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Purpose: The compartmental nature of brain tissue microstructure is typically studied
by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on sig-
nal representations or biophysical models, while MR relaxometry and correlation
studies are based on regularized inverse Laplace transforms (ILTs). Here we intro-
duce a general framework for characterizing microstructure that does not depend on
diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS).
This framework yields proton density, relaxation times, volume fractions, and signal
disentanglement, allowing for separation of the free-water component.

Theory and Methods: Diffusion experiments repeated for several different echo
times, contain entangled diffusion and relaxation compartmental information. These
can be disentangled by BSS using a physically constrained nonnegative matrix
factorization.

Results: Computer simulations, phantom studies, together with repeatability and
reproducibility experiments demonstrated that BSS is capable of estimating proton
density, compartmental volume fractions and transversal relaxations. In vivo results
proved its potential to correct for free-water contamination and to estimate tissue
parameters.

Conclusion: Formulation of the diffusion-relaxation dependence as a BSS problem
introduces a new framework for studying microstructure compartmentalization, and a
novel tool for free-water elimination.
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1 | INTRODUCTION

More than 50 years have passed since Stejskal and Tanner
published their early research on pulsed gradient spin-echo.1

Thereafter, diffusion weighted imaging became an essential
tool for nondestructive tissue microstructure characterization.
The pioneering studies on ex vivo tissue and simulations of
Krägger,2 Latour et al.,3 Szafer et al.,4 and Stanisz et al.5

established the theoretical basis of the compartmental model
of neural tissue.

These early contributions were later translated to target
specific biomarkers for in vivo human studies. White matter
(WM) anisotropy became fiber orientation with the introduc-
tion of diffusion tensor imaging (DTI).6 The composite hin-
dered and restricted model of diffusion MR imaging
(CHARMED)7 extended DTI to two compartments with
restricted and hindered diffusion behavior. Using the same
principles, the neurite orientation dispersion and density
imaging (NODDI) model8 introduced fiber orientation dis-
persion metrics and added an isotropic compartment. Addi-
tionally, axon diameter was addressed by AxCaliber9 and
ActiveAx.10 These and other approaches rely on diffusion
signal representations or a variety of geometric biophysical
assumptions about the underlying tissue compartments, pro-
ducing a wide range of possible configurations.11

In parallel with the development of multicomponent dif-
fusion tissue models, relaxometry addressed the compart-
mental nature of tissue microstructure from a different
perspective.12 Multi-echo spin echo (SE) experiments com-
bined with regularized inverse Laplace transforms (ILTs) for
multi-exponential fitting showed the presence of multiple
water compartments in the tissue. Nonnegative least squares
(NNLS)13 is the current gold standard for computing a regu-
larized discrete ILTs for several components.14,15 Alterna-
tively, the exponential analysis via system identification
using Steiglitz-McBride (EASI-SM) for multicomponent esti-
mation was introduced by Stoika et al.16,17 Additionally,
mcDESPOT,18 used a spoiled gradient-recalled echo and a
balanced steady-state free precession to yield relaxation, vol-
ume fraction, and water exchange parameters for three
compartments.

Nevertheless, the paths of diffusion MRI and MR relax-
ometry have become entangled over the years. Studies on ex
vivo nerves with a diffusion-weighted Carr-Purcell-Mei-
boom-Gill (CPMG) sequence19,20 showed the relationship
that existed between compartmental T2 decay and diffusivity.
However, diffusion-weighted CPMG experiments need long
acquisition times and high specific absorption rates, which
makes them unsuitable for human in vivo studies. Typically,
two-dimensional ILTs were used to fit the data, but this
approach is highly ill-posed and requires large amounts of
data for stabilization. Recently, Benjamini et al.21 introduced

the marginal distributions constrained optimization
(MADCO), a nonCPMG compressed-sensing based solution
that reduced the amount of data necessary for NMR diffu-
sion–relaxation correlation experiments. Kim et al. translated
diffusion–relaxation correlation spectroscopy (DR-
COSY)22,23 into imaging (DR-CSI)24 using spatial regulari-
zation to reduce the amount of necessary data and stabilize
the ILTs. However, they require specific diffusion protocols
with increasing b-values along a unique diffusion direction
and repeated echoes or inversion times. Other alternatives
combine diffusion models with multicompartmental relaxa-
tion. For instance, inversion recovery diffusion weighted
imaging has been used to identify fiber populations,25,26 and
WM integrity has been characterized using the axonal stick
model and multiple echo times (TE).27

Compartmental analysis of the diffusion signal is inti-
mately related to a recurring issue: cerebrospinal fluid (CSF)
or free-water contamination.28,29 All the existing contribu-
tions agree on using a bi-tensor signal model: parenchyma
and CSF. However, this is an ill-posed problem for a single-
shell and ill-conditioned for multiple-shell acquisitions.30

Spatial regularization was proposed by Pasternak et al.,31

relying on the local smoothness of the diffusion tensor. Later,
a protocol optimization for multiple shells was presented by
Hoy et al.,32 eliminating such a constraint. Other solutions
regularize the problem by adding priors33 or finding the best
fit to the model.34 Nevertheless, the CSF contribution to the
diffusion signal depends on the TE. Thus, disentangling the
tissue CSF volume fraction requires an approach that
includes T2 compartmental dependencies.33,35,36

We propose a general framework for studying diffusion
and relaxation characteristics in tissue microstructures. We
call it general because it does not model the compartmental
diffusion behavior. It replaces the ILTs by a blind source
separation (BSS) technique, reducing the minimum number
of distinct echo times required to the number of compart-
ments in the tissue, less than for ILTs-based methods. Other
than the requirement to measure at more than one echo time,
this framework is diffusion protocol-agnostic, and can be
used in combination with any protocol of interest. Our
approach quantifies proton density, compartmental volume
fractions, and transverse relaxation times. Importantly, it han-
dles diffusion signals from each compartment independently,
allowing for individual analyses, and thus performs CSF par-
tial volume correction as a direct application.

2 | THEORY

Following the Bloch–Torrey equation, we describe the diffu-
sion signal as a weighted sum of the signals from the com-
partments comprising the tissue
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Where b summarizes the gradient effects1,37 and g
defines the gradient directions. Here, the compartmental dif-
fusion sources Siðb; gÞ are weighted by their volume fraction,
fi, TE, and T2i . The exponent (the ratio between TE and T2i )
scales the contribution of each compartment to the acquired
signal. Therefore, measuring at different TEs produces dis-
tinct diffusion signals38 with different weights from the com-
partmental signal sources.

