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A B S T R A C T

Non-neuronal cell types such as astrocytes can contribute to Parkinson's disease (PD) pathology. The G2019S
mutation in leucine-rich repeat kinase 2 (LRRK2) is one of the most common known causes of familial PD. To
characterize its effect on astrocytes, we developed a protocol to produce midbrain-patterned astrocytes from
human induced pluripotent stem cells (iPSCs) derived from PD LRRK2 G2019S patients and healthy controls.
RNA sequencing analysis revealed the downregulation of genes involved in the extracellular matrix in PD cases.
In particular, transforming growth factor beta 1 (TGFB1), which has been shown to inhibit microglial in-
flammatory response in a rat model of PD, and matrix metallopeptidase 2 (MMP2), which has been shown to
degrade α-synuclein aggregates, were found to be down-regulated in LRRK2 G2019S astrocytes. Our findings
suggest that midbrain astrocytes carrying the LRRK2 G2019S mutation may have reduced neuroprotective ca-
pacity and may contribute to the development of PD pathology.

1. Introduction

Parkinson's disease (PD) is the second most common neurodegen-
erative disorder affecting approximately 1% of people over 60 years of
age (de Lau and Breteler, 2006). PD progressively manifests itself in
classical motor impairments including rigidity and tremor, but patients
also show non-motor symptoms like cognitive impairment, psychiatric
symptoms or sleep dysfunction (Khoo et al., 2013). While the majority
of PD cases are idiopathic, mutations within a small number of genes
underlie monogenic forms of the disease (Hernandez et al., 2016; Klein
and Westenberger, 2012). The main pathological hallmarks of PD are
accumulation of α-synuclein (Spillantini et al., 1998) and the selective
loss of dopaminergic neurons in the substantia nigra pars compacta
(SNpc) (Damier et al., 1999; Kordower et al., 2013).

Cellular models of PD have traditionally focused on dopaminergic
neurons. However, there is growing evidence that other non-neuronal
cell types such as astrocytes are involved in the degeneration of dopa-
minergic neurons and contribute to PD pathology (Booth et al., 2017).

Astrocytes represent one of the most abundant types of glial cells in the
brain (von Bartheld et al., 2016), and play multiple key roles in a wide
range of physiological processes ensuring healthy brain function. These
processes include synaptic formation and maturation, regulation of
neuronal synaptic transmission, maintenance of the blood brain barrier
integrity and controlling the homeostasis of ions, neurotransmitters and
energy metabolites (Khakh and Sofroniew, 2015; Oberheim et al., 2012;
Sofroniew and Vinters, 2010). Several of the variant genes considered
to be causative for PD, including PARK2 (Parkin) and PARK7 (DJ-1),
have been found to be expressed in astrocytes and have important roles
in astrocyte-specific functions such as inflammatory responses, gluta-
mate transport and neurotrophic capacity (Booth et al., 2017). How-
ever, there is currently little knowledge of the involvement of leucine-
rich repeat kinase 2 (LRRK2) in astrocyte biology. Mutations in the
LRRK2 gene represent the most common known genetic cause of PD
(Hernandez et al., 2005; Paisán-Ruíz et al., 2004; Zimprich et al., 2004).
The most common PD-associated LRRK2 mutation, G2019S, is found in
approximately 4% of familial and 1% of sporadic forms of PD, and the
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risk of PD for carriers of the LRRK2 G2019S mutation is estimated at
25–43% (Goldwurm et al., 2011; Lee et al., 2017). Although it has been
demonstrated that LRRK2 is expressed in purified human astrocytes at
similar levels to neurons (Zhang et al., 2016), no studies have been
conducted to investigate the function of LRRK2 in human astrocytes.

Here, we present the first study of iPSC-derived midbrain-patterned
astrocytes from PD patients carrying the common LRRK2 G2019S
missense mutation. In order to understand the effect of this mutation on
astrocyte function, we compared the gene expression profiles of iPSC-
derived midbrain-patterned astrocytes from PD patients with those
from healthy controls, while controlling for differentiation efficiency.
The gene expression data reveal changes in expression of genes in-
volved in the extracellular matrix (ECM), which are largely down-
regulated in PD cell lines. Transforming growth factor beta 1 (TGFB1),
which inhibits microglial inflammatory response in a rat model of PD
(Chen et al., 2017), and matrix metallopeptidase 2 (MMP2), which has
recently been shown to degrade α-synuclein aggregates (Oh et al.,
2017), were found to be downregulated in PD astrocytes. These findings
suggest that astrocytes in the brains of LRRK2 G2019S carriers may
have reduced neuroprotective capacity, contributing to a less inhibited
inflammatory response and an increased burden of extracellular α-sy-
nuclein aggregates, which in turn could contribute to PD pathology.

2. Materials and methods

2.1. Participant recruitment and LRRK2 mutation screening

Participants were recruited to the Discovery clinical cohort through
the Oxford Parkinson's Disease Centre and gave signed informed con-
sent to mutation screening and derivation of iPSC lines from skin
biopsies (Ethics committee: National Health Service, Health Research
Authority, NRES Committee South Central, Berkshire, UK, REC 10/
H0505/71). All UK patients fulfilled the UK Brain Bank diagnostic
criteria for clinically probable PD at presentation. Healthy controls
were age-matched to within a decade where possible.

