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Abstract 

Type 1 diabetes mellitus (T1D) is an autoimmune disorder where T lymphocytes damage the 

islet beta cells but B lymphocytes also play an important role. Although changes in peripheral 

B cell phenotype have been observed, little is known about the B cells that secrete the 

autoantibodies. 

We developed a sensitive B cell enzyme-linked immunospot assay (ELISpot assay) to detect 

individual B cell antibody responses to glutamic acid decarboxylase (GAD) and islet antigen-2 

(IA-2). 

We found that even healthy donors have B cells that secrete antibodies in response to GAD 

and IA-2 in the ELISpot.  There was increased B cell reactivity to autoantigens in the peripheral 

blood of individuals with newly-diagnosed, but not long-standing, type 1 diabetes.  However, 

no correlation with serum autoantibody levels was found, indicating that additional factors 

such as antigen affinity or exposure to antigens in vivo are required for antibody secretion, 

and that even healthy donors have potentially autoreactive B cells. 
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1. Introduction  
 

Type 1 diabetes (TID) is an immune-mediated disease that occurs in genetically susceptible 

individuals, with risk modified by the environment.  Although T cells play a central role in islet 

beta cell damage, B cells clearly are also important in pathogenic processes. Autoantibodies 

secreted by B cells provide an early indication of autoimmunity. The risk of developing type 1 

diabetes is indicated by the presence of autoantibodies against islet antigens such as insulin, 

glutamic acid decarboxylase (GAD), islet antigen-2 (IA-2) and the zinc transporter (ZnT8) [1].  

High serum antibody titres of one or more autoantibodies are often present upon initial 

diagnosis of T1D. Healthy individuals can have one or two autoantibodies present at a lower 

titre and may not proceed to develop T1D. Anti-GAD antibodies can remain detectable for 

many years whereas anti-IA-2 or ZnT8 antibodies tend to decrease rapidly after diagnosis [2]. 

Although these serum autoantibody-titres are useful markers of disease onset, they cannot 

be used as markers of ongoing autoimmunity after diagnosis and do not provide information 

regarding the cells that produce them.  

B cells are found in the pancreas of individuals with type 1 diabetes [3, 4], and B cell depletion 

with rituximab can slow the loss of insulin production [5]. We, and others, have demonstrated 

that changes in the phenotype of peripheral B cells are also observed in people with type 1 

diabetes. These changes included a decrease in CXCR3, B220, CD24, CD95, BAFFR and TACI 

expression [6-8]. In addition, decreased percentages of CD24++CD38++ B cells (thought to be 

regulatory B cells) [9],  increased plasmablasts [6], increased frequencies of marginal zone 

CD19+CD21+CD23− B cells and decreased frequencies of regulatory CD1d+CD5+CD19+ and 



follicular CD19+CD21−CD23+ B cells [10] have all been observed in individuals with type 1 

diabetes.   

In terms of antigen specificity, “insulin binding” B cells have been investigated for phenotype 

and frequency in the peripheral blood. These were found to be predominantly naïve anergic 

cells in healthy donors, whereas in people with newly-diagnosed diabetes they were lost, 

suggesting that they had trafficked to the pancreas [11]. Long-term antibody titres are 

maintained by long-lived antibody-secreting plasma B cells, and memory B cells can also 

differentiate into plasma cells to replenish the pool. Memory B cells are unique in function 

and phenotype compared to other types of B cells. They remain quiescent for a long duration 

but rapidly respond on re-exposure to antigen and can quickly differentiate into plasma cells 

to produce high-affinity antibodies to eliminate pathogens not removed by existing circulating 

antibodies [12-15]. In type 1 diabetes, it is not known whether there are autoreactive memory 

B cells in the circulation, which could contribute to the replenishment of the autoantibody-

producing plasma cell pool.  

To investigate whether circulating B cells recognise autoantigens and produce IgG auto-

antibodies, we used a polyclonal activation protocol to stimulate memory B cells from the 

peripheral blood, before determining their ability to secrete GAD- and IA-2-targeting IgG 

antibodies using ELISpot analysis. 

 

 

 

 



2. Methods  

2.1 Study subjects 

PBMCs were isolated from the peripheral blood of individuals with newly diagnosed, ND (<1 

year, n=20, female=7, mean age: 30 years (range: 18-47 years), mean disease duration 0.4 

years (range 0.1-1.0 years)), and long-standing, LS (>3 years) type 1 diabetes (n=20, female= 

11, mean age: 34 years (range 18-48 years), mean disease duration: 17.7 years (range: 3-36 

years )), as well as age- and sex-matched healthy donors, HD (n=35, female= 12, mean age: 

33 years (range 18-48 years)). Type 1 diabetes was diagnosed according to criteria established 

by the American Diabetes Association [10], and insulin treatment was commenced within one 

month of diagnosis.  The details of individuals studied are shown in Supplementary Table A1, 

A2 and A3. 

