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Self-Paced Balance Learning for Clinical Skin
Disease Recognition

Jufeng Yang, Xiaoping Wu, Jie Liang, Xiaoxiao Sun, Ming-Ming Cheng, Paul L. Rosin and Liang Wang

Abstract—Class imbalance is a challenging problem in many
classification tasks. It induces biased classification results for
minority classes which contain less training samples than others.
Most existing approaches aim to remedy the imbalanced number
of instances among categories by re-sampling the majority and
minority classes accordingly. However, the imbalanced level
of difficulty of recognizing different categories is also crucial,
especially for distinguishing samples with many classes. For
example, in the task of clinical skin disease recognition, several
rare diseases have a small number of training samples, but they
are easy to diagnose because of their distinct visual properties.
On the other hand, some common skin diseases, e.g., eczema,
are hard to recognize due to the lack of special symptoms. To
address this problem, we propose a self-paced balance learning
(SPBL) algorithm in this paper. Specifically, we introduce a
comprehensive metric termed the complexity of image category
which is a combination of both sample number and recognition
difficulty. First, the complexity is initialized using the model of
the first pace, where the pace indicates one iteration in the self-
paced learning paradigm. We then assign each class a penalty
weight which is larger for more complex categories and smaller
for easier ones, after which the curriculum is reconstructed by
rearranging the training samples. Consequently, the model can
iteratively learn discriminative representations via balancing the
complexity in each pace. Experimental results on the SD-198
and SD-260 benchmark datasets demonstrate that the proposed
SPBL algorithm performs favorably against the state-of-the-art
methods. We also demonstrate the effectiveness of the SPBL
algorithm’s generalization capacity on various tasks such as
indoor scene image recognition, object classification, etc.

Index Terms—Class imbalance, self-paced balance learning,
clinical skin disease recognition, complexity level

I. INTRODUCTION

THE number of training samples for each skin disease
depends heavily on its incidence [1]–[3]. Actually, there

are more than one thousand kinds of skin diseases, both
common and uncommon, for which it is difficult to either
collect or annotate a balanced dataset. Fig. 1 shows the
histograms of image number distributions in two skin disease
datasets, i.e., SD-198 (top) [4] and SD-260 (bottom), where
the images are captured by the digital camera or mobile phone,
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Fig. 1: Visualization of the class distribution in the SD-198 [4]
(top) and SD-260 (bottom) datasets. The blue bars denote the
number of training samples (Num) for each class, while the
red line denotes the classification accuracy (Acc) of the raw
ResNet50 [6] on the testing set. Each colored box visualizes a
specific skin disease, e.g., solar elastosis (SE), allergic contact
dermatitis (ACD). The numbers in the boxes report the number
of samples and the recognition accuracy, respectively.

uploaded by patients, and labeled by doctor volunteers. In
this figure, the blue bars reflect a large gap in the number of
samples between common skin diseases, e.g., solar elastosis
(SE), allergic contact dermatitis (ACD), acne vulgaris (AV)
and benign keratosis (BK), and uncommon skin diseases,
e.g., vitiligo (VI), stomatitis (ST), pilomatrixoma (PI) and
histiocytosis X (HX). However, as shown by the red line, the
recognition accuracy of each category is independent of the
number of samples, indicating that the recognition difficulty is
also imbalanced for the disease classes. According to empirical
medical knowledge [5], some rare skin diseases, e.g., ST and
HX, have distinct characteristics and are easy to diagnose,
while some common skin diseases, e.g., ACD and BK, are
difficult to recognize due to the lack of special symptoms.

However, most existing works on class imbalance problems
focus only on the imbalanced distribution of sample numbers
among different classes [7]–[9]. Such distribution indicates
a large gap in the training numbers among categories [10]–
[13], where there mainly exists three types of solutions, i.e.,
the sampling-based [14]–[16], the cost-sensitive based [17]–
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[19], and the ensemble-based methods [20], [20], [21]. Among
them, the sampling-based ones attempt to balance the number
of samples in the training dataset either by over-sampling
the minority classes or under-sampling the majority ones.
However, this re-sampling strategy may add redundant noisy
data or lose the informative training samples. In compari-
son, the cost-sensitive based methods usually improve the
classification sensitivity according to class-dependent costs
when handling minority classes. Such costs are calculated by
several heuristics based on prior knowledge, such as the imbal-
anced ratio of the sample numbers. Different from them, the
ensemble-based methods construct a set of learning branches
and then combine their decisions. Although the ensemble
scheme has advantages over single methods, it relies heavily
on the experimental tuning to properly combine the individual
classifiers, which may result in unsatisfactory performance for
practical applications.

In this paper, we address the class imbalance problem
via a combined complexity metric termed the complexity of
image category which synthesizes both the sample number
and recognition difficulty of classes. We then design a self-
paced balance learning (SPBL) framework inspired by the
self-paced learning (SPL) paradigm [22], [23] to construct a
dynamic program according to the updated complexity. Here,
the SPL simulates the process of teaching a curriculum for
students which arranges the samples from easy to difficult
during training. It guides the learning procedure to avoid
biased results towards the easily recognized categories (e.g.,
those with large class sizes and small intra-class variation).

In addition, we use the iterative SPL scheme to arrange the
learning process using the complexity of image categories.
Specifically, we divide the learning process into K paces.
Given {Ni}Ci=1 training samples in C classes, we randomly
select {Ni/K}Ci=1 of them for each class in the first pace,
while the others are used for evaluation. These

∑C
i=1Ni/K

samples construct the first curriculum to train the initialized
model. In the following paces, the mean loss of each cate-
gory is calculated by the model derived from the last pace,
which is used to measure the recognition difficulty of this
category. Then, the complexity score of each image category
is calculated based on a trade-off of both the class size and
recognition difficulty. During training, a wrong prediction of
any images in complex classes is assigned with high penalty
weights to train a better classifier. Given the set of complexity
scores, we reconstruct a new curriculum by selecting samples
from the remaining training samples accordingly. Finally, we
re-train the classifier with the updated penalty weights and
curriculum, and also fine-tune the feature extractor on the
current curriculum.

We validate the proposed framework on a clinical skin
disease recognition task with a public dataset SD-198 [4] and
a newly-collected one called SD-260. As shown in Fig. 1,
the SD-198 dataset contains 198 categories of skin diseases,
each of which has 10 to 60 images. However, according to the
illustration by Sun et al. [4], the class distribution in the real
applications might be more extreme than in this dataset, since
they only preserve 60 samples for the classes which contain
a large number of images and ignore those consisting of less

than 10 images to avoid creating imbalanced class sizes. Con-
sequently, in this paper, we collect an imbalanced skin disease
dataset termed SD-260 according to the real distribution of
class sizes reflected by the DermQuest1 website, where the
maximum class contains 2, 432 images and the minimum one
contains 10 samples. Fig. 1 shows the class distribution of both
challenging datasets, which show imbalanced distributions on
both class size and recognition difficulty. We also extend our
method to many alternative imbalanced tasks such as indoor
scene image recognition and object classification. Extensive
experiments on the evaluated datasets demonstrate the favor-
able performance of the proposed SPBL algorithm.

The contributions of this work are summarized as follows:
1) We propose the complexity of image category which

alleviates the class imbalance considering both the class
sizes and the recognition difficulties of each category.

2) We propose the self-paced balance learning (SPBL)
algorithm to dynamically update those complexities, fol-
lowed by attaching penalty weights and reconstructing
a curriculum for discriminative representations.

3) To better evaluate the proposed SPBL method, we col-
lect a new clinical skin disease dataset termed SD-260
which contains 260 classes of skin diseases and 20, 600
clinical images.

Experimental results on both the SD-198 and SD-260
datasets and several extended tasks demonstrate that the pro-
posed SPBL algorithm outperforms the state-of-the-art meth-
ods. We will release all the code, data and learning models to
the community.

