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Measuring Shapes with Desired Convex
Polygons

Joviša Žunić, Paul L. Rosin

Abstract—In this paper we have developed a family of shape measures. All the measures from the family evaluate the degree to which
a shape looks like a predefined convex polygon. A quite new approach in designing object shape based measures has been applied. In
most cases such measures were defined by exploiting some shape properties. Such properties are optimized (e.g. maximized or
minimized) by certain shapes and based on this, the new shape measures were defined. An illustrative example might be the shape
circularity measure derived by exploiting the well-known result that the circle has the largest area among all the shapes with the same
perimeter. Of course, there are many more such examples (e.g. ellipticity, linearity, elongation, and squareness measures are some of
them). There are different approaches as well. In the approach applied here, no desired property is needed and no optimizing shape
has to be found. We start from a desired convex polygon, and develop the related shape measure. The method also allows a tuning
parameter. Thus, there is a new 2-fold family of shape measures, dependent on a predefined convex polygon, and a tuning parameter,
that controls the measure’s behavior. The measures obtained range over the interval (0, 1] and pick the maximal possible value, equal
to 1, if and only if the measured shape coincides with the selected convex polygon that was used to develop the particular measure. All
the measures are invariant with respect to translations, rotations, and scaling transformations. An extension of the method leads to a
family of new shape convexity measures.

Index Terms—Shape, shape descriptors, shape measure, shape convexity, image processing, pattern recognition.

F

1 INTRODUCTION

Shape is an object property with a powerful discriminative
capacity. There are many numerical characterizations of
shape, and these can be used to provide components of fea-
ture vectors that are assigned to the objects studied. In this
way, the comparison of the objects can be done in the feature
vector space, i.e. in Rn space, rather than in the object space.
Working in Rn is convenient for analysis as it is fast, and
straightforward due to the available theoretical frameworks
already developed. Because of this, shape based tools are
intensively used in a wide spectrum of applications such as
astrophysics [23], ecology [35], [5], materials analysis [26],
medicine [15], politics [7], psychology [4], nano-technology
[21], and many others.

In particular, the use of shape is widely used in content-
based image retrieval systems. Sometimes it is combined
with other features, e.g. shape and color together form “a
powerful combination” [36]. However, for many applica-
tions their nature dictates that shape alone is used. For
instance, for the retrieval of trademarks the cues like colour
and texture are typically not relevant, and so query is
performed using just shape retrieval [19].

Shape retrieval is also widely applied to 3D objects,
which often do not contain colour information and there-
fore rely on geometry. Early methods used global features
such as moments, spherical harmonics and shape distri-
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butions [39] while subsequent techniques developed tech-
niques that could cope better with geometric deformations
of the objects. Most recently, deep learning has been de-
ployed to discover shape descriptors [44].

Fig. 1. Some random shapes; these are intuitively judged as shapes
whose circularity, elongation and convexity differ.

In the literature, shape descriptors tend to be either local
or global, and our proposed method falls into the latter
category. Although individual global descriptors may not
be strong, they have the advantage that simpler matching
schemes can be used than for matching local descriptors,
and standard classifiers can be directly used without mod-
ification. Furthermore, combinations of multiple global de-
scriptors enables strong classification and recognition levels.

Shape properties, like circularity, elongation, convexity,
linearity, etc., have an intuitively clear meaning. For exam-
ple, people would generally agree that the first shape in
Fig.1 is the most circular of the shapes displayed, indepen-
dently of which circularity measure is applied. Likewise,
the second and third shapes are the most elongated and
least convex shapes respectively. However, there are not
many shape descriptors which have such an intuitively
clear meaning. Consequently, this limited number of shape
measures also limits the dimensionality of the correspond-
ing feature vector spaces. We note also that several shape
measures can be optimised by the same shapes, e.g. both
linearity and elongation are optimised by a straight line.
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The available alternative is to use generic shape mea-
sures, such as moments and Fourier descriptors. Although
they do not provide intuitively clear behavior, they can
provide an unbounded number of measures, enabling an
arbitrarily large dimensional feature space to be provided.

In this paper we introduce a new family of shape mea-
sures that capture the benefits of both the above categories
of approaches. The contributions of this paper are:

• A family of shape measures is introduced that con-
sists of infinitely many measures, each of which is
determined by a convex polygon.

• A tuning parameter (a real number) enables further
control of the proposed shape measures.

• The new measures have predictable behavior and are
intuitively interpretable.

• A family of convexity measures is obtained.

The paper is organized as follows. After discussion of
related work in Section 2, the basic definitions and notations
are given in Section 3. The main result is in Section 4, where
the new family of the shape measures has been introduced.
Experimental illustrations are in Section 5. The new family
of convexity measures is considered in Section 6. Experi-
ments on a known data set are in Section 7. Concluding
remarks are in Section 8.

2 RELATED WORK

Many shape descriptors have been developed for character-
ising specific types of common shapes, Among them, some
very popular ones are circularity [22], [28], [46], elliptic-
ity [1], [20], [42], [48], linearity [14], [38], convexity [30],
[32], [47], etc. For a given shape property, its alternative
shape descriptors will vary according to robustness, compu-
tational efficiency, generalisability to higher dimensions, etc.
Another significant variation is that although they should all
characterise the ideal shape identically (i.e. the ideal shape
should optimise the shape descriptor) they will characterise
deviations from the ideal shape differently – see Fig.2.

Ka(S) : 1.000 0.969 0.579 0.489
Kb(S) : 1.000 0.976 0.758 0.887

Fig. 2. Different circularity measures tend to rank shapes differently.

For example, a method to measure a shape’s circularity
can be derived by exploiting the following property of
circular shapes:

(a) Among all the shapes having the same perimeter, the circle
has the largest area.1

This approach leads to the following popular formula for
computing circularity measure Ka(S) of a given shape S:

Ka(S) =
4 · π ·Area of S

(Perimeter of S)2
(1)

1. This solves Dido’s famous problem [41].

Another geometric property that can be considered is:

(b) Among all the shapes having the same area, the circle has
the smallest average square distance between the shape’s
points and shape centroid.

which leads to a different, but also natural, way to define a
circularity measure:

Kb(S) =
1

2π
· µ0,0(S)2

µ2,0(S) + µ0,2(S)
, (2)

where the quantities µp,q(S) are the geometric moments,
defined as µp,q(S) =

∫∫
S x

pyqdxdy, under the presumption
that the centroid of S and the origin coincide [37].

We note that in addition to the tendency of the two
circularity measures to rank non-circular shapes differently
(see Fig.2), we can also say that, due to its reliance on
estimating the perimeter of a digitised shape, Ka(S) will be
more sensitive to discretisation artifacts and minor bound-
ary fluctuations (e.g. roughness) than Kb(S).

For the category of generic shape measures, one of
the most popular approaches is to use moments; depend-
ing on the different polynomial bases selected, different
polynomial bases can be chosen, leading to a range of
types of moments [13], e.g. standard geometric, Zernike,
Tchebichef, Legendre, etc. The usual requirement for shape
measures is that they should be invariant w.r.t. at least
rotation, translation and scaling transformations; and pos-
sibly further transformations such as affine or projection.
Therefore, the raw moments must typically be normalised to
provide such measures, e.g. the Hu moment invariants [17].
Although, theoretically, arbitrarily high order moments can
be computed, in practice this is limited both by the available
numerical precision as well as the sensitivity of higher order
moments to noise [40], and the sensitivity of the various
moments to noise is an ongoing research topic [11]. As we
previously stated, such methods do not provide intuitively
clear behavior. This is illustrated by the Hu moment invari-
ants; although they have been intensively used and studied
for more than 50 years it is only recently [46], [48] that
the behavior of the first two Hu moment invariants was
discovered, namely that the quantity in (2) is maximized by
a circle (and is consequently a circularity measure) and that

P(S) = µ2,0(S) · µ0,2(S)− µ1,1(S)2 (3)

is minimized by ellipses (providing an ellipticity measure).