2.2. Culture and reprogramming of primary fibroblasts

Skin biopsies were obtained from four PD patients and three healthy
control donors. Four iPSC lines were generated by retroviral repro-
gramming and three lines by Cytotune (sendai virus, see Table 1). Re-
programmed cell lines NHDF1, JR053–6, SFC840–03-03, JR036–1 and
MK144–7 were characterized previously (Fernandes et al., 2016;

Hartfield et al., 2014; Lang et al., 2019; Sandor et al., 2017). For
SFC832-03-19 and SFC855-03-06, low passage fibroblast cultures were
established from participant skin punch biopsies and reprogrammed
using the CytoTune-iPS Sendai Reprogramming kit (Invitrogen) ac-
cording to the manufacturer's instructions but scaled to 50,000 fibro-
blasts, as described previously (Fernandes et al., 2016). Clones were
transitioned from initial culture on mitotically inactivated CF1 Mouse
Embryonic Feeders (Millipore) to feeder-free culture in mTeSRTM
medium (StemCell Technologies), on hESC-qualified Matrigel-coated
plates (BD), and passaged as patches of cells using 0.5mM EDTA in PBS.
Bulk frozen stocks were tested for mycoplasma (Mycoalert, Lonza) and
frozen below p20, or once Sendai virus was cleared. 10 μM ROCK in-
hibitor (Y27632, Bio-Techne) was added during thaw to promote sur-
vival and iPSC were cultured for maximum two weeks post-thaw prior
to differentiation to ensure consistency. Characterization of previously
unpublished iPSC lines was performed on bulk frozen stocks as earlier
described (Fernandes et al., 2016). Briefly, flow cytometry for plur-
ipotency markers TRA-1-60 (Biolegend #33061, Alexa Fluor 488), and
Nanog (Cell Signaling #5448, Alexa Fluor 647) was performed on a
FACSCalibur (BD Biosciences) (Suppl. Fig. 1). Sendai virus clearance
was assessed using real-time PCR (Suppl. Fig. 1). The β-Actin qPCR
Control Kit (Eurogentec) (92 bp product) was used as control for nor-
malization. Primers used for assessment of Sendai virus clearance:

Genome integrity and cell identity tracking used the Human
CytoSNP-12v2.1 beadchip array or OmniExpress24 array (Illumina) on
genomic DNA (All-Prep kit, Qiagen) analysed with GenomeStudio and
Karyostudio software (Illumina) (Supplementary Fig. 1).

2.3. Differentiation of iPSC-derived astrocytes

iPSCs were differentiated for 20 DIV following the protocol by Kriks
et al. (Kriks et al., 2011), with minor modifications, as previously de-
scribed (Beevers et al., 2017). On DIV 20, cells were dissociated with
accutase and plated at a range of densities (50,000, 100,000 and
200,000 cells/cm2) in EL medium (base medium [Advanced DMEM/
F12, 1× B27 supplement without vitamin A, 1× N2 supplement, 1×
Glutamax; all Thermo Fisher Scientific] containing 20 ng/mL EGF and
20 ng/mL LIF; both Peprotech) supplemented with 10 μM Y26732
(Tocris) onto plates coated with 0.01% poly-ornithine (Sigma), 1 μg/mL
Laminin (Thermo Fisher Scientific) and 2 μg/mL Fibronectin (Sigma).
Cells were maintained in EL medium with daily feeding until DIV 30,
when they were switched into EFH medium (base medium supple-
mented with 20 ng/mL EGF, 20 ng/mL FGF2 [Peprotech] and 5 μg/mL

Table 1
Overview of study samples. Information of seven cell line donors and reprogramming methods. Abbreviations: F, female; M, male.

Patient LRRK2 genotype Cell line Reprogramming method Age Sex Reference

CT1 control NHDF1 Retrovirus 44 F Hartfield et al., 2014
CT2 control JR053-6 Retrovirus 68 M Lang et al., 2019
CT3 control SFC840-03-03 Cytotune (Sendai virus) 67 F Fernandes et al., 2016
PD1a G2019S JR036-1 Retrovirus 49 M Sandor et al., 2017
PD2a G2019S MK144-7 Retrovirus 57 F Sandor et al., 2017
PD3 G2019S SFC855-03-06 Cytotune 2.0 (Sendai virus) 57 M This manuscript
PD4 G2019S SFC832-03-19 Cytotune (Sendai virus) 77 F This manuscript

a Patients PD1 and PD2 are siblings.