The remaining part of this paper is organized as follows.
In Section II, we briefly review the related works. In Section
III, we illustrate the details of the proposed SPBL algorithm.
Experimental results and analysis are then provided in Section
IV. Section V concludes this paper.

II. RELATED WORK

In this section, we briefly review the literature [24], [25] of
class imbalance, self-paced learning, and clinical skin disease
recognition tasks.

A. Class Imbalance

Deep learning technology recently attracts many re-
searchers’ attention on the object classification [26]–[28],
detection [29]–[32], and other fields [24], [33]–[35], yet the
balanced training data is scarce in practical applications. How
to tackle class imbalance is an important issue in visual
recognition tasks. Several excellent surveys concerning im-
balanced learning field are published in the past decade. He
and Garcia [36] propose a systematic review of the problem
fundamental, detailed solutions, and the major performance
evaluation metrics under the imbalanced learning scenario.
More recently, [37], [38] analyses the intrinsic characteristics
of the imbalanced data. Branco et al. [39] then focus on
a more general issue of imbalanced predictive modeling.
Overall, the existing solutions of the class imbalance can

1https://www.dermquest.com/
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mainly be grouped into three categories: the sampling-based,
cost-sensitive based, and ensemble-based methods.

1) Sampling-Based Methods: Sampling-based methods at-
tempt to handle the class imbalance problem at the data level,
i.e., improving the data preprocessing technique. Specifically,
these methods aim to balance the distribution of the original
training set by over-sampling the minority classes [40]–[43],
under-sampling the majority classes [7], [44], [45], or both.

The over-sampling approaches try to duplicate some in-
stances or create new samples from existing minority classes.
However, this data augmentation process might inherently
produce information redundancy [36], [46]. To address this,
SMOTE [47] is proposed to generate synthetic instances by
linear interpolating the nearest positive neighbors of minority
class instances.

In contrast, the under-sampling approaches attempt to re-
move instances from the majority classes before training the
classifier. This sampling strategy, which is often preferred
to over-sampling [44], is easy to implement and efficient.
However, it may lose critical information, especially for small
datasets.

2) Cost-Sensitive Based Methods: Instead of adjusting the
distribution of imbalanced data through various instance ma-
nipulating strategies, the cost-sensitive based methods assign
suitable cost parameters to penalize the misclassification situ-
ations at the classifier level [8], [27], [48], [49]. In particular,
a heavier penalty factor is applied to the misclassification of
the minority classes compared to the majority ones, which
improves the sensitivity of classifier. Hence, it is important to
design a cost matrix that reveals the penalty for misclassified
instances from one class to another. For example, [48] and [49]
preset the cost parameters using prior knowledge, although
they can dynamically adjust and learn them during a training
phase according to the imbalance ratio of one class relative to
the other classes. In addition, Zhou and Liu [17] indicate that
most research focuses on class-dependent costs [8], [27], [48],
[49]. While there are only a few investigations on instance-
dependent costs [50], [51], they are more appropriate for real-
world applications.

3) Ensemble-Based Methods: Ensemble-based methods
(e.g., MOS-ELM [52]) usually construct a set of learning
algorithms and then combine their decisions. Adapting either
boosting (e.g., AdaCost [53], RealBoost [54], and LogitBoost
[55]) or bagging (e.g., [56]) to use a sampling technique is a
popular choice for class imbalance learning [57]. Specifically,
[9], [58], [59] show that boosting ensembles perform better
than the simplest approaches. In addition, [60] and [61]
employ bagging to re-sample neighbor instances from minority
classes. Besides, at the algorithm level, different cost-sensitive
based boosting algorithms [62], [63] attempt to minimize the
number of the high-cost errors and the total cost for improving
accuracy and reduction in learning time for classification tasks.
Furthermore, Wang et al. [64] propose an ensemble strategy
that combines transfer learning and meta-learning to address
the problem of long-tail recognition. Supported by empirical
evaluations, all of them achieve favorable performance com-
pared to using any single method.

B. Self-paced Learning
Self-paced learning is an important technique in the machine

learning community [65], [66]. It simulates the cognitive
system of human which at first learns an initialized and gener-
alized model structure, followed by increasing the complexity
to accomplish the task of learning comprehensive and technical
knowledge. Among existing methods, the measurement of
complexity scores of each class or sample is at the core of this
problem. In addition, the updating of learning systems from
easy to hard according to such complexities is also important.

Inspired by the regular learning pattern of humans, Ben-
gio et al. [67] formalize a general training strategy termed
curriculum learning (CL). CL aims to address a non-convex
optimization problem by gradually progressing the training
data with samples from easy to hard. Consequently, the critical
issue in CL is to determine the order of such samples for
the subsequent curriculum. However, it is difficult to define
a clear distinction between easy and hard instances due to
its ambiguous nature, especially for real-world and large-scale
datasets.

To alleviate this problem, Kumar et al. [22] design a novel
self-paced learning (SPL) paradigm with the same goal as the
CL, where the training instances are presented in a meaningful
order to facilitate the learning procedure. The SPL iteratively
updates the importance parameter of instances rather than
using fixed heuristic knowledge and trains a dynamical model.
Meng et al. [23] further provide a theoretical understanding
of SPL. Here, we briefly review the general form of the SPL
paradigm.

Given a set of training data {(x1, y1), · · · , (xn, yn)}, where
xi and yi denote the i-th (i ∈ {1, · · · , n}) observed instance
and the corresponding label, respectively. Let L(yi, g(xi,w))
represent the loss between the estimated label g(xi,w) and
its ground truth label yi. The task of the SPL is to jointly
learn the model parameter w and the latent weight variables
v = [v1, · · · , vn]T by minimizing:

min
w,v∈[0,1]n

E(w,v, λ) =

n∑
i=1

(viL(yi, g(xi,w)) + f(vi, λ)) , (1)

where f(vi, λ) is called a self-paced regularizer (SP-
regularizer [23]) with a monotonically increasing pace param-
eter λ. By controlling the loss value and the pace parameter,
the model determines whether to include an instance into
the learning process. Accordingly, the core of the SPL is to
properly design the SP-regularizers, existing works include
hard [22], linear [68] and mixture [69] SP-regularizers.

More recently, the theory of SPL has been successfully
employed in various tasks, such as the multimedia search [68],
matrix factorization [69], self-paced curriculum learning [70],
co-saliency detection [71] and face identification [72], etc.
However, these works rarely involve the issue of class im-
balance which widely exists in real life, especially in medical
imaging processing. Inspired by SPL, we propose a novel self-
paced balance learning (SPBL) mechanism to solve the class
imbalance problem. We propose to learn instances, ordered
from easy to hard, while balancing the self-paced curriculum
via penalty weight updating and curriculum reconstruction
strategies.
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Fig. 2: Main steps of the proposed SPBL algorithm. It iteratively trains the weighted SVM classifier and updates the self-
paced curriculum. The predictions with top scores form the initial curriculum Φ. During training, the algorithm calculates the
distribution of class complexity level H , which combines both the class size and recognition difficulty. Based on that, we use
a penalty weight updating strategy to calculate the class penalty weights ω, and use a curriculum reconstruction strategy to
sample a balanced curriculum Φ+Φ∗ for training the SVM classifier in the next stage.

C. Clinical Skin Disease Recognition

A recent report in Nature [73] indicates that performing
clinical skin disease recognition by image analysis is of major
importance since skin disease is one of the most common
diseases appearing in medicine, occurring widely in human life
with significant ill effect. There are some related developments
in this field, such as disease classification [74]–[76], lesion
segmentation [77], detection and localization [78].

