
Publishers page: http://dx.doi.org/10.1016/j.clon.2019.05.005

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
As outlined by Garibaldi et al in their recent letter (1), there is increasing interest in the use of Positron Emission Tomography – Computed Tomography (PET-CT) to demarcate the Biological Gross Tumour Volume (bGTV) for radical radiotherapy treatment. In head and neck cancers, 18F-Fluorodeoxyglucose (18F-FDG)-PET-CT defined volumes have been shown to correlate with pathological specimens better than other imaging modalities (2). Additionally, PET-CT carried out at baseline (3) and/or during treatment (4), may offer prognostic and/or predictive information (5, 6).

Adaptive radiotherapy (ART) - the alteration of a treatment plan based upon anatomical changes during radiotherapy - is a rapidly growing area. ART could improve normal tissue sparing (7) or, conversely, escalate radiotherapy doses to poorly responding tumours (8).

Garibaldi’s critical review of the utility of interim PET-CT (iPET) in head and neck cancer treatment (9) concluded there was a need for further research into its predictive and/or prognostic role. They called for more homogenous cohorts of patients and treatment regimens, and a standardised method of analysing PET data.

The PEARL study (NCT number pending) is a multicentre phase II feasibility study designed to explore the potential of 18-FDG-PET-CT-based ART to reduce toxicity in radically treated patients with low risk (10) Human Papilloma Virus positive oropharyngeal squamous cell carcinoma. Patients will undergo iPET after 2 weeks of conventionally fractionated IMRT.

ATLAAS (Automatic decision-Tree Learning Algorithm for Advanced Segmentation of PET images), a machine learning tool, will define the bGTV on the baseline and interim PET-CT (11). We have shown that ATLAAS can be trained to outperform any other individual PET-based automated segmentation algorithm (12) and is a useful tool in the standardisation of PET-based segmentation within clinical radiotherapy trials.

PEARL will address many of the shortcomings identified by Garibaldi et al. Furthermore, PEARL will offer important insight into the feasibility of PET-based ART to improve outcomes.

REFERENCES