As a result, the signal of a single voxel measured with a
protocol that accounts for multiple echoes can be formulated
as
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where Xj (j 2 ½1;N�) are the diffusion signals acquired for the
N TEs. fi and T2i (i 2 ½1;M�) are the volume fraction and T2
decay for the ith compartment, respectively, and M is the
number of compartments.

Equation 2 can be expressed in matrix form as X5AS.
This is a matrix factorization of the measurements,X 2 RN3n

�0 ,

into two new matrices: the mixing matrix, A 2 RN3M
�0 , which

is defined by the experimental TEs, the compartmental volume
fractions f, and T2 decays; and the sources matrix, S 2 RM3n

�0 ,

representing the diffusion sources in each sub-voxel compart-
ment. Interestingly, we noticed from the definition of A that
the ratio between the experimental TEs and T2i determines the
direction (or slope for N5 2) of the ith column vector of the
mixing matrix. Therefore:

T2i5
TEk2TEl

log ali
aki

� � ; (3)

where TEk<TEl, and aki and ali are the kth and lth elements of
the ith column of the mixing matrix, respectively.

Additionally, diffusion is an attenuation contrast and as
such, Sðb50Þ51, allowing Equation 2 to be rewritten as
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which, together with
XM
i51

fi51, allows us to solve for the vol-

ume fractions and proton density (fi and S0) when the number
of measurements matches the number of compartments
(M5N). Contrary, when there are more compartments than
measurements (M>N), Equation 4 is undetermined and fi
and S0 cannot be estimated.

Factorizing X into A and S is known as BSS39 of mixed
measurements into their generating sources (Figure 1). For
BSS to identify these sources, they have to be distinct: Si
6¼ Sj 8 i 6¼ j. Therefore, based on previous work,19,20 we
assumed them to be different.

FIGURE 1 Factorization ofmeasurements,X, into the sources, S, andmixingmatrix,A. Example of a BSS operation for twomono-exponential sour-
ces (M5 2) and two TEmeasurements (N5 2). In this illustration, the measurements,X, show a bi-exponential decay profile. BSS is capable of separating
these two independent exponential source functions, S; and calculating their mixingmatrix,A. The parameters that determine the degree of mixing
(T21 ; T22 , and f), and the scaling factor, S0, were estimated as described in Equations 3 and 4.We showed an exponential case for simplicity, but BSS is not
limited to this choice; any signal can be processed in the samemanner
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There are four main approaches to BSS: principal compo-
nent analysis,40 independent component analysis,41 nonnega-
tive matrix factorization (NMF),42 and sparse component
analysis.43 Principal component analysis is not an applicable
solution for this problem because the diffusion sources are
not orthogonal. Independent component analysis assumes, as
prior knowledge, that the signal sources are statistically inde-
pendent and have nonGaussian distributions. However, diffu-
sion MRI signals are correlated with the tissue structure and
temperature and they present nonGaussian distributions only
in restricted compartments, meaning that independent compo-
nent analysis is not suitable either. We previously explored
sparse component analysis44 and found that even though the
results for simulations and real data for specific diffusion pro-
tocols were encouraging, finding a sparse and disjoint domain
to meet the method’s requirements was not always possible
for arbitrary protocols. We observed the same issue for a ver-
sion of NMF that enforces sparsity similarly.36

In the present work, we took a BSS approach based on
NMF (assuming X, A, and S are nonnegative). Instead of
depending on sparsity, we used a popular NMF solver: the
alternating least squares algorithm (ALS).42,45,46 We chose
ALS instead of the multiplicative update algorithm47 due to
its faster convergence.48 We extended ALS to account for
physically plausible limitations, resulting in Algorithm 1,
which we refer to as constrained ALS (cALS). Compartmen-
tal T2 values available from the literature15 allowed us to
limit the solution space of the columns of A (Equation 3).
Additionally, for in vivo data, the diffusion behavior of CSF
is known to be approximately isotropic with 331023 mm2/s

diffusivity,28 adding extra prior information. These con-
straints and priors make cALS converge toward physically
realistic solutions (Figure 1).

Constrained ALS initializes the column vectors of A at
the central T2 of their given constraints, avoiding random ini-
tializations in regions that are not physically feasible and
increasing the stability. After each iteration, cALS verifies
that the resulting T2 of each column vector is between its
boundaries, and sets it back to the center of its constrained
solution space otherwise.

Following the factorization of A, we estimated T2 and f
for each compartment, (Equations 3 and 4), and recalculated
the real A. This is important since the column norms of the
factorized A do not tell us about the volume fractions. Then,
S5A21X is calculated.

An iterative algorithm like cALS inverts A repeatedly,
requiring it to be nonsingular and introducing a new condi-
tion. From Equation 2, A is nonsingular when T2i 6¼ T2j 8
i 6¼ j. Hence, in accordance with the literature,19,20 we
assumed that the transverse relaxation times for each com-
partment were distinct.

An open source implementation can be found in https://
github.com/mmromero/dwybss.

3 | METHODS

3.1 | Simulations

NMF is known for converging to local minima.45 Thus, it is
necessary to assess the impact of the constraints. We ran

Algorithm 1 Constrained Alternating Least Squares (cALS)

1: procedure CALS(X)
2: Use priors on T2 and experimental TEs to initialize the direction of the columns of A at the central T2 value of the solution space of each

column.
3: while iter < maximum iterations do
4: Solve for S in ATAS5ATX. ⊳ Least Squares.
5: Set all negative elements of S to 0. ⊳ Nonnegativity.
6: [Fix the one element of S to a known signal.] ⊳ If analytical expression is known.
7: Solve for A in SSTAT5SXT. ⊳ Least Squares.
8: Set all negative elements of A to 0. ⊳ Nonnegativity.
9: Constrain the directions of the columns of A. ⊳ T2 consistency.
10: errori5jjA2SXjj2
11: if errori<tolerance then
12: break ⊳ Check for data consistency.
13: end if
14: if errori>5errori21 then
15: break ⊳ Check for convergence.
16: end if
17: end while
18: return A
19: end procedure
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simulations with Rician noise for signal-to-noise ratio (SNR)
levels of 50, 100, and 150 at the nondiffusion weighted vol-
ume and minimum TE. We accounted for T2 values, volume
fractions, and diffusivities supported by literature.15,28

