0015625	0.000625-0.00025	0.005	-
RW199	-	IND; MWF	0.00125	-	0.0009375	0.000625-0.000125	0.005	-
RW200	-	IND; TC	0.0025	0.00125-0.0025	0.0015625	0.000625-0.00025	0.005	-
RW202	-	IND; HC	0.0025	-	0.0015625	0.000625-0.00025	0.01	-
RW204	-	IND; HC	0.001875	0.00125-0.0025	0.0015625	0.000625-0.0025	0.01	0.005-0.01
Median MIC (%)		0.0025		0.0009375		0.005		
MIC range (%)			0.0000	781-0.005	0.0002345-0.005 0.000313-0		3-0.04	
Maximum EU regulated levels (%) ^b		0.01		0.0015		0.2 ^c		

Footnotes: MIC, minimum inhibitory concentration; MIT, methylisothiazolinone; CITMIT, chloromethylisothiazolinone and methylisothiazolinone blend in the ratio 3:1; BIT, benzisothiazolinone; CF, cystic fibrosis; CLIN, clinical; ENV, environmental; IND, industrial; HC, household cleaner; PC, personal care; MWF, metal working fluid; TC, timber care. Median values are colour coded with darker shades reflecting an increase in MIC. ^aThe range is not reported where the replicate values were the same for a strain; ^b EU cosmetics directive 76/768/EEC, annex VI; ^cNot permitted in the EU, manufacturer's recommended level

Strain	Other names	Isolation source	MIC values (%)						
			PHE			CHX	ВА		
			Median	Range	Median	Range	Median	Range	
LESB58	-	CF	0.1171875	0.078125-0.15625	0.0046875	0.001563-0.00625	0.0125		
C3719	-	CF	0.234375	0.15625-0.3125	0.002344	0.000781-0.003125	0.0125		
DK2	-	CF	0.46875	0.3125-0.625	0.002344	0.001563-0.003125	0.05		
AES-1R	-	CF	0.234375	0.15625-0.3125	0.002344	0.000781-0.003125	0.05		
AUS23	-	CF	0.15625	0.15625-0.3125	0.001172	0.000781-0.001563	0.025		
AUS52	-	CF	0.234375	0.15625-0.3125	0.000781		0.05		
PAO1	-	CLIN	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05		
UCBPP-PA14	-	CLIN	0.390625	0.015625-0.625	0.001953	0.000781-0.00625	0.05		
PAK	-	CLIN	0.46875	0.3125-0.625	0.002344	0.001563-0.003125	0.05		
CHA	-	CF	0.46875	0.3125-0.625	0.003125	0.001563-0.003125	0.05		
NN2	-	CF	0.3125	0.15625-0.3125	0.0046875	0.003125-0.00625	0.05		
39016	-	CLIN	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05		
1709-12	-	CF	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05		
Mi 162	-	CLIN	0.46875	0.3125-0.625	0.002344	0.001563-0.003125	0.05		
Jpn 1563	-	ENV	0.46875	0.3125-0.625	0.0046875	0.001563-0.00625	0.075	0.1 - 0.0	
LMG 14084	-	ENV	0.625	0.3125-0.625	0.0039065	0.001563-0.00625	0.05		
Pr335	-	ENV	0.625	0.3125-0.625	0.00625		0.05		
CPHL 9433	-	ENV	0.46875	0.3125-0.625	0.003125		0.05		
RP1	-	CF	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05		
57P31PA	-	CLIN	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05		
39177	-	CLIN	0.625	0.3125-0.625	0.0046875	0.003125-0.0125	0.05		
NCTC 12903; ATCC 27853	RW11	CLIN	0.46875	0.3125-0.625	0.002344	0.001563-0.00625	0.075	0.1-0.05	

Table S5. *P. aeruginosa* tolerance of the preservatives phenoxyethanol, chlorhexidine and benzoic acid