Previous works in skin disease recognition mostly focus
on dermoscopic image processing [73], [76]–[78]. However,
handling directly on clinical skin disease images is more
economical, and getting the digital image from the portable
electronic device (e.g., mobile phone) is more convenient for
patients who can then carry out self-diagnosis. Unfortunately,
there are few open, large-scale standardized data sources [4]
that are needed to develop deep learning technology in this
field. Besides, researchers have to face the challenge that
clinical imaging is easily affected by light intensity, camera
angle, uncertain background, and other natural factors and
interferences. Moreover, most current researches address bi-
nary skin disease recognition problems (e.g., melanoma vs.
non-melanoma skin cancer classification), while in practice
clinical skin disease diagnosis needs to distinguish between
large numbers of categories.

Apart from the above-mentioned issues, the class imbalance
problem is also critical in clinical skin disease recognition task.
Different diseases occur with differing frequencies, which may
inherently cause datasets to have imbalanced training instances
across classes. To the best of our knowledge, there have been
no studies to incorporate SPL to tackle the class imbalance
problem in skin disease recognition. We will introduce the
proposed SPBL algorithm in the following section III in detail.

III. METHODOLOGY

We introduce the proposed SPBL framework in this section.
First, we present the theoretical analysis and the formulation,
as well as the choice of SP-regularizer [23], which is respon-
sible for controlling the learning procedure and calculating
the latent weight variables. Then, we introduce the definition

and calculation of the complexity level of a class. Finally,
we present two strategies for optimizing the SPBL based on
the class complexity levels. Fig. 2 shows the pipeline of the
proposed algorithm, in which the cost parameter updating, cur-
riculum reconstructing, CNN model fine-tuning and classifier
training are the main components of one pace.

A. Self-paced Balance Learning
In this work, we present the self-paced balance learning

(SPBL) method to solve the class imbalance problem which
computes the complexity of categories based on both the
number of samples and the recognition difficulty of classes.
The SPBL extends the self-paced learning paradigm (Eq. (1))
in two ways: 1) penalizing the classification errors with larger
weights on the more complex categories; 2) reconstructing
the curriculum for the following pace which re-balances the
class distribution based on both the number of samples and the
recognition difficulty. The optimization objective of the SPBL
scheme is defined as:

min
w,v∈[0,1]n

E(w,v,ω, λ,Φ∗) =

n∑
i=1

ωi (viL(yi, g(xi,w)) + f(vi, λ))+

m∑
j=n+1

ωj (L(yj , g(xj ,w))) +
1

2
‖w‖2, (2)

s.t. {(xn+1, yn+1), · · · , (xm, ym)} ∈ Φ∗,

where v = [v1, · · · , vn]T is the set of latent weight variables
which controls the selection of training instances. In addition,
ω denotes the set of penalty weights which is harder on
the misclassification of samples from more complex classes,
and L(yi, g(xi,w)) computes the loss between predicted
label g(xi,w) and its ground truth label yi. f(vi, λ) is the
self-paced regularization term (SP-regularizer [23]) with an
increasing pace parameter λ. Φ∗ denotes the reconstructed
curriculum based on the original self-paced curriculum Φ
(details can be found in Section III-C). Moreover, n denotes
the total number of training samples, while m denotes the
number of extended samples copied from the last curriculum
for those minority classes.
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The SP-regularizer f(v, λ) is designed to control the pace
of the learning procedure and to regularize the latent weight
variables. Several SP-regularizers have been constructed, in-
cluding hard [22], linear [69] and mixture [68] forms. In this
work, we use the typical hard SP-regularizer [22] as follows:

f(vi, λ) = −λvi, (3)

of which the closed-form solution v∗(λ, L) is:

v∗(λ, L) =

{
1, if L < λ
0, otherwise . (4)

Here, the i-th instance will be added into the current curricu-
lum Φ if we have L < λ. During training, we optimize both
the model parameter w and latent weight variables v in Eq. 2
by alternately optimizing one of them while fixing the other.

B. Complexity Level of Classes

We define the complexity level of a class in this section
which is a trade-off between both the class size and recognition
difficulty. We use the loss L(yi, g(xi,w)) to measure the
recognition difficulty of xi which is calculated based on the
cross entropy loss function as follows:

L(yi, g(xi,w)) = − log p(yi|xi). (5)

Here, p(yi|xi) is the probability of correctly classifying the
sample xi.

In the training stage, we divide the learning process into
K paces based on the standard SPL paradigm. In the first
pace, we randomly select n

K training samples from each
category to construct the first curriculum and train a model. We
then calculate the recognition loss on the remaining (K−1)n

K
samples using this model and select the other n

K with the
smallest recognition losses to calculate the similar loss in the
next pace using the newly-trained model. Given that, we define
the recognition difficulty lckq of a class cq in the k-th pace,
where k ∈ {1, · · · ,K}, q ∈ {1, · · · , C} and C is the number
of categories. Specifically, we compute the average loss among
the newly-selected training samples of each class to denote
recognition difficulty of this class as follows:

lckq = − 1

|ckq |

|ckq |∑
j=1

log p(yj |xj), xj ∈ ckq , (6)

where |ckq | is the number of newly-selected samples from the
remainder of the set of class cq in curriculum Φ∗. Here, we
have

∑C
q=1 |ckq | = |Φ|∗ − |Φ|, where |Φ|∗ − |Φ| denotes the

number of total newly-selected samples from the curriculum
Φ for the new Φ∗. Note we calculate the recognition difficulty
based on the newly-selected data rather than the whole set of
samples to simultaneously speed up the training process and
precisely evaluate the difficulty with unseen samples of the
model.

We then define the complexity level Hk
q of the class cq in

the k-th pace as follows:

Hk
q =

exp(lckq )

|ckq |

=
1

|ckq |
∏|ckq |

j=1 p(yj |xj)
1

|ckq |
. (7)

For an arbitrary class, if the recognition difficulty is larger and
the number of instances is smaller, then the complexity Hk

q is
larger than others. The set of complexity levels, i.e., {Hk

q }Cq=1,
is used to update the penalty weights of the k-th pace, which
is explained in Section III-C1.

C. Alternative Optimization of SPBL

Based on the complexity levels of classes, we alternately
update the penalty weights, reconstruct the curriculum and re-
train the model.

1) Penalty Weight Updating: We illustrate the calculation
of the penalty weight ω in Eq. 2 in this subsection. First,
we define a cost matrix C ∈ RC×C and denote by Cij as
the misclassification cost where the samples of class ci are
predicted as cj . The cost matrix C satisfies the following
conditions: 1) Cii = 0; 2) 1 6 Cii 6 α for i 6= j where α
denotes a predetermined upper limit of the cost; and 3)there
exists at least one pair of classes where Cij = 1. We then
follow the definition of [79] to represent the misclassification
cost(i) of class ci:

Ci =

C∑
j=1

Cij . (8)

For an arbitrary pair of classes ca and cb, we have Ca 6 Cb

if Ha 6 Hb.
We then define the penalty weight ωi of class ci as follows:

ωi = Ci

∑C
j=1

1
Hj∑C

j=1 Cj
1
Hj

, (9)

where we have
∑C

i=1 ωi
1
Hi

=
∑C

i=1
1
Hi

. Moreover, the set of
penalty weights ω are normalized by

ω∗ =
ω

min(ω)
(10)

where we have min(ω∗) = 1 since the easiest class does not
need to be penalized.