Amplicon Forward primer 5′–3′ Reverse primer 5′–3′
Sendai virus GGATCACTAGGTGATATCGAGC ACCAGACAAGAGTTTAAGAGATATGTATC
SOX2 ATGCACCGCTACGACGTGAGCGC AATGTATCGAAGGTGCTCAA
KLF4 TTCCTGCATGCCAGAGGAGCCC AATGTATCGAAGGTGCTCAA
C-MYC TAACTGACTAGCAGGCTTGTCG TCCACATACAGTCCTGGATGATGATG
OCT4 CCCGAAAGAGAAAGCGAACCAG AATGTATCGAAGGTGCTCAA
KOS ATGCACCGCTACGACGTGAGCGC ACCTTGACAATCCTGATGTGG

Abbreviation: KOS, KLF4/OCT4/SOX2.
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Heparin [Sigma]). At DIV 34 cells were passaged in EFH medium plus
10 μM Y26732 onto Geltrex (Thermo Fisher Scientific) coated wells at
50,000 cells/cm2 and maintained in EFH medium. On DIV 41, cells
were passaged again, this time selecting the condition for each cell line
that had formed the most tightly packed cultures. Cells were then
passaged in EFH medium every 7 days until 90 DIV, each time seeding
at 50,000 cells/cm2 onto Geltrex-coated plates. At 90 DIV, progenitor
cells were dissociated and stored in liquid nitrogen in base medium
supplemented with 10% DMSO (Sigma), 20 ng/mL FGF2 and 10 μM
Y26732. Cells were thawed and seeded for terminal differentiation.
Cells were terminally differentiated in base medium for 4–5weeks.
Optimal seeding density for terminal differentiation was determined
individually at 90 DIV for each cell line (NHDF1, 25,000 cells/cm2;
JR053-6, 50,000 cells/cm2; SFC840-03-03, 25,000 cells/cm2; JR036-1,
18,000 cells/cm2; MK144-7, 50,000 cells/cm2; SFC832-19, 50,000
cells/cm2; SFC855-6, 50,000 cells/cm2).

2.4. Quantitative real-time polymerase-chain reaction

RNA was extracted using the RNeasy Mini kit (QIAGEN) and cDNA
was synthesized using SuperScript IV VILO Mastermix (ThermoFisher
Scientific). Quantitative real-time PCR (qRT-PCR) was carried out using
fast SYBR green mastermix (ThermoFisher Scientific) on a StepOnePlus
machine (ThermoFisher Scientific) as per the manufacturers intruc-
tions. 2-ΔΔCT values were calculated relative to the geometric mean of
the reference genes B2M, SDHA and MALAT1. The following primer
sequences were used:

Gene Forward primer 5′–3′ Reverse primer 5′–3′
AQP4 AGCTTTGCTGAAGGCTTCTTT GGGAAATTGGGAAAACCATT
B2M CCTGAATTGCTATGTGTCTGGGTTTC CTCCATGATGCTGCTTACATGTCTCG
FOXA2 GTGAAGATGGAAGGGCACGA CATGTTGCTCACGGAGGAGT
GFAP CACCACGATGTTCCTCTTGA GTGCAGACCTTCTCCAACCT
LMX1A GCTCAGATCCCTTCCGACAG GAGGTGTCGTCGCTATCCAG
MALAT1 GACGGAGGTTGAGATGAAGC ATTCGGGGCTCTGTAGTCCT
MMP2 TGTGAAGTATGGGAACGCCG GGTGAACAGGGCTTCATGGG
NANOG GAGATGCCTCACACGGAGAC GGGTTGTTTGCCTTTGGGAC
PAX6 TGGTTGGTATCCGGGGACTT GGCCTCAATTTGCTCTTGGG
POU5F1 GAGAACCGAGTGAGAGGCAACC CATAGTCGCTGCTTGATCGCTTG
SDHA TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG
SLC1A3 ACTACAGCTCGCATTCCCAT TCCTTTCCTGGGGAACTTCT
TGFB1 CGACTCGCCAGAGTGGTTAT GTGAACCCGTTGATGTCCA

2.5. Immunostaining

Cells were fixed in 4% PFA (Sigma), blocked in donkey serum and
incubated with primary antibodies (rabbit-anti-GFAP, 1:500, Z0334
[DAKO]; rabbit-anti LMX1A, 1:1000, AB10533 [Abcam]; goat-anti-
FOXA2, 1:250, AF2400 [R&D systems]). Cells were then incubated with
Alexa-fluor conjugated secondary antibodies at 1:1000 dilution and
costained with 1 μg/mL DAPI (Thermo Fisher Scientific).
Immunostained cells were imaged using an EVOS wide-field or Opera
Phenix confocal microscope. Astrocyte percentage for each cell line was
calculated using automated counting of GFAP-positive cells from 42
fields of view across two wells of a 96-well plate using Harmony soft-
ware (Perkin Elmer).

2.6. Glutamate uptake

Sodium-dependent glutamate uptake was measured by incubating
cells with 50 nM L-[3,4-3H]-glutamic acid in 135mM NaCl, 3.1 mM KCl,
1.2 mM CaCl2, 1.2 mM MgSO4, 0.5mM KH2PO4, and 2.0mM glucose
(all Sigma), adjusted to pH 7.4, for 10min. Sodium-independent uptake
was measured by substituting NaCl for 135mM choline chloride
(Sigma). Uptake was stopped by the addition of 500 μM cold 1H-glu-
tamic acid. Cells were lysed with 0.1M NaOH (Sigma). 3mL Optiphase
Supermix scintillation fluid (Perkin Elmer) was added before analysis
using a Tri-Carb 2800 TR liquid scintillation counter (Perkin Elmer).
Data were normalized to protein content, calculated using a BCA assay.