3.2 | Two compartments

Two compartments were simulated mimicking intra/extra-
axonal (IE) and CSF water. The diffusion protocol included
one nondiffusion weighted volume and 30 directions. We
modeled diffusion as a Gaussian process (see Supporting
Information Figure S4). For all the simulations we used
T2CSF 5 2000 ms, and varied T2IE from 50 to 150 ms in 30
increments.15 Values of fIE5 0.25, 0.5 and, 0.75 were used.
We fixed TE15 60 ms, and explored TE2 from 70 to 150 ms
in 31 increments. We defined DTE5TE22TE1. The per-
formance of the cALS algorithm was tested under the follow-
ing conditions:

1. Overlapped T2 constraints: T2IE and T2CSF were bounded
from 0–1000 and 0–3000 ms, respectively, and no
assumption on SCSF was made (Figure 2 and Supporting
Information Figure S5).

2. Overlapped T2 constraints and prior SCSF: T2IE and
T2CSF were bounded from 0–1000 and 0–3000 ms, respec-
tively. CSF diffusivity was assumed to be isotropic with
value 3 3 1023 mm2/s (Supporting Information
Figure S10).

3. Separated T2 constraints: T2IE and T2CSF were bounded
from 0–300 and 300–3000, ms, respectively, and no
assumption on SCSF was made (Supporting Information
Figure S11).

4. Separated T2 and prior SCSF: T2IE and T2CSF were
bounded from 0–300 and 300–3000 ms, respectively.
CSF diffusivity was assumed to be isotropic with value 3
3 1023 mm2/s (Supporting Information Figure S13).

5. Fixed T2CSF : T2IE was bounded from 0 to 300 ms. T2CSF
was fixed to 2000 ms. No assumption on SCSF was made
(Supporting Information Figure S12).

6. Fixed T2CSF and prior SCSF: T2IE was bounded from 0 to
300 ms. T2CSF was fixed to 2000 ms. CSF diffusivity was
assumed to be isotropic with value 3 3 1023 mm2/s
(Figure 3 and Supporting Information Figure S6).

We repeated the last simulation for values of fIE5 0 and 1,
accounting only for IE or CSF (Figure 4 and Supporting
Information Figure S7).

Finally, intra-cellular (IC) and extra-cellular (EC) T2 val-
ues are similar.15 We assessed the potential of BSS to sepa-
rate them. Two diffusion signals were generated (see
Supporting Information Figure S14). We used fIC5 0.25,
0.5, and 0.75. The T2IC vales ranged from 50 to 90 ms in 30

increments, and T2EC 5 100 ms. TE1 was fixed to 60 ms and
TE2 was varied between 70 and 150 ms in 31 increments.
No assumption was made on the diffusion signals, and T2
constraints were defined between 0–150 and 0–200 ms for
IC and EC, respectively (Figure 5 and Supporting Informa-
tion Figure S8).

We simulated 1000 times each combination of parame-
ters, and reported the mean value of the absolute error of f,
the relative error of T2, and their standard errors (SEM).

3.3 | Three compartments: Searching
for myelin

We incorporated a fast decaying component to model myelin,
and fixed the T2 of myelin (T2M) to 15 ms.15 T2IE was varied
from 50 to 150 ms in 30 increments, and T2CSF 5 2000 ms.
To account for short T2 components we needed to reduce the
minimum TE of our simulations (see phantom experiments in
the supporting information). Therefore, we fixed TE15 10
ms, TE35 150 ms, and varied TE2 from 20 to 140 ms in 31
increments. We defined DTE5TE22TE1. Three cases were
explored: (1) fM5 0.1, fIE5 0.6; (2) fM5 0.2, fIE5 0.5; and
(3) fM5 0.3, fIE5 0.4; keeping fCSF5 0.3 for all of them.
Simulations were run for two cases:

1. Overlapped T2 constraints: T2M ; T2IE , and T2CSF were
bounded from 0–40, 0–300, and 0–3000 ms, respectively.
No assumption on SCSF was made.

2. Separated T2 constraints, fixed T2CSF and prior SCSF:
T2M and T2IE were bounded from 0–40 and 41–300 ms,
respectively, while T2CSF 5 2000 ms. CSF diffusivity was
assumed to be isotropic with value 3 3 1023 mm2/s
(Figure 6 and Supporting Information Figure S9).

Each combination of parameters was simulated 1000 times.
The mean value of the absolute error of f, the relative error
of T2, and their SEM were reported.

3.4 | In vivo clinical data: Free-water
elimination

We aim to show that BSS has potential applications in clini-
cal settings. To this end, we ran an experiment to analyze its
performance for estimating tissue parameters and correcting
for CSF contamination.

3.5 | Data acquisition

Two volunteers, a male (age 28 years) and a female (age 24
years) were scanned in a 3.0 T GE MR750w (GE Healthcare,
Milwaukee, WI). The in vivo study protocol was approved
by our institutional review board and prior informed consent
was obtained. We acquired seven diffusion pulsed gradient
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spin-echo with echo planar imaging volumes for TE values
from 75.1 to 135.1 ms in 10 ms increments. The following
parameters were constant: FOV5 240 mm; 4 mm slice
thickness; TR5 6000 ms; 96 3 96 matrix size; ASSET5 2;
and 30 directions. Additionally, we measured fluid-
attenuated inversion recovery (FLAIR) SE echo planar imag-
ing for 17 equally-spaced TEs ranging from 20 to 260 ms.
The same imaging parameters were used as for the diffusion
experiments but with no acceleration (ASSET5 0).

3.6 | Data analysis

Diffusion data for all TEs were first registered with FSL
FLIRT49 to the shortest TE volume. We then processed
them with BSS in pairs (M5N52) with a fixed short TE
of 75.1 ms. The long TE was increased from 85.1 to
135.1 ms for a total DTE of 60 ms (Figures 7 and 8).
We used literature CSF values (T2CSF52 s and DCSF533
1023 mm2/s) as the prior knowledge, and constrained the

FIGURE 2 Convergence for two compartments (IE and CSF) with overlapping T2 constraints and no SCSF prior (SNR5 50). The mean of fIE abso-
lute error and its standard error (SEM) (A, B), and the mean of T2IE (C) and T2CSF (E) relative errors per unit (p.u.), and their standard error (D, F). Red and
white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of fIE, T2IE , andDTE. T2IE and T2CSF were
bounded between 0–1000ms and 0–3000ms respectively, and no prior was imposed on SCSF.We defined the convergence area as the one with error lower
than 0.1 for fIE and T2IE . The bias of fIE and T2IE decreases for longDTEs as fIE increases. See Supporting Information Figure S5 for more SNR levels
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possible values of T2IE between 0 and 200 ms.15,28 We
report maps of the BSS relative factorization error
(Figure 7A,B,G), CSF volume fraction (Figure 7C,H), pro-
ton density (Figure 7D,I), T2IE (Figure 7E,J), and number
of compartments (Figure 7F,K).