This study was approved by the South East Wales Research Ethics Committee and conducted 

in accordance with the principles of Good Clinical Practice established by the International 

Council for Harmonization/World Health Organization. All subjects provided written informed 

consent prior to enrolment as mandated by the Declaration of Helsinki.  

2.2 HLA class II genotyping 

Genomic DNA was extracted from whole blood samples collected in 

ethylenediaminetetraacetic acid (EDTA). HLA-DRB alleles were resolved using polymerase 

chain reactions with sequence-specific primers [16] and are listed in Supplementary Table A2 

and A3.  

 



2.3 Blood samples 

Serum samples were separated on the day of collection and stored in 1.5 ml Eppendorf tubes 

at -20oC before levels of serum antibodies were analysed in batches.  Serum autoantibodies 

specific for GAD and IA-2 were quantified by ELISA (RSR Limited, Cardiff, UK). Positive 

thresholds were set at 5 U/mL and 7.5 U/mL respectively. Peripheral blood mononuclear cells 

(PBMCs) were isolated from heparinized samples of whole blood via density gradient 

centrifugation over Lymphoprep (Stem Cell Technologies).  

 

2.4 Cell culture 

Freshly isolated PBMCs were cultured for 5-7 days, 37oC at a cell concentration of 0.5x106 /ml 

in RPMI/10% heat inactivated human AB serum/penicillin/streptomycin/ L-glutamine, 0.001% 

v/v pokeweed mitogen extract (gift from Prof. Shane Crotty, La Jolla Institute for Allergy & 

Immunology), 0.1µg/ml (2.4nM) protein A soluble from Staphylococcus aureus Cowan strain 

(SAC) (Sigma) and 4µg/ml (0.52µM) CpG-ODN 2006 (Keck Foundation Biotechnology Resource 

Laboratory, Yale University, New Haven). 

2.5 ELISpot 

Multiscreen-IP 96 separation system, 0.45µm Immobilin-P PVDF membrane (Merck Millipore) 

plates were pre-wetted with 70% molecular grade ethanol (Sigma), then washed and coated 

with either PBS, 0.5µg/ml goat antihuman IgG (Newmarket scientific) (as a positive control, 

data not shown), or recombinant human antigens (RSR Limited, Cardiff, UK) overnight at 4˚C. 

Antigen concentrations were as follows: rhGAD65 used at 0.4µg/ml (6.2nM), 0.8 µg/ml 



(12.3nM) or 1.6µg/ml (24.6nM); rhIA-2 intracellular fragment (aa 604-979) (RSR Limited, 

Cardiff UK) used at 0.4µg/ml (8.7nM), 0.8 µg/ml (17.4 nM) or 1.6µg/ml (34.8nM).  Plates were 

then washed and blocked with RPMI 10% heat inactivated foetal bovine serum (HI-FBS), 

overnight at 4˚C. 

The following day, blocking solution was removed and cells were washed in RPMI 10% HI-FBS, 

resuspended at 4x106 cells/ml and 100μl was placed in each well (4x105/well). For the IgG 

positive control cells were resuspended at 5x104/ml and 100μl was placed in each well 

(5x103/well).  Plates were incubated for 5 hours at 37˚C, then washed with PBS/0.05% Tween 

20, then incubated overnight at 4˚C with goat-anti-human IgG Fc biotin antibody (eBioscience) 

at 0.5µg/ml in PBS/0.05% Tween 20/5% HI-FBS. 

The following day, the plates were washed and developed with ExtrAvidin (Sigma) diluted 

1/5000 in PBS/0.05% Tween 20/ 5% HI-FBS, followed by BCIP/NBT substrate (Sigma). Plates 

were then washed and dried overnight before being read on a BIO-SYS GmbH Bioreader 4000 

using a minimum spot size of 30µm. All bioreader images were checked manually to ensure 

spots were correctly identified. The background number of spots, produced in wells coated 

with PBS, was subtracted from the counts for each antigen-coated well. A minimum of 6 wells 

were counted and averaged for each condition.  All individuals responded to the positive 

control stimulation. 

2.6 Statistics  

Data were analysed using Graphpad Prism 5 and R v3.4.1 for the plot matrix (ggplot2 and 

GGally packages, ggpairs plot). ELISpots were analysed using a Mann Whitney test to compare 



between two groups and a Kruskal-Wallis test, followed by Dunn’s multiple comparison for 

comparison between three groups, as the data were not normally distributed.  