2) Curriculum Reconstruction: The self-paced learning al-
gorithm progressively trains the model using samples from
easy to hard. However, this regime only benefits the im-
balanced recognition difficulty problem yet overlooks the
imbalance size among the classes. To overcome this weakness,
the proposed SPBL re-balances the class distribution of the
curriculum Φ via a novel curriculum reconstruction strategy:

|c∗i | = argmin
|ci|

(
exp(li)

|ci|
−
∑C

j=1 exp(lj)∑C
j=1 |cj |

)
, (11)

where |c∗i | indicates the final number of training samples of
class ci in the current pace.
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Algorithm 1 Curriculum Reconstruction Algorithm

Input: Original curriculum Φ, penalty weight ω
Output: Reconstructed curriculum Φ∗, updated penalty

weight ω∗

1: Calculate the recognition difficulty of each class via Eq.
6;

2: Calculate the average complexity level among all classes
via

∑C
j=1 exp(lj)∑C

j=1 |cj |
;

3: for i = {1, · · · , C} do
4: Calculate the final number of instances |c∗i | of the class

ci in Φ∗ via Eq. 11;
5: if |c∗i | > |ci| then
6: Copy |c∗i | − |ci| instances of class ci with top losses

to Φ∗;
7: Set ω∗i = ωi;
8: else
9: Remove |ci| − |c∗i | instances of class ci with top

losses;
10: Set ω∗i = 0;
11: end if
12: end for
13: return {Φ∗,ω∗}

To balance the complexity level among classes, we dynam-
ically assign the number of instances for each class which
are added to the curriculum based on Eq. 11. If we have
|c∗i | > |ci|, then |c∗i | − |ci| instances of the class ci are added
into the reconstructed curriculum Φ∗ using over-sampling
strategy. Specifically, we copy the samples with top |c∗i |− |ci|
losses to over-sample this category. Meanwhile, we set the
weight parameter ω∗i = ωi. On the contrary, if |c∗i | 6 |ci|, we
remove |ci − c∗i | instances of the class ci which have the top
losses to under-sample this category. We set ω∗i = 0 in this
case. The detailed process of the curriculum reconstruction is
summarized in Algorithm 1.

3) CNN Model Tuning & SVM Classifier Training: At the
beginning of training SPBL, the curriculum was initialized by
a random set which contains 1

K of the entire training set. We
fine-tune a pre-trained CNN model on this set to extract an
initial feature representation for {xi}ni=1. After the updating
of the learning pace, the curriculum size is gradually extended,
where the model is fed with more training samples and learns
more potential patterns from them. The feature extraction
model, the classifier and the curriculum are then alternately
updated in the training procedure.

To update the classifier, we fix
{{xi}ui=1, {yi}ui=1,v,ω,Φ

∗} in both the CNN model
and the curriculum and update the parameters w as follows:

w∗ = argmin
w∈[0,1]n

n∑
i=1

ωiviLi +

m∑
j=n+1

ωjLj +
1

2
‖w‖2, (12)

s.t. {(xn+1, yn+1), · · · , (xm, ym)} ∈ Φ∗

where Li = (yi, g(xi,w)) denotes the loss function. There
are several classification algorithms adapted to our model. We
employ a weight SVM in this paper as the classifier, where

Algorithm 2 Self-paced Balance Learning Algorithm

Input: Training dataset {(x1, y1), · · · , (xn, yn)}
Output: Classifier parameter w

1: Initialize the model with a pre-trained CNN and classifier
parameters w;

2: Initialize the SP-regularizer f , latent weight variables v
and pace parameter λ;

3: Predetermine the initial curriculum Φ;
4: repeat
5: Update w via Eq. 12;
6: Update v via Eq. 4, and then get the curriculum Φ;
7: Update the complexity level of each class via Eq. 7;
8: Update penalty weight parameter ω via Eq. 10;
9: Update reconstructed curriculum Φ∗ and weight ω∗ via

Algorithm 1;
10: Tune the CNN model and extract features;
11: In every T epochs:
12: Augment λ;
13: until Model converge
14: return w

we assign the penalty weight in Eq. 10 to each class before
classification.

4) Pace Parameter Updating: The pace parameter λ con-
trols the number of training instances to be selected in
the SPBL (before reconstruction of the curriculum), and it
monotonically increases during the entire training procedure.
Apparently, more difficult instances are included in the cur-
riculum along with the processing of paces. As a result, we
terminate the updating of the pace parameters when we get
stable evaluation performance. Such termination is required
because a difficult instance always has a larger loss, which may
result in a negative impact on the system performance since the
instance could even belong to noisy data with incorrect labels.
To describe this, we refer to [23] to define a threshold λa on
the losses where the pace parameter λa allows a instances to
be added into the curriculum Φ∗, i.e., there are a instances
with a smaller loss than the pace parameter λa. Note in the
early learning paces, most of the instances have a relatively
small loss. Therefore, a small increase of the pace parameter
λ will lead to a lot of untrained instances being added to the
curriculum Φ.

5) Model Convergence: The entire alternate optimization
process of the SPBL strategy is summarized in Algorithm 2.
After initializing the parameters, the algorithm alternately
updates one module while fixing the others, including the
classifier parameters w, the curriculum Φ and the set of
model parameters. Thus, the original overall optimization
problem of Eq. 2 can be grouped into two sub-optimization
problems, i.e., the optimization of both the SPBL and the
classifier. Note that at the beginning of the learning stage, the
model is unstable like other typical SPL algorithms. While
the size of the curriculum is increased along with the learning
progresses, the model is trained with more patterns which
leads to more robust and discriminative features extracted from
the CNN model. Under the alternating optimization of the
parameters, the objective function can decrease to an optimal
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value iteratively. Thus the SPBL model becomes increasingly
stable and finally achieves convergence.

IV. EXPERIMENTS

In this section, we experimentally demonstrate the effec-
tiveness of the proposed SPBL. Firstly, we introduce two
benchmark datasets, i.e., the SD-198 [4] and the SD-260
datasets, in which the samples among classes are imbalanced
in terms of both the class size and the difficulty of recognition.
Then, we illustrate the experimental settings including the
model parameters and various evaluation metrics used for class
imbalance learning. After that, we empirically evaluate and
analyze the proposed SPBL algorithm on the two imbalanced
datasets, and finally present the experimental results with
comparison to the state-of-the-art methods. We also extend
the proposed SPBL to several other tasks.

A. Datasets

The imbalanced problem in real-world applications is due
to not only the imbalanced distribution of class sizes but also
the recognition difficulty. Actually, both imbalanced problems
are revealed in the clinical skin disease recognition task.
Therefore, we mainly evaluate the proposed SPBL method on
the SD-198 [4] and SD-260 datasets in this paper. These two
datasets can be downloaded publicly 2. We also extend the
SPBL method on several other datasets including MIT-67 [80],
Caltech-101 [81], MNIST [82] and MLC [83] datasets.

1) SD-198 Dataset: The SD-198 [4] dataset focuses on
automatic skin disease recognition and diagnosis problem. It
contains 198 categories of skin diseases and 6, 584 clinical
images. Images in this dataset cover a lot of situations for
patients such as gender (male, female), age (child, adult, old),
disease site (head, nails, hand, feet), color of skin (white,
black, brown, yellow), and different periods of lesions (early,
middle, late). The images contain variations in color, exposure,
illumination, and scale. These images were collected using
digital cameras and mobile phones, uploaded by patients
to the dermatology Dermquest website, and annotated by
professional dermatologists.

2) SD-260 Dataset: When collecting the SD-198 dataset,
the authors manually control the class size distribution by
preserving 10−60 images for each category [4]. As shown in
Fig. 1, the SD-198 has a medium imbalance ratio [84] where
the ratio of the largest category to the smallest one is about
6. This ratio is extremely different in real life where com-
mon and uncommon skin diseases have substantially different
incidences. In this paper, we contribute a new skin disease
dataset with a high imbalance ratio (larger than 243), named
the SD-260 dataset. We collect the SD-260 from the same
source as the SD-198, yet we only eliminate the class with
less than 10 samples and preserve all other classes as well as
all the available images of these diseases. Finally, it consists
of 260 diseases and 20, 600 images, in which the maximum
class has 2, 432 samples and the minimum one has 10. The
increase of category number, the diversity among classes and

2http://cv.nankai.edu.cn/projects/sd-198/

the imbalance degree further leads to a more challenging
dataset in the recognition task compared to the SD-198 dataset.