2.7. RNA-seq library preparation

For each sample, 386 ng total RNA was used for library preparation.
RNA samples were prepared using standard poly-A isolation protocol
(Illumina TruSeq Stranded mRNA kit) and, following pooling, se-
quenced on one lane of Illumina HiSeq4000 using 75 bp paired end
reads, RNA samples showed consistently high RIN (RNA integrity
number) values of at least 8.8. Sequencing resulted in approximately
50–56 million reads per sample. RNA-seq data are available at GEO
under accession number: GSE120306.

2.8. Confirmation of sample identity

Individual identity of RNA-seq samples was confirmed by com-
paring genotypes obtained from SNP-array data from undifferentiated
cell lines or original fibroblast cell cultures with genotypes derived from
RNA-seq data. A high percentage of identical SNPs (> 90%) called by
both SNP array and transcriptomic data confirmed sample identity.

2.9. Transcriptome analysis

Salmon (0.7.2) (Patro et al., 2017) with default settings was used to
transcript expression using ensembl GRCh38 version 87 as the human
transcriptome reference, which combined cDNA and ncRNA, and for
which alternative sequences were removed before mapping. Gene an-
notation was obtained from the fasta headers of the ensembl reference
used for mapping. Expression was summarised on the gene level using
the tximport R package (1.10.1) (Soneson et al., 2015). Normalised
counts were obtained from DESeq2 (1.22.2) (Love et al., 2014). Map-
ping rates against the human transcriptome were consistently high (90
to 93%), and the vast majority of mapped reads were assigned to pro-
tein-coding genes (93 to 95%). Differential gene expression analysis
was performed with DESeq2 (1.22.2) using protein-coding genes; ad-
justed p-value cutoff 0.05. Two covariates were included in the design
of the model: sex and differentiation efficiency as estimated by GFAP
expression levels obtained from RNA-seq data. X-chromosomal genes
were excluded from differential expression analysis (see below for
further details). Enrichment analysis was performed with the R package
ClusterProfiler (3.10.1) (Yu et al., 2012). Protein-protein interaction
data were obtained from InBioMap (InWeb_InBioMap core 2016_09_12)
(Li et al., 2017). The PPI network with its clusters was obtained with
the R package igraph (1.2.3) (function cluster_walktrap) (Csardi and
Nepusz, 2006), where proteins in clusters with fewer than 10 members

Fig. 1. Differentiation of midbrain-patterned astrocytes. (A) Midbrain-patterned astrocyte differentiation protocol schematic. (B) Quantitative real-time polymerase-
chain reaction (qRT-PCR) analysis of pluripotency markers (POU class 5 homeobox 1, POU5F1; homeobox protein NANOG, NANOG), midbrain and neuronal
transcription factors (FOXA2, LMX1A and PAX6) and astrocyte markers (GFAP, AQP4 and GLAST1) during the differentiation; graphs show average of four lines,
mean ± SEM). (C) Immunostaining at DIV 21 for the nuclear marker DAPI and the floorplate markers FOXA2 and LMX1A. (D) Immunostaining at DIV 118 for the
nuclear marker DAPI, the astrocyte glutamate transporter GLAST1 and the astrocyte cytoskeletal marker GFAP. Abbreviations: LDN, LDN-193189; SB, SB-431542;
SHH, sonic hedgehog C24II; Pur, purmorphamine; FGF8a, fibroblast growth factor 8a; CHIR, CHIR99021; BGTDAC, B: brain-derived neurotrophic factor, G: glial-
derived neurotrophic factor, T: transforming growth factor beta 3, D: DAPT, A: ascorbic acid, C: N6,2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate; EGF,
epidermal growth factor; LIF, leukaemia inhibitory factor; FGF2, fibroblast growth factor 2.
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were grouped into a cluster with the label ‘0’.
Post-hoc power analysis was performed using the R package

RNASeqPower (1.22.1) (Hart et al., 2013) and applying the following
parameters. Sample size and false positive rate were set to 3 and 0.05,
respectively. The effect size (fold change) was tested with values of 2
and 3. The depth parameter was set to the average sum of total counts
(mapped reads) across the six samples in million (46.3). The biological
coefficient of variation in our dataset was estimated as 0.428, which is
the square root of the estimated common dispersion computed by the
estimateDisp() function of the edgeR R package (3.24.3) (Robinson
et al., 2010).

2.10. Generation of heatmap for comparison with purified brain cell types

The heatmap is based on the expression levels of selected genes as
used in Fig. S1G in (Sloan et al., 2017). The plot was generated with the
pheatmap R package (1.0.12) (Kolde, 2015). Gene expresison levels
from six iPSC-derived astrocytes and 29 purified brain cell types (Zhang
et al., 2016) were vst-transformed using the vst() function from DESeq2
R package and the batch effect was removed with removeBatchEffect()
from limma R package (3.38.3) (Ritchie et al., 2015). The function
pheatmap was called with clustering_method= “ward.D2”,
scale= “row” and cluster_rows= FALSE.