3. Results  

We used a range of antigen concentrations to coat the ELISpot plates. Healthy donors (HD) 

exhibited a response to both GAD and IA-2 above the background level of spots. A dose 

titration was observed, with the effect dependent on the coating concentration for both 

antigens (Fig 1A, D). After the background levels of spots were subtracted, the median 

number of spots (from 400,000 cells) was 5.5 at 0.4µg/ml (6.15nM) GAD and 15.9 at 0.8µg/ml 

(12.3nM) GAD (p<0.005). For IA-2, the median number of spots (from 400,000 cells) was 4.2 

at 0.4µg/ml (8.7nM) IA-2 and 10.5 at 0.8µg/ml (17.4nM) IA-2 (p<0.05). Compared to healthy 

donors (HD), the newly diagnosed (ND) cohort had a significantly higher response to GAD at 

both 0.4µg/ml (6.2nM) (HD 5.5 spots, ND 16.8 spots, p<0.01), and 0.8µg/ml (12.3nM) (HD 

15.9 spots, ND 36 spots p<0.05), (Fig 1B, C). The long-standing (LS) cohort was not significantly 

different to the healthy donors (median 14.8 spots at GAD 0.4µg/ml (6.15nM) and 33.2 at 

GAD 0.8µg/ml (12.3nM)). The spot counts were not normally distributed and appeared to 

have a bimodal distribution.  

In response to IA-2, the newly diagnosed (ND) cohort had increased spots compared to the 

healthy donors (HD) at 0.8µg/ml (17.4nM) (HD 10.5 spots, ND 28 spots, p<0.05), but not 

0.4µg/ml (8.7nM) (HD 3.7 spots, ND 10.4 spots), (Fig 1E, F). Again, long-standing (LS) donors 

were not significantly different at either concentration of antigen (median 6.9 spots at IA-2 

0.4µg/ml (8.7nM) and 19.6 at IA-2 0.8µg/ml (17.4nM)). 

We compared spots in the GAD and IA-2 0.8µg/ml (12.3nM and 17.4nM respectively) 

ELISpots, with GAD and IA-2 antibody titres. The concentration of antigen was chosen because 



there was a significant difference in the number of spots seen between healthy donors and 

newly diagnosed donors at this coating concentration. In the newly diagnosed and long-

standing cohorts, serum titres of GAD or IA-2 autoantibodies were not correlated with spots 

produced in the respective GAD or IA-2 0.8ug/ml ELISpot assay, with high ELISpot counts 

occurring even when antibody titres were below the cut-off for a positive antibody result 

(GAD 5 U/ml, IA-2 7.5 U/ml) [17]. Indeed for both, there was a non-significant negative 

correlation between GAD antibody and GAD ELISpot (LS r= -0.191, ND r =-0.422) and for the 

newly diagnosed cohort between IA-2 antibody titre and IA-2 ELISpot (LS r= 0.221, ND r =-

0.435) (Fig 2). However, GAD and IA-2 antibody titres were weakly correlated for both of these 

cohorts (LS r= 0.164, ND r =0.271) consonant with findings of others [18].  There was no 

correlation or differences found related to HLA type (supplementary table A3). 

 

4. Discussion  

Here we have demonstrated that ELISpots can be used to detect B cell responses to 

autoantigens in T1D. Moreover, we showed that whilst B cells from healthy donors and 

people with long-standing diabetes could secrete antibody in response to diabetic 

autoantigens, the increase in the number of autoreactive B cells was only significant in the 

PBMCs of people with newly-diagnosed diabetes.  

B cell responses in type 1 diabetes are normally assessed by quantification of serum 

antibodies, produced by plasma cells. However, this does not provide a measurement of the 

memory B cells that may be circulating but not secreting antibodies [19, 20]. Whilst B cell 

ELISpots have been widely used to detect vaccine and infectious disease responses, the few 



reported incidences of their use in autoimmune disease relate to multiple sclerosis [21], SLE 

[22] and pemphigus vulgaris [23], showing that autoreactive B cells are detectable by ELISpot. 

 We used a method of stimulating memory B cells using Pokeweed mitogen (PWM) combined 

with S. aureus (Cowan strain, SAC) and a CpG oligonucleotide (ODN-2006), adapted from the 

method used by Crotty et al [20]. This pre-stimulation induces memory B cells to differentiate 

into antibody secreting cells [24]. Crotty and colleagues [20] used this method to identify 

memory B cells with a response to vaccines, and demonstrated that the responding cells in 

their assay were CD27+. 

It has been found that many autoreactive B cells in healthy donors are anergic with a mature 

naïve (CD19 + CD27−IgD+) phenotype and low affinity for autoantigens. At the onset of 

autoimmune diseases including T1D, SLE and autoimmune thyroid disease [25] [26], these 

anergic, naïve B cells are transiently lost from the peripheral blood suggesting that they may 

have become activated and travelled to the site of autoimmunity. However, it has also been 

demonstrated that a substantial minority of insulin-binding cells in the peripheral blood of 

both healthy donors and people with diabetes are CD27+ memory B cells [11]. Indeed insulin-

binding cells are found in all major B cell compartments, although their affinity for insulin may 

be very low, with high-affinity insulin binding cells found only in the anergic naïve subset [11, 

26].  