For reference, FLAIR multi-echo echo planar imaging
data were also registered with FLIRT to the shortest TE non-
diffusion weighted volume. The signal decay for each voxel

was then matched to a dictionary of mono-exponential
decays from 0 to 300 ms with a grid of 1 ms. We compared
this map against the BSS T2IE map (Figure 8).

We defined the relative error of the matrix factorization
for the in vivo data as follows:

e5
jX2S0ASj2

jXj2
: (5)

FIGURE 3 Convergence for two compartments (IE and CSF) with nonoverlapping T2 constraints and SCSF prior (SNR5 50). The mean of fIE abso-
lute error and its standard error (SEM) (A, B), and the mean of T2IE (C) and T2CSF (E) relative error per unit (p.u.), and their standard errors (D, F). Red and
white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of fIE, T2IE , andDTE. T2IE and T2CSF were
bounded between 0–300 ms and 2000ms, respectively, and SCSF was set to have isotropic diffusivity with value 331023 mm2/s.We defined the conver-
gence area as the one with error lower than 0.1 for fIE and T2IE . This area is larger than for Figure 2 stressing the importance of priors. See Supporting Infor-
mation Figure S6 for more SNR levels
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This is a measure of the performance of BSS for each
voxel. Given that we calculated S5A21X, this error formu-
lation is sensitive to: (1) breaches of the BSS conditions due
to artifacts, and (2) numerical instabilities due to the condi-
tion of A. Point one is the result of B0 drift, subject motion,
flow, and eddy currents. These effects produce a violation of
the BSS condition, making the signal sources different
between TE measurements. The second point is the error

amplification factor. A high e denotes that the factorization
could not find a solution within the constrained space and
thus, results might not be trustworthy.

Finally, BSS does not model the compartmental diffusion
signal. However, to demonstrate a simple way to perform
compartment-independent analysis and correct for CSF con-
tamination, we fitted the disentangled signals to the DTI
model.6 We further fitted the measured diffusion volumes at

FIGURE 4 Convergence for two compartments (IE and CSF) with nonoverlapping T2 constraints and SCSF prior when only one is actually present in
the tissue (SNR5 50). The mean of fIE absolute error and its standard error (SEM) (A, B), and the mean of T2IE (C) and T2CSF (E) relative error per unit (p.
u.), and their standard errors (D, F). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combina-
tion of fIE, T2IE , andDTE. T2IE and T2CSF were bounded between 0–300 ms and 2000ms, respectively, and SCSF was set to have isotropic diffusivity with
value 331023 mm2/s. We defined the convergence area as the one with error lower than 0.1 for fIE and T2IE . Estimates of fIE are reliable forDTE> 45ms
(A, B). Estimates of T2IE and T2CSF are accurate for each case. See Supporting Information Figure S7 for more SNR levels
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the shortest TE, and the BSS separated signals for the IE and
CSF compartments to a mono-exponential model using
standard linear regression (FSL FDT Toolbox (http://www.
fmrib.ox.ac.uk/fsl)). For comparison, bi-exponential models
using Pasternak’s and Collier’s methods were used
(Figures 9–10, Supporting Information Figure S15). Frac-
tional anisotropy (FA) and mean diffusivity (MD) maps were
derived for each fit.

4 | RESULTS

4.1 | Simulations

4.1.1 | Two compartments

The convergence area is the region where the mean relative
error of T2IE is lower than 0.1 per unit (p.u). Its shape for all the

FIGURE 5 Convergence for two compartments (IC andEC)with overlappingT2 constraints and no other priors (SNR5 50). Themean of fIE absolute error
and its standard error (SEM) (A, B), and themean of T2IE (C) and T2CSF (E) relative error per unit (p.u.), and their standard errors (D, F). Red andwhite linesmark
the 0.2 and 0.1 contour respectively. One thousand simulationswere run for each combination of fIC, T2IC , andDTE. T2IC and T2EC were bounded between 0–150
ms and 0–200ms, respectively, and no other prior was imposed in the signal sources.We define the convergence area as the onewith error lower than 0.1 for fIC,
T2IC , andT2EC . Estimate of fIC is biased for all fIC levels.T2 estimates show a narrow band of convergence limited by the lack of prior knowledge (see Figure 2, Sup-
porting Information Figures S5, S10) and the condition ofAwhen the T2 values are similar. See Supporting Information Figure S8 formore SNR levels
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simulations (Figures 2–5, Supporting Information Figures S5,
S6, S7, S8, S10, S11, S12, and S13) follows two effects. First,
the condition number of the mixing matrix limits the lower
bound of DTE: similar TE values produce more linearly
dependent column vectors of A. And second, the SNR plays a
double role, it increases the error regions where A is bad-
conditioned (small DTE), and limits the maximum DTE due to

the T2 decay of the signals. Thus, when the SNR increases the
convergence area grows and the region of minimum SEM,
denoting an improvement on the stability of the algorithm. The
convergence area also depends on the IE volume fraction. The
larger is the contribution of IE, the better is the T2IE estimate.

