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Abstract

Application performance on graphical processing units (GPUs), in terms of execution speed and memory usage,

depends on the efficient use of hierarchical memory. It is expected that enhancing data locality in molecular dynamic

simulations will lower the cost of data movement across the GPU memory hierarchy. The work presented in this paper

analyses the spatial data locality and data reuse characteristics for row-major, Hilbert, and Morton orderings, and the

impact these have on the performance of molecular dynamics simulations. A simple cache model is presented, and

this is found to give results that are consistent with the timing results for the particle force computation obtained on an

NVidia GeForce GTX960 GPU. Further analysis of the observed memory use, in terms of cache hits and the number

of memory transactions, provides a more detailed explanation of execution behaviour for the different orderings. To

the best of our knowledge, this is the first study to investigate memory analysis and data locality issues for molecular

dynamics simulations of Lennard-Jones fluids on NVidia’s Maxwell architecture.
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1 Introduction

Modern computer systems are characterised by deep

memory hierarchies composed of main memory, multiple

layers of cache, and other specialised types of memory. In

parallel and distributed systems additional memory layers

are added to this hierarchy. Achieving good performance

for computational science applications, in terms of execution

time, depends on the efficient use of hierarchical memory.

Indeed, the inefficient use of hierarchical memory can result

in data movement, rather than floating-point performance,

dominating execution time. This is particularly true in

graphical processing units (GPUs) where latency tolerance

techniques based on the scheduling of threads are used to

mask the disparity between the bandwidth to global memory

and the GPU’s peak execution speed. For example, for

an NVidia P100 system the global memory bandwidth is

a maximum of 732 GB/s and the peak single-precision

performance is 9.3 Tflop/s. Thus, in the absence of latency

tolerance the expected execution speed is 732G/4 Gflop/s,

where G is the number of floating-point operations per global

memory access and floats are assumed to be 4 bytes. For G =
1 this is about a factor of 50 less than the peak performance.

Data locality is a key factor in the efficient use of

hierarchical memory. When one item is moved from a

lower level of memory to a higher level other items that

are nearby in memory are also moved along with it. Data

are typically moved between a lower and a higher level in

memory in fixed-size blocks, known as cache lines. Many

computations and phenomena are local in nature, so if items

are stored in memory based on their location, when one item

is moved into a higher level of memory the other items upon

which its processing depends will also be moved, thereby

exploiting spatial data locality and improving performance.

Performance is also likely to be better if items are processed

in the order in which they are stored in memory because

when a new item is to be processed it is likely to already

be in the higher memory level. This situation illustrates

temporal data locality, where better performance is achieved

by repeatedly accessing data while it is held in the higher

levels of the memory hierarchy.

In general, the application programmer has little direct

control over the scheduling of threads or the movement

of data between levels in the memory hierarchy. Instead

application programmers are encouraged to follow best

practices in programming style that coerce the compiler

and the runtime system into running code efficiently.

For example, in dense linear algebra computations better

performance is achieved if the computations are performed

on matrix blocks through the use of Level 3 BLAS∗

operations9. This programming style has performance

benefits because it results in good data locality for this class

of application.

The order in which data items are accessed has a

significant impact on data locality, and hence on application

performance. This paper investigates the data locality

properties of three ways of ordering data in a 3-dimensional

array, namely the row-major, Morton, and Hilbert orderings.

These orderings are described in detail in Sec. 2, and Sec. 3
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discusses their data locality properties. The second part of

the paper applies these three orderings to 3D molecular

dynamics simulations. Section 4 describes a large class of

molecular dynamics simulations, while in Sec. 5 a GPU

implementation of the widely-used miniMD application is

introduced. Performance results for the GPU implementation

for different data orderings are presented in Sec. 6, together

with information gathered from the NVidia Nsight profiling

tool. These results are interpreted in terms of the data

locality properties of the different orderings. Related work

is discussed in Sec. 7. Finally, in Sec. 8 the conclusions from

this research are presented, together with some directions for

future work.

2 Data Orderings

The location of an item within a 3D array of size M ×
N × P may be labelled by (i, j, k), where i is the row

number, j is the column number, and k is the slab number.

For convenience, we associate the row, column, and slab

directions with the x, y, and z axes, respectively, where

0 ≤ i < M , 0 ≤ j < N , and 0 ≤ k < P . An ordering of the

items in a 3D array is a mapping, O, from (i, j, k) to a linear

index, b:
b = O(i, j, k). (1)

where 0 ≤ b < MNP may be interpreted as the offset in

memory, measured in number of items, from the position of

the first item.

2.1 Linear Orderings

A row-major ordering is a type of linear ordering of the

form OR(i, j, k) = (i ∗ ldx + j) ∗ ldy + k, where ldx is the

offset between adjacent items in the column direction, and

ldx ∗ ldy is the offset between adjacent items in the slab

direction. For ease of notation it will be assumed that ldx =
M and ldy = N , so the data items form a contiguous block.

Furthermore, it will be assumed without loss of generality

that the 3D array is cubical so M = N = P . The row-major

mapping in this case is therefore:

OR(i, j, k) = (iM + j)M + k (2)

The corresponding column-major ordering swaps round the

i and k indices. In fact, each permutation of i, j, and k gives

a different variant of the linear ordering, however, we restrict

our attention to the one defined by Eq. 2.

2.2 Hilbert Ordering

The Hilbert ordering, OH , follows the path of the space-

filling Hilbert curve through the 3D array. The Hilbert

ordering requires that M = 2nM for some M ≥ 1. A

Hilbert curve can be presented as a Lindenmayer system (or

L-system) in terms of parallel rewrite rules22,28. For example,

a 2D Hilbert curve, such as that shown in Fig. 1, can be

generated by the following rewrite rules:

X → + Y F −XFX − FY +

Y → − XF + Y FY + FX − (3)

where F means “draw a line segment of some specified

length”, + means “turn 90 degrees right”, and−means “turn

90 degrees left”. Applying these rewrite rules recursively

draws a Hilbert curve to the corresponding recursive depth.

For example, applying the rewrite rules once yields:

X → +(−F + F + F−)F − (+F − F − F+)

F (+F − F − F+)− F (−F + F + F−)+

This draws the Hilbert curve shown in the top left 4× 4 block

of bins in Fig. 1. Recursively applying the rewrite rules twice

draws all of the Hilbert curve shown in Fig. 1. In a similar

way, a 3D Hilbert curve can also be represented as an L-

system with the following rewrite rule:

X → ∧ < XF ∧ < XFX − F ∧ >> XFX ∨ F

+ >> XFX − F > X− >

where the meanings of the symbols are given in Table 1.

Figure 1. Two-dimensional Hilbert ordering for an 8× 8 array.

The index, b, increases by 1 each time the red path passes from

one location to another, starting with index 0 in the top lefthand

corner.

Symbol Meaning

F Draw line segment

+ Yaw 90◦

− Yaw -90◦

∧ Pitch 90◦

∨ Pitch -90◦

< Roll 90◦

> Roll -90◦

Table 1. Meaning of the symbols in the rewrite rule for a 3D

Hilbert curve.

As we move along the 3D Hilbert curve given by the above

rewrite rule it is possible to keep track of the corresponding

(i, j, k) index in 3D space, in effect giving the inverse of

the OH mapping. Instead of the symbol F meaning “draw

a line segment” it is interpreted as meaning “increment

or decrement the value of i, j, or k, depending on the

current orientation of the axes”. In this way it is possible to

initialise a 3D array giving for each bin the corresponding

Hilbert index, which can subsequently be used whenever it

is necessary to map between location in the 3D array and the

Prepared using sagej.cls
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Hilbert index. The Hilbert ordering for a 4× 4× 4 array is

shown in Fig. 2.