3) Extended Tasks: We also extend our proposed method
to other tasks such as scene classification (MIT-67 [80]),
object classification (Caltech-101 [81]), handwritten digit clas-
sification (MNIST [82]) and coral classification (MLC [83]).
The MIT-67 [80] dataset contains 15, 620 images. The image
numbers of 67 categories of the indoor scene vary between 101
and 738. The Caltech-101 [81] dataset contains 9, 144 images
belongs to 102 categories (101 objects + background). The
image number for each category varies between 31 and 800.
The MNIST [82] dataset consists of 70, 000 images and 10
categories of digits. Each category contains 7, 000 images. The
MLC [83] dataset consists of 2, 055 images which are divided
into three sets according to collection time (2008− 10). Each
image has roughly 200 point annotations belonging to 9 cat-
egories. The labelled points for each category approximately
vary between 2, 622 and 196, 910.

B. Experimental Settings

1) Training/Testing Set Partition: We divide both the SD-
198 and SD-260 datasets by randomly splitting each category
into training and testing sets with 8 : 2 samples. Specifically,
we select 5, 268 images for training and the remaining 1, 316
images for testing in SD-198 and 16, 480 images vs. 4, 120
images in SD-260. Note the proportion between two different
classes in the testing set is the same as in the training set as
shown in Fig. 1. We follow the training/test split protocols
from [27] in the extended tasks. We use the 6 : 4 training/test
split for the MIT-67 and Caltech-101 datasets and the 6 : 1
for the MNIST dataset. In addition, for the MIT-67, Caltech-
101, and MNIST datasets, we reduce the image number of
odd classes to 10% in training set to unbalance training
distribution. As for the MLC dataset, we train on the data
of 2008 year and test on the data of 2009 year.

2) Network Parameters & Implementation Details: We use
the raw ResNet-50 [6] which is pre-trained on ImageNet [85]
as the backbone of the CNN architecture. We then fine-tune the
network on the SD-198 and the SD-260 datasets, respectively.
The learning rate is initialized to be 0.01 and decays by 0.1
in every 40 epochs. We use the Stochastic Gradient Descent
(SGD) with momentum as the optimizer. The mini-batch size
is set to be 64 and the momentum equals to 0.9. The weight
decay parameter in the `2-regularization term is set to be
0.0005. The input RGB image size is fixed to a square of
224×224×3 pixels. We implement the SPBL method using the
open framework PyTorch, and run it on an Intel(R) Core(TM)
i7-4790K CPU @ 4.00GHz, 32 GB RAM, and an NVIDIA
GeForce GTX TITAN X GPU with 12 GB VRAM. The code
and pre-trained models are available online 3.

3) Evaluation Metrics: To avoid a compromise evaluation
of misclassification among the minority and majority classes
in class imbalance problem, we comprehensively measure the
performance of the classifier on both the precision and recall
using the following metrics: F -measure, G-mean [86] and
MAUC [87]. Assume nij is the number of samples in the class

3https://github.com/xpwu95/SPBL Pytorch
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ci that are classified as class cj . Then the precision Pi and
recall Ri of class ci can be defined as:

Pi =
nii∑C
j=1 nji

and Ri =
nii∑C
j=1 nij

, (13)

where C is the number of classes. The average precision and
recall can be defined as:

Precision =
1

C

C∑
i=1

Pi and Recall =
1

C

C∑
i=1

Ri. (14)

Neither of them can effectively represent the performance
of classifier independently. The F -measure combines the pre-
cision and the recall as a trade-off with the choice that the
factor β = 1.0 (F1) indicates recall and precision are equally
important:

F -measure =
1

C

C∑
i=1

(
1 + β2

)
PiRi

β2Pi +Ri
. (15)

The G-mean evaluates the average sensitivity of all classes,
and especially reflects the degree of bias in minority classes,
which is defined as:

G-mean =

(
C∏
i=1

Ri

) 1
C

. (16)

As for the area under the curve (AUC) metric in the
classification problem, we follow the micro average scheme
MAUC of the definition as in [7]. Similar to the form of
F -measure and G-mean, it integrates the weighted average
of all labels:

MAUC =
2MPMR

MP +MR
, (17)

where the micro average precision MP and the recall MR are
defined as:

MP =

∑C
i=1 nii∑C

i=1

∑C
j=1 nji

and MR =

∑C
i=1 nii∑C

i=1

∑C
j=1 nij

. (18)

C. Parameters

In this section, we discuss the setting of parameters of
the proposed SPBL algorithm. We experimentally analyze the
selection of the number of paces K and the pace parameter λ.
In the SPBL algorithm, we keep the step-size of n

K instances
to expand the curriculum capacity in each paced learning
procedure, where n denotes the number of instances in the
total training set. We evaluate the SPBL performance under
different settings of K from 1 to 7 under different performance
metrics. As illustrated in Fig. 3, with the increase of K,
the model will perform better within a certain interval. Af-
ter comprehensively considering the trade-off between model
complexity and performance, we set the total iteration number
K = 5, and we monotonically augment the pace value to λin

5

at the i-th pace of SPBL.
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Fig. 3: Classification performance of the proposed SPBL
method with different total number of paces (K). Here,
“value” indicates the results of F1, G-mean, MAUC and Acc
(accuracy) on the SD-198 dataset. Accordingly, we set K = 5
in the rest of the experiments, i.e., we conduct 5 paces for
each experiment.

D. Ablation Study

We conduct a set of ablation experiments in this section
to validate the effectiveness of each module of the proposed
SPBL algorithm. Specifically, we evaluate the baseline of
the self-paced learning (SPL) and two extended components,
including penalty weight updating (PWU) and curriculum
reconstruction (CR) strategies. We employ the ResNet-50 [6]
as the deep feature extractor and the SVM as the classifier.
Table I reports the experimental results.

1) Introducing SPL: We first evaluate the performance of
self-paced learning [22], [23] which is introduced to address
the class imbalance problem. As shown in Table I, the exper-
imental results of SPL (second row of each dataset) on both
imbalanced datasets demonstrate an improvement compared
to the baseline method (using deep features to train SVM
directly without any other processing, the first row of each
dataset). Note when comparing the value of F1-measure, the
SPL method leads to a big improvement of about 7%, which is
mainly due to the incremental knowledge from hard instances
and the effective learning process from easy to hard. The
performance on the G-mean metric also shows a substantial
increase of the SPL against the baseline method although
both methods perform unsatisfactorily. However, there still
exists a considerable gap between the G-mean and the ac-
curacy. This reflects the fact that although SPL improves
model performance over baseline, it still learns an insufficient
representation and thus fails to handle the class imbalance
adequately. For example, SPL cannot properly address the
imbalanced situation in which one class not only has a few
instances but is hard to learn.

2) Joint SPL and PWU Strategy: We then evaluate the
effectiveness of the penalty weights updating (PWU) module
in the SPBL architecture. As shown in Table I, adding the
PWU module by setting the penalty parameter of the error
term produces an improved accuracy of 3.7% on the SD-198
dataset. This is mainly because that the PWU intentionally



YANG et al.: SPBL FOR CLINICAL SKIN DISEASE RECOGNITION 9

TABLE I: Ablation experiments on both the SD-198 and SD-
260 datasets verifying the effectiveness of different modules
of the proposed method. Each entry in this table is composed
of the mean and variance of the corresponding performance
derived by cross-validation.