RW109	-	IND; PC	0.46875	0.3125-0.625	0.0046875	0.001563-0.00625	0.05	
RW110	-	IND; HC	0.46875	0.3125-0.625	0.00625		0.05	0.1-0.05
RW130	-	IND; HC	0.625	-	0.002344	0.001563-0.003125	0.05	0.05
RW131	-	IND; HC	0.46875	0.3125-0.625	0.002344	0.001563-0.003125	0.05	0.05
RW138	-	IND; HC	1.25	1.25-2.5	0.00058575	0.000391- 0.001563	0.05	0.05
RW146	-	IND; HC	0.46875	0.3125-0.625	0.002344	0.001563-0.003125	0.05	0.1-0.05
RW149	-	IND; PC	0.625	0.625	0.002344	0.001563-0.003125	0.05	0.05
ATCC 9027	RW151	CLIN	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05	0.05
RW172	-	IND; HC	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05	0.05
RW176	-	IND; HC	0.46875	0.3125-0.625	0.002344	0.001563-0.003125	0.05	0.05
RW184	-	IND; HC	0.234375	0.15625-0.625	0.000781		0.05	0.05
RW192	-	IND; HC	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05	0.05
ATCC 13388; NCTC 8060	RW196	UNKNOWN	0.46875	0.3125-0.625	0.001172	0.000781-0.001563	0.05	0.05
ATCC 15442	RW198	ENV	0.46875	0.3125-0.625	0.00625	0.003125-0.0125	0.05	0.05
RW199	-	IND; MWF	0.625	0.625	0.001172	0.000781-0.003125	0.05	0.05
RW200	-	IND; TC	0.46875	0.3125-0.625	0.0046875	0.003125-0.00625	0.05	0.05
RW202	-	IND; HC	0.46875	0.3125-0.625	0.00625		0.05	0.05
RW204	-	IND; HC	0.46875	0.3125-0.625	0.0046875	0.003125-0.0125	0.05	0.05
Median MIC (%)		0.	46875	0.00351575		0.05		
MIC range (%)		0.117	1875-1.25 0.00058575-0.00625		0.0125-0	0.0125-0.075		
Maximum EU regulated levels (%) ^b			1 0.3		0.5	0.5		

Footnotes: MIC, minimum inhibitory concentration; PHE, phenoxyethanol; CHX, chlorhexidine; BA, benzoic acid at pH5; CF, cystic fibrosis; CLIN, clinical; ENV, environmental; IND, industrial; HC, household cleaner; PC, personal care; MWF, metal working fluid; and TC, timber care. RW strains were from the RW collection held at Cardiff University. Median values are colour coded with darker shades reflecting an increase in MIC. ^aThe range is not reported where the replicate values were the same for a strain; ^b EU cosmetics directive 76/768/EEC, annex VI

Strain	Other names	Source	Lag phase (hrs)	Growth rate (hrs ⁻¹)	Log₁₀ Max OD (420- 580)
C3719	-	CF	4.45	0.02	0.19
DK2	-	CF	4.99	0.07	0.36
AES-1R	-	CF	6.65	0.02	0.30
AUS23	-	CF	3.92	0.02	0.19
AUS52	-	CF	5.51	0.01	0.16
PAO1	-	CLIN	5.14	0.07	0.37
UCBPP-PA14	-	CLIN	3.62	0.02	0.25
PAK	-	CLIN	3.69	0.03	0.35
CHA	-	CF	4.84	0.04	0.34
NN2	-	CF	5.68	0.12	0.38
39016	-	CLIN	6.79	0.06	0.37
1709-12	-	CF	5.87	0.07	0.38
Mil 162	-	CLIN	2.61	0.02	0.24
Jpn 1563	-	ENV	6.20	0.05	0.35
LMG 14084	-	ENV	5.76	0.09	0.35
Pr335	-	ENV	4.88	0.10	0.34
CPHL 9433	-	ENV	5.53	0.13	0.37
RP1	-	CF	4.67	0.08	0.37
57P31PA	-	CLIN	4.83	0.05	0.39
39177	-	CLIN	4.98	0.10	0.34
NCTC 12903; ATCC 27853	RW11	CLIN	5.18	0.11	0.32
RW109	-	IND; PC	5.24	0.06	0.38
RW110	-	IND; HC	5.21	0.08	0.36
ATCC 9027	RW151	CLIN	4.11	0.08	0.39
RW172	-	IND; HC	8.06	0.07	0.34
RW176	-	IND; HC	6.66	0.08	0.31
RW184	-	IND; HC	2.95	0.02	0.24
RW192	-	IND; HC	7.12	0.07	0.37
ATCC 15442	RW198	ENV	4.94	0.12	0.40
RW199	-	IND; MWF	6.65	0.08	0.37
RW200	-	IND; TC	5.74	0.08	0.36
RW202	-	IND; HC	5.33	0.07	0.35
RW204	-	IND; HC	6.89	0.08	0.37