Adding priors on SCSF improves the T2IE estimate, even
at SNR5 50 (Supporting Information Figure S10). Bounding

FIGURE 6 Convergence for three compartments (myelin, IE, and CSF) with nonoverlapping T2 constraints and SCSF prior (SNR5 50). The mean
absolute errors of the volume fraction estimates and their standard errors (SEM) (A–D); and the mean of T2M (E) and T2IE (G) relative error per unit (p.u.),
and their standard errors (F, H). Red and white lines mark the 0.2 and 0.1 contour respectively. There is a large convergence area when TE15 10ms,
TE25 46ms, and TE35 150ms, which is not reachable with current clinical hardware. See Supporting Information Figure S9 for more SNR levels
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the solution space into nonoverlapping regions also improves
the results of T2IE (Supporting Information Figure S11),
although less than combining it with CSF prior knowledge
(Supporting Information Figure S13). The T2CSF estimate
shows a 0.17 p.u. due to the small variation of SCSF along
the acquired TEs (4.4%). This is corrected when relaxometry
prior is incorporated (Figure 3 and Supporting Information
Figure S12). The comparison between Figures 2 and 3, show
the benefit of including prior knowledge into the factoriza-
tion algorithm, specially at low SNR. Then, the accuracy of
the estimates will be influenced by the selection of DTE, the
T2 boundaries, the SCSF prior, and the expected T2IE and fIE
values. We used literature values for T2IE ; T2CSF ,

15 and SCSF.
28

According to Figure 3A,B one needs a minimum DTE of 26
ms for an accurate fIE estimate. Interestingly, fIE is a reliable
parameter that tell us about the bias of T2IE , the larger fIE is,
the more accurate T2IE becomes (Figure 3A,C).

For one tissue compartment BSS is able to precisely
(SEM< 0.01) estimate the volume fraction with mean abso-
lute error below 0.1 when DTE> 35 ms (Figure 4A,B).
When fIE5 1 the area of mean convergence of the T2IE esti-
mate is almost independent from DTE (Figure 4C,D). We
found an equivalent result for the mean relative error of T2CSF
when fIE5 0 (Figure 4E,F), although in this case it comes
from the T2CSF prior. Notice the large error and instability of
T2IE and T2CSF in the opposite cases, fIE5 0 and fIE5 1,
respectively (Figure 4C,E). This results when BSS tries to
find a component that is not in the tissue and thus, cannot be
estimated.

For two components with similar T2 values and little pri-
ors (IC and EC) cALS losses efficiency. The volume fraction
estimates are biased (Figure 5A), and T2IC shows a narrow
convergence region that is almost independent of DTE. The
lower bound of this region is limited by the proximity of T2IC
and T2EC that worses the condition of A. The upper bound

results of the lack of prior on the signal of one of the com-
partments, in contrast with the SCSF prior used before (com-
pare Figure 2 and Supporting Information Figure S10) that
increased the convergence area toward lower T2 values.

4.1.2 | Three compartments: Searching
for myelin

The convergence area is the one where the errors of fM, fIE,
T2M , and T2IE are lower than 0.1 in absolute value for the vol-
ume fractions and per unit for T2. Figure 6A, C, E, G shows
and optimal DTE5 36 ms. Notice that when DTE increases
the error of the myelin parameters grows due to the reduction
of the myelin contribution to the second TE, worsening the
SNR of that component (Figure 6A,E). Since all the volume
fractions add up to one, errors on fM increase the error on fIE
(Figure 6A,C). The estimate of T2IE is dependent on SNR
and its volume fraction, compounding its calculation for
SNR< 50 and fIE< 0.4 (Supporting Information Figure S9G
lower left corner).

One should notice that including a third compartment
increases the condition number of A, rising the instability of
the factorization (Figure 6F). See the phantom experiments
in the Supporting Information.

4.2 | In vivo clinical data: Free-water
elimination

We observed that the mean relative error for the whole brain
(hei) decreased as DTE increased (Figure 7A,B,G), in agree-
ment with phantom findings (see supporting information)
and the results of the simulations for two compartments.
Interestingly, for the maximum DTE, we can see that the
number of compartments is two in regions next to the ven-
tricles and the cortex, but one inside the ventricles and in

FIGURE 7 BSS relative factorization error for increasingDTE values. The evolution of the relative factorization error withDTE, averaged over the
whole brain, is shown in (A). As an example of how this error reduction affects BSS estimates we also show the relative error maps (B) and (G), CSF vol-
ume fractions (C) and (H), proton densities (D) and (I), T2IE values (E) and (J) and the number of compartments (F) and (K) forDTEs values of 20 and 60
ms. The mean relative factorization error decreases asDTE increases, improving the parameter estimates
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some deep WM areas (Figure 7K). It is also noteworthy that
the pure CSF areas (eg, the ventricles) have been removed
from the T2IE map (Figure 7E,J), while the opposite is
observed in the CSF volume fraction (Figure 7C,H), indicat-
ing a successful disentangling effect.

We compared the BSS-estimated T2IE maps for increasing
DTE values with the reference map obtained from the FLAIR
multi-echo SE data. We noted how the structural similarity
index50 increased and the mean relative error decreased as
DTE grew (Figure 8A,B). Additionally, the histograms for
both subjects tended toward the reference as the difference
between the short and long TEs grew. This reflects an

underestimation of T2IE for small DTE values that can be
explained by Equation 3 and Supporting Information
Figure S1C. Moreover, the FLAIR T2 map showed high val-
ues in the ventricles, possibly indicating imperfect CSF sup-
pression and, thus, slightly increased reference values
(Figure 8A,C,D).

FA and MD maps and histograms were calculated from
the BSS IE and CSF disentangled signals for both subjects
(Figures 9–10, Supporting Information Figure S15). These
maps displayed an overestimation of the CSF volume frac-
tion for low DTE values (the low FA peak in Figure 9B and
Supporting Information Figure S15B was removed). This
resulted in a compensation effect for the previously shown
underestimation of T2IE . Additionally, the FA histograms
(Figure 9B and Supporting Information Figure S15B)
showed a tendency toward higher FA values and a reduction
of the low FA peak associated with free-water. At long DTE
values, FA seems to tend toward a stable distribution. We
also observed an enlargement of the corpus callosum and a
general recovery of peripheral WM tracts and the fornix in
the colored FA maps (Figure 9A and Supporting Information
Figure S15A).

Additionally, on the MD histograms for IE water (Figure
9D and Supporting Information Figure S15D) we found a
reduced number of voxels with diffusivities greater than 13
1023 mm2/s. In contrast, the main peak at 0.731023 mm2/s,
associated with the parenchyma, remained in its original
position, indicating that IE water represents a nonCSF tissue.
This MD reduction was also visible in the maps (Figure 9C
and Supporting Information Figure S15C). Finally, the MD
histograms for CSF water (Figure 10) showed a tendency
toward 331023 mm2/s as DTE increased, in agreement with
the literature.28 All these findings agreed with a disentan-
gling of IE and CSF signals and thus, a correction of the
free-water partial volume effect in the diffusion signal.