3 DEFINITIONS AND DENOTATIONS

In this section we give the basic definitions and notations
which will be used throughout the paper.

• By a shape we mean a basic object property, that does
not require a formal definition. A given planar shape
is represented by a bounded region, in xy-plane, i.e.
by the corresponding black and white image.

• line(A,B) will denote the line passing through the
points A and B (A 6= B). Similarly, the line deter-
mined by a given edge e will be denoted by line(e).

• Let two points A and B (A 6= B) be given such
that line(A,B) does not include the origin (0, 0).
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H-plane(A,B) will denote the closed half-plane, de-
termined by line(A,B), which includes (0, 0). Simi-
larly, H-plane(e) will denote the closed half-plane,
determined by line(e), which includes the origin
(0, 0), provided that line(e) does not include the
origin.

• Area(S) denotes the area of a given planar shape S.
• R denotes the set of real numbers.
• The centroid (or gravity center) of a planar shape

S is
(∫∫

S x dx dy∫∫
S dx dy

,

∫∫
S y dx dy∫∫
S dx dy

)
, and is the point

whose coordinates are the average value of the coor-
dinates of all the shape points.

• conv(S) denotes the convex hull of a given shape S.
• By a convex polygon we will assume a convex planar

region, bounded by a closed convex poly-line.
• We will assume that all appearing shapes have a

strict positive area.
• Since we deal with area based shape descriptors (all

the shape points are observed, not only the boundary
ones), we will assume that two regions, whose set
differences have area equal to zero have an equal
shape. For example, we will say that the open circular
disc {(x, y) | x2 + y2 < 1} and the closed one
{(x, y) | x2 + y2 ≤ 1} have the same shape. In
this way we will avoid the need to discuss patho-
logical situations and will make our proofs simpler.
Of course, such an assumption is not a restriction in
image processing and computer vision tasks, where
we deal with real objects and their shapes.

4 MAIN RESULT

In this section we derive the main result of the paper. This
result gives theoretical foundations for the definition of the
shape measures introduced here. First, we define functions
necessary for a formulation of the basic statements.
Definition 1. Let an edge e, whose end points are A =

(x1, y1) and B = (x2, y2) (A 6= B), be given (i.e.
e = [AB] = [(x1, y1), (x2, y2)]). Let the origin (0, 0) not
belong to line(e) (the line determined by A and B). The
function ψe(x, y) is defined as follows,

ψe(x, y) =
y2 − y1

x1 · y2 − x2 · y1
·x+

x1 − x2
x1 · y2 − x2 · y1

·y. (4)

The function ψe(x, y) = ψ[AB](x, y), as introduced in
the previous definition, has the following properties:

(i) ψe(x, y) is defined for all x, y ∈ R;

(ii) ψ[AB](x, y) = ψ[BA](x, y) for all x, y ∈ R;

(iii) ψe(x1, y1) = ψe(x2, y2) = 1;

(iv) ψe(x, y) = 1 for all (x, y) ∈ line(e);

(v) ψe(x, y) ≤ 1 ⇔ (x, y) ∈ H-plane(e).


(5)

The first property in (5) follows from the assumption that
the origin is not collinear with A and B – this implies x1 ·
y2 − x2 · y1 6= 0. The second, third and fourth properties in
(5) are easy to verify. The fourth property, together with a
trivial ψe(0, 0) = 0 proves the fifth property in (5).

Definition 2. Let a convex N -gon P, whose centroid coin-
cides with the origin, and a positive number λ, be given.
Let e1, e2, . . . , eN be edges of P. We define the function
Ψλ,P(x, y) as follows:

Ψλ,P(x, y) = max{ψe1
(x, y), . . . , ψeN (x, y)}λ. (6)

Note 1. Since the polygon P has a non-zero area and
is convex, the centroid of P does not belong to any
line determined by the edges of P. So, the functions
ψe1(x, y), ψe2(x, y), . . . , ψeN (x, y), are defined for all
x, y ∈ R, (see (i) in (5)). This further implies that for
any convex polygon P, whose centroid coincides with
the origin, the corresponding function Ψλ,P(x, y) is also
defined for all x, y ∈ R.

The next theorem proves a nice property of Ψλ,P(x, y).
This property offers the basic arguments for the definition
of the new family of shape measures, introduced later on.
Theorem 1. Let a convex N -gon P, whose area is strictly

positive and whose centroid coincides with the origin,
and a real number λ > 0 be given. Let e1, e2, . . . , eN
be edges of P. The function Ψλ,P(x, y), defined as in (6),
has the following property:

Ψλ,P(x, y) ≤ 1 ⇔ (x, y) ∈ P. (7)

Ψλ,P(x, y) ≥ 0 for all (x, y) ∈ P. (8)

Proof. In accordance with Note 1, all functions ψe1
(x, y),

ψe2
(x, y), . . . , ψeN (x, y) are defined for all x, y ∈ R, mean-

ing that Ψλ,P(x, y) is also defined for all x, y ∈ R.
Further, the property (v) in (5) gives:

ψei(x, y) ≤ 1 ⇔ (x, y) ∈ H-plane(ei), for 1 ≤ i ≤ N. (9)

Taking into account (9) and the following identity

P =
⋂

1≤i≤N
H-plane(ei) (10)

we deduce the required

Ψλ,P(x, y) = max
1≤i≤N

{ψei(x, y)}λ ≤ 1 ⇔ (x, y) ∈ P.

Indeed, the implication: (x, y) ∈ P ⇒ Ψλ,P(x, y) ≤ 1,
is an immediate consequence of (10), (9) and (6). The im-
plication Ψλ,P(x, y) ≤ 1 ⇒ (x, y) ∈ P can be proven
by a contradiction. E.g. if (x, y) /∈ P is assumed then,
because of (10), there would exist a number k ∈ {1, . . . , N}
such that (x, y) /∈ H-plane(ek), which further would imply
ψk(x, y) > 1. The last inequality would contradict the
assumed Ψλ,P(x, y) ≤ 1.

To prove the inequality in (8) it is enough to notice
that for any selected point (x0, y0) ∈ P, there is an edge
ei = [AiBi], of P, (1 ≤ i ≤ N) such that the point
(x, y) is inside the triangle whose vertices are the points
Ai, Bi, and the origin (0, 0). Since ψ[AiBi](0, 0) = 0 and
ψ[AiBi](x, y) = 1, for any point (x, y) belonging to the
edge AiBi, and since ψ[a,b](x, y) is a monotonic function,
with respect to its variables x and y, we deduce that
ψ[AiBi](x, y) ∈ [0, 1]. Thus, ψ[AiBi](x0, y0) ≥ 0.
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This establishes the proof. �

Now, we are ready to derive the main result of the paper.
Theorem 2. Let a shape S be given. Also, fix a convex

polygon P and a positive number λ. If the centroid of P
and the centroid of S are both coincident with the origin
and if the area of S and the area of P are the same, then
the following two statements hold:

(a)
∫∫
S Ψλ,P(x, y) dx dy =

∫∫
P Ψλ,P(x, y) dx dy

⇒ shapes S and P are equal.