2.11. Distribution of gene expression on X chromosome and autosomes

Empirical cumulative distributions of X-chromsomal and autosomal
gene expression in the four female iPSC-derived astrocyte samples is
based on using quantile normalised gene expression data from tran-
script-per-million (TPM) abundances. First, quantile normalization was
performed using normalize.quantiles() from the preprocessCore R
package (1.40.0) (Bolstad et al., 2003), then, resulting data were log2-
transformed for plotting (stat_ecdf()). Pairwise Kolmogorov-Smirnov
tests (ks.test() in R) were used to test for significant differences between
samples of higher and lower XIST-expression. A similar approach, ex-
cept using RPKM instead of TPM, was used in Patel et al. (2017).

2.12. Randomisation for PPI network analysis

The randomisation approach takes into account both the coding
sequence length and the number of PPIs of the corresponding proteins.
For every input gene a random gene that has a similar coding sequence
length and similar connectivity of its corresponding protein was se-
lected by applying a binning approach (Taylor et al., 2015). A total of
1,000,000 random gene sets, of the same size as the number of differ-
entially expressed genes, were tested for their connectivity within the
PPI resource (Li et al., 2017) and the number of connections were
compared to the one obtained using the list of differentially expressed
genes. The PPI analysis was performed on the basis of pairs of genes
(using ensembl gene IDs as annotated in the downloaded data file),
which means that an interaction between two genes is reported and
counted if any of the possible gene products show an interaction.

2.13. External RNA-seq datasets

Public RNA-seq data for comparison were obtained for purified
brain cell types (Zhang et al., 2016) and iPSC-derived dopaminergic
neurons (Sandor et al., 2017). Data were processed in the same way as
RNA-seq data from this study (i.e. mapping to the identical human
transcriptome using Salmon with the same settings, and summarising
expression on the gene level using the tximport R package).

3. Results

3.1. Differentiation of iPSCs into midbrain-patterned astrocytes

The dopaminergic neurons that selectively degenerate in PD are
located in the SNpc, in the midbrain. Although no specific markers of
midbrain astrocytes have been identified, it is considered that astro-
cytes arise from regionally patterned glial progenitors within the brain.
The SNpc arises from a region of the developing brain known as the
floorplate. We therefore used a modified version of the protocol de-
veloped by Kriks et al. (Beevers et al., 2017; Kriks et al., 2011) to
pattern floorplate progenitors from monolayer iPSCs (Fig. 1A). Pat-
terning involved dual-SMAD inhibition, and activation of sonic
hedgehog (SHH), fibroblast growth factor 8 (FGF8) and WNT signaling
(Fig. 1A). At day in vitro (DIV) 20 of the protocol, cells were passaged
into medium containing epidermal growth factor (EGF) and leukaemia
inhibitory factor (LIF) to induce proliferation (Sanalkumar et al., 2010).
Coexpression of the floorplate markers forkhead box A2 (FOXA2) and
LIM homeobox transcription factor 1 alpha (LMX1A) was confirmed by
quantitative real-time polymerase-chain reaction (qRT-PCR) and im-
munostaining (Fig. 1B,C).

Progenitors were maintained in EGF and LIF until DIV 30, when
medium was modified to contain EGF, FGF2 and Heparin (EFH
medium; Fig. 1A). This combination was selected in order to maintain
the proliferative state of the cells (Bonni et al., 1997; Sanalkumar et al.,
2010; Tropepe et al., 1999). By DIV 33, FOXA2 and LMX1A expression
were almost entirely lost, and expression of the pan-neuronal tran-
scription marker paired box protein PAX6 (PAX6), which is expressed in
tyrosine hydroxylase (TH)-negative (non-dopaminergic) cells in the
developing midbrain (Duan et al., 2013), was detected (Fig. 1B). At DIV
34, cells were passaged and maintained in EFH medium, with passaging
every 7 days until DIV 90 (Fig. 1A). PAX6 expression decreased gra-
dually until DIV 69 (Fig. 1B), potentially indicating a switch from
neuronal to glial progenitors. At DIV 90, cells were passaged into un-
supplemented medium for terminal differentiation and maintained for
4–5 weeks without passaging (Fig. 1A). By DIV 118 Expression of the
astrocyte cytoskeletal gene glial fibrillary acid protein (GFAP), the
water channel aquaporin-4 (AQP4) and glutamate aspartate transporter
1 (SLC1A3; GLAST1) were detected by qRT-PCR (Fig. 1B). Im-
munostaining also demonstrated the presence of GFAP and GLAST1
proteins (Fig. 1D). We found that attempts to initiate terminal differ-
entiation earlier than DIV 90, for example at DIV 41 or DIV 69, gave rise
to few, if any, GFAP-positive astrocytes (data not shown).