5 | DISCUSSION

5.1 | Stability

Four main approaches exist for the BSS problem (independ-
ent component analysis, principal component analysis, NMF,
and sparse component analysis). Choosing the appropriate
method depends on the prior knowledge of the signal sour-
ces. In our experiments, we relied on NMF, using a con-
strained version of the ALS algorithm (cALS). Others
explored these algorithms before. Pauca et al.51 used low-
rank and sparsity constraints to distinguish semantic features
in text mining, and later52 smoothness regularization to iden-
tify space objects from spectral data. Gao and Church53 also
employed sparseness for cancer class discovery through gene
clustering, which was later extended by Kim and Park54

improving the balance between accuracy and sparseness

FIGURE 8 Comparison of the BSS-estimated T2IE values against a
FLAIR reference. A comparison of the reference (A, upper middle), for
subject one with the BSS T2IE estimate is shown for increasing values of
DTE. The visual comparison was quantified by SSIM50 andmean relative
error (B). Histograms of the BSS-estimated T2IE values are plotted against
the reference (C) and (D). High T2 values in the ventricles for the reference
indicate that the suppression of the CSF signal in the FLAIR experiment
was not perfect, although they appeared dark in the raw images. Thismight
have induced a positive bias for the reference. Finally, the BSS-estimated
of T2IE values forDTE above 50ms showed good agreement with the
reference

2166 | Magnetic Resonance in Medicine
MOLINA-ROMERO ET AL.



through regularization. They also introduced a variation
based on the active set method55 and low-rank approxima-
tion.56 Liu et al.57 incorporated label information to create a
semi-supervised matrix decomposition method. Sun and

F�evotte58 introduced a version based on the alternating direc-
tion method of multipliers59 (ADMM), that was further stabi-
lized by Zhang et al.60

Supported by previous work, we presented a biophysical
inspired solution to constrain the diffusion-relaxometry NMF
compartmental problem. Essentially, our cALS algorithm
imposes two constraints: (1) the rows of A must follow expo-
nential relationships (relaxometry); and (2) when the analytical
expression of one component is known (ie, CSF) the corre-
sponding row in S is fixed (diffusion). The stability of cALS is
linked to the condition of A and SNR; an ill-conditioned mix-
ing matrix will lead to error propagation due to numerical
instability. We optimized the experimental TEs to reduce the
condition number of A for literature values of T2. However,
further research based on ADMMmight yield better results.

We ran extensive simulations for two compartments at
clinical TE values with different priors, and three compart-
ments at lower TEs. These simulations highlighted the
importance of choosing literature supported priors to improve
the convergence, especially at low SNR. Constrained ALS
converges when the number of compartments in tissue is
equal or lower than the expected, but it looses performance
for species with similar T2.

Phantom experiments (see supporting information)
agreed with simulation results, validating that BSS was able

FIGURE 9 FA andMD of the BSS-disentangled IE signal against the standard DTI and Pasternak’s free-water elimination (FWE) for subject two.
Comparisons of the FA (B) andMD (D) histograms calculated from the separated IE signals are plotted against the standard DTI fit and Pasternak’s method
for the short TEmeasured data. MD (C) and colored FA (A) maps are also included for comparison.We observed a CSF correction effect in the longDTE
BSS for FA in agreement with Pasternak’s FWE. However, bothmethod disagree for MD, where Pasternak’s introduces spatial over-regularization. See
Supporting Information Figure S15 for the subject one

FIGURE 10 Evolution of theMD histogram of the BSS-
disentangled CSF component withDTE. TheMD histograms, calculated
from the DTI fits for the signals disentangled for the CSF compartment,
are plotted in (A) and (C). MDmaps (B) and (D) are shown for anatomical
inspection. The CSFMD histograms tends toward 331023 mm2/s, in
agreement with the literature
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to accurately estimate T2 for one compartment and separate
diffusion signal sources and estimate T2 and f for two com-
partments. However, they also showed that scaling the cALS
algorithm to three compartments, including fast T2 decaying
species, is unstable in the range of the clinically available TE
values.

Finally, repeatability and reproducibility analyses (see
supporting informtaion) show that cALS yield consistent
results across repetitions and subjects, highlighting its
stability.

5.2 | Relaxation time and volume fraction
estimates

BSS provides the means to estimate T2 relaxation values and
volume fractions. Interestingly, only a number of TE repeti-
tions equal to the number of compartments that are assumed
to be in the tissue is necessary. This results of the substitu-
tion of the ILTs by BSS, in comparison to other techni-
ques.15,17,21,24 We found a good agreement between the T2IE
estimates of the FLAIR multi-echo SE for 17 TEs and those
of BSS for 2 TEs. In this sense, all the measurements along
the diffusion space are considered for both TEs, incorporat-
ing redundancy and reinforcing the estimation of T2. The
SNR for the in vivo data were 147 and 104 for subjects one
and two. According to the simulations at DTE5 60 ms, the
expected absolute error for the volume fraction estimate is
below 0.03, meaning that T2IE is highly reliable in WM areas,
and lesser in the CSF borders.

5.3 | Myelin detection

Simulations proved that our method has the potential to dis-
entangle three compartments by reducing the minimum TE
in diffusion experiments. As a result, myelin water could be
incorporated into the model (Figure 6). However, we are pre-
vented from conducting such experiments by gradient per-
formance on clinical scanners.

5.4 | Disentangling the diffusion sources
and free water elimination

Unlike other multicompartment diffusion models2,7,8,11 or
more recent contributions,27,35 our approach does not model
compartmental diffusion. Our framework instead relies on
three assumptions: (1) microstructural water compartments
have distinct T2 relaxation times;14,15 (2) each have different
diffusion characteristics;19,20 and (3) the effects of the water
exchange are negligible on the timescale of our experi-
ments.9,61 Furthermore, our solution is diffusion protocol-
agnostic (only two TEs and one nondiffusion weighted vol-
ume are necessary), allowing for flexibility in the design of
the acquisition protocol, which might include any number of

diffusion directions and b-values. This gives it an advantage
over diffusion–relaxation correlation techniques based on
regularized ILTs.21,24

A promising application of the protocol-agnostics nature
of our framework is correcting for free water contamination.
Recently Collier et al.35 included TE dependence in their bi-
exponential diffusion tensor model to regularize the fitting
problem. However, they fitted the bi-exponential DTI model
directly. Contrary, our solution does not assume any particu-
lar diffusion model, we instead separated the signal from
each compartment, allowing more flexible and independent
study. In this regard, analysis of the signal associated with
the CSF compartment can be seen as a disentanglement qual-
ity assurance metric (Figures 9–10, Supporting Information
Figure S15), or in brain tissue applications, a general indica-
tor of the goodness-of-fit for IE and CSF.