(b) If S(α) denotes the shape S rotated around the origin
by angle α then

min
α∈[0,2π)

∫
S(α)

∫
Ψλ,P(x, y)dxdy =

∫
P

∫
Ψλ,P(x, y)dx dy

⇔ shapes S and P are equal.

Proof. Let a shape S be given. Fix a parameter λ > 0 and a
convex polygon P, such that Area(S) = Area(P). Let the
centroid of S, the centroid of P, and the origin coincide.

(a) We prove this by a contradiction. Let us assume that
the shapes S and P are different, i.e.

Area(S \P) = Area(P \ S) > 0. (11)

We will show that∫∫
S
Ψλ,P(x, y) dx dy =

∫∫
P
Ψλ,P(x, y) dx dy (12)

would lead to a contradiction, as follows.
Since all the points (x, y) satisfying Ψλ,P(x, y) ≤ 1 are

inside the polygon P (see (7)), and since Ψλ,P(x, y) is a
continuous and non-constant function, inside the domain
P \ S, whose area is strictly positive (see the last item in
Section 3), we deduce the following strict inequality∫∫

P\S
Ψλ,P(x, y)dxdy <

∫∫
P\S

dxdy = Area(S \P). (13)

Also, (x, y) ∈ S \P implies Ψλ,P(x, y) ≥ 1 and further∫∫
S\P

Ψλ,P(x, y)dxdy ≥
∫∫

S\P
dxdy = Area(S \P). (14)

The inequalities in (13) and (14) give:∫∫
P\S

Ψλ,P(x, y) dx dy <

∫∫
S\P

Ψλ,P(x, y) dx dy.

The last strict inequality, together with a trivial equality:∫∫
P∩S

Ψλ,P(x, y) dx dy =

∫∫
S∩P

Ψλ,P(x, y) dx dy

contradicts with the equality assumed in (12). This proves
item (a).

(b) This item follows from item (a), which actually says
that

∫∫
S(α)Ψλ,P(x, y)dxdy reaches the minimum possible

value
∫∫

PΨλ,P(x, y)dxdy if and only if there is an angle
α such that S(α) = P. �

By the arguments of Theorem 2 we define a family of
shape measures, Gλ,P(S), where P varies through the set of
convex polygons, and λ varies through the set of positive

real numbers. Each of the new measures Gλ,P(S) should
evaluate how much the considered shape S looks like the
preselected polygon P. Since the scaling transformation
does not change the object shape, we will assume that the
polygon P and the shape S both have area equal to 1.
Definition 3. Let P be a convex polygon scaled to have its

area equal to 1 and placed so that its centroid coincides
with the origin, and let a positive number λ be given.
For a short notation we write

Cλ,P =

∫∫
P
Ψλ,P(x, y)dxdy. (15)

Let a given shape S also be scaled to have its area equal
to 1 and placed so that its centroid coincides with the
origin.
The shape measure Gλ,P(S) of S is defined as

Gλ,P(S) = Cλ,P ·
1

min
α∈[0,2π]

∫∫
S(α) Ψλ,P(x, y)dxdy

(16)

where Ψλ,P(x, y) is defined as in (6) and S(α) denotes
the shape S rotated around the origin by angle α.

Now, we summarize the desirable properties of Gλ,P(S).
Theorem 3. Fix a convex polygon P and a λ > 0. All the

shape measures Gλ,P(S) have the following properties:

(a) Gλ,P(S) ∈ (0, 1], for all the shapes S;
(b) Gλ,P(S) = 1 if and only if the shapes S and P

are equal;
(c) Gλ,P(S) is invariant with respect to translation, rota-

tion and scaling transformations.

Proof. Theorems 1 and 2 give (a) and (b). To prove (c):
Gλ,P(S) is translation and rotation invariant by the defi-
nition. Since the method applies a size normalisation step
before computation of Gλ,P in order to eliminate the effect
of scaling, it therefore follows that Gλ,P(r · S) = Gλ,P(S) is
true for all r > 0, with r · S = {(r · x, r · y) | (x, y) ∈ S}. �

At the end of this section we now comment and give
experimental illustration related to the cost of the computa-
tion of Gλ,P(S) and to an analysis of the function Ψλ,P(x, y),
crucial in the definition of Gλ,P(S).

Computation cost of the new measure. In practical im-
plementations of the methods for the computation of the
measures involved, we have to work with digital images
and to estimate the values Gλ,P(S) numerically. Since the
considered shape S is given by the set of pixels, the integral
is estimated by a sum as follows∫∫
S(α)

Ψλ,P(x, y)dxdy ≈
∑

(i(α),j(α))∈S(α)

Ψλ,P(i(α), j(α)) (17)

where (i(α), j(α)) are coordinates of the pixel (i, j) ∈
S after being rotated by angle α. The minimal value

min
α∈[0,2π)

∫∫
S(α)Ψλ,P(x, y)dxdy is estimated by repeating the

computation in (17) for an incremental increase (∆α) of
the angle α, within the interval [0, 2π). The computation
in (17) depends on the number of pixels inside S (i.e. on the
resolution of image of S) and the number of edges of the
reference polygon P (see (2)). More formally, the compu-
tation complexity can be estimated as O (r ·N · (2π/∆)) ,
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where: r denotes the number of pixels per unit (in the
shape image used); N equals the number of sides of the
reference polygon used; ∆ is the angle increment used for
the numerical computation. Due to the fact that the integral
approximated in (17) is an area integral and that the sub-
integral function Ψλ,P(x, y) is continuous, the approxima-
tion in (17) is efficient. This is a nice and well known
property [8], [18]. 2 The property implies that both the angle
increment (difference between two consecutive values of α
used) and the resolution of image of S do not need to be
high. This is illustrated by the example in Fig.3. In the first
row, on the left, is the reference polygon P. The original
kangaroo shape is the second shape in the first row.
–The values in the table below the images illustrate that
the estimated values of Gλ=1,P converge quickly even for
relatively small increment values of α (e.g. ∆α = π/64). In
all the diatom classification experiments (Section 7) we use
∆α = π/256.
– The values in the bottom table in Fig.3 illustrate that the
relatively low resolution of image of S enables an efficient
approximation. Indeed, Gλ=1,P(S) ≈ 0.810983 is obtained
for the kangaroo image displayed next to the reference
polygon, at the top in Fig.3. But two, four, and even eight
times lower resolution (3rd shape in the first row), of the
image of S, give a similar approximation of Gλ=1,P(S).
Of course, further decrease in resolution (of the image of
S) leads to greater deformation of the original shape and
subsequently greater differences in the computed Gλ=1,P(S)
values. For sixteen times reduction in resolution (the last
shape in the first row) we have Gλ=1,P(S) = 0.844234 and
for thirty two times reduction Gλ=1,P(S) = 0.919404.