Our data demonstrated that even healthy donors had B cells that could produce antibodies 

in response to GAD and IA-2 in a concentration-dependent manner. The polyclonal pre-

stimulation may overcome anergy present in these B cells, and the ELISpot will potentially 

detect B cells with receptors that have a range of affinity of antigen binding. We therefore 

hypothesise that the antigen-specific antibody secreting cells from the healthy donors may 



be either anergic in vivo and/or have very low affinity for the autoantigens, such that at 

physiological antigen concentrations they are not induced to secrete antibodies. However, it 

is likely that they exist in the peripheral blood as CD27+ memory cells, as these are the cells 

that are activated by the pre-stimulation, rather than mature naïve B cells.  

The fact that people with long-standing type 1 diabetes did not have significantly more 

antigen-specific antibody secreting cells than healthy donors was perhaps not surprising as it 

is known that levels of serum autoantibodies decline in people with long-standing diabetes 

[27]. T cell responses to auto-antigenic peptide epitopes also decline in people with long-

standing diabetes to levels observed in people with no type 1 diabetes [28]. 

We observed that people with newly diagnosed type 1 diabetes had significantly more 

antigen-specific antibody secreting cells than healthy donors. This novel finding suggests that 

there are more circulating B cells in the peripheral blood capable of producing autoantibodies, 

and potentially that there are stimuli present that induce these to produce the 

autoantibodies. 

In summary, we found that B cells that secrete autoantibodies to specific-antigens are more 

abundant in people newly diagnosed with type 1 diabetes, and that those B cells can remain 

for many years in people considered long-standing. More interestingly, they are also present 

in people with no history of type 1 diabetes. Further experiments will be required to elucidate 

which B cell subsets produce these antibodies and whether the antibodies from healthy 

donors and people with diabetes have equivalent affinities for autoantigens.  

 



Figure 1. Healthy donors and people with type 1 diabetes have B cells in the peripheral blood 

that can produce autoantibodies to GAD and IA-2. A. Titration of GAD coating concentration: 

Spot-forming response of healthy donor PBMCs to indicated GAD coating concentration (with 

the background response to PBS coating subtracted). B. Spot forming response of healthy 

donors and people with ND and LS type 1 diabetes to 0.4µg/ml (6.15nM) GAD coating solution 

(with the background response to PBS coating subtracted). C Spot forming response of 

healthy donors and people with ND and LS type 1 diabetes to 0.8µg/ml (12.3nM) GAD coating 

solution (with the background response to PBS coating subtracted). D. Titration of IA-2 

coating concentration: Spot-forming response of healthy donor PBMCs to indicated IA-2 

coating concentration (with the background response to PBS coating subtracted). E. Spot 

forming response of HDs and people with ND and LS type 1 diabetes to 0.4µg/ml (8.7nM) IA-

2 coating solution (with the background response to PBS coating subtracted). F. Spot forming 

response of HDs and people with ND and LS type 1 diabetes to 0.8µg/ml (17.4nM) IA-2 coating 

solution (with the background response to PBS coating subtracted). * p<0.05, **p<0.01, 

***p<0.005 (A, D; Mann Whitney test. B, C, E, F; Kruskal-Wallis test, followed by Dunn’s 

multiple comparison). Lines represent the median. 

Figure 2. The number of antigen-specific antibody secreting cells is not correlated to serum 

antibody titres. Plot matrix of serum antibody concentrations (GAD, IA-2, log values) and 

PBMC responses in ELISpot to GAD 0.8 µg/ml (12.3nM) (PBS background subtracted) and IA-

2 0.8 µg/ml (17.4nM) (PBS background subtracted). On the lower left side: scatterplots of the 

variables plotted against each other as indicated on the axes. Correlation (r value) for the 

variables as indicated on the axes are to the right of each graph. Diagonally: Histograms 

showing the distribution of the variables. Pink- healthy donor. Green- LS type 1 diabetes. Blue- 

ND type 1 diabetes. Black (r value only) - all samples.  
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Figure 2 

 

 

 

  



Highlights 

• We developed a sensitive B cell ELISpot assay to detect individual B cell antibody responses 

to GAD and IA-2. 

• No correlation with serum autoantibody levels, indicating that additional factors are 

required for antigen secretion. 

• Individuals with newly diagnosed but not long-standing type 1 diabetes had increased B cell 

reactivity to autoantigens. 

• Healthy donors have B cells that secrete antibodies in response to GAD and IA-2 in the 

ELISpot. 

• Healthy donors have potentially auto-antigenic B cells. 

 

 

 



 
 
 
  



 