The yaw, pitch and roll 90◦ rotations in Table 1,

corresponding to the symbols +, ∧, and <, can be

represented by matrices:

Y =





0 1 0
−1 0 0
0 0 1



 , P =





0 0 1
0 1 0
−1 0 0



 ,

R =





1 0 0
0 0 1
0 −1 0



 (4)

The −90◦ rotations, corresponding to the symbols −, ∨, and

>, are given by Y T , PT , and RT . The orientation of the

axes is expressed in terms of a heading, H, and two other

mutually orthogonal vectors, denoted by L and U. Initially

we choose H = [1 0 0]T , L = [0 0 −1]T , and U = [0 1 0]T ,

and form the orientation matrix, D, that has H, L, and U as

its columns. A roll corresponds to a rotation of 90◦ about the

H axis; a pitch to a rotation of 90◦ about the L axis, and a

yaw to a rotation of 90◦ about the U axis. Having rewritten

X in Eq. 4 to the desired depth of recursion, we then process

the resulting string from left to right, post-multiplying the

orientation matrix by the rotation matrix corresponding to the

current symbol. Thus, D ← DΘ, where Θ is one of the six

rotation matrices. When an F is encountered a line segment

of length 1 is added to the path in the current direction of H

(the first column of D).

3

20

3

1

2

2

1

3

1

00

Figure 2. Three-dimensional Hilbert ordering for a 4× 4× 4
array. The index, b, increases by 1 each time the red path

passes from one location to another, starting with index 0 at

(0, 0, 0) and ending with index 63 at (3, 0, 0).

2.3 Morton Ordering

As with Hilbert ordering, Morton ordering, OM , can also

be viewed in terms of recursion and requires that M = 2m.

First, consider the 2D case of an M ×M row-major array.

This is re-ordered as a 2× 2 array of sub-arrays each of size

M/2×M/2, with each sub-array having row-major order,

as shown in Fig. 3. This process is then applied recursively

to each of the four sub-arrays until after m− 1 levels of

recursion the sub-arrays are each of size 2× 2. Figure 3

shows the Morton ordering obtained by applying two levels

of recursive to an 8× 8 array.

r = 1 r = 2

Figure 3. The lefthand part of the figure shows the original

array. The middle part of the figure shows the result of Morton

ordering to level r = 1. The righthand part of the figure shows

the result of Morton ordering to level r = 2. Each small square

represents one array item, and the continuous line between cell

centres shows the order in which they are stored, starting in the

top left corner. The shading highlights the division into

sub-arrays.

The Morton ordering of an M ×M ×M array can be

defined in a similar recursive way: the array is reordered as

a 2× 2× 2 block array composed of eight M/2×M/2×
M/2 sub-arrays, each of which has row-major order. This

process is then applied recursively to each of the eight sub-

arrays until after m− 1 levels of recursion the sub-arrays are

each of size 2× 2× 2. The Morton ordering for a 4× 4× 4
array is shown in Fig. 4.
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Figure 4. Three-dimensional Morton ordering for a 4× 4× 4
array. The index, b, increases by 1 each time the red path

passes from one location to another, starting with index 0 at

(0, 0, 0) and ending with index 63 at (3, 3, 3).

Another way to represent the index, b, of Morton ordering

is in terms of the bits of i, j, and k: the bits of b are obtained

by interleaving the bits of i, j, and k:

km−1jm−1im−1km−2jm−2im−2 . . . k1j1i1k0j0i0 (5)

2.4 Hybrid Orderings

Hybrid orderings are obtained by splitting the 3D array into

sub-arrays of equal size and applying one ordering within the

sub-arrays and another ordering between them. For example,

a row-major ordering could be applied within each sub-array

and a Hilbert or Morton ordering could be applied between

them (provided the number of sub-arrays is the same power-

of-two in each direction). Suppose the 3D array is of size

M ×M ×M and the sub-arrays are of size T × T × T ,

Prepared using sagej.cls
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where M = 2m and T = 2t. The index, b, of the ordering

consists of 3m bits. The lower 3t bits encode the ordering

within each sub-array, and the upper 3(m− t) bits encode

the ordering between sub-arrays. It should be noted that for

M = 2m the row-major ordering in Eq. 2 is equivalent to

concatenating the bits of i, j, and k. Thus, for a hybrid

ordering applying Morton ordering between sub-arrays and

a row-major ordering within them, the index b corresponding

to (i, j, k) is obtained by interleaving the upper (m− t) of i,
j, and k, and concatenating their lower t bits.

3 Data Locality Properties

We now investigate the data locality properties of the 3D

orderings defined in Sec. 2. It is assumed that processing an

item at some location (i, j, k) in the array requires data from

neighbouring items in the array. This dependency can be

represented by a stencil, which is a list of array locations that

the processing of location (i, j, k) depends on. It is assumed

that the shape of the stencil is the same for all locations,

so it is only necessary to store the shape of the stencil

in terms of offsets from the stencil centre. For example,

a simple “star” stencil consisting of an array location and

the six directly adjacent locations would contain locations

with the following offsets: (0, 0,−1), (0,−1, 0), (−1, 0, 0),
(0, 0, 0)), (1, 0, 0), (0, 1, 0), and (0, 0, 1). For a row-major

ordering this would correspond to offsets in memory of

(−M2,−M,−1, 0, 1,M,M2) for all locations. However,

for Hilbert and Morton orderings the offsets in memory

would depend on location.

3.1 Common Stencils

A block stencil is a common stencil consisting of a (2g +
1)× (2g + 1)× (2g + 1) cubical block of array locations.

Another stencil of interest, particularly in molecular

dynamics simulations (see Sec. 4), is the approximately

spherical stencil. If the 3D array is viewed as consisting

of M ×M ×M spatial bins, each of unit size, then the

approximately spherical template consists of all bins that are

wholly of partially within a specified distance, g, of any of

the vertices of the stencil centre, where g is a positive integer.

The number of bins in the stencil is given by:

M0(g) = 1 + 6g + 12

g−1
∑

i=0

⌈

√

g2 − i2
⌉

+

8

g−1
∑

i=0

p−1
∑

j=0

⌈

√

g2 − i2 − j2
⌉

(6)

where p =
⌈

√

g2 − i2
⌉

. As g increases the volume of the

set of bins in the stencil progressively becomes a better

approximation to that of a sphere of radius g, and M0(g)
is shown for a few values of g in Table 2, together with the

percentage deviation from sphericity, given by:

1−
4π

3

g3

M0(g)

It should be noted that the deviation from sphericity

becomes less than 10% for g > 40.

g Number of bins, M0(g) Deviation (%)

1 27 84.49

2 125 73.19

3 311 63.63

4 613 56.27

5 1015 48.41

6 1689 46.43

7 2399 40.11

8 3449 37.82

9 4675 34.68

Table 2. Number of bins, and the percentage deviation from

sphericity.

3.2 Data Locality Metrics

It is assumed that each array location represents a spatial

bin containing a number of items that can be processed

independently. This processing depends on using (and

reusing) data within the nearby locations defined by the

stencil, and the memory locations at which the stencil data

are stored is determined by the ordering used. Some insight

into the relationship between data ordering and efficient use

of hierarchical memory can be gained by examining the

memory access patterns associated with a given stencil. For

a row-major ordering the memory access pattern for a given

stencil is independent of array location, but for Hilbert and

Morton orderings it is not. Therefore, we capture an overall

view of the memory access pattern by making a plot of

the memory offsets corresponding to a particular stencil and

ordering, accumulated over all array locations. Figure 6 show

the memory access patterns for a block stencil with g = 1 for

row-major, Hilbert, and Morton orderings of a 16× 16× 16
array. Memory offsets are accumulated over a 14× 14× 14
array as a border of depth g bins is required by the stencil.