We fitted our data to Collier’s model35 without reaching
convergence, which resulted due to our single-shelled data-
set. Comparison of BSS with Pasternak’s free-water elimina-
tion method31 is show in Figure 9 and Supporting
Information Figure S15. We observed a good agreement
between BSS for DTE5 60 ms and Pasternak’s free-water
elimination for FAs between 0-0.2 and 0.8-1. In the middle
FA range both methods disagree, BSS shows an homogene-
ous correction, while Pasternak’s results follow the standard
DTI fit from 0.2 to 0.4 and shows a correcting effect from
0.4 to 1 (Figure 9A,B, Supporting Information Figures S15A
and S15B). It is impossible to determine which method is
better (no ground-truth). However, there are two indicators
that BSS might be performing better: (1) the BSS FA curve
runs in parallel to the standard DTI fit from 0.2 to 0.8, denot-
ing an stable correction without favoring any FA range; and
(2) Pasternak’s MD is spatially over-regularized (Figure 9C,
D, Supporting Information Figures S15C and S15D), while
BSS’s MD keeps its maximum at 0.7 mm2/s, the reference
for parenchyma.28

Long DTE values benefit our framework, which is not
surprising and agrees with the findings of Collier et al.35

This is not only due to the relationship between A and T2
(Equation 3 and Supporting Information Figure S1C) but
also because longer differences between TEs produce more
distinct levels of mixing and thus better codification of the
information from each source. That is to say, the short TE
contains more information about the fast-relaxing species,
while the long TE is dominated by CSF.

6 | CONCLUSIONS

We have introduced for the first time a BSS framework for
expressing the relationships between diffusion signals
acquired at different TEs. This new approach does not rely
on diffusion modeling or the ILT. Our results show that,
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with the current hardware, blind source separation allows for
disentangling the diffusion signal sources generated by each
sub-voxel compartment up to two compartments, making it a
suitable tool for free-water elimination. Moreover, it simulta-
neously estimates proton density, volume fractions, relaxa-
tion times and the number of compartments in the underlying
microstructure, paving the way for tissue microstructure
characterization when the hardware constraints are relieved.
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FIGURE S1 Evolution of the relative error in the T2 esti-
mate with DTE for one compartment. The mean relative
error of T2 estimated using BSS is shown in (a) for NNLS
and in (b) for EASI-SM references. DTE goes from 5 ms
(darker colors) to 50 ms (lighter colors). The dependence
of T2 on the direction (slope) of the columns of A (Equa-
tion 3) is shown in (c), where it can be seen how increas-
ing DTE improves the dynamic range of the slope of A,
resulting in a better estimate for T2. Except for ROI1 and
ROI11, the remaining ones reduce the T2 mean relative
error as DTE increases (a and b, lighter colors are closer to
zero), in agreement with plot c.
FIGURE S2 Separation of two compartments and parame-
ter estimation for the phantom data. The signal sources of
the simulated dataset are plotted in (a), and the measured
data generated from the sources in (b). The resulting mix-
tures for both datasets are shown in (c). We use the sub-
scripts M and S to refer to estimates for the measured and
simulated datasets, respectively. Measurement errors are
highlighted by the differences between the measured and
simulated signals, shown in (c). BSS disentangled the orig-
inal sources for both datasets, as shown in (d). We chose a
DTE of 50 ms to minimize the condition of A (shown in
(e)) and increase the numerical stability of the framework.
Finally, the relative errors in the estimated parameters,
T̂2ROI6

and f̂ ROI6 , are plotted in (f) for all possible values of
DTE. We observed good agreement between the reference
signals and those disentangled with BSS.
FIGURE S3 Separation of three compartments and param-
eter estimation for the phantom data. The simulated dataset
was generated from the signal sources in (a). The meas-
ured datasets were calculated from the measured signals
for ROI5 (b), ROI6 (c), and ROI11 (d). The mixed signals
for both datasets (shown in (e)) show a mismatch due to
measurement errors. They were disentangled with BSS, as
shown in (f). We fixed TE15 77.5 ms and TE35 127.5
ms, and varied TE2 to minimize the condition number of A
(shown in (g)). The relative errors of the estimated parame-
ters are plotted for different values of the TE2 in (h).
FIGURE S4 Simulated diffusion signals for IE and CSF.
Synthetically generated diffusion signals for 30 directions

(b5 1000 s/mm2) and one non-diffusion weighted measure-
ment. We modeled diffusion as a Gaussian process with MD
of IE and CSF equal to 0:731023 and 331023 mm2/s respec-
tively,28 and standard deviations of 0:331023 and 0:131023