3.2. Differentiation and characterization of LRRK2 G2019S iPSC-derived
midbrain-patterned astrocytes

Following characterization of cells throughout the differentiation
protocol, midbrain-patterned astrocytes were differentiated from iPSC
lines generated from seven donors, including four patients with PD who
carry the LRRK2 G2019S mutation, and three healthy control in-
dividuals (Table 1 and Supplementary Fig. 1). Batches of progenitors
derived from each iPSC line were frozen at DIV 90 and used for the
experiments described below. Following five weeks of terminal differ-
entiation (DIV 125), the percentage of GFAP-positive astrocytes pro-
duced by each line was calculated (Fig. 2A,B).

In vivo, astrocytes take up glutamate in a sodium-dependent
manner through their glutamate transporters (Schousboe et al., 1977).
Other proteins that are implicated in PD pathogenesis have been shown
to influence glutamate uptake; deficiency of DJ-1 and astrocyte-specific
overexpression of α-synuclein both result in impaired glutamate uptake
in astrocyte cultures (Gu et al., 2010; Kim et al., 2016). To test the
functionality of the astrocytes produced using our protocol, and to in-
vestigate whether the LRRK2 G2019S mutation had an effect on glu-
tamate uptake, we measured sodium-dependent uptake of 3H-glutamate
in our cultures. Uptake was achieved by all lines; however, there was no
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significant effect of the LRRK2 G2019S mutation on this process
(Fig. 2C,D).

3.3. Transcriptomic analysis

To further characterize our midbrain-patterned astrocytes, and to
determine whether the LRRK2 G2019S mutation leads to transcriptomic
changes in these cells, we collected samples for RNA-sequencing (RNA-
seq) analysis. Initial assessment of transcriptomic variability by prin-
cipal components analysis (PCA) revealed PD1 as an outlying sample
(Supplementary Fig. 2A). Evaluation of expression levels of typical
pluripotency marker genes revealed unusually high expression of
POU5F1 and NANOG in this sample. Levels were approximately 50
(POU5F1) and 30 (NANOG) times higher than the mean expression
level in other samples (Supplementary Fig. 2B). These findings

indicated residual pluripotency in PD1, so this sample was excluded
from further analyses.

We also observed that two of the four female PD samples (PD2 and
PD4) had much lower expression of X-inactive specific transcript (XIST)
compared with the other female samples (Supplementary Fig. 2C).
XIST is involved in the X-chromosome inactivation process in mam-
malian females and is expressed from the inactive X chromosome.
Average expression of X-chromosomal genes showed a slight shift to-
wards higher levels in low-XIST samples than high-XIST samples, in-
dicating potential erosion of X chromosome inactivation
(Supplementary Fig. 2D). In contrast, expression levels of autosomal
genes did not show a similar deviation. This shift was not statistically
significant at the 5% significance level according to pairwise two-
sample Kolmogorov-Smirnov tests. However, since the disease status
(controls versus PD) of the four female samples was confounded by the

Fig. 2. Characterization of midbrain-patterned astrocytes from patients with the LRRK2 G2019S mutation. (A) Immunostaining at DIV 125 for the nuclear marker
DAPI (blue) and the astrocyte cytoskeletal protein GFAP (red). (B) Percentage of GFAP positive cells for each line (n=2 replicates per line). (C) 3H-glutamate uptake
in the presence (+ Na+) and absence (− Na+) of sodium, in control and PD lines. Significance levels of paired t-test are shown (CT, n=3; PD, n=4). (D) Total
sodium-dependent uptake in control and PD lines (t-test; CT, n=3; PD n=4). Boxes represent inter-quartile ranges (IQR) with a horizontal line for the median,
lower and upper whiskers extend to the lowest and highest value within 1.5 * IQR. Abbreviations: CT, control; PD, Parkinson's disease; ns, p > .05; *, p≤ 0.05; **,
p≤ 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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observed trend, we excluded all X chromosome genes from our analysis.

3.4. iPSC-derived midbrain-patterned astrocyte gene expression profiles are
similar to human adult astrocytes

We compared our iPSC-derived midbrain-patterned astrocytes with

publicly available data from a set of purified human cortical cells in-
cluding adult astrocytes, neurons, microglia, oligodendrocytes, en-
dothelial cells and fetal astrocytes (Zhang et al., 2016). PCA projection
demonstrated that our iPSC-derived midbrain-patterned astrocyte
samples exhibit a gene expression profile that resembles human adult
astrocytes and that is distinctive from other brain cell types (Fig. 3A).
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Fig. 3. Transcriptomic characterization of iPSC-derived astrocytes. (A) PCA projection of iPSC-derived astrocytes onto purified human cortical brain cell types. (B)
Heatmap showing the expression levels of selected marker genes (Sloan et al., 2017) across these cell types. (C) Expression levels of genes SPARC, LHX2 and EMX2 in
purified cortical astrocytes and iPSC-derived midbrain-patterned astrocytes. Abbreviations: astro, astrocytes; micro, microglia; endo, endothelial; oligo, oligoden-
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We performed hierarchical clustering of our iPSC-derived midbrain-
patterned astrocytes and these human samples using genes that have
been shown to be differentially expressed between different cell types
in the central nervous system (Sloan et al., 2017). We found that our
samples clustered closely with adult astrocytes, and were distinct from
the fetal astrocyte group (Fig. 3B). Secreted protein acidic and cysteine
rich (SPARC), LIM homeobox 2 (LHX2) and empty spiracles homeobox
2 (EMX2) have previously been identified as differentially expressed in
midbrain astrocytes compared to other brain regions (Morel et al.,
2017; Xin et al., 2019). Consistent with these studies, we found that
SPARC was upregulated and LHX2 and EMX2 were downregulated in
our iPSC-derived midbrain-patterned astrocytes when compared with
purified cortical astrocytes (Fig. 3C).