The accumulated memory offsets for the 27 stencil bins in

the row-major case all equal 143 = 2744, and the correspond

to the offsets shown in Fig. 5, ranging from -273 to +273.

Clearly there is a greater degree of scatter in the memory

access patterns for the Hilbert and Morton orderings and

in both cases this extends beyond the limits of the x-axis

in Fig. 6. For the Hilbert ordering the memory offsets lie

between ±3767, and 13.3% are not included in Fig. 6. The

corresponding values for the Morton ordering are±3073 and

13.8%.

Figure 7 shows similar data to Fig. 6, but for a block stencil

with g = 3. Here a border of depth 3 is required, so memory

offsets are accumulated over a 10× 10× 10 array. As in the

g = 1 case the memory access patterns are more scattered

for the Hilbert and Morton orderings than for the row-major

ordering. For the Hilbert ordering the memory offsets lie

between ±3794, and 20.5% are not included in Fig. 7. The

corresponding values for the Morton ordering are±3129 and

22.0%.

Another way to view the data in Figs. 6 and 7 is in terms of

a histogram showing the cumulative fraction of bins within a

given absolute memory offset. This is shown in Figs. 8 and 9

for g = 1 and g = 3, respectively, and M = 16. For g = 1
only one third of the bins are within a memory offset of

199 for the row-major ordering, whereas for the Hilbert and

Morton orderings 0.817 and 0.787, respectively, of the bins

are within this memory offset. However, all of the bins are
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Figure 5. Memory offsets for a block stencil with g = 1.
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stencil with g = 1 and an array with M = 16. Note that the data

at offsets -1, 0, and +1 for the row-major case are obscured by

the Hilbert and Morton data.
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Figure 7. Accumulated memory offsets in bins for a block

stencil with g = 3 and an array with M = 16.

within a memory offset of 299 for the row-major ordering,

but the corresponding values for the Hilbert and Morton

orderings are 0.867 and 0.862, respectively. Thus, although

compared with the row-major case a higher proportion of

the bins are within a small memory offset in the Hilbert and

Morton cases, the reverse is true for larger memory offsets.

A similar trend can be seen in Fig. 9 for the g = 3 case

where all the bins are within a memory offset of 899 for

the row-major ordering, but only 0.795 and 0.780 are within

this offset for the Hilbert and Morton orderings. It is also

apparent from Figs. 8 and 9 that a higher proportion of bins

are within a given memory offset for the Hilbert ordering

compared with the Morton ordering, up to an offset of about

899, and after that the opposite is true.

Figures 8 and 9 indicate that for sufficiently small cache

sizes the largest fraction of the data needed to update the

items in a bin will fit into the cache for a Hilbert ordering,

followed by the Morton and row-major orderings; however,

for a large enough cache this is reversed. This suggests

that the performance benefits of the different orderings will

depend on the sizes of the different levels in the memory

hierarchy.
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Figure 8. Cumulative fraction of bins within a given memory

offset for a block stencil with g = 1 and an array with M = 16.

For each set of bars the range is from 0 up to the x-axis label.
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Figure 9. Cumulative fraction of bins within a given memory

offset for a block stencil with g = 3 and an array with M = 16.

For each set of bars the range is from 0 up to the x-axis label.

If the x-axis labels are replaced with cache sizes, then

Figures 8 and 9 can also be interpreted as hit rate curves;

that is, a plot of the probability of a cache hit as a function of

cache size. However, a more accurate estimate of the hit rate,

and the number of cache lines transferred into cache within

a given time period, requires more dynamic modelling. In

our simple cache model bins are stored in memory in some

prescribed order (row-major, Hilbert or Morton order). The

size of each cache line is b bins, and main memory is viewed

as being divided into blocks of size b. Whenever a bin is not

found in cache the block in main memory containing that

bin is moved into the cache. It is assumed that the cache can

contain a maximum of c blocks, or cb bins, and whenever the

cache is full and a cache miss occurs, then the least recently

used (LRU) block is ejected from the cache. For each bin in

the array the corresponding stencil bins are accessed and the

number of cache misses is recorded. An outline of the simple

cache model is given in Alg. 1, where it should be noted that

only bins not in the border zone of depth g are considered.

The parameters of the cache model are the ordering, the

stencil type and size, g, the size of the 3D array, M , the

cache block size, b, and the number of blocks in the cache,

c. A number of cache models have been run and these show

some common characteristics. For example, Figs. 10 and 11

show miss rate plots for M = 32, a block stencil with g = 1,
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ALGORITHM 1: cacheModel: high level view of the cache

model. The functions path2RMO and RMO2path convert between

a location in the ordering and the row-major index.

Function cacheModel(ordering,stencil,M,g)
Input: ordering , stencil , integers M and g defining size of

the array and the stencil.

Output: The number of cache misses nmisses .

nmisses = 0
foreach (location, ipath, in ordering) do

ibin = path2RMO (ipath)

if (ibin not in border zone) then

foreach (stencil location, sbin) do

jbin = ibin + stencil [sbin]

jpath = RMO2path (jbin)

if (!inCache (jpath)) then

nmisses++

addBlock2Cache (jbin)

end

end

end

end

return nmisses

end

and cache block sizes of b = 2 and b = 8 bins, respectively.

In both plots in can be seen that in the row-major case, the

miss rate tends to stay constant for a range of cache sizes,

and then decreases in steps as the cache size increases. This

decrease occurs whenever the cache is large enough to hold

an additional complete row of bins. The miss rate for the

Hilbert and Morton cases does not exhibit this behaviour as

they are not ordered by row. Figure 10 shows that for small

cache sizes the miss rate is highest for the Hilbert ordering,

but for cache size between c = 64 and c = 1024 the miss rate

is lowest for the Hilbert case, closely followed by the Morton

case, with row-major ordering having the highest miss rate.

Figure 11 also shows that the ordering with the lowest miss

rate depends on the cache size. Similar behaviour is seen for

approximately spherical stencils: for example, Fig. 12 shows

the miss rate for M = 32, an approximately spherical stencil

with g = 3, and b = 8. Finally, Fig. 13 shows the miss rate

data for M = 64, a block stencil with g = 1, and b = 8. Once

again it is apparent that the ordering with the lowest miss rate

depends critically on the cache block size, b, and the overall

cache size, c.
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Figure 10. Miss rate as a function of cache size, c, for a block

stencil with g = 1, an M = 32 array, and a cache block size of

b = 2 bins.
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Figure 11. Miss rate as a function of cache size, c, for a block

stencil with g = 1, an M = 32 array, and a cache block size of

b = 8 bins.
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Figure 12. Miss rate as a function of cache size, c, for an

approximately spherical stencil with g = 3, an M = 32 array,

and a cache block size of b = 8 bins.
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Figure 13. Miss rate as a function of cache size, c, for a block

stencil with g = 1, an M = 64 array, and a cache block size of

b = 8 bins.

4 Molecular Dynamics Simulations

A molecular dynamics simulation follows the trajectories of

a set of n mutually-interacting particles through a series of

discrete time steps, given the initial positions and velocities

of all particles. In each time step, the force on each particle

is found by summing over the forces due to all the other
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particles, so the force on particle i is:

Fi =
n−1
∑

j=0

j 6=i

fij (7)

where fij is the force on particle i due to particle j. The

force Fi is then applied to the particle i, thereby modifying

its position and velocity. Given two particles, i and j, at

positions ri and rj , respectively, the force exerted on particle

i by particle j is given by:

fij(rij) = −
∂V

∂r

∣

∣

∣

∣

r=rij

r̂ij (8)

where V (r) is the interaction potential, rij = |ri − rj |, and

r̂ij = (ri − rj)/rij is a unit vector.