Meaning of Ψλ,P(x, y) function. Here we illustrate the
behavior of the function Ψλ,P(x, y). The same convex 7-gon
P (displayed in the third column in Fig.4) is used to define
functions Ψλ=1,P(x, y) and Ψλ=5,P(x, y). The correspond-
ing images/plots of these functions are given in the first two
columns in Fig.4. The plots of the functions Ψλ=1,P(x, y)
and Ψλ=5,P(x, y) are given separately for (x, y) ∈ P (im-
ages in the top row) and for (x, y) /∈ P (images in the second
row). This has been done to improve the visualization. In the
first row, the interior points of the 7-gon polygon P repre-
sent the Ψλ=1,P(x, y) and Ψλ=5,P(x, y) values according to
the assigned gray values. The centroid of P is represented
by a black pixel, in both of these sub-figures. This is in
accordance with Ψλ,P(0, 0) = 0, for all λ. This follows
from the definition of Ψλ,P(x, y) and the assumption that
the origin (0, 0) and centroid of P coincide. The value of
Ψλ,P(x, y) increases not only according to the distance of
(x, y) ∈ P from the centroid of P, but also depending on
the position of (x, y) with respect to the edges of P. At the
points of the boundary of P we have Ψλ,P(x, y) = 1, for all
λ. This is in accordance with (iv) in (5). It also can be said
that the plot of Ψλ,P(x, y) is influenced by the shape of P.
Note that, for better visualization, in both sub-figures (on
the left, in the top row), all the background pixels of P are
displayed as black.

The values of Ψλ,P(x, y) outside the polygon P are illus-

2. Note that such an efficient approximation does not exist if bound-
ary integration (e.g. curve or surface integration) of noncontinuous
functions would be used.

trated by the sub-figures in the second row, for λ = 1 and
λ = 5, respectively. Since Ψλ,P(x, y) > 1, for (x, y) /∈ P,
we normalize the Ψλ=1,P(x, y) and Ψλ=5,P(x, y) values to
be in the range [0, 1), for (x, y) inside the presented domain,
again for visualization purposes. Similarly as in the case
(x, y) ∈ P, Ψλ,P(x, y) values depend on both distance of
(x, y) from the centroid of P and on the position of (x, y)
with respect to the boundary edges of P. Also, the plot of
Ψλ,P(x, y), for (x, y) /∈ P, is dependent on the shape of
P. Note that in both sub-figures the points inside P are
displayed as white for better visualization.

If we compare the figures in the first column, corre-
sponding to the Ψλ=1,P(x, y) function, against the figures
in the second column, corresponding to Ψλ=5,P(x, y) we
see the influence of the parameter λ to the behavior of
Ψλ,P(x, y), as λ varies.

Note. Observing a known measure IoUP(S), defined as
in (20), we may say that this method gives the same weights,
equal to 1, to the points inside P, and the weights equal to
0, to all the points outside P. This is obviously not the case
if new points are applied, as illustrated by the plots in Fig.4.

Selection of the reference polygon. The choice of the
best reference polygon for the shape measure will depend
on the specific application of the measure. Here we outline
some possible general strategies for selecting or generating
reference polygons.

Let us assume that the shape measure should be applied
to a dataset of shapes. First, we divide the types of reference
polygons into two classes: those which are fixed for the
whole dataset, and those which are adapted for each shape.
For the former category, it is natural to use basic, general,
convex geometric shapes: square, circle, rectangle, triangle,
etc. Consequently, GλP(S) will provide measures analogous
to classical shape measures of squareness, circularity, etc.

Another choice for a pan-dataset reference polygon is
to generate a polygon reflecting the characteristics of the
shapes in the data set, e.g. the mean shape’s convex hull.

A third possibility is to determine reference polygons
that optimise a cost function derived from the application,
e.g. that maximise classification accuracy. Although such
optimisation is likely to be computationally expensive, this
step would be performed off-line using the training data.

Finally, for the latter category of reference polygons,
which are adapted for each shape in the dataset, we can
use various convex polygons that are fitted to each shape.
Examples include the convex hull (see also Section 6), con-
vex skull (i.e. maximum area inscribed convex hull), kernel,
minimum bounding rectangle, etc.

5 EXPERIMENTAL ILLUSTRATIONS

In this section we provide some experimental illustration,
based on synthetic, randomly selected shapes, in order
to support a better understanding how the new shape
measures behave. The experiments are divided into two
subsections: The first one related to experiments with λ fixed
and equal to 1. For a short denotation we will use GP(S)
instead of Gλ=1,P(S). In the second subsection we provide
experiments where λ varies.
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Estimated Gλ=1,P(S) value (for the second shape in the row above), depending on the angle increment ∆α used

angle increment ∆α = π/8 ∆α = π/16 ∆α = π/32 ∆α = π/64 ∆α = π/128 ∆α = π/256 ∆α = π/512
Gλ=1,P ≈ 0.791373 0.806383 0.809611 0.810759 0.810864 0.810983 0.810983

Estimated Gλ=1,P value, depending on the applied image resolution

original image resolution /2 resolution / 4 resolution / 8 resolution / 16 resolution /32
Gλ=1,P ≈ 0.810983 0.812875 0.817435 0.814804 0.844234 0.919404

Fig. 3. The reference polygon P is on the left. The second, third, and fourth shapes correspond to a kangaroo image at an initial resolution, and
8 and 16 times lower resolution, respectively. The first table provides values of Gλ=1,P(S) computed numerically for the full resolution image at
different rotation angle increments. The second table shows Gλ=1,P(S) values obtained for different image resolutions of the kangaroo shape.

Fig. 4. First row: Two sub-figures on the left show the behavior of
Ψλ=1,P(x, y) and Ψλ=5,P(x, y), respectively, for the points (x, y) inside
the reference polygon P (on the right). Second row: Sub-figures the
behavior of Ψλ=1,P(x, y) and Ψλ=5,P(x, y) for (x, y) /∈ P.

5.1 Experiments Illustrating the Gλ=1,P(S) Behavior

Three experiments are provided in this subsection. Since the
measure GP(S) should express the degree to which a given
shape S looks like the selected polygon P, it could be said
that the shapes, in each row, are ranked in accordance with
this criterion. For example, in Fig.5 the human silhouette,
next to the triangle in the first row, looks more similar to this
triangle than the next two human silhouettes, in the same
row. Also, all three the human shapes are more similar to
the triangle (in the first row) than the last shape, in the same
row, is. Thus, as expected, this shape has the lowest GP(S)
value (equal to 0.4686) among all the measured shapes (in
the first row). Similar comments might be given for the
shapes in the remaining three rows.

It is important to point out that the ranking according to
GP(S) strongly depends on the convex polygon P. Indeed,
the human silhouettes ranked first and second in the first
row, have changed their order when the triangle in the first
row is replaced by the triangle in the second row. Similarly,
the human shapes in the first row, ranked first and third in
the first row, swap their ranking if the triangle (in the first
row) is replaced by the rectangle, on the left, in the third
row.

The shapes in the fourth column are given to illustrate

the diversity of situations were GP(S) can be applied di-
rectly, without any modification needed. Indeed, the first
shape, in the fourth column, has a hole, the last shape in
the same column consist of many components, the second
shape has both multiple components and holes, and so on.

Second experiment: GP(S) behavior in the case of the
object deformations. To illustrate the behavior of GP(S)
when the shapes deform, we have used three human sil-
houettes, displayed in Fig.6, and have measured them by
GP(S), for three different choices of P (displayed in the
left column in Fig.6). The shape silhouettes used can be
understood as the shapes of the same object, subjected to
slight deformations.