Table S6. Growth parameters of *P. aeruginosa* strains in liquid culture after 24 hours growth

Footnotes: CF, cystic fibrosis; CLIN, clinical, ENV, environmental; IND, industrial; HC, household cleaner; PC, personal care cosmetic; MWF, metal working fluid; TC, timber care. Strains LESB58, RW130, RW131, RW138, RW146, RW149 and RW196 were excluded from the analysis as they produced growth curves that could not be accurately modelled by the grofit package in R statistical software.

Strain	Other names	Source	Swimming diameter (mm)	Swarming diameter (mm)		Twitching diameter (mm)
				LB 0.5% agar	BSM-G 0.5% agar	
LESB58		CF	17.5		-	<u> </u>
C3719		CF	-	-	-	-
DK2		CF	53.5	19	12.5	12
AES-1R		CF	51	-	-	-
AUS23		CF	52.5	-	-	9
AUS52		CF	-	-	-	-
PAO1		CLIN	60.5	28	18.5	23.5
UCBPP-PA14		CLIN	62.5	24	16.5	11
РАК		CLIN	60	12.5	10	17
СНА		CF	80	25.5	18	19.5
NN2		CF	61	12	10	20.5
39016		CLIN	75	22.5	11	30.5
1709-12		CF	29.5	7.5	-	-
Mi 162		CLIN	62.5	-	-	-
Jpn 1563		ENV	25	16.5	15	38
LMG 14084		ENV	58.5	14.5	-	-
Pr335		ENV	53.5	16	11.5	18.5
CPHL 9433		ENV	66	13.5	7.5	11.5
RP1		CF	65	26	8.5	15.5
57P31PA		CLIN	68.5	31	14	14
39177		CLIN	48.5	15.5	8	19.5
NCTC 12903; ATCC	RW11	CLIN	79	15.5	10	16
27853 RW 109		IND; PC	55	17	14	8
RW110		IND; HC	80	22	14.5	31.5
RW130		IND; HC	27.5ª	8	7	-
RW131		IND; HC	27.6ª	8.5	7.5	-
RW138		IND; HC	23.5	11.5	12.5	8.75
RW146		IND; HC	25.5ª	9.5	9	-
RW 149		IND; PC	61.5	8	7	-
ATCC 9027	RW151	CLIN	71.5	31	22.5	15.5
RW172		IND; HC	58	16	8	18
RW 176		IND; HC	63.5	40	15	24.5
RW 184		IND; HC	-	-	-	-
RW 192		IND; HC	32.5	18	9.5	16.5
ATCC 13388; NCTC	RW196	UNKNOWN	64	9.5	-	-
8060 ATCC 15442	RW198	ENV	71.5	8.5	-	-
RW 199		IND; MW F	35.5	8.5	8	13
RW200		IND; TC	75	24	60 ^b	39.5
RW202		IND; HC	76	25	16	36
RW204		IND; HC	76.5	32	35	38

Table S7. Swimming, swarming and twitching motilities of *P. aeruginosa*

Footnotes: CF, cystic fibrosis; CLIN, clinical; ENV, environmental; IND, industrial; HC, household cleaner; PC, personal care; MWF, metal working fluid; TC, timber care, '-' designates non motile, and light blue shading indicates highly motile. ^aStrains exhibiting an atypical swimming motility are shown in Figure S2B; ^bA strain exhibiting typical swarming with a diameter of approximately 60 mm is shown in Figure S2A

Figure S1. Clustered RAPD-PCR profiles of 69 industrial *P. aeruginosa* isolates. A Pearson correlation similarity coefficient was used to construct a UPGMA dendrogram of the RAPD-PCR profiles. The PCR fingerprint profile of each isolate is shown to the right of the dendrogram, along with the isolate number in the RW collection (ID#; See Table S1 for isolate details) and coloured coded information about isolate provenance. Percentage similarities are indicated by the scale bar and on the branches of the dendrogram. Profiles sharing \geq 80% similarity were putatively considered same strain and different strain types are indicated by different coloured branches. Black boxes around ID numbers indicate isolates selected for Clondiag AT typing and genome sequencing. Product type codes are follows: TC, timber care; MWF, metal working fluid; household cleaners (three types DWL, SC and LAC); PC, personal care cosmetic product; and FWS, laundry liquid.