A number of different models have been developed to

represent the potential between particles in a molecular

dynamics simulation. Here we shall consider just the

Lennard-Jones potential:

V (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(9)

where r is the separation between the particles, σ is the

separation at which the potential is zero, and −ǫ is the

minimum potential, which occurs at r = rm = 21/6σ. Thus,

for the Lennard-Jones potential the force is:

fij(rij) =
12ǫ

rij

[

(

rm
rij

)12

−

(

rm
rij

)6
]

r̂ij (10)

If the particle separation is greater than rm the particles

are attracted, and if the separation is less than rm they are

repelled. For brevity, we write fij(rij) as fij , and since

rij = rji and r̂ij = −r̂ji, it follows that fij = −fji, in

accordance with Newton’s Third Law. This can be used to

reduce the number of computations needed to find Fi for i =
0, 1, . . . , n− 1 by about 50%, since when fij is calculated

and added to Fi we can also add −fij to Fj .

4.1 Particle Binning

Finding the force on each particle by summing over all the

other particles is an O(n2) algorithm. To reduce the amount

of computation it is usual to impose a cutoff condition in

which the force, fij , between two particles is taken as zero

if rij ≥ r0, where r0 is known as the cutoff distance. This

avoids having to evaluate fij using Eq. 10 when rij ≥ r0,

but it is still necessary to find rij for every pair of particles,

so the algorithm is still O(n2). To reduce the computational

complexity the particles may be placed in spatial bins. Thus,

the spatial domain of the problem is divided into a set of

equally-sized bins, and we keep track of which particles are

in each bin. To evaluate the force on a particle it is necessary

to sum over only those particles that lie within the same

bin and some set of nearby bins, rather than over all the

particles. For example, if the bins are of size r0 × r0 × r0,

then to evaluate the force on particles in some bin, ibin, it is

necessary to examine only those particles in the same bin

and the 26 adjacent bins (for a 3D problem) because we

know that particles in more distant bins must be more than

r0 from each of the particles in ibin. This type of binning

corresponding to a block stencil with g = 1, as discussed in

Sec. 3.1, and as noted in Table 2, on average only a fraction

4π/81 of the interparticle distance calculations will have

rij ≤ r0, so nearly 85% of the distance computations can

be viewed as wasted, in the sense that they do not contribute

to the force computation. The wastage can be decreased by

making the bin size smaller (by increasing g) and/or by using

an approximately spherical stencil in place of a block stencil.

In general, the particles are stored in a one-dimensional

array indexed from 0 to n− 1, and the bins are represented

by a three-dimensional array of size M ×M ×M . For each

bin it is necessary to keep track of which particles it contains.

Larger values of M reduce the number of “wasted” distance

computations for which rij > r0, but requires more memory.

4.2 Neighbour Lists

Although decreasing the bin size improves computational

efficiency, it increases the number of bins, and the amount

of memory, required. Another approach is to maintain for

each particle a neighbour list (also known as a Verlet list)

of other particles that includes all those within a distance

r0. Then, when evaluating the force on a particle it is

necessary to consider only those particles in its neighbour

list. This requires memory nm, where m is the maximum

number of neighbours that any particle has. In addition, to

the extra memory needed, there is overhead in creating and

maintaining the neighbour lists that adds to the execution

time. To reduce this overhead the neighbour lists are rebuilt

every tb times steps, instead of at every time step. This

necessitates adding a “skin” of depth rs to the cutoff distance

and building the neighbour lists to include all particles within

distance r0 + rs. This will yield correct results provided no

particle j can travel from a distance rij > r0 + rs away

from particle i to within a distance rij < r0 in tb (or fewer)

time steps. This can be ensured by making rs sufficiently

large and tb sufficiently small. A larger value of rs will

allow more time steps between rebuilding the neighbour lists,

thereby reducing overhead, but will require more memory.

A naive approach to building the neighbour lists will result

in an O(n2) algorithm, however, this can be avoided by

using a spatial binning procedure similar to that described

above. Thus, the neighbour list for each particle is built

by considering only those particles in bins within a stencil

centred on the bin containing that particle. If the bins are

cubes of size rb, then a stencil with g = ⌈(r0 + rs)/rb⌉ is an

appropriate choice.

In Sec. 4 it was pointed out that Newton’s Third Law can

be used to reduce the operation count in evaluating the force

on the particles. If this is not done we have the full-neighbour

list case, and particles in all all stencil bins are considered

as potential neighbours. If Newton’s Third Law is exploited

we have the half-neighbour list case, and care must be taken

to avoid counting any interaction between particles twice. In

the half-neighbour list case, particles in the following stencil

bins are checked for inclusion in the neighbour list:

1. All bins with iz > 0
2. If iz = 0, all bins with iy > 0, or iy = 0 and ix > 0.

where −g ≤ ix, iy, iz ≤ g are indices to bin locations in the

stencil. Thus, the number of stencil bins examined in the half
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neighbour list case is:

1 + 3g + 6g2 + 4g3 (11)

iz = 0

X X X X X

X X X X X

X X 0 1 2

30 31 32 33 34

P 63 64 65 P

iz = 1

P 959 960 961 P

990 991 992 993 994

1022 1023 1024 1025 1026

1054 1055 1056 1057 1058

P 1087 1088 1089 P

iz = 2

P P P P P

P 2015 2016 2017 P

P 2047 2048 2049 P

P 2079 2080 2081 P

P P P P P

Figure 14. The numbered bins show the approximately

spherical stencil for a 32× 32× 32 array of bins with

r0 + rs = 2.8 and rb = 2.067, so that g = 2. The value iz

labels the z plane. Half-neighbour lists are used so bins in the

iz = −2 and iz = −1 planes are excluded by the

half-neighbour list algorithm, as also are the bins marked X in

the iz = 0 plane. Bins marked P are bins that would be

included in a block stencil but which are excluded by the

distance constraint in the approximately spherical stencil. The

distance constraint is shown in red for each plane.

4.3 Periodicity and Ghost Particles

Periodicity of the spatial domain can be applied to a

molecular dynamics simulation by surrounding the array of

bins that cover the spatial domain by a layer g bins wide

in each direction. These extra bins contain copies of the

particles that lie within g bins of the edge of the domain, as

shown in Fig. 15 for a slab of bins in the z plane for g = 2.

These particle copies are usually called ghost particles. Since

the force on a particle does not depend on velocity, only

the position data needs to be stored for a ghost particle,

and periodicity requires that the domain size needs to be

added to, or subtracted from, one or more of the x, y, and z
coordinates. For example, consider the three bins labelled CE

in Fig. 15. The ghost particles in the lower-left one of these

have the same position coordinates as the corresponding

particles in bin E, expect that the domain size is subtracted

from their x coordinate. This ensures the correct answer

is obtained when evaluating the distance between ghost

particles and “real” particles in unshaded bins. Similarly, for

the upper-right bin labelled CE, the domain size must be

added to the y coordinate, and for the upper-left CE bin the

domain size must be added to the y coordinate and subtracted

from the x coordinate. Once the ghost particles in the extra

bins are in place, the force on the particles in the unshaded

bins can be evaluated by processing the bins enumerated by

the stencil.

4.4 Sorting Particles

If particles are processed in a loop in random order, then

data locality is expected to be poor. If, however, particles

are processed in the order that they are created at the start

of the simulation, data locality may be better, particularly if

the particles initially have a crystalline structure. However,

as the simulation progresses and particles move, data locality

will degrade as the ordering becomes less spatially coherent.