Third experiment: Robustness of the GP(S) measure.
In this experiment (see Fig.7) we illustrate the robustness
of the GP(S) measure. More precisely, we consider the ro-
bustness with respect to the defects caused by added noise.
Actually, the robustness property of GP(S) is expected. This
is due to the fact that it is an area based measure – i.e.
GP(S) uses all the shape points for the computation. It
is worth mentioning that such robustness would not be
expected if the computation is based on the shape boundary
points only, some curvature based features, etc. Four circular
shapes and four polygonal shapes affected by noise were
used. The circular shapes are in the first row in Fig.7. The
first two circle shapes are affected by ‘salt’ noise while the
third and fourth circular shape are affected by noise added
to the circle boundary. The results illustrate that even a big
change in the level of noise added does not lead to a big
change in the computed GP(S) values: between the first and
second circular shape; and between third and fourth circular
shape. The computed GP(S) values are in Fig.7, below the
related shapes. This is in accordance with our expectation
that the GP(S) measure is robust. Also, we notice that
the measure GP(S) is more sensitive to the defects inside
the shape than to defects on the shape boundary. Similar
comments can be given for the results related to the shapes
in the second row in Fig.7. The first polygonal shape S5, in
the second row, is a noise free shape, while the remaining
three shapes (S6, S7, and S8) are with a different noise level
added, to the shape boundaries. Deformations on the shape
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Shape P Ranked first Ranked second Ranked third Ranked fourth

GP = 0.9042 GP = 0.8531 GP = 0.8515 GP = 0.4686

GP = 0.8021 GP = 0.7570 GP = 0.3752 GP = 0.3181

GP = 0.8774 GP = 0.8380 GP = 0.6886 GP = 0.3034

GP = 0.9232 GP = 0.8622 GP = 0.5726 GP = 0.2509

Fig. 5. In all the rows, the polygon on the left is used to define the GP(S) measure. The remaining 4 shapes (in each row) are listed in accordance
with their decreasing GP(S) value. The computed GP(S) values are given next to their corresponded shapes.

Shapes →
P ↓ Ranked 1st Ranked 2nd Ranked 3rd

(a) GP = 0.8694 GP = 0.8577 GP = 0.8508

(b) GP = 0.9112 GP = 0.8663 GP = 0.8528

(c) GP = 0.8954 GP = 0.8603 GP = 0.8558

Fig. 6. Three shapes, ranked by GP(S) measure (for different choices of
the polygon P) are in the first row. The selected polygons, used for the
computation of GP(S), are displayed on the left, in the rows (a), (b), and
(c). The shapes observed are displayed in the second, third, and fourth
row, according to their computed GP(S) values.

boundary, caused by the added noise, do not much affect
the computed GP(S) values, even in the case of a high level
of added noise (the shape S8). The values obtained are in
Fig.7, below the shapes related.

5.2 Experiments Related to the Behavior of Tunable
Shape Measures Gλ,P(S) and Further Analysis

In this subsection we provide experiments illustrating the
behavior of Gλ,P(S), where λ varies.

Fourth Experiment: Behavior of the measures from the
Gλ,P(S) family. The behavior of the measures Gλ,P(S) is
illustrated by the experiments in Fig.8. Two Gλ,P(S) mea-
sures, determined by a choice of the polygons P1 and P2
(displayed in the left column in Fig.8), are observed. The
graphs of Gλ,P1(S) and Gλ,P2(S), for λ varying through
the interval [0, 5], and for a choice of four diverse shapes
S1, S2, S3, and S4, are displayed below those shapes. In
accordance with the definition, Gλ=0,P(S) = 1 is true for
every choice of P and S. This is why all the graphs of
Gλ,P(S) start at the point (0, 1). For P 6= S, the function
(i.e. measure) Gλ,P(S) decreases as λ increases. It could be
said: A bigger ”difference” between the polygon P and the
measured shape S leads to a faster decrease of Gλ,P(S).
In Fig.8, the values of Gλ,P(S4) (the graphs in the right
column) decrease fastest among the examples given. This
might be expected since the shape S4 consists of many
disconnected components and the ”whole” shape does not
look ”similar” to the polygons P1 and P2. This property of
Gλ,P(S) is a good one, since it makes possible to ”tune” the
importance of the dissimilarity (between P and S) impact
to the computed Gλ,P(S) values, by a suitable choice of λ.
This issue will be also discussed related to the experiments
in Fig.10.

It is very important to mention that for suitable choices
of the parameter λ, the measure Gλ,P1(S) could provide
different shape ranking – e.g. for S1 and S2, we have:

– Gλ=3.5,P1(S1) < Gλ=3.5,P1(S2);
– Gλ=1.1,P1(S1) > Gλ=1.1,P1(S2).

The graphs of the difference and the ratio between the
measures Gλ,P1(S1) and Gλ,P1(S2), for λ ∈ (0, 5], are the
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(P1): (P2): S1: S2: S3: S4:

(P3): (P4): S5: S6: S7: S8:
GP1(S1) = 0.6734
GP1(S5) = 0.6459

GP1(S2) = 0.6579
GP1(S6) = 0.6560

GP1(S3) = 0.6919
GP1(S7) = 0.6547

GP1(S4) = 0.6950
GP1(S8) = 0.6512

GP2(S1) = 0.8424
GP2(S5) = 0.8056

GP2(S2) = 0.8229
GP2(S6) = 0.8136

GP2(S3) = 0.8652
GP2(S7) = 0.8114

GP2(S4) = 0.8678
GP2(S8) = 0.8064

GP3(S1) = 0.5509
GP3(S5) = 0.5272

GP3(S2) = 0.5380
GP3(S6) = 0.5299

GP3(S3) = 0.5661
GP3(S7) = 0.5285

GP3(S4) = 0.5680
GP3(S8) = 0.5266

GP4(S1) = 0.9723
GP4(S5) = 0.8823

GP4(S2) = 0.9500
GP4(S6) = 0.8857

GP4(S3) = 0.9986
GP4(S7) = 0.8877

GP4(S4) = 0.9967
GP4(S8) = 0.8780

Fig. 7. S1− S4 circle shapes, affected by noise, are in the first row. The polygonal shape S5, in the second row, is noise-free, while the remaining
three shapes S6 − S8 are affected by noise. GP(S) values, are below the corresponding shapes. GP(S) values for a noise-free circle are
0.6909, 0.8645, 0.5652, and 0.9986, respectively, if the polygons P1, P2, P3, and P4 were used.

Shape S →
Polygon P ↓

S1 S2 S3 S4

Gλ=1,P1 = 0.7903 Gλ=1,P1 = 0.8019 Gλ=1,P1 = 0.8016 Gλ=1,P1 = 0.2762

Gλ=5,P1 = 0.1260 Gλ=5,P1 = 0.1197 Gλ=5,P1 = 0.1359 Gλ=5,P1 ≈ 0

P1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Gλ=1,P2 = 0.9900 Gλ=1,P2 = 0.9575 Gλ=1,P2 = 0.9665 Gλ=1,P2 = 0.2509

Gλ=5,P2 = 0.8936 Gλ=5,P2 = 0.6290 Gλ=5,P2 = 0.6927 Gλ=5,P2 ≈ 0
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Fig. 8. Polygons P1 and P2 used to define Gλ,P1(S) and Gλ,P2(S) are in the left column. The shapes measured are in the top row. Their
corresponded graphs Gλ,P1(S) and Gλ,P2(S) for λ ∈ [0, 5], are below them. The values Gλ=1,P1(S) and Gλ=5,P1(S), are also included.

the two graphs on the left in Fig.9. Related to the shapes S3
and S4, the graphs of the difference and ratio of Gλ,P1(S3)
and Gλ,P1(S4), for λ ∈ [0, 5], are on the right (top row in
Fig.9). It can be seen that the difference graphs, as well
as the ratio graphs, differ essentially (in shape). This again
illustrates the diversity of the measures Gλ,P(S). It is worth
noticing that the difference Gλ,P1(S3)−Gλ,P1(S4) is always
positive, except for λ = 0 where the difference is equal
to 0 as both measures take the value equal to 1. This can
be explained by the fact that shape S3 and polygon P1 are
more similar than S4 and polygon P1. This is even more
visible if we consider the graph of the ratio of Gλ,P1(S3) and
Gλ,P1(S4). The ratio monotonically increases as λ increases.
Even for a relatively small λ = 5 this ratio becomes very
high (equal to 222.66).