Dataset Method F1 G-mean MAUC Acc

SVM 50.8±2.5 16.7±3.1 58.4±2.3 58.7±2.2
SPL 57.8±2.6 27.5±1.7 63.1±2.9 62.2±3.1
SPL+NPWU 61.1±1.9 34.5±2.9 64.2±2.0 63.6±1.9

SD-198 SPL+DPWU 58.3±2.7 31.7±3.3 63.5±2.4 62.9±2.1
SPL+PWU 63.7±2.2 40.2±2.6 66.4±2.1 65.9±2.0
SPL+CR 63.4±2.0 39.9±2.7 65.8±2.0 65.1±1.9
SPBL 66.2±1.6 42.8±4.0 68.5±1.6 67.8±1.8

SVM 33.6±1.0 4.2±0.3 59.2±0.6 60.9±5.8
SPL 39.4±0.7 9.8±0.8 61.0±0.8 61.1±1.0
SPL+NPWU 45.0±0.9 13.3±1.3 61.9±0.9 62.2±0.9

SD-260 SPL+DPWU 42.1±0.8 11.9±1.5 61.7±0.9 62.0±0.8
SPL+PWU 48.2±1.0 15.5±1.3 63.0±0.8 63.6±0.8
SPL+CR 48.4±0.9 15.9±1.1 62.7±0.8 63.3±0.7
SPBL 51.0±0.9 19.6±1.1 64.8±1.2 65.1±0.8

biases the learning among classes with higher complexity
level, which forces the classifier to pay more attention to
the more complex classes. Furthermore, in the PWU strategy,
we alternatively replace the measurement of complexity level
with the number of samples in class (NPWU) and recognition
difficulty (DPWU), which reflect the individual effect of
both class size and recognition difficulty. As shown in the
table, the PWU strategy outperforms both alternatives under
all evaluation metrics, which confirms the effectiveness of
combining both the class size and recognition difficulty to
measure the complexity level.

3) Joint SPL and Curriculum Reconstruction: We also
explore the benefit of the curriculum reconstruction (CR)
scheme on the data level. For a fair comparison, we fix the
penalty weight of each class to be 1 in this experiment. As
shown in Table I, the model with SPL and CR (SPL+CR)
achieves similar performance as the model with PWU, both
of which show a large improvement against the raw SPL
method. The curriculum reconstruction strategy re-balances
the class distribution of the curriculum from each self-paced
learning procedure by over-sampling classes with a higher
loss but fewer instances, and under-sampling classes with the
lower loss but more instances. This fits the learning pattern
of humans, e.g., sometimes when we meet knowledge that
is hard to learn, we need some easier cases to learn before.
By emphasizing the importance of complex instances and
weakening the redundant easy ones, the model incrementally
learns and considers both the class size and difficulty from a
balanced self-paced curriculum.

4) The Proposed SPBL: Finally, we integrate both the
penalty weight updating and the curriculum reconstruction
strategies and propose the SPBL method. Specifically, we
first measure the class complexity level based on the original
curriculum, then we use the complexity information to design
the penalty weights and reconstruct the curriculum for each
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Fig. 4: Iterative performance along with paces when training
the proposed SPBL algorithm on both the SD-198 (purple
line) and SD-260 (brown line) datasets. Here, K indicates
the total number of paces and k refers to one step. Note the
classification accuracy is increased along with the increasing
paces, while the result of the last pace outperforms the baseline
method without self-paced learning strategy.

class. After that, we re-train the SVM classifier with the
updated curriculum and weights. As shown in Fig. 4, the
model achieves better performance in each step when using
the self-paced learning procedure. Table I also demonstrate
that the combination of PWU and CR strategies, i.e., the SPBL
method, outperforms others under all metrics.

E. Comparison with State-of-the-Art Methods

In this section, we compare our SPBL approach against the
state-of-the-art methods on the SD-198 and SD-260 datasets
and several other tasks.

1) Comparative Methods: All compared methods can be
grouped into the four series as follows:

(i) Sampling-based methods: The sampling-based methods
usually change the distribution of class sizes using re-sampling
techniques, including under-sampling (e.g., Random Under-
Sampling RUS, Instance Hardness Threshold IHT [89], and
NearMiss-2 [88]) and over-sampling methods (e.g., ADASYN
[14], SMOTE [47] and Borderline-SMOTE B-SMOTE [90]).
Among them, the RUS randomly removes samples to get
a balanced class distribution. The IHT filters the datasets
through a priori instance hardness information and integrates
this knowledge into the training process to alleviate the effects
of class overlap. The NearMiss-2 chooses negative training
samples by applying the k nearest neighbor approach. The
ADASYN generates synthetic data for minority class samples
according to their difficulty level in learning. The SMOTE
operates in the feature space, and creates synthetic minority
class instances by combining the sample under the observation
with its nearest neighbor. The textbfB-SMOTE, unlike the
SMOTE, only over-samples the minority instances near a
decision boundary.

(ii) Cost-sensitive based methods: This kind of method
penalizes the misclassification among classes via the cost
factor of the classifier. The Rescalenew [17] addresses the
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TABLE II: Comparison to the state-of-the-art imbalanced learning methods on both the SD-198 and SD-260 datasets under
different evaluation metrics. Each entry in this table is composed of the mean and variance of the corresponding performance
derived by cross-validation.

Methods
SD-198 SD-260

Precision Recall F1 G-mean MAUC Acc Precision Recall F1 G-mean MAUC Acc

RUS 58.1±1.6 55.6±1.5 53.1±1.0 31.2±1.1 57.3±1.4 54.6±1.4 36.7±1.2 42.0±1.1 35.2±0.9 15.2±1.9 49.4±1.3 45.3±1.0
NearMiss-2 [88] 58.0±1.4 57.4±1.8 54.8±1.4 34.1±3.6 58.3±1.5 57.0±1.6 30.9±1.3 42.2±1.4 31.4±1.1 15.7±1.9 43.6±1.5 36.3±1.8
IHT [89] 55.9±1.5 49.5±2.1 47.5±1.9 18.8±2.7 54.1±1.9 49.7±1.8 39.3±0.5 36.6±0.7 32.0±0.5 8.8±0.4 47.8±1.1 43.4±1.2
ADASYN [14] 64.4±1.7 63.4±1.9 61.7±1.6 41.0±2.8 64.9±1.8 64.1±1.8 55.6±0.8 47.9±0.1 49.4±0.3 18.5±0.5 63.8±0.4 64.3±0.3
SMOTE [47] 64.3±1.0 63.0±1.2 61.4±1.1 40.8±1.8 64.3±1.1 63.4±1.1 55.5±1.3 47.5±0.9 49.1±0.9 18.4±1.1 63.7±0.4 64.2±0.2
B-SMOTE [90] 63.1±0.8 60.9±1.6 59.7±1.3 39.3±2.5 63.1±1.7 62.2±1.8 55.6±1.1 47.1±0.8 48.9±0.8 17.7±1.2 63.4±0.4 64.1±0.2

Rescalenew [17] 59.7±3.6 55.1±4.2 54.3±4.0 24.4±5.4 60.1±3.0 59.3±3.1 46.1±3.1 37.3±3.0 38.8±3.1 7.2±1.9 60.4±1.3 61.6±0.9
CSNN [48] 58.3±2.2 52.0±2.4 52.3±2.6 19.1±3.6 59.4±2.2 59.4±2.1 43.4±0.9 31.5±1.1 34.1±1.0 4.3±0.2 59.5±0.6 61.2±0.6
ENN [91] 64.7±2.0 59.0±2.1 59.3±2.1 34.5±5.3 63.0±2.0 61.3±1.9 52.6±1.7 46.9±1.4 45.9±1.4 21.9±1.3 60.2±0.6 55.2±1.6