3.5. LRRK2 is expressed at low levels in iPSC-derived midbrain-patterned
astrocytes

Data suggest that LRRK2 expression is similar in isolated human
cortical astrocytes and neurons (Zhang et al., 2016). This comparison
has not been made for cells in the human midbrain, or in iPSC-derived
midbrain-patterned cultures. We therefore compared LRRK2 expression
levels in our iPSC-derived midbrain-patterned astrocytes with data from
our previously published iPSC-derived dopaminergic neurons (Sandor
et al., 2017), and with purified human cortical cell types (Zhang et al.,
2016). We found that among these cell types, LRRK2 gene expression
levels were highest in purified microglia (Supplementary Fig. 3). In
comparison, LRRK2 expression in our iPSC-derived midbrain-patterned
astrocytes was present but low, and similar to iPSC-derived neurons and
purified cortical astrocyte samples.

3.6. The extracellular matrix is perturbed in LRRK2 G2019S iPSC-derived
midbrain-patterned astrocytes

Genes that are differentially expressed between iPSC-derived mid-
brain-patterned astrocytes from PD LRRK2 G2019S cases and controls
were identified using DESeq2 (Love et al., 2014). Due to concerns about
erosion of X-inactivation, genes on the X chromosome were excluded
from this analysis (see above). Two covariates were included in the
design matrix: sex and differentiation efficiency; both of which corre-
lated with separation of the samples in the PCA (Supplementary
Fig. 4A,B). Differentiation efficiency was controlled for using expres-
sion levels of the astrocyte marker gene GFAP, which was highly cor-
related with the percentage of astrocytes produced by each cell line
(Supplementary Fig. 4C). A total of 279 genes were identified as dif-
ferentially expressed, 80% (223) of which showed reduced expression
in PD samples. Analysis of the function of differentially expressed genes
by Gene Ontology enrichment analysis found that the strongest signal
came from biological processes of the ECM, which are down-regulated
in the PD LRRK2 G2019S samples (Fig. 4A).

3.7. Neuroprotective potential may be lost in LRRK2 G2019S iPSC-derived
midbrain-patterned astrocytes

Given convergent extracellular functionality among the differen-
tially expressed genes (DEGs), we wanted to test whether the proteins
encoded by these DEGs physically interacted with each other more than
expected by chance. The protein-protein interaction (PPI) network be-
tween the gene products of all DEGs reveals that approximately 42% of
proteins encoded by the set of DEGs interact with at least one other
protein within that set (Fig. 4B). No simulated gene set of the same size
(controlling for node degree and gene length, empirical p-value< 1e-
06) had as many interactions as the set of DEGs identified, demon-
strating the unusual interactivity of the DEG gene set. The majority of
proteins within the PPI network (98 out of 108 proteins) are encoded by
genes that are down-regulated in PD LRRK2 G2019S samples. All
clusters within the PPI network are enriched for ECM organization

(Fig. 4C). For individual clusters, the strongest signals were detected for
ECM disassembly and kinase signaling pathways (Cluster 2), collagen-
related processes (Cluster 3), or cell adhesion (Cluster 4).

Of the most interconnected proteins in the PPI network, TGFB1 and
MMP2 have both been previously implicated in neuroprotective me-
chanisms relevant to PD. The neuroprotective role of TGFB1 has been
shown in the 1-methyl-4-phenylpyridinium (MPP+) rat model of PD,
where TGFB1 treatment led to inhibition of microglial inflammatory
response (Chen et al., 2017). MMP2 has been shown to degrade ex-
tracellular α-synuclein aggregates in vitro and in vivo, leading to a
reduction in cellular apoptosis as compared with controls (Oh et al.,
2017). These proteins were identified as the most inter-connected
within cluster 2, with 10 and 9 PPIs, respectively.

In our transcriptomic dataset, as well as being highly interconnected
in the PPI, both TGFB1 andMMP2 were expressed at significantly lower
levels in midbrain-patterned astrocytes carrying the LRRK2 G2019S
mutation than in healthy control samples; a finding that was confirmed
by qRT-PCR (Fig. 4D). To test whether changes in expression levels of
these two genes are specific to astrocytes, we reviewed the RNA-seq
results of human iPSC-derived LRRK2 G2019S dopaminergic neurons
(Sandor et al., 2017) and found that they were not differentially ex-
pressed. This was confirmed by qRT-PCR (Supplementary Fig. 5).
Reduced expression of these genes indicates that astrocytes from pa-
tients with the LRRK2 G2019S mutation may have reduced neuropro-
tective capacity.