In the next two figures (Fig.10 and Fig.11), we consider

the robustness of Gλ,P(S) in the presence of noise. In the
first row in Fig.10 a noise free rectangle is given. If we
chose this triangle to play the role of the polygon P, the
value of Gλ,P(P) would not depend on the parameter λ
and would be always equal to 1. The second and third
shapes, in the first row, in Fig.10, have a small level of noise
added. The computed values of the measure Gλ=1,P(S) are
0.9961 and 0.9860. Since both values are very close to 1
it could cause an uncertainty as to whether the noise is
really present, or whether the difference might be caused
by the numerical calculation, for example. If λ = 5 is
chosen, then the presence of noise becomes evident since
Gλ=5,P(S) = 0.9571 Gλ=5,P(S) = 0.8502 differs more from
the value of 1, corresponding to a noise free triangle P.

For a higher value of noise added (fourth shape) the
presence of noise is evident for both λ = 1 and λ = 5. The
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Gλ,P1(S1)− Gλ,P1(S2)
Gλ,P1(S1)
Gλ,P1(S2)

Gλ,P1(S3)− Gλ,P1(S4)
Gλ,P1(S3)
Gλ,P1(S4)

max{Gλ,P1(S1)− Gλ,P1(S2)} max
{
Gλ,P1(S1)
Gλ,P1(S2)

}
max{Gλ,P1(S3)− Gλ,P1(S4)} max

{
Gλ,P1(S3)
Gλ,P1(S4)

}
= 0.0097, (for λ = 3.5) = 1.0259, (for λ = 5.0) = 0.5483, (for λ = 1.4) = 222.66, (for λ = 5.0)

min{Gλ,P1(S1)− Gλ,P1(S2)} min
{
Gλ,P1(S1)
Gλ,P1(S2)

}
= −0.0117, (for λ = 1.1) = 0.9846, (for λ = 1.3)

Fig. 9. The graphs of the difference and ratio of Gλ,P1(S1) and Gλ,P1(S2), for λ ∈ [0, 5], are on the left. The related minimum and maximum values
are also given. The related graphs for the shapes S3 and S4, are third and fourth graph in the top row. In this case the difference minimum is 0
while the ratio minimum is equal to 1, both are reached for λ = 0.

noise free Gλ=1,P = 0.9961 Gλ=1,P = 0.9860 Gλ=1,P = 0.9589 Gλ=1,P = 0.6970 Gλ=1,P = 0.6125

triangle Gλ=5,P = 0.9571 Gλ=5,P = 0.8502 Gλ=5,P = 0.6271 Gλ=5,P = 0.0529 Gλ=5,P = 0.0225
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Fig. 10. A noise free triangle is on the left in the first row. The remaining five shapes correspond to the same triangle with added different levels of
noise. The graphs of Gλ,P(S), λ ∈ [0, 5], are below these shapes, as well as their computed values for λ = 1 and λ = 5.

graphs below the shapes show that the influence of noise
on the computed measure can be increased by a selecting a
larger λ, or reduced by selecting a smaller λ.

The fifth and sixth shapes have a very large amount of
noise added, which further reduces the computed values
from 1. In the case of the sixth shape with λ = 5, the
computed measure almost vanishes. In the top row in Fig.11
there are two circular shapes affected by salt noise, and two
circular shapes with noise added to their boundaries. Two
polygons, P1 and P2, in the column on the left, were used to
define the measures Gλ,P(S). The polygon P1 is a regular 7-
gon. As such, this polygon is very similar to a perfect circle,
and all the circularity measures would assign a very high
circularity measure. Thus, a very high Gλ=1,P1

(S) value,
close to 1, would be assigned to a perfect circle (notice that
we do not know the exact value). As expected, very high
Gλ=1,P1

(S) measures are assigned to the circles affected by
noise. These values, for the shapes S1, S2, S3, and S4 are
0.9723, 0.9500, 0.9986, and 0.9967, respectively (see Fig.7).
Thus, the presence of noise in the case of shapes S3 and
S4 cannot be clearly seen from the computed values of
Gλ=1,P1

(S). To achieve a clear distinction between a noise
free circle and perfect ones it would be enough to apply
the measures Gλ,P1

(S) with λ substantially larger than 1.
Indeed, the presence of noise, in all the shapes displayed

becomes evident if Gλ=10,P1
(S) is used. The computed

values are in Fig.11, above the corresponding graphs of
Gλ,P1

(S), λ ∈ [0, 10].
If the polygon P2 is used as a reference polygon,

the computed values Gλ,P2
(S) are much smaller than if

Gλ,P1
(S) would be applied. This is because P2 does not

”look” like a circle. Still, Gλ,P2
(S) can be evaluated robustly

since even Gλ=10,P2
(S1) and Gλ=10,P2

(S2), or Gλ=10,P2
(S3)

and Gλ=10,P2
(S4) do not differ too much, even though a

relatively large λ = 10 was selected.

6 NEW FAMILY OF CONVEXITY MEASURES

In this section we define a new family Cλ(S) of convexity
measures, as a subfamily of the family Gλ,P(S). More pre-
cisely, Cλ(S) equals Gλ,P(S), if the polygon P is chosen to
be the convex hull (conv(S)) of S. In accordance with the
definition, before applying the formula for the Gλ,P(S) com-
putation, both P = conv(S) and S have to be positioned
such that their centroids coincide with the origin, and scaled
so that their areas are equal to 1. The role of the parameter
λ is to control the sensitivity/robustness of the measures
from the family Cλ(S). Smaller λ values correspond to more
robust measures, while bigger λ values correspond to more
sensitive convexity measures.
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Shape S →
Polygon P ↓

Gλ=10,P1
(S) = 0.7328 Gλ=10,P1

(S) = 0.5729 Gλ=10,P1
(S) = 0.9484 Gλ=10,P1

(S) = 0.8780
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Fig. 11. Circular shapes, affected by noise, are in the top row. They are measured by Gλ,P1
(S) and Gλ,P2

(S), where the polygons P1 and P2 are
as in the column on the left. The corresponding graphs of Gλ,P1

(S) and Gλ,P2
(S), for λ ∈ [0, 10], are also given.

Definition 4. Let a shape S, whose centroid coincides with
the origin and scaled to have its area equal to 1, be given.
Fix λ > 0. Let the polygon

P(S) =
conv(S)√

Area(conv(S))
(18)

be positioned such that its centroid coincides with the
origin. The Cλ(S) convexity measure is defined as:

Cλ(S) = Gλ,P(S)(S), (19)

where the polygon P(S) is defined as in (18).

Similarly as in the sections dedicated to the measures
GP(S) and Gλ,P(S), it can be shown that the measures from
the family Cλ(S) have the properties listed in the statement
of the following theorem.
Theorem 4. Fix λ > 0. The convexity measure Cλ(S), defined

as in (19), has the following properties:

(a) Cλ(S) ∈ (0, 1], for all the shapes S;
(b) Cλ(S) = 1 if and only if the shape S is convex;
(c) Cλ(S) is invariant with respect translation, rotation

and scaling transformations.