An alternative approach is to process particles by bins by

means of an outer loop over bins and an inner loop over the

particles in a particular bin. This is likely to improve data

locality since the neighbours lists of particles in the same bin

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X Y

C C C C C

C C C C C

A B C D E

F G H I J

C C C C C

C C C C C

P Q R S T

U V W X Y

C C

C C

C C

C C

C C

C C

C C

C C

C C

S T

X Y

D E

I J

N O

S T

X Y

D E

I J

C C

C C

C C

C C

C C

C C

C C

C C

C C

P Q

U V

A B

F G

K L

P Q

U V

A B

F G

Figure 15. The domain of the problem is covered by a 5× 5
array of bins, shown unshaded and labelled A to Y. The grey

bins are periodic copies of bins within two bins of the edge of

the domain. Thus, bin CA is a copy of bin A, and similarly for

the other grey bins.

will overlap. However, data locality can be directly improved

by sorting the particles so that:

1. Particles in the same bin are nearby in memory.

This requires that the particles be re-indexed so that

particles in the same bin are consecutively indexed.

2. Particles are also sorted according to the bin ordering

so that the particles for one bin are followed in memory

by the particles in the next bin in the ordering, and so

on.

Particle sorting affects the order of computation, and is

expected to improve data locality both when the outer loop

is over particles and when it is over bins. Particles are sorted

every ts times steps, where ts is chosen to balance the gain

from improving data locality against the overhead of doing

the sorting.

5 GPU Implementation of a Molecular

Dynamics Simulation

Graphical processing units (GPUs) are mainly designed for

render-intensive graphical applications and computer games.

However, the massive computing power of GPUs, coupled

with their low cost, large memory, and low electrical power

requirements, has led to the implementation of scientific

applications on GPUs. The continuous advances in GPU

technologies, such as multi-GPU clustering, connectivity

to InfiniBand networks to support hybrid CPU/GPU

implementations, and host memory mapping, have resulted

in GPUs and other accelerators being widely adopted in high-

performance computing. GPUs have different hierarchical

levels of memory, varying from model to model, with

different bandwidths and capacities. Frequent access to

global memory results in a significant impact on application

performance, so there are substantial benefits in reusing data

stored in the higher levels of the memory hierarchy. Global

memory is the lowest level of memory on a GPU, and

accessing it incurs hundreds of clock cycles of latency, which

may be hidden by dynamically scheduling other runnable

threads while the original thread waits for its memory

operations to complete. If data are not carefully ordered in

memory, applications may fetch data from global memory

into a higher level cache, but leave a number of related data

items in the global memory, which then requires another

request to fetch into cache. This type of inefficient use of
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hierarchical memory increases the execution time. Other

additional factors, such as cache sizes, synchronization, warp

size, and thread divergence, also impact execution time.

The data locality properties of row-major, Hilbert,

and Morton orderings have been investigated for a

GPU implementation of the miniMD molecular dynamics

simulation. The miniMD package29 is a simplified version of

the well-known LAMMPS simulation package †, with both

packages sharing the same solution methods. In particular,

both use a combination of neighbour lists and spatial binning

as discussed in Sec. 4, and support periodicity through the

use of ghost particles. Full and half neighbour list algorithms

may be used to determine the force exerted on each particle

due to the other particles. miniMD supports the embedded

atom model and Lennard-Jones potentials. In this work, data

locality issues are studied for the Lennard-Jones case.

In each time step the computation of the force on

the particles is the most computationally intensive phase.

Therefore, we focus on the performance of the force

computation, where the force on each particle is computed

by a different thread on the GPU. An alternative approach

would be to have each thread process a single bin so that

all the particles in that bin would be processed by a single

thread. This would result in less parallelism, and since bins

may contain differing numbers of particles load imbalance

would also be an issue.

When computing the force on particle i, force fij exerted

on i by each particle, j, in its neighbour list that lies within

the cutoff distance r0 is found and added to the total force

on particle i. In the half neighbour list algorithm −fij is

also added to the total force on particle j. This reduces the

number of computations but, since multiple threads may be

concurrently updating the total force on a particle, a naive

implementation results in a non-deterministic program. This

problem does not arise in the full neighbour list case as each

thread updates the force only for the particle it is responsible

for. Thus, in the half neighbour list case the thread handling

particle i must update the total force for particle j atomically.

The force computation in miniMD also involves the

computation of macroscopic quantities, namely, the virial

coefficient and the total potential energy. These computations

require reduction operations in the loop over particles.

Performing a reduction operation efficiently on a GPU is

complicated by the fact that threads cannot be synchronized

across all thread blocks. Typically partial sums are computed

for each thread block using a tree-based algorithm or atomic

addition. These partial sums must then be added together,

which can be done either on the host or by invoking another

kernel on the GPU or by having just one thread do the

addition. The summations needed to find the viral coefficient

and potential energy do not take much time compared with

the computation of the inter-particle forces, but care must be

taken to ensure they are done correctly.

6 GPU Performance Results and Analysis

The work presented in this paper was conducted on an

NVidia GeForce GTX 960 with compute capability 5.2, eight

streaming multiprocessors (SMP) and 128 cores per SMP.

The maximum number of threads per block is 1024. The

unified L1/texture cache is of size 48KB, and the L2 cache is

1MB. If the data for a particle consists of position, velocity

and force vectors then the memory required per particle is 36

and 72 bytes for single and double precision, respectively.

Thus, at single precision 1365 particles would fit into the

L1 cache, and 29127 particles would fit into the L2 cache.

Suppose, for example, that there are a maximum of 12

particles per bin, then about 112 bins would fit into L1 cache

and 2400 bins would fit into L2 cache. Assuming a cache line

size of 128 bytes, only about 3 particles fit within a cache

line.

The host computer for the GPU contains an 8-core Intel

Core i7-5960X processor with a 20MB cache.

In Lennard-Jones units, the input parameters used were

σ = 1.0, ǫ = 1.0, time step = 0.005, initial temperature =

1.44, and density = 0.8442. Neighbour lists were updated

every 20 time steps, the cutoff distance was r0 = 2.5, and

the skin thickness was rs = 0.3.

6.1 Profiling

Timing experiments were first carried out to demonstrate that

the force computation dominates the run time, as may be seen

in Figs. 16 and 17. In all cases, a row-major ordering was

used, and the GPU timings for the force computation include

the time to transfer particle data between the host and the

GPU in each time step. For the CPU timings in Fig. 16 the

ratio of force computation time to total simulation time is

consistently about 80% for both the half and full neighbour

list cases. For the GPU timings in Fig. 17 the ratio decreases

as the problem size increases. This is because the neighbour

lists are managed on the host and the processing time for

this increases more rapidly than for the force computation

on the GPU. On the CPU the force computation time for

the half neighbour list case is about 60% of that for the full

neighbour list case. For the GPU the difference is much less,

because the gain from performing fewer operations in the

half neighbour list case is offset by the need to accumulate

forces atomically.

Figure 16. Total simulation time and force computation time for

the CPU implementation, accumulated over the first 100 time

steps, for different problem sizes, N . Times are shown for the

half and full neighbour list algorithms. Note that the total height

of each column is the total time for the simulation.

Ratios of the times for the force computation on the CPU

and the GPU are shown in Table 3. The ratio tends to increase

†https:/lammps.sandia.gov
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Figure 17. Total simulation time and force computation time for

the GPU implementation with 1024 threads per block,

accumulated over the first 100 time steps, for different problem

sizes, N . Times are shown for the half and full neighbour list

algorithms. Note that the total height of each column is the total

time for the simulation.

slowly with problem size, N . The lower values for the half

neighbour list case are due to the atomic additions performed

in this case.