mm2/s respectively to distinguish between hindered aniso-
tropic (IE) and free isotropic (CSF) diffusivity.
FIGURE S5 Convergence for two compartments (IE and
CSF) with overlapping T2 constraints and no SCSF prior.
This figure extends the analysis of Figure 2 for SNR5 100
and 150. The stability for fIE increases with SNR (a and b)
and with fIE for T2IE (c and d).
FIGURE S6 Convergence for two compartments (IE and
CSF) with non-overlapping T2 constraints and SCSF prior.
This figure extends the analysis of Figure 3 for SNR5 100
and 150. The size and stability of the convergence area for
fIE and T2IE increase with SNR.
FIGURE S7 Convergence for two compartments (IE and
CSF) with non-overlapping T2 constraints and SCSF prior
when only one is actually present in the tissue. This figure
extends the analysis of Figure 4 for SNR5 100 and 150.
The SNR does not play an important role in the definition
of the convergence area.
FIGURE S8 Convergence for two compartments (IC and
EC) with overlapping T2 constraints and no other priors.
This figure extends the analysis of Figure 5 for SNR5 100
and 150. The influence of SNR on f and T2IC is small.
FIGURE S9 Convergence for three compartments (myelin,
IE, and CSF) with non-overlapping T2 constraints and SCSF
prior. This Figure extends the analysis of Figure 6 for
SNR5 100 and 150.
FIGURE S10 Convergence for two compartments (IE and
CSF) with overlapping T2 constraints and SCSF prior. The
mean and the standard error of fIE absolute error (a and b),
and the mean and the standard error of T2IE (c and d), and
T2CSF (e and f) relative error per unit (p.u.). Red and white
lines mark the 0.2 and 0.1 contour respectively. One thou-
sand simulations were run for each combination of SNR,
fIE, T2IE , and DTE. T2IE and T2CSF were bound between 0–
1000 ms and 0–3000 ms respectively. SCSF was set to have
isotropic diffusivity with value 331023 mm2/s. We defined
the convergence area as the one with error lower than 0.1
for fIE and T2IE . Notice the growth of the converge area
compared to the lack of priors (Figures 2 and S5).
FIGURE S11 Convergence for two compartments (IE and
CSF) with non-overlapping T2 constrained and no SCSF
prior. The mean and the standard error of fIE absolute error
(a and b), and the mean and the standard error of T2IE (c
and d), and T2CSF (e and f) relative error per unit (p.u.).
Red and white lines mark the 0.2 and 0.1 contour respec-
tively. One thousand simulations were run for each combi-
nation of SNR, fIE, T2IE , and DTE. T2IE and T2CSF were
bound between 0–300 ms and 300–3000 ms respectively.
No prior was imposed on SCSF. We defined the
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convergence area as the one with error lower than 0.1 for
fIE and T2IE . Non-overlapping T2 bounds stabilize the facto-
rization, compared to Figures 2 and S5, although not as
much as using priors on the signal sources (Figure S10).
FIGURE S12 Convergence for two compartments (IE and
CSF) with fixed T2CSF and no SCSF prior. The mean and
the standard error of fIE absolute error (a and b), and the
mean and the standard error of T2IE (c and d), and T2CSF (e
and f) relative error per unit (p.u.). Red and white lines
mark the 0.2 and 0.1 contour respectively. One thousand
simulations were run for each combination of SNR, fIE,
T2IE , and DTE. T2IE was bound between 0–300 and T2CSF

fixed to 2000 ms. No prior was imposed on SCSF. We
defined the convergence area as the one with error lower
than 0.1 for fIE and T2IE . Fixing the value of T2CSF does not
have any effect on the size of the convergence area, while
bounding T2IE does it (see Figure S11).
FIGURE S13 Convergence for two compartments (IE and
CSF) with non-overlapping T2 constraints and SCSF prior.
The mean and standard error of fIE absolute error (a and
b), and mean and standard error of T2IE (c and d), and
T2CSF (e and f) relative error per unit (p.u.). Red and white
lines mark the 0.2 and 0.1 contour respectively. One thou-
sand simulations were run for each combination of SNR,
fIE, T2IE , and DTE. T2IE and T2CSF were bound between 0–
300 ms and 300–3000 ms respectively. SCSF was set to
have isotropic diffusivity with value 331023 mm2/s. We
defined the convergence area as the one with error lower
than 0.1 for fIE and T2IE . Incorporating prior knowledge on
the behavior of the signal sources (as CSF) improves con-
vergence and stability more than bounding T2 (Compare
with Figures S10 and S11)
FIGURE S14 Simulated diffusion signals for intra and extra-
cellular water compartments. Synthetically generated diffu-
sion signals for 30 directions (b5 1000 s/mm2) and one non-
diffusion weighted measurement. We modeled diffusion as a
Gaussian process with MD of intra-cellular (IC) and extra-
cellular (EC) equal to 0:631023 and 0:831023 mm2/s
respectively (to keep the MD of parenchyma equals to 0:73
1023 mm2/s)28 and standard deviations of 0:331023 and 0:1
31023 mm2/s respectively to distinguish between a more
(IC) and less (EC) hindered anisotropic diffusivity.
FIGURE S15 FA and MD of the BSS-disentangled IE sig-
nal against the standard DTI and Pasternak’s free-water
elimination (FWE) for subject one. Comparisons of the FA
(b) and MD (d) histograms calculated from the separated
IE signals are plotted against the standard DTI fit and Pas-
ternak’s method for the short TE measured data. MD (c)
and colored FA (a) maps are also included for comparison.
We observed a CSF correction effect in the long DTE BSS
for FA in agreement with Pasternak’s FWE. However,
both method disagree for MD, where Pasternak’s

introduces spatial over-regularization. See Figure 9 for sub-
ject two.
FIGURE S16 Repeatability analysis showing intra-subject
variability. A healthy volunteer was scanned six times. The
FA (a) and MD (b) histograms for standard DTI, BSS and
Pasternak’s method are shown. These histograms were
fragmented in sectors and the relative changes in number
of voxels per sector and repetition for BSS and Pasternak’s
methods were computed. Statistical t-tests were run per
sector to determine the level of significance of the differen-
ces between BSS and Pasternak’s results (d and e). BSS
and FLAIR T2IE histograms (c) showed good agreement.
Their peak and the full width half maximum (FWHM)
were used for t-test comparison between BSS and FLAIR
(f) highlighting the concordance.
FIGURE S17 Reproducibility analysis showing inter-
subject variability. Twenty healthy volunteers were
scanned. The FA (a) and MD (b) histograms for standard
DTI, BSS and Pasternak’s method are shown. These histo-
grams were fragmented in sectors and the relative changes
in number of voxels per sector and repetition for BSS and
Pasternak’s methods were computed. Statistical t-tests were
run per sector to determine the level of significance of the
differences between BSS and Pasternak’s results (d and e).
Notice that the inter-subject variability is larger than intra-
subject (Figure S16). BSS and FLAIR T2IE histograms (c)
were depicted. Their peak and the full width half maxi-
mum (FWHM) were used for t-test comparison between
BSS and FLAIR (f).
Table S1 Phantom reference values and BSS estimates.
The ROIs in the phantom experiment was built using the
concentrations of agar and sucrose shown here. Signal
decays along the diffusion dimension were compared to
each other to ensure that they were all different, as
required by BSS (see supplementary Figure S18). For ref-
erence, the T2 values were characterized using an NNLS
fit. Confidence intervals were taken at the half maxima of
the NNLS spectral peaks. In addition, a second method,
EASI-SM,17 was used to confirm the validity of the fits.
Finally, the T2BSS values were estimated for DTE5 50 ms
and compared with the NNLS and EASI-SM references
(where e refers to the relative error).
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