Proof. The proof of (a) and (b) follows from Theorem 2. The
measure Cλ(S) is translation and rotation invariant because
all the shape measures from the family Gλ,P(S) are such an
invariant, including the measures from the sub-family Cλ. �

Seventh Experiment: The behavior of the measures
from the Cλ(S) family. The experiments related to the
behavior of the new convexity measures, from the family
Cλ(S), are in the Fig.12. Six shapes, and their convex hulls
(presented by disjoint line segments), are displayed. The
graphs of Cλ(S), for λ ∈ [0, 5], are on the right of the related
shapes. By the definition, Cλ=0(S) = 1, for all the shapes.
The values of Cλ(S) decrease, as λ increases. This implies
that a higher λ penalizes more strongly the deviations of the
considered shapes from their convex hulls. In other words, a

larger λ provides a more sensitive convexity measure, while
a smaller λ provides a more robust convexity measure. The
largest decrease, in the measured convexity Cλ(S), was in
the case of the third shape in the first column. This shape
has big holes and deviations from the convex shape inside
the shape. Once the holes are removed (the second shape
in the first row) the shape becomes nearly convex, and
decrease had slowed. Indeed, for λ = 1, the Cλ(S) is very
high (= 0.9701). Shape deviations, from a convex shape,
become easily visible if λ = 5 would be selected – in this
case Cλ(S) = 0.7255.

The shapes in the second row have similar convexity
measures, measured by Cλ(S), for all λ. The first shape is
a noise free one, while the second one has noise added to
the shape boundary. The very similar convexity measures
obtained illustrates that the measures Cλ(S) are robust. This
is as expected since the measures considered are area based
ones - i.e. use both interior and boundary shape points
for the computation. The example of the second shape in
the third row is illustrative in the following way. This is
a shape with a big protrusion. The well known convexity
measures, Ra(S) and Rb(S), based on a comparison of the
shapes given with their convex hull will assign the following
convexity measure to this shape:

• Ra(S) =
Area(S)

Area(CH(S))
≈ 2

3
≈ 0.6667

• Rb(S) =
Perimeter(CH(S))

Perimeter(S)
≈ 3 +

√
5

6
≈ 0.8727.

Since Cλ(S) varies through [0.5513, 1] for λ ∈ [0, 5], it can
be seen that a suitable choice of λ can suit both preferences,
either convexity equal to 0.6667 (satisfied by Ra(S)) or
0.8727 (satisfied by Rb(S)). This illustrates the sensibility
possibilities of the measures from the family Cλ(S).

7 EXPERIMENTS ON A KNOWN DATA SET

In this section we demonstrate the usefulness of the new
shape family measures in an application task on the well
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Fig. 12. Six shapes and their convex hulls are displayed. The graphs of their convexities Cλ(S) are also given, for λ ∈ [0, 5].

know diatoms data set. In order to put the new measures
in a wider context we perform a number of experiments
on the same data sets. These experiments involve a number
of the known shape measures (and different combinations
of them), showing that the new measures are compatible
with the existing measures and can be combined with some
of them to overcome the benchmark results. But first we
make a short discussion related to the well-known shape
measure that can be obtained by comparing the union and
intersections of the two shapes observed.
Definition 5. Fix a unit area shape Q. Let S be an arbitrary

shape, whose area is also equal to 1 and whose centroid
coincides with the centroid of Q. Then, the shape mea-
sure IoUQ(S) is defined as follows:

IoUQ(S) = max
α∈(0,2π]

{
Area(Q ∩ S(α))

Area(Q ∪ S(α))

}
(20)

Such a measure might be understood as a similar one to the
new measures, in terms of the computation (an optimization
process over an interval of angles) and the use of a function
defined over all the planar domain. In the case of the
IoUP(S) measure, the supporting function is defined to be
equal to 1, inside the shape Q, and equal to 0 otherwise. The

Fig. 13. The reference polygon P is selected to be a regular 7-gon
(on the left). The remaining shapes have IoUP(S) value equal to 0.
Their GP(S) values vary, and they are: 0.3088, 0.4024, 0.4408, 0.4631,
0.2443, and 0.2667, respectively.

measure IoUQ(S) is very generic one. It is defined for any
shape Q and any shape S. IoUQ(S) has nice properties,

e.g. invariance with respect to the similarity and scaling
transformation, but also properties that GQ(S) does not
have; for example IoUQ(S) = IoUS(Q), while for a given
measure GQ(S), the quantity GS(Q) is not defined if S is
not a convex polygon (this is because non-convex shapes
cannot be represented as a set-intersection of a number of
hyperplanes, as it has been used in (10)).

As such, IoUQ(S) is frequently used, but it still cannot
perform well in all the applications. The measure IoUQ(S)
does not have a tuning parameter and its behavior is fully
determined by the fixed shape Q (whereas Gλ,Q(S) can
be controlled using the parameter λ). Another drawback
follows directly from the definition of IoUQ(S). If the
shapes Q and S do not intersect, after being placed so
that their centroids coincide, then the IoUQ(S) value is
always equal to 0. Some examples are shown in Fig.13. Two
letter shapes, two cogwheel shapes (extracted from images
of varying quality), and two shirt sketch shapes (sketch
lines are assumed to be strips having non-zero area), are
chosen. A regular 7-gon has been taken for the reference
shape G. The value IoUQ(S) is equal to 0 for all the six
shapes displayed. Thus, the measure IoUQ(S) is not able
to distinguish between these shapes. On the other hand, the
measure GG(S) assigns different values to all these shapes,
and is thus able to distinguish between both individual
shapes, as well as between the three shape categories used
(letters, cogwheels, and shirts sketches).

Notice that the measure IoUQ(S) can be modified to
avoid the last mentioned drawback, by removing the re-
quirement that the centroids of Q and S must coincide.
However, under such relaxed conditions the modified mea-
sure (i.e. the computation of the maximum in (20)) becomes
significantly more computationally expensive [34].
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7.1 Applications of the New Measures to the Diatoms
Classification
We show the incorporation of the proposed shape measure
to the classification of diatoms (unicellular algae), which
can be used for diverse applications such as forensics [16]
and environmental change [27]. The dataset was curated
by the ADIAC project [6], and consists of 808 images, each
containing a single diatom which is labelled as coming from
one of 38 taxa (classes). We follow the procedure from [34],
and extract the boundary contours, and also each diatom’s
ornamentation, which consists of zero or more (mainly
open) curve sections in the interior – see Fig.14. Following
this, [34] extracted the set of shape descriptors used in [47]3

along with a new convexity measure, Convexification with
Flipturn CFT . The latter, additional shape measure pro-
vided a small boost in the classification rate from 90.59%
to 91.58% as long as the exterior convexity feature was
removed – see table 1. Classification was performed using a
nearest neighbour classifier with Mahalanobis distances and
leave-one-out cross validation.4

We take this set of features (14 shape features plus
interior convexity plus CFT ) and consider adding instances
of the proposed Gλ,P(S) measure, which are selected using
sequential floating forward search (SFFS) [29]. Underper-
forming features can also be removed by SFFS. As described
in Section 4, a variety of reference polygons are available.

In these experiments we use the following sets of refer-
ence polygons: 1/ basic convex shapes: square, equilateral
triangle, and circle (approximated by a 100-sided regular
polygon), 2/ convex hull of mean shape, 3/ convex poly-
gons derived from each shape: the convex hull, minimum
bounding rectangle (MBR) and minimum bounding triangle
(MBT), 4/ optimised reference polygons.