N
Row-major Hilbert Morton

Full Half Full Half Full Half

32 11.67 6.89 8.07 5.97 8.66 6.38

42 12.27 7.38 7.32 6.58 7.10 6.76

52 12.29 7.75 7.65 6.84 7.48 7.01

62 12.14 7.84 7.94 7.20 7.69 7.08

72 12.66 7.87 8.02 7.07 7.84 7.56

82 12.32 8.01 7.96 7.14 7.56 7.22

92 12.55 8.12 7.95 7.23 7.85 7.26

Table 3. Ratio of CPU to GPU time for the force computation.

In the GPU computations 1024 threads per block were used.

6.2 Locality Analysis

Timing experiments have been carried out to compare the

impact on performance of the force computation on the

GPU of the row-major, Hilbert, and Morton orderings. These

timings are for the execution of the kernel code on the GPU

and do not include the time to transfer particle data between

the host and the GPU.

Figures 19 and 20 show the time for the force computation

kernel per time step for differing thread block sizes, averaged

over the first 100 time steps, for the full and half neighbour

list cases, respectively. These figures show that the half

neighbour list algorithm results in faster execution than the

full neighbour list algorithm, particularly at larger problem

sizes. The timings for the full neighbour list case in Fig. 19

show that for all problem sizes and thread block sizes the

row-major ordering results in the fastest execution, with the

effect being more pronounced for larger problem sizes. For

all problem sizes, a thread block size of 1024 is fastest and

640 is slowest. A smaller block size increases the number of

registers available per thread, which would tend to improve

performance. However, it also decreases the number of warps

per block, which may lead to inefficient GPU utilization. The

results for the half neighbour list case in Fig. 20 also show

that a row major ordering results in the fastest execution,

although not by as large an amount as in the full neighbour

list case. Also, it was found that in this case a thread block

size of 576 was fastest, with 640 still being the slowest.

Figure 18 shows the relationship between thread grid

configuration, theoretical occupancy, and total execution

time for the full and half neighbour list cases. The problem

size is N = 92, although similar results were obtained

for other problem sizes. The theoretical occupancy is the

maximum number of warps that can execute on a streaming

multiprocesor of a GPU divided by the device limit, and is

affected by factors such as the number of threads per block,

the number of registers in use, and the capabilities of the

GPU. The half neighbour list case has an optimal theoretical

occupancy of 0.563, which is slightly lower than for the full

neighbour list case of 0.625.

256 512 768 1024

Block Size

1352

2704

4056

5408

Grid Size

0.160.310.470.63

Occupancy

29.25

58.49

87.74

116.99 Simulation Time

256 512 768 1024

Block Size

1352

2704

4056

5408

Grid Size

0.140.280.420.56

Occupancy

21.94

43.89

65.83

87.77 Simulation Time

Figure 18. Dependency of total execution time and theoretical

occupancy for different configurations of the thread grid for the

full (left) and half (right) neighbour list cases. The problem size

is N = 92.

To interpret the timings in Figs. 19 and 20 the nvprof

profiler has been used to collect data on execution of the

force computation kernel to gain insights into how efficiently

the GPU is being used. Profiling was done for a problem size

of N = 92 (3114752 particles), with 1024 threads per block,

for both the full and half neighbour list cases. The number of

cycles and the number of eligible warps are shown in Table 4.

An eligible warp is an active warp that is able to issue its

next instruction, in contrast to a stalled warp that is not able

to make progress.

Number Eligible

of Cycles Warps (%)

Row-major
Full 11.80× 109 7.5

Half 10.70× 109 10.3

Hilbert
Full 12.00× 109 7.3

Half 10.74× 109 10.3

Morton
Full 12.02× 109 7.4

Half 10.68× 109 10.3

Table 4. Number of active cycles and percentage of active

warps that are eligible per active cycle, for N = 92 and 1024

threads per block.

Table 4 shows that the number of cycles to execute the

force computation kernel is approximately 10-12% larger in

the full neighbour list case, compared with the half neighbour

list case. This is because the number of computations is

higher in the full neighbour list case. In addition, the

percentage of active warps that are eligible is only about

7.5% for the row-major and Morton orderings in the full

neighbour list case, but is larger in the half neighbour list

case: 10.3%. However, for Hilbert and Morton orderings the

percentage of eligible warps is less than for row-major order
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Figure 19. Full neighbour list algorithm: Time for execution of

force computation kernel on the GPU for one time step.

by 0.2 and 0.1, respectively, in the full neighbour list case

and they are the same for the half neighbour list case.

Further information on the cause of the stalled warps

in the force computation kernel is presented in Figs. 21

and 22. These figures show that warp stalls are mainly

dues to memory dependency and execution dependency.

Memory dependency stalls occur when a warp must wait for

a previous memory operation. In the full neighbour list case,

memory dependencies are the main reason for warp stalls,

accounting for 84-90% of all stalls, compared with a more

uniform value of 90% for the half neighbour list case. An

execution dependency stall occurs when an input required

by an instruction is not yet available. In the full neighbour

list case, execution dependencies account for 12 % and 14%
of stalls for Morton and row-major orderings, respectively,

but for only 9% of stalls for Hilbert ordering. In the

half neighbour list case execution dependencies consistently

account for 9% of stalls. It should be noted that there are no

synchronization stalls as the kernel code contains no explicit

synchronization.
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Figure 20. Half neighbour list algorithm: Time for execution of

force computation kernel on the GPU for one time step.

Warp execution efficiency is the ratio of the average

number of active threads per warp to the maximum number

of threads per warp supported on a multiprocessor. Warp

execution efficiency is affected by intra-warp divergence,

which occurs when threads in a warp execute different

control paths through a kernel, and by non-coalesced

memory accesses. Branch efficiency is the ratio of

executed uniform flow control decisions over all executed

conditionals, and thus gives a measure of divergence. The

warp execution and branch efficiency are shown in Fig. 23,

for problem size N = 92 and 1024 threads per block. Figure

23 shows that the warp execution efficiency is about 57% and

83%for the half and full neighbour list cases, respectively, for

all orderings. The branch efficiency is about 7-8% less in the

half neighbour list case, so intra-warp divergence accounts

for at least some of the lower warp execution efficiency in

this case.

A memory transaction is the movement of data between

two areas of memory. When accessing data it is more

efficient to do so with a smaller number of transactions.
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Figure 21. Full neighbour list case: Output from nvprof giving

the cause of warp stalling in the force computation kernel.
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Figure 22. Half neighbour list case: Output from nvprof giving

the cause of warp stalling in the force computation kernel.
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Figure 23. Warp execution and branch efficiency for the full

(upper plot) and half (lower plot) neighbour list algorithms.
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Figure 24. Number of memory transactions per access for the

full (upper plot) and half (lower plot) neighbour list algorithms.

When loading a data item for all the threads in a warp

from global memory to L2 cache the number of memory

transactions in the ideal case is

⌈

(Number of threads in a warp)× (Size of data item)

Size of cache line

⌉

Thus, if the number of threads in a warp is 32, the data

item size is 8 bytes, and the cache line size is 32 bytes, then

ideally 8 memory transactions are needed. Figure 24 shows

the actual number of memory transactions per access for the

following accesses in the force computation:

AC: Access an 8-byte coordinate value for a thread’s

particle.

NI: Access the 4-byte index of a particle from the

neighbour list.

NC: Access an 8-byte coordinate value for a particle in

neighbour list.

NT: Access the 4-byte type of a particle.

FUI: Access an 8-byte force component for a particle in

neighbour list (half neighbour list case only).