SMOTEBoost [92] 61.5±2.1 58.7±4.7 57.2±3.5 32.7±7.6 61.8±3.0 60.7±2.7 41.8±1.8 39.3±1.0 38.4±1.2 7.9±0.4 58.2±0.5 60.2±0.5
RUSBoost [93] 56.3±1.7 53.1±1.9 52.3±1.8 19.1±1.3 59.3±2.0 59.5±2.0 39.8±1.2 38.3±0.7 36.7±0.8 7.5±0.5 57.7±0.6 57.8±0.5

SVM 56.6±2.0 50.8±2.4 50.8±2.5 16.7±3.1 58.4±2.3 58.7±2.2 42.6±1.3 31.0±0.9 33.6±1.0 4.2±0.3 59.2±0.6 60.9±5.8
SPBL 71.4±1.7 65.7±1.6 66.2±1.6 42.8±4.0 68.5±1.6 67.8±1.8 59.9±1.6 48.2±1.1 51.0±0.9 19.6±1.1 64.8±1.2 65.1±0.8

cost-sensitive learning by rescaling the classes using the cost
information. The CSNN [48] trains cost-sensitive neural net-
works with a set of algorithms, in which threshold-moving is
the best one and we compared against it in this work. The
ENN [91] extends the nearest neighbor method to learn an
unequal distribution, considering the relative nearest neighbor
relationships between samples.

(iii) Ensemble-based methods: These methods usually em-
ploy several learning algorithms and combine their deci-
sions. The SMOTEBoost [92] indirectly changes the updating
weights of misclassified instances based on the combination of
SMOTE and boosting learning. The RUSBoost [93] is another
algorithm that combines boosting and data sampling, but is
simpler and faster than the SMOTEBoost.

(iv) We also compare against two state-of-the-art methods,
i.e., [4] and [74], which are the typical solutions to address the
class imbalance on clinical skin disease recognition problems.
Table II and Table III show the comparisons of clinical skin
disease recognition performance under six metrics including
precision, recall, F1, G-mean, MAUC and accuracy. Note the
performance of comparative methods is not good on both
datasets if we simply adopt the default hyper-parameters given
in the original paper. In this paper, we tune the parameters of
these methods and report the best result we got.

The comparison results against the state-of-the-art methods
on the two datasets are reported in both Table II and Table III.
The results from different strategies are grouped into different
blocks of rows. For a fair comparison, we employ the same
deep features derived from the same raw ResNet-50 model at
the beginning step for all comparative methods and use the
one-vs-rest scheme SVM with same parameter settings as the
estimator.

Apparently, the original deep features combined with SVM
estimator have poor performance as shown in the second last

row of Table II. The results on the G-mean metric is especially
worse than most compared methods. The G-mean calculates
the geometric mean of the accuracies of every class, which
means that the poor accuracy of even one class will lead to
a poor G-mean value. Hence the result indicates that several
classes are entirely unrecognized by the classifier, meaning
there exists a massive imbalanced problem on both datasets.

2) Comparison to Sampling-Based Methods: As shown in
Table II, the SPBL outperforms the under-sampling based
methods on the SD-198 dataset with more discriminative
representations and classifiers. However, the under-sampling
methods, e.g., NearMiss-2 and IHT, ensure that each class
retains an approximate number of instances compared to
the minority class, which may also cause the issue of few-
shot learning. Moreover, the RUS performs better than IHT
according to most metrics since the last method loses some
useful information after removing instances. This weakness
especially appears in the non-binary classification task with
datasets that have a great disparity in the sizes of the majority
and minority classes. In contrast, the SPBL dynamically
removes instances with relatively simple information in each
self-paced curriculum, which is demonstrated a positive effect
on the classifier.

The SPBL also outperforms the over-sampling methods
on all evaluation metrics. This is because that the SPBL
focuses not only on the smaller classes but on the classes
that are hard to classify no matter how many instances they
have during training. In contrast, the sampling-based methods
cannot process the imbalance of some classes since they only
focus on the number of class, e.g., that have a large number
of instances and a high recognition difficulty. The experiments
on the SD-260 dataset show similar results.

3) Comparison to Cost-sensitive Based Methods: We can
observe from Table II that the SPBL also outperforms most
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TABLE III: Comparison results of clinical skin disease diagnosis on the SD-198 dataset. SIFT and CN (color name) are
extracted by using the code of [94]. ”-ft” means fine-tuning the VggNet on SD-198. TS-L is Texture Symmetry of Lesion; CN-
L is Color Name of Lesion; AC-L is Adaptive Compactness of Lesion; ‘General-D” is the recognition accuracy of the general
doctor who does not focus on one specific kind of disease; “Junior-D” is the recognition accuracy of junior dermatologist;
C-Int is the intergeneration of three kinds of representations TS-L, CN-L and AC-L.

Method
SIFT
[94]

CN
[94]

Vgg [4] Vgg-ft [4] TS-L
[74]

CN-L
[74]

AC-L [74] G-Doctor
[74]

J-Doctor
[74]

C-Int [74] Ours

Acc 32.1±4.9 25.3±4.2 39.5±2.3 56.9±1.6 52.0±3.6 43.1±3.1 42.4±4.0 49.0 52.0 59.4±2.1 67.8±1.8

TABLE IV: Comparison with the state-of-the-art imbalanced learning methods on the tasks of scene classification (MIT-67 [80]),
object classification (Caltech-101 [81]), handwritten digit classification (MNIST [82]) and coral classification (MLC [83]). We
randomly set 50 sampling lists of the first three datasets respectively and report the mean performance since we can not get
the list in the original paper, except for the MLC.

Dataset
SMOTE

[47]
RUS [88] SMOTE-

RSB* [95]
WSVM [96] WRF [97] SOSR

CNN [26]
CoSen

CNN [27]
Rescalenew

[17]
Ours

MIT-67 33.9 28.4 34.0 35.5 35.2 49.8 56.9 35.1±1.2 64.1±0.5
Caltech-101 67.7 61.4 68.2 70.1 68.7 77.4 83.2 58.1±0.7 88.6±0.4
MNIST 94.5 92.1 96.0 96.8 96.3 97.8 98.6 98.1±0.3 99.0±0.1
MLC 38.9 31.4 43.0 47.7 46.5 65.7 68.6 63.7 72.0
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Fig. 5: Accuracy gains of SPBL over the comparative methods on the SD-198 dataset. (a) The class IDs are ranked by the
instance number of categories from large to small, which are drawn by the red line. (b) The class IDs are ranked by the
recognition difficulty (calculated by Eq. 6) of categories from easy to difficult, which are drawn by the red line. For both
sub-figures, Y-axis (left) indicates the accuracy gains of SPBL against the other four methods. Y-axis of (a) (top right) refers
to instance number of each class. Y-axis of (b) (bottom right) is the recognition difficulty of each class.

of the cost-sensitive based methods.
The CSNN method does not perform well which only get

little improvement over the baseline. Its poor performance is
also reflected in the G-mean value. The CSNN performs well
on the binary classification task while faces more difficulty on
the multi-class [48]. This shows that cost-sensitive learning is
difficult with the increase in the number of classes in non-

binary classification imbalance problems.
The ENN method performs the best except for the SPBL

under the metrics “Precision”, “Recall”, “G-mean” and “F1”
as shown in Table II. It even outperforms the SPBL in the
G-mean metric by 2% on the SD-260 dataset, yet it achieves
9.9% lower performance of classification accuracy than our
method. It efficiently measures the relative nearest neighbor
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Fig. 6: Visualizations of 2D t-SNE [98] feature embedding on the SD-198 (a-b) and SD-260 (c-d) datasets. (a) and (c) are the
feature embedding using the features extracted from the raw ResNet50, i.e., trained using all samples without the consideration
of class imbalance and the SPL paradigm, on the SD-198 and SD-260 datasets, respectively. (b) and (d) are the feature
embedding by using the features derived from the model of SPBL trained on SD-198 and SD-260, respectively. Note the
models in all figures are trained with the same number of epochs.