The mean shape is calculated by applying a translation,
scaling and rotation to each shape in the dataset such that it
is centered at the origin, with unit area, and rotated to align
its principal axes with the X axis. The normalised shapes
are rasterised, and the images averaged and thresholded to
produce the mean shape shown in Fig.15.

A simple randomised algorithm is used to generated
optimised reference polygons. We initialise 100 reference
polygons using random convex polygons which contain be-
tween 3 and 15 points. Each reference polygon is evaluated
according to the accuracy of classification of the diatoms
using just the shape measure derived from the reference
polygon. For this experiment only λ = 1 was considered.
Refinement of each reference polygon is carried out by
perturbing its points, and retaining the updates only if

3. In the original experiments, [47] used 14 shape measures for
diatom classification: circularity, ellipticity, rectangularity, triangular-
ity [31] aspect ratio, compactness, eccentricity, the first four rotation,
translation, and scale moment invariants [37], the first three affine
moment invariants [12] plus their new convexity measure applied
separately to the interior ornamentation and the outer boundary. The
classification accuracies for these features which are listed in table 1 are
those recomputed in [34] using a different classifier, thereby improving
the original scores reported in [47].

4. We note that if the new and existing global descriptors are used
individually in this experiment then classification rates are low. Apart
from ellipticity (31.19% accuracy), the remaining descriptors produced
classification rates ranged from 10.52% to 21.41%. As stated in the
Introduction, the full power of the descriptors is obtained when they
are combined as shown in Table 1.

they improve the diatom classification accuracy. When the
polygon is perturbed any points inside its convex hull are
discarded, so that the reference polygon remains convex.
After generation of the reference polygons, SFFS is applied
as above to combine a selection of the pre-existing features
and the optimised reference polygon features.

We test the effectiveness of the hand-crafted reference
polygons (listed as sets 1–3 above), and the optimised refer-
ence polygons (set 4). When using sets 1–3, applying SFFS
causes the removal of some of the shape measures previ-
ously used (circularity, eccentricity, triangularity, one RTS
moment invariant, and one affine moment invariant) and
the addition of the following new measures G1,square(S),
G8,MBR(S), G

2,mean shape(S), G
2,triangle(S). As table 1

shows, this produces an increase in the classification accu-
racy over the results reported in [34].

Using the optimised reference polygons (set 4) produces
a similar classification accuracy to sets 1–3. Four reference
polygons are generated, as shown in Fig.16. SFFS has also
removed two of the previous shape measures: one RTS
moment invariant, and one affine moment invariant.

In addition, the effectiveness of Gλ,P(S) in this classifi-
cation task is compared against two baseline approaches for
measuring distances between specified polygons. The first
is the area of overlap between the reference polygon and
the test shape. Since the sizes of the reference polygon and
the test shapes are normalised prior to their comparisons,
this measure is equivalent to the Intersection over Union
(IoU) which is commonly used for object detection. The
reference polygon and test shapes are normalised to be
centered on the origin and have unit area; the reference
polygon is rotated to maximise the area of overlap with the
test shape. The second baseline is the L2 distance between
the turning functions of two polygons [3], which is a well
established metric for comparing polygons. As with the
Gλ,P(S) experiment, SFFS is applied to find a combination
of the 14 shape features along with the seven overlap or
turning angle features respectively (using the same seven
reference polygons: square, equilateral triangle, circle, mean
shape, convex hull, MBR, and MBT). In both cases, SFFS
only added a single overlap or turning angle feature (MBR
and square respectively) and also removed one of the 14
shape features. While both approaches provide a small
increase on the best classification result in [34] (see table 1),
they are significantly outperformed by the Gλ,P(S) features.

A third comparison is made with Nguyen and
Hoang’s [25] measure of polygonality, which is the degree to
which a shape resembles an n−sided polygon of arbitrary
(i.e. unspecified) shape. The version employing the L1 norm
was used as it was more stable than the L2 norm. Polygo-
nality measures were calculated for n = {3, 4, 5, 6}. After
applying SFFS, the score was the same as for the overlap
method, and was achieved by removing an ellipticity mea-
sure and adding a single polygonality measure with n = 3.

8 CONCLUDING REMARKS

Instead of exploiting a certain geometric property (e.g.
properties satisfied by circles, ellipses, and lines) or some
mathematical identities (Hu invariants, Fourier coefficients,
Zernike moments, etc.), we have started with a convex
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

Fig. 14. Outer boundary and interior contours of examples of diatoms from 15 different taxa.

14 shape features 85.77%
14 shape features + interior and exterior convexity 90.47%
14 shape features + interior convexity [47] 90.59%
14 shape features + interior convexity + CFT [34] 91.58%
9 shape features + interior convexity + CFT + Gλ wrt. 4 reference polygons (from sets 1–3) 94.93%
9 shape features + interior convexity + CFT + Gλ wrt. 4 reference polygons (from set 4) 94.06%

13 shape features + interior convexity + CFT + overlap wrt. MBR 92.45%
13 shape features + interior convexity + CFT + turning angle distance wrt. square 91.96%
13 shape features + interior convexity + CFT + polygonality 92.45%

TABLE 1
Classification accuracies for diatoms. The reference polygon sets refer to: 1/ basic convex shapes, 2/ convex hull of mean shape, 3/ convex

polygons derived from each shape, 4/ optimised reference polygons.

Fig. 15. Estimated mean diatom shape.

(a) (b) (c) (d)

Fig. 16. Optimised reference polygons chosen to maximise diatom clas-
sification accuracy.

polygon P, having a desired shape, and defined a new
family of shape measures. We also have involved a tuning
parameter λ which controls the sensitivity of the measures
from the new family. Each measure Gλ,P(S), from the
family, evaluates how much a given shape looks like the
selected polygon P. The shape measures from the family are
given in a normalized form, i.e. they all range through the
interval (0, 1]. Also, the measures are invariant with respect
to translations, rotations, and scaling transformations. In
addition, each shape measure Gλ,P(S), picks the value 1
if and only if the measured shape S and the polygon P
coincide, independently of the selected λ.

Numerical computation of Gλ,P(S) measures is straight-
forward, for any choice of the convex polygon P and the
parameter λ. The computational complexity, in practical
applications where digital images are used, is discussed.

The method presented allows an extension to 3D shapes.
Basically, the equations of the planes that define a 3D convex
body, should replace the functions in (4) and the similar

reasoning should be applied as in the 2D case, presented
here. Indeed, such analogues of the functions in (4) would
have all the properties needed: these would be monotonic
functions, taking the value 1 at the reference body surface,
would be non-negative but less than 1 inside the body, and
bigger than 1 outside of it, etc.

A family of the shape convexity measures is obtained
as a corollary of the theoretical framework developed to
define Gλ,P(S) measures. If the polygon P is selected such
that P(S) = conv(S)/

√
Area(conv(S)), then the quantity

Gλ,P(S)(S) evaluates how much the shapes of S and its
convex hull conv(S) differ. All the convexity measures
Cλ(S) = Gλ,P(S)(S) are also given in the normalized form,
i.e. Cλ(S) ∈ (0, 1]. They are invariant with respect to ro-
tations, translations, and scaling transformations, and pick
the value 1 if and only if the considered shape is convex.
The new convexity measures are robust, and their behavior
can be tuned by the parameter λ, in the sense that, for a
larger λ, the measure Gλ,P(S)(S) more strongly penalizes
the deviation of the shape S from its convex hull conv(S).

A number of experiments are provided in order to sup-
port the statements from the paper, to illustrate the behavior
of the new shape measures, and to show their performance
in practical applications.
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