FUO: Access an 8-byte force component for a thread’s

particle.

Figure 24 shows that when accessing 8-byte doubles the

number of memory transactions per access is 2 to 3 times the

ideal number, and when accessing integers the corresponding

ratio is larger. Particles data is stored in arrays in coordinate

order. For example, the x, y, and z coordinates of particle i are

stored at indexes 3i, 3i+ 1, and 3i+ 2 of the position array,

so that the x values of successive particles are separated by

24 bytes and it is expected that accessing a single x value
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for all the threads in a warp should require 24 memory

transactions (and similarly for the y and z values). This is

the case for the AC, FUI, and FUO accesses in Fig. 24, but

for the NC accesses the value is slightly larger than 24 for

the full neighbour list case, and less for the half neighbour

list case. Larger values occur when not all the accesses for a

warp are in the same block of 32 bytes, and smaller values

occur when the neighbour lists for successive particles have

particles in common. Also the times for the NI, NC, and

NT accesses are smaller for the half neighbour list case,

possibly because fewer particles are processed in this case

which means particle data stays in L2 cache for longer.

In the Maxwell architecture the L1 and texture caches are

combined in a single unit referred to as “unified cache”, the

size of which is 48KB in this work, with a cache line size of

128 bytes. Since there are 32 threads per warp there are 1536

bytes for each thread. The position and force components

for a particle corresponds to six 8-byte values for a total

of 192 bytes, so ideally 6 particles per thread will fit into

unified cache. However, when data is accessed for neighbour

list particles this displaces data already in the unified cache,

reducing the hit rate. Note that the cache line size for L2

cache is 32 bytes. Figure 25 shows the following cache hit

rates for the force computation for the full and half neighbour

list cases:

• Unified: the cache hit rate for the unified cache, i.e.,

the percentage of accesses that are found in the unified

cache. Note that for the GPU used here, by default

read-only data are cached only in the unified cache.

• L2-R: the percentage of read requests (for data that is

not read-only) that are satisfied by the L2 cache.

• L2-W: the percentage of write requests that are

satisfied by the L2 cache.

• Global: the percentage of accesses to read-only data

not satisfied by the unified or L2 caches that result in

a direct read from global memory to unified memory

without going through L2 cache.

From Fig. 25 it can be seen that the hit rate for a row-

major ordering is slightly larger than for a Hilbert or Morton

ordering. The half neighbour list case has fewer misses to

unified cache, but more misses when writing to L2 cache.

7 Related Work

7.1 Space Filling Curves

In the late 19th century Peano proposed a continuous

mapping of points within the unit interval [0, 1] onto a subset

of a unit square. This can be viewed as projecting coordinate

points arranged in a 2n × 2n grid onto one dimension.

More recently, Sagan3,33 has presented an extensive study of

space filling curves and their applications, and there is an

extensive literature on generating multi-dimensional space

filling curves. For example, Hilbert curve generation covers

the following approaches :

• Using a predefined initial value or a computation of a

preceding state value, a state diagram, or a predefined

table of values4,21,41. The storage requirement of

this approach rises exponentially with the number of

dimensions. Similarly, tables of predefined values may
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Figure 25. Cache hit rates for the full (upper plot) and half

(lower plot) neighbour list algorithms.

be used to encode or map a multidimensional point

onto the Hilbert value, as in12,23.

• Using only computation, which generates the Hilbert

curve without using any predefined values, as in5,6.

This approach enables the mapping of any arbitrary

point to its location on the Hilbert curve. In this

approach, different implementation strategies have

been proposed to find the optimal performance for

generating the Hilbert curve, which can be classified

into algorithmic and bit-manipulation techniques.

A comprehensive study of 3-dimensional Hilbert curves

has been conducted by Haverkort14,15,32. Haverkort’s work15

examines a number of Hilbert curves and how their

various paths can be generated. According to Haverkort,

there are a number of curves that may have better data

locality than the general Hilbert curve. Lawder21 has also

investigated the encoding and decoding of multi-dimensional

Hilbert curves. This work has proposed an inverse mapping

from n-dimensions, and enhanced the encoding procedures

suggested by Butz5,6. Chen7 proposed mappings based on

a replication process of the Hilbert square matrix rather

than the bit-processing technique proposed by Fisher12.

Liu and Schark12 have implemented rotation matrices

and vector functions in their three-dimensional Hilbert

encoding/decoding approach. Feng et al.11 investigated

the GPU performance of two-dimensional Hilbert curve

generation algorithms that are based on a block matrix

iteration method and a state diagram method.

The Hilbert curve has been adopted in various applications

as an approach to compress multiple keys, weights, or data

in order to search or store the data. For instance, in database

management where multi-dimensional points have to be
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sorted into a one-dimensional structure10. In addition, the

Hilbert curve has been applied widely in other application

areas as described by Zhang41, where it is used to perform a

fast scan of an arbitrarily-sized cuboid region.

The literature on Morton orderings has been reviewed by

Sagan33. The Morton ordering is simpler than the Hilbert

curve, and its path changes from one dimension to another

every two steps along the path. Thus, the nodes at the end of

a linear segment and the first node at its subsequent segment

are not adjacent. Morton encoding and decoding algorithms

have been studied by Raman and Wise30 and have been

used to partition matrices into blocks for optimal memory

hierarchy utilization. Morton order has been adopted for

constructing linear quad-trees and to restructure matrices

into one-dimensional arrays18,35,39. Most of the literature that

uses Morton orderings is for partitioning matrices into blocks

or tiles for mathematical applications.

Morton orderings to improve data locality in tiled

matrix algorithms has been investigated by Evangelia

and Nectarios2 by restructuring the memory layout of

multidimensional arrays using binary mask operations. In

this study, data are divided into blocks that can be processed

independently of other blocks; this is not the case in

molecular dynamics simulations where evaluating the force

on a particle requires data from other cells. A number of

studies have been conducted that use space-filling curves for

data tiling, especially with multidimensional matrices2,34,38,

to map the multidimensional iteration indices to a linear

index space.

Performance evaluation of canonical (row-major and

column-major) and Morton layouts on various CPU

platforms has shown that Morton ordering gives consistent

performance and its mapping approach makes it a

competitive memory layout37.

7.2 Data Ordering in Molecular Dynamics

Simulations

Different molecular dynamics simulations are designed to

address specific objectives according to the computational

accuracy, simulation time, and inter-particle forces used.

Therefore, GPUs are increasingly used to reduce execution

time due to their hardware featues, for which molecular

dynamics simulations may be optimized. Hou et al.16 and

Juekuan et al.40 have investigated molecular dynamics

simulations with Lennard-Jones and Tersoff potentials,

respectively, on GPUs. However, they consider only the solid

phase in which the neighbour lists are fixed, which avoids the

need to periodically re-create them.

The work of Meloni et al.26 seeks to improve locality

of reference by re-ordering particles to transform the sparse

interaction matrix to a banded matrix. Element (i, j) of the

interaction matrix is 1 is particle i interacts with particle

j, and is 0 otherwise. This re-ordering may be done with

the Reverse Cuthill-McKee (RCM) algorithm, however, an

improved algorithm is based on the linked-cell approach in

which particles in the same cell are labelled consecutively

and cells are ordered in row-major order. Meloni et al. found

that this ordering produced a higher degree of clustering

in the elements of the interaction matrix compared with

the RCM algorithm, thereby improving data locality and

performance. Luo and Liu24 have sought to improve data

locality by storing, for a given cell Ic, the position data of

all particles in Ic and its surrounding cells in a temporary

array. This is similar to creating a temporary neighbour list

for a cell, rather than for individual particles. Its effectiveness

is determined by the trade off between the overhead in

creating the temporary list for each cell and the performance

gain from the improved data locality. Gonnet13 addresses

the large memory requirements of storing a neighbour list

for each particle by means of pseudo-Verlet lists. Particles

are processed by cell, with particles in one cell interacting

with those in neighbouring cells. The construction of a

pseudo-Verlet list involves sorting particles in each pair of

neighbouring cells along a line connecting their centres.