（a） （b）

（c） （d）
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214
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11
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896
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323
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9

Fig. 7: Illustrations of classification results and the change of
the recognition accuracy. The four sub-pictures are the positive
examples (blue box) and negative examples (red box) of SPBL.
For each sub-picture, the images with the green edge are
correctly classified and the others are misclassified (purple).
Each abbreviation above the image denotes the category of
skin disease, e.g., acrokeratosis verruciformis (AKV) and
melasma (MM). The numbers below the abbreviations are the
training instances number of the category. The red line denotes
the change of classification accuracies of the 1-st and 5-th
paces.

(NN) relationships among instances. This result indicates that
it is important to define the relationships between instances or
classes when designing the cost matrices, and it is not enough
to only measure the class size in imbalance learning.

4) Comparison to Ensemble-based Methods: The SMOTE-
Boost and RUSBoost methods aim to improve the classifica-
tion accuracy by integrating the decisions of several classifiers.
For fair comparisons, we use the one-vs-rest SVMs with the
same parameter settings as their base classifiers for these two
comparison methods.

The ensemble-based methods we choose to compare per-

form similarly as the CSNN method, i.e., outperforming
the baseline method in most of the evaluation metrics but
showing distinctly poor performance in the G-mean value.
The RUSBoost method and the boosting learning procedure
shows the positive effect in classification accuracy compared
to the base RUS method but performs poorly especially in
terms of G-mean on the level of the imbalance problem.
The SMOTEBoost even performs poorly compared to the
base SMOTE method on all evaluation metrics, although it
slightly outperforms the baseline and the RUSBoost methods.
The performance of SPBL demonstrates that the proposed
method is capable of achieving good performance with a single
classifier.

5) Comparison to Skin Disease Diagnosis Methods: We
also compare the SPBL method with the state-of-the-art
computer-aided diagnosis (CAD) methods in a clinical skin
disease recognition task. The method proposed by Sun et
al. [4] provided the SD-198 benchmark dataset and applied
several state-of-the-art methods to it. For a fair comparison,
we use the combination of the deep CNN features plus the
SVM classifier as the method of this work to compare against,
and it is noticeable that the results of this method exceed
any results reported in [4]. The method proposed by Yang
et al. [74] designed six medical representations considering
different criteria for their diagnosis system. For the different
experimental environment, i.e., different training/testing split,
we perform the five cross-validation experiment and report the
average accuracy and standard deviation in Table III.

Both of the comparative methods especially the method
proposed by Yang et al. [74] achieve comparable results with
the dermatologists. However, there is a considerable number
of methods in Table II, including the SPBL, that outperform
them. When compared with [4] and [74] in terms of classifi-
cation accuracy, the SPBL produces significant improvements
of 10.9% and 8.4% respectively on the SD-198 dataset. The
experimental results demonstrate the effectiveness of the SPBL
and the validity of solving this real-world application with the
imbalanced learning consideration.

6) Further Analysis: Fig. 5 shows the accuracy gains for
each class of SPBL over the contrast methods, i.e., SMOTE,
CSNN, ENN and SMOTEBoost, on the SD-198 dataset. Our
SPBL method solves the class imbalance issue based on both
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the size and the recognition difficulty of each class. We show
the improvement in two ways, i.e., reordering the classes by
class size and recognition difficulty respectively calculated by
Eq. 6.

We can see that SPBL performs well on the classes with
fewer instances and lower difficulty. Moreover, the SPBL
shows a relatively balanced gain over competitors, i.e., it
improves the classification performance on classes no matter
whether it is large or small, and is hard or easy. Traditional
imbalanced learning methods mainly focus on the minority
classes with a smaller size or higher complexity level. The
proposed SPBL method considers all classes and aims to learn
a balanced representation, as the results illustrated in Fig. 6,
which outperforms the compared methods.

Fig. 7 visualizes several categories of clinical skin dis-
eases and the change of recognition accuracies at different
paces. Fig. 7 (a), (b) and (c) show that the SPBL performs
well on both the categories with big or small sizes (such
as “acrokeratosis verruciformis” (AKV), “melasma” (MM),
“Telangiectasia” (TE), “lichen simplex chronicus” (LSC),
“hailey-hailey disease” (HHD) and “solar elastosis” (SE)). The
SPBL gradually learns the data from easy to hard, which
can recognize the skin lesion that has a great change at the
different stage of illness (e.g., early and late stages). For
example, the HHD in (c) has significantly different symptoms
within-class in terms of border, color and lesion location at
different stages, which can be gradually recognized by the
proposed SPBL with only 6 training instances. As for the
negative example of the results “aphthous ulcer” (AU) and
“perioral dermatitis” (PD) of sub-picture (d), the recognition
accuracies are not further improved during SPBL’s learning,
because the diagnosis of these diseases usually requires a
biopsy. For example, distinguishing between AU and “Hand-
foot-mouth Disease” often needs the liquid from the vesicula
to be assayed, and the two skin diseases have very similar
clinical manifestations. We also evaluate the proposed method
on several other tasks as shown in Table IV, which also
demonstrate the favorable performance of the SPBL against
the comparative methods.

V. CONCLUSION

In this paper, we address the class imbalance issue and
propose a novel SPBL algorithm which is trained using
samples from easy to hard. We also propose a novel insight
that in real-world applications, the class imbalance problem
is not only due to the imbalanced distribution of class sizes
but also the imbalanced recognition difficulty. Inspired by that,
we propose both the penalty weight updating and curriculum
reconstruction strategies which ensure that the model learns
a comprehensively balanced representation in each self-paced
learning procedure. We conduct experiments on two imbal-
anced datasets about clinical skin disease recognition tasks
and several other imbalanced problems. The results indicate
that both components of the proposed algorithm are effective
and demonstrate the advantage of the SPBL against the state-
of-the-art methods.
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[94] C. Göring, E. Rodner, A. Freytag, and J. Denzler, “Nonparametric part
transfer for fine-grained recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 2489–2496. 11

[95] E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, “SMOTE-RSB*:
a hybrid preprocessing approach based on oversampling and undersam-
pling for high imbalanced data-sets using smote and rough sets theory,”
Knowledge and Information Systems, vol. 33, no. 2, pp. 245–265, 2012.
11

[96] Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser, “SVMs modeling
for highly imbalanced classification,” IEEE Transactions on Cybernetics,
vol. 39, no. 1, pp. 281–288, 2009. 11

[97] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn
imbalanced data,” University of California, Berkeley, vol. 110, pp. 1–12,
2004. 11

[98] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.
12


	Introduction
	Related Work
	Class Imbalance
	Sampling-Based Methods
	Cost-Sensitive Based Methods
	Ensemble-Based Methods

	Self-paced Learning
	Clinical Skin Disease Recognition

	Methodology
	Self-paced Balance Learning
	Complexity Level of Classes
	Alternative Optimization of SPBL
	Penalty Weight Updating
	Curriculum Reconstruction
	CNN Model Tuning & SVM Classifier Training
	Pace Parameter Updating
	Model Convergence


	Experiments
	Datasets
	SD-198 Dataset
	SD-260 Dataset
	Extended Tasks

	Experimental Settings
	Training/Testing Set Partition
	Network Parameters & Implementation Details
	Evaluation Metrics

	Parameters
	Ablation Study
	Introducing SPL
	Joint SPL and PWU Strategy
	Joint SPL and Curriculum Reconstruction
	The Proposed SPBL

	Comparison with State-of-the-Art Methods
	Comparative Methods
	Comparison to Sampling-Based Methods
	Comparison to Cost-sensitive Based Methods
	Comparison to Ensemble-based Methods
	Comparison to Skin Disease Diagnosis Methods
	Further Analysis


	Conclusion
	References