KEY

Unknov

Asia . South A LAC • DWL • Refer • sc • PC • MWF • тс FWS •

Europe

(A) Motility phenotypes

RW130

Figure S2. Swimming, swarming and twitching motilities of the *P. aeruginosa* strains. Representative images of the levels of swimming (0.3% LB agar), swarming (0.5% LB and BSM-G agar) and twitching (1% LB agar) motility exhibited are shown in panel A. Results were recorded after 16-18 hours incubation at 30°C (swarming) or 37°C (swimming and twitching). The unusual but consistent swimming motility phenotype of the 3 industrial strains from the same location are shown in panel B. Numerical assessment of the phenotypes is provided in Table S5.

RW131

RW146

Figure S3. Biofilm formation by *P. aeruginosa* **panel and industrial strains**. Crystal violet staining of biofilm biomass at 32 hours incubation in TSB medium at 37°C was performed for a subset of 27 *P. aeruginosa* strains, including all 16 industrial strains. Results are presented as mean OD (570 nm) ± standard error and are derived from 3 biological replicates each containing 6 technical replicates. Strains are colour coded to indicate isolation source as cystic fibrosis (CF, red, n=4), clinical (CLIN, blue, n=4), environmental (ENV, green, n=2), industrial (IND, purple, n=16) and unknown (orange, n=1). Industrial strains carrying a megaplasmid are highlighted with grey arrows, high MIT MICs with yellow arrows, high CITMIT MICs with green arrows, high BIT MICs with blue arrows, high PHE MICs with orange arrows, high CHX MICs with black arrows and high BA MICs with red arrows. Strain ATCC 9027 is of clinical origin but had very limited biofilm forming ability (the bar is too small to see the colour).

Figure S4. The complete multireplicon genome of industrial *P. aeruginosa* strain **RW109.** Circular maps of the RW109 replicons are shown with the following tracks (outer to inner rings): (1) predicted CDS on forward strand coloured according to COG categories; (2) predicted CDS on reverse strand coloured according to COG categories; (3) genomic islands (GIs) coloured green; (4) phages coloured light pink (those labelled with * indicate an incomplete phage and those labelled with ** indicate a putative phage identification); (5) GC content (black); (6) positive and negative GC skew (green and purple, respectively); and (7) genome size scales (mbp for the main chromosome and kbp for plasmids 1 and 2; replicons are not drawn to scale).

Figure S5. KEGG functional module enrichment analysis in relation to *P. aeruginosa* tolerance of BIT, MIT and CITMIT. Four selected *P. aeruginosa* strains with the highest and four with lowest MIC in relation to each preservative (see top right key for each panel) were compared for the KEGG functional module content (see Supplementary Methods). Significant differences were determined by two-way ANOVA (Sidak's multiple comparisons test) and the results for: (A) BIT, (B) MIT and (C) CITMIT, plotted in the respective panels. For BIT, high MIC strains were enriched for drug resistance (p = 0.0117) and bacterial secretion system (p = 0.0117) modules (panel A); MIT tolerant *P. aeruginosa* strains showed enrichment of exactly the same function modules (drug resistance, p = 0.0061; and bacterial secretion system, p = 0.0061; panel B). Low BIT and MIT MIC strains had an increased number of modules for central carbohydrate metabolism (p = 0.0117 and p = <0.0001, respectively). Two component regulatory system functional modules were significantly enriched in relation to CIT MIT (p = 0.0347).

Figure S6. KEGG functional module enrichment analysis in relation to *P. aeruginosa* tolerance of PHE and CHX. Four selected *P. aeruginosa* strains with the highest and four lowest MIC in relation to each preservative (see top right key for each panel) were compared for the KEGG functional module content (see Supplementary Methods). Significant differences were determined by two-way ANOVA (Sidak's multiple comparisons test) and the results for (A) PHE and (B) CHX plotted in the respective panels above. *P. aeruginosa* strains tolerant of PHE showed significant enrichment of two component regulatory system KEGG functional modules (p = 0.0323), and CHX tolerant strains contained more central carbohydrate metabolism modules (p = <0.0001).