4. Discussion

Mutations in LRRK2 are a common cause of PD. Our study of iPSC-
derived midbrain patterned astrocytes found that LRRK2 was expressed
in these cells, at similar levels to purified human cortical astrocytes and
iPSC-derived dopaminergic neurons, and at lower levels than purified
human microglia and oligodendrocytes. The LRRK2 G2019S mutation
led to downregulation of genes involved in the ECM, which is essential
for cell-cell communication through extracellular signaling (Vargová
and Syková, 2014). This type of communication is important for in-
itiating astrocyte response to neuronal activity, and modification of
ECM composition can have profound effects on astrocyte response to
inflammatory stimuli (Johnson et al., 2015).
TGFB1 and MMP2 are intrinsically involved in regulation of the

ECM. We found that both of these genes were down-regulated in mid-
brain-patterned astrocytes carrying the LRRK2 G2019S mutation.
Furthermore, their protein products were highly connected in our PPI
network, suggesting they may have a key role in LRRK2 G2019S-
mediated changes in midbrain astrocytes. MMPs modulate cell-cell and
cell-ECM interactions by degradation or proteolytic activation of ECM
proteins (Baker et al., 2002), and TGFB1 has been shown to induce
expression of MMP2 in a range of cell types including astrocytes (Dhar
et al., 2006; Hua et al., 2016; Takahashi et al., 2014). In the presence of
interleukin-1β (IL-1β), it has been shown that TGFB1 induction of
MMP2 proceeds through downregulation of Tissue Inhibitor of Me-
talloproteinase (TIMP)1 (Dhar et al., 2006). TIMP proteins (TIMP1-4)
are known to inhibit the activity of MMPs (Arpino et al., 2015), and
higher expression of TIMPs have been associated with lower levels of
MMPs. In our model this was not the case, TIMP2 and TIMP4 were
downregulated and TIMP1 and TIMP3 expression was unchanged. This
finding may be explained by the fact that in addition to its role in in-
hibiting MMPs, TIMP2 has been shown to mediate MMP2 activation
(Lafleur et al., 2003). The finding that TIMP2 is downregulated in our
model may therefore reflect reduced activation, rather than reduced
inhibition of MMP2.

TGFB1 and MMP2 have both been shown to exhibit neuroprotective
effects that are relevant to PD. TGFB1 treatment has been shown to
inhibit microglial inflammatory response in the MPP+ rat model of PD
(Chen et al., 2017). Downregulation of TGFB1 expression in our model
may therefore point to impaired regulation of inflammatory responses
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in the brains of LRRK2 G2019S carriers. Recently, it has been shown
that MMP2 degrades α-synuclein in vitro and in vivo and leads to a
reduction in cellular apoptosis (Oh et al., 2017). Reduction of MMP2
expression in our LRRK2 G2019S iPSC-derived midbrain-patterned as-
trocytes versus controls is supported by similar findings in the sub-
stantia nigra of post-mortem brains from PD patients (Lorenzl et al.,
2002).

Our study likely under-reports the degree of altered gene expression
in patient-derived LRRK2 G2019S astrocytes. Power analysis shows that
three samples per group provide an estimated 47% power to detect a
two-fold gene expression change rising to 84% for genes with a fold
change of three or more, which is the case for both MMP2 and TGFB1
(see Methods). A key issue underlying study power here is the high
biological coefficient of variation across samples due in part to culture
cellular heterogeneity (see Supplementary Fig. 4), which has been

shown to contribute significantly to differences detected between iPSC-
derived cell populations (for example, Volpato et al. (2018)). Future
studies would benefit from the development of cell sorting approaches
or the application of single cell sequencing to reduce this confound.

Evidence for the midbrain identity of our cultures was obtained
using midbrain astrocyte markers recently identified in two different
studies (Morel et al., 2017; Xin et al., 2019). Morel et al. showed up-
regulation of sparc and downregulation of lhx2 and emx2 in ventral
versus dorsal mouse astrocytes, while Xin et al. identified the same
trend in mouse ventral midbrain versus cortical astrocytes. We found
that the human orthologs of these markers exhibited the same expres-
sion pattern in our iPSC-derived astrocytes when compared to purified
cortical astrocytes.

Together, these data suggest that midbrain astrocytes of PD patients
may have a reduced ability to degrade α-synuclein, thereby
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contributing to the build-up of toxic α-synuclein species. The neuro-
degeneration that results from this toxicity may then activate a cascade
of inflammatory responses, which midbrain astrocytes with reduced
TGFB1 expression are unable to attenuate. Our findings thus propose a
mechanism through which midbrain astrocytes influence the patho-
genesis of PD.

In conclusion, our study demonstrates for the first time that LRRK2
mutations lead to transcriptomic dysregulation in midbrain astrocytes.
The identified gene expression changes point to a role for LRRK2 in
regulation of the astrocyte extracellular matrix, with implications for
neuroprotection in PD. Further studies will be necessary to understand
how LRRK2 interacts with ECM proteins, and to realize the functional
implications of our findings.
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