These sorted lists are then used to determine if two particles

interact, rather than using traditional neighbour lists that

stores every potentially interacting pair of particles: in fact,

the storage requirement for pseudo-Verlet lists in three-

dimensional simulations is only 13 times the number of

particles.

Anderson, Lorenz, and Travesset1 were among the

first researchers to fully implement molecular dynamics

simulations on a GPU using CUDA. They present

performance results for Lennard-Jones fluids and polymer

systems, and show that GPUs are a cost-effective alternative

to the use of CPU clusters. They also use a Hilbert ordering

for particles, which was found to reduce execution time in

comparison with randomly ordered particles. More recently,

Tang and Karniadakis36 have developed an optimized

molecular dynamics simulation code based on the LAMMPS

application. This hybrid parallel code uses MPI on the CPUs,

and each MPI process handles a single GPU. Cells, and

particles within cell, are indexed in Morton order. Streaming

is used to hide the latency of communication between CPUs

and GPUs, and of kernel launch. Shared memory and a warp-

centric programming model is used on the GPU to enhance

performance.

The GPU performance of molecular dynamics simulations

with Tersoff, embedded-atom model and Lennard-Jones

potentials has been compared by Minkin et al.27. The

implementation uses OpenCL, and computes neighbour lists

and particle forces on the GPU. However, it is not clear how

frequently the neighbour lists are updated, and the number

of particles considered (up to 16000) is smaller than the

simulations considered here.

The use of Hilbert and Morton orderings to enhance

data locality for molecular dynamics and other irregular

applications has been investigated by Mellor-Crummey,

Whalley and Kennedy25. Their simulated results for a uni-

processor workstation show that reordering both the data and

computations using a Hilbert curve can significantly reduce

the number of L1 cache, L2 cache, and TLB misses, thereby

reducing the number of execution cycles.

Kunaseth et al.20 have investigated how the data

fragmentation ratio, Nfrag , defined as the fraction of

particles in a molecular dynamics simulation that have

moved out of their original cell, affects the number of data

translation lookaside buffer (DTLB) misses. At the start of

the simulation the particles in a cubical cell of size r0 are

sorted, so they are contiguous in memory and Nfrag = 0.

However, as the simulation progresses some particles will

Prepared using sagej.cls



Al-Kharusi and Walker 15

move out of their original cell, causing Nfrag to increase.

This effect is more marked at higher temperature. Kunaseth

et al. show that in a low viscosity liquid the value of

Nfrag and the DTLB miss rate both increase with the

number of times steps, which accounts for the increase

in execution time per time step. The use of Hilbert and

Morton ordering for cells is also considered, but was found

to make little difference to the execution time on the Intel

Core i7 processor used in their experiments. Kunaseth et

al. also show that there is an optimal frequency of particle

re-ordering, which depends on temperature.

An alternative to the stencil-based approach to building

neighbour lists has been proposed by Howard et al.17. They

make use of a linear bounded volume hierarchy (LBVH) for

computing neighbour lists, which partitions nearby particles

into axially-aligned boxes. These boxes are then enclosed

in larger boxes, and so on, to form a hierarchy, which

can be represented by a tree. When building a particle’s

neighbour list certain branches of the tree can be ignored

because the corresponding boxes are too far apart. Howard et

al. compare GPU implementations of the stencil and LBVH

approaches to building neighbour lists, and find that the latter

is significantly faster for colloidal systems characterised by

large size disparities.

Wu, Zhang and Shen19 have proposed the use of

asynchronous data transformations to speed up the task of

reordering the data in irregular dynamic applications. This

is done by using a helper thread to analyse the interaction

list (this is a list of pairwise interactions between particles).

Based on this analysis the helper thread provides a new

particle ordering to the master thread, where most of the

computation takes place. The helper and master thread are

coordinated through a shared variable protected by a lock. To

ensure program correctness, the actual reordering of particles

is done by the master thread after a new ordering has been

determined by the helper thread. Likewise, the helper thread

will start to analyse the interaction list after a new one has

been made available by the master thread. This approach

hides some of the overhead associated with data ordering.

Wu, Zhang and Shen have also demonstrated the use of

a GPU in performing data transformations. They view the

data locality optimization problem as a graph partitioning

problem. Particles correspond to nodes in the graph, and

those that interact are connected by an arc. The partitioning

algorithm places nodes in clusters containing nodes that are

close in the graph topology.

7.3 Efficient Access to Hierarchical Memory

on GPUs

The memory hierarchy of different GPUs, and its

impact on an application’s performance, varies from one

vendor/architecture to another. However, they have a number

of optimization principles in common, which may be

summarised as follows8,31:

• Optimize high level memory utilization: this can

be achieved by data ordering, coalesced memory

access, and the order of computation of operations.

However, the limitations of GPU memory size, the fine

granularity of running threads and available resources,

and the level of data sharing between threads, are

obstacles to achieving data reuse in the upper levels

of memory, which are embedded on-chip.

• Coalesced access to relevant data significantly

enhances computation performance due to the GPU’s

capability to apply the same instruction to multiple

data. However, this is not possible for algorithms that

use divergent control flow to access different data or

branches of the algorithm. In addition, coordinating

the memory accesses of different threads leads to

better performance.

• Synchronization limits parallel execution speed.

• Increasing the number of threads allows the latency

of global memory accesses to be hidden. However,

this might increase contention for scarce resources

such as with local variables and registers. Theoretical

occupancy can help to indicate the best configuration

for the grid of threads, but it is not guaranteed that this

will provide optimal performance.

8 Conclusions and Future Work

The use of row-major, Hilbert, and Morton orderings in

storing data and sequencing computations in molecular

dynamics simulations has been investigated as a mechanism

for efficiently accessing hierarchical memory on a GPU. At

each time step each particle interacts with particles stored in

its neighbour list, which is periodically updated. The simple

cache model in Sec. 3.2 shows that Hilbert and Morton

orderings appear to have better spatial data locality than

a row-major ordering as stencil bins are more clustered

in memory about the stencil centre. However, Hilbert and

Morton orderings have a long “memory tail” in the sense

that 10-20% of stencil bins are further away in memory than

any of the stencil bins in the row-major case. This suggests

that the performance benefits of the different orderings will

depend on the sizes of the different levels in the memory

hierarchy and the cache line sizes. This is also apparent from

the miss rates determined from the cache model.

The force computation dominates the execution time of

molecular dynamics simulations, and observed timings for

the force computation on the GPU for a range of problem

sizes are consistent with the results of the cache model:

in general, a row-major ordering results in slightly faster

execution than Hilbert and Morton orderings (see Sec. 6.

This can be accounted for by the slightly higher L2 cache

hit rates for row-major orderings, as shown in Fig. 25.

Although the cache model shows that stencil bins are

more clustered about the stencil centre in the Hilbert and

Morton cases than for the row-major case, the small size

of the unified cache and the large number of interactions

per particle results in a lot of “churn” at this level in the

memory hierarchy. This reduces the impact that the data

locality properties of the different data orderings.

Future work will extend the timing experiments and

analysis to other NVidia GPUs and a broader range of

molecular dynamics simulations. In addition, we shall

investigate the impact of by-passing the unified cache so that

only the L2 cache is used.
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