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Abstract: Marine renewables represent a promising and innovative alternative source for satisfying1

the energy demands of growing populations while reducing the consumption of fossil fuels. Most2

technological advancements and energy yield assessments have been focused on promoting the use of3

kinetic energy from tidal streams with flow velocities higher than 2.0 m s−1. However, slower-moving4

flows from ocean currents are recently explored due to their nearly continuous and unidirectional5

seasonal flows. In this paper, the potential of the Yucatan Current is analysed at nearshore sites over6

the insular shelf of Cozumel Island in the Mexican Caribbean. Field measurements were undertaken7

using a vessel-mounted ADCP to analyse the spatial distribution of flow velocities, along with CTD8

profiles as well as data gathering of bathymetry and water elevations. Northward directed flow9

velocities were identified, with increasing velocities just before the end of the strait of the Cozumel10

Channel, where average velocities in the region of 0.88 to 1.04 m s−1 were recorded. An estimation11

of power delivery using horizontal axis turbines was undertaken with Blade Element Momentum12

theory. It was estimated that nearly 3.2 MW could be supplied to Cozumel Island, i.e. about 10% of13

its electricity consumption.14

Keywords: Ocean current; kinetic energy; marine renewables; marine turbines; Cozumel Channel;15

Mexico16

1. Introduction17

The use of renewable energy baseload power is a growing concern to successfully reduce the18

dependency on fossil fuels and satisfy the increasing global energy demands [1]. Tides, ocean currents,19

thermal and/or seawater salinity gradients and waves are marine energy sources that could provide20

up to 300 GW of global installed capacity by 2050 [2,3], which has led to innovative and promising21
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technologies [4–6]. Ocean currents and tidal energy could represent an annual global potential of 80022

and 300 TWh, respectively [7].23

Despite the increased investment on marine energy technologies [8,9] and the deployment of24

the first two commercial arrays for tidal current approach [10,11], technological advancements are25

limited to specific regions, which decreases the commercialisation of this technology. Up to date, tidal26

currents higher than 2.5 m s−1, normally found in large shelf seas such as Western Europe, Yellow Sea27

and northern Australia, have been the focus of resource assessments and the implementation of large28

marine turbine systems [12]. If the viable threshold velocity required for the optimum operation of29

a turbine or converter decreases below 2.0 m s−1, then the potential supply from ocean currents and30

tidal streams could increase dramatically, thus becoming a global commodity.31

Ocean currents driven by wind stress, Coriolis force, pressure gradients, temperature and salinity32

gradients, friction and interactions with shorelines [13] could provide large advantages when compared33

to tidal currents as ocean currents show a nearly continuous and relatively constant unidirectional34

flow. Furthermore, ocean currents are globally extended and constitute an attractive alternative for35

marine renewables particularly at locations where flow acceleration is exacerbated as a consequence of36

the geomorphology and seabed topography such as straits and channels [2,8].37

The energy potential of the ocean currents, such as in the Gulf Stream, has been recently38

assessed through the use of numerical models and flux observations [13,14]. Challenges related39

to the implementation of marine energy technology in the Gulf Stream were associated with difficulties40

arising with the installation of the devices in deep waters and long distances to shore [15,16]. However,41

there is still a lack of information related to energy yield assessments of open ocean currents around42

coastal areas.43

The ocean current flowing along the Cozumel Channel in the Mexican Caribbean has been44

investigated by [17] and [18]. Initial findings suggest that the flow speeds developed in the mid section45

of the Channel are in the order of 2.0 m s−1. Nevertheless, these findings did not focus on shallow46

coastal waters (depths < 50 m), which could reduce excessive installation and maintenance costs47

associated with distances and water depths [15,16]. Thus, identifying physical and environmental48

constraints is required to assess suitable sites for the exploitation of the kinetic marine energy [19].49

Unlike tidal streams which could reach flow velocity magnitudes > 2 m s−1, sometimes exceeding50

5 m s−1 (e.g. [20]); ocean currents are slower, yielding less power but reducing the overall loading51

that marine turbines would need to withstand. In recent years, preliminary methodologies to design52

Horizontal Axis Tidal Turbines (HATTs) have been developed to maximise the hydrodynamic efficiency53

of a turbine operating at flow velocity magnitudes of 1.0-1.5 m s−1 [21].54

Therefore, this study aims to explore the potential of the nearby Yucatan Current in the western55

and northern insular shelf of Cozumel Island as a marine renewable energy source in the Mexican56

Caribbean. The analysis of the Current over the shelf and its energy content are studied based on field57

measurements in order to: i) provide a spatial characterisation of the flow (i.e. velocity magnitude and58

direction), ii) recognise potential near-shore sites, and iii) identify the physical features of the seabed59

(e.g. bathymetry) and environmental limitations (e.g. protected zones) in the area. Results are then60

used for an initial quantification of the power delivery that can be achieved with the use of horizontal61

axis marine turbines and to assess the requirements of the technological development necessary for its62

implementation in the future.63

2. Study area64

Located in the Mexican Caribbean, the Cozumel Channel is delimited by the eastern side of the65

Yucatan Peninsula and Cozumel Island (Figure 1). The Cozumel Channel is about 50 km long and 1866

km wide with water depths reaching 500 m. It forms a passageway of about ∼5 Sv (5 Mm3 s−1) and67

20% of the mean transport of the Yucatan Current [22] that flows northward parallel to the Yucatan68

Peninsula, eventually forming the Loop Current into the Gulf of Mexico and continuing as the Gulf69

Stream after passing the Florida Channel [18,22,23]. The velocity magnitudes increase after crossing70
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the Cozumel Channel reaching speeds of up to 2-2.5 m s−1 close to the Yucatan Channel [24] and71

average surface velocities of up to 1.5 m s−1 [23,25]. An average speed of 1.1 m s−1 was recorded72

across the Cozumel Channel, at 30 m of the water column in the central section of the strait [22]. The73

ocean current is the main forcing for the flow velocities within the Cozumel Channel, with limited74

influence of any other contributions (e.g. local wind, waves or tides). For instance, the tidal range in75

the Caribbean Sea is microtidal [26], with an average of ∼0.18 m at Cozumel Island, based on 7-year76

records from pressure sensors [23].77

Figure 1. Location of the Cozumel Channel, marine protected areas, bathymetry and human settlements
of Playa del Carmen and San Miguel (right panel). ADCP transects, CTD profiles along the study area
as well as deployments of HOBO water level data loggers at Chankanaab (20.44111◦N, 86.99639◦W),
Punta Sur (20.29853◦N, 87.01632◦W), and Xcaret (20.57826◦N, 87.11834◦W) are also shown.

The insular shelf of Cozumel Island is featured by water depths up to 35-50 m and extends about78

250-500 m from the shoreline (Figure 1). In the northern area, between Punta Norte and Punta Molas,79

the shelf extends for more than 15 km seaward, where sandy bottoms are found. The nearshore80

bathymetry comprises two shallow coastal terraces with coral reef lines followed by sandy plains81

before the steep insular shelf slope along the coastline from Punta Celarain to Punta Norte (APIQroo,82

2018).83

The annual electricity consumption in Cozumel Island was of ∼274.75 GWh in 2016 with a total84

expenditure of approximately US$30 million [27,28]. The growth in energy consumption relates to the85

accelerated growth rate of local population (San Miguel and Playa del Carmen), increasing from ∼713086

to ∼229400 inhabitants between 1970-2010, as well as to cruising tourism arrivals with more than 487

million passengers per year with economic benefits of about US$762 million [29]. Cozumel Island is88

considered as the first cruising tourism destination worldwide [30], and for which the utilisation of89

marine renewables could contribute to afford a more sustainable energy supply, currently supported90

by a single submarine cable from mainland Mexico.91
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Coral reef systems alongshore the coastal waters of Cozumel Island represent the economic92

cornerstone in the region with several species mainly found in the east and south coast of the Island93

[30]. For this purpose, three marine protected areas have been established [31–34] (Figure 1): a) Reserve94

of the Biosphere “Caribe Mexicano” (RBCM); b) National Park “Arrecifes de Cozumel” (PNAC) (1195

988 ha) at the southwest coast of Cozumel Island; c) Natural Protected Area of Fauna and Flora “Isla96

de Cozumel” (APFFIC) at the north and northeast coast of Cozumel (37 829 ha). This information will97

be thus utilised when assessing the establishment of an array of marine devices in the coastal areas of98

Cozumel.99

3. Materials and methods100

3.1. Field measurements101

An overview of the ocean current circulation was made based on the HYbrid Coordinate Ocean102

Model (HYCOM) outputs as presented in [35], for the coordinates 15.5-22.8◦N and 85.5-89.0◦W and103

a resolution of 1/12◦. The outputs show the average velocity field from the period 2010-2013 in the104

Mexican Caribbean and around Cozumel Island. As a result, a map of the horizontal-surface velocity105

fields (i.e. magnitude and directionality) was obtained based on time-average of HYCOM daily data106

for the period 2010-2013 in the Mexican Caribbean and around Cozumel Island. HYCOM is a proved107

and validated model for several regions and represents fairly well the main oceanographic features in108

the study area as compared with observations (e.g. [18,36,37]).109

Further analysis was conducted considering results from field measurements collected during110

September 21st-29th 2018, over the western and northern insular shelf of Cozumel Island, where a111

feasible site of marine renewable conversion was identified from the Yucatan Current circulation. Water112

level variations were measured using HOBO water level data loggers deployed at Xcaret, Chankanaab113

and Punta Sur (Figure 1), considering a sampling interval of 30 minutes to verify the microtidal114

conditions in the study area. Water level variations were referred to the average water level during the115

survey period, whereas the tidal range was estimated considering peak-to-peak variations.116

The spatial variation of instantaneous flow velocities was measured throughout the west and117

north insular shelf of Cozumel Island. Flow velocity magnitudes and directionality were retrieved118

from Acoustic Doppler Current Profiler (ADCP) transects using a vessel-mounted RiverPro ADCP [38]119

equipped with a fully integrated GPS (Figure 1). The measurements were limited to water depths <120

50 m before the sharp insular slope decays towards the centre of the channel Figure 1. The spacing121

between transects was ∼2 km from Punta Sur to Chankanaab, and ∼0.5-1.0 km close to Punta Norte.122

Further transects were developed in the north of Cozumel Island with a total length of ∼8.0-13.0 km.123

Rose diagrams of the ADCP data were obtained to define the distribution and direction of124

the flow over the insular shelf of Cozumel Island. As a result, a power per unit area (kW m−2)125

map was developed considering the depth-averaged velocities from the ADCP transects. Flow126

velocity exceedance curves were also calculated for selected transects around more energetic locations.127

Bathymetric data were also recorded during the ADCP measurements and complemented with128

echosounder data from a GPS-Humminbird 899CXI HD SI to provide larger detail currently not129

provided by available nautical charts S.M. 922.400 and S.M. 922.500 from [39], as well as the viability130

of potential areas suitable to deploy marine turbines. Salinity and temperature profiles at water depths131

< 50 m were measured at the end of each transect (Figure 1) using a CTD profiler YSI CastAway to132

estimate water density and identify barotropic or baroclinic conditions within the study area.133

3.2. Analytical model134

Initial estimates of the energy yield capabilities around Cozumel Island were obtained using135

the Blade Element Momentum (BEM) theory. This method is widely used in the wind and marine136

energy industries, as it is one of the simplest techniques to obtain accurate power outputs predictions137

of tidal/wind turbines. The BEM model utilised was coded at the University of Strathclyde and138
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implemented in Python 3. Optimisation algorithms were derived with the SciPy Optimize package139

(method of Sequential Least Squares Programming ‘SLSQP’) to iteratively solve the induction factors140

within the simulations [40]. By using BEM theory, the performance of the rotor can be accurately141

predicted and the errors within the model are reduced, as the aerodynamic characteristics of each142

blade section complement the equations from momentum theory (lift, drag, chord length, angle of143

attack).144

A three-bladed horizontal axis tidal stream turbine specially designed to operate in lesser energetic145

flows [21] was employed in this study. To account for inherent limitations of the analytical model,146

Prandtl tip and hub correction factors were included in each iteration [41]. The Buhl high induction147

correct factor was also utilised to account for axial induction factors greater than the theoretical limit148

[42]. The lift and drag coefficients of the aerofoil in each section of a NACA 638xx blade were obtained149

from [21], based on ANSYS Fluent results for angles of attack of -20◦ to 16◦. The Viterna-Corrigan150

post-stall model [43] was also used to evaluate the aerodynamic characteristics of the section upon the151

onset of stall operation (α=16◦).152

Four selected ADCP transects were used in the simulations based on their energy content and153

environmental constraints of the site. Within each transect, three 10-meter windows separated by at154

least fifty meters (center-to-center distance) and located over a relatively flat profile (i.e. <1 m depth155

difference within 10 m along the seabed), were evaluated to obtain an averaged velocity profile. The156

obtained averaged profiles were then fitted to a power law function (Equation 1), where the average157

value of the variables Uo, flow velocity, and b ,the power law exponent, were used as inputs for the158

BEM simulations. It was decided to filter values of b that reached a power law relationship of 1 × 107
159

(i.e. a nearly constant velocity profile) so that, at least 60% of the profiles obtained in any 10-meter160

window resulted on values of b<10.161

Uo(z) = Uo z1/b (1)

Two cases were evaluated for each window considering different turbine positions within the162

water column (Figure 2): i) at the middle of the water column, and ii) closer to the upper surface,163

establishing a 2.5 m clearance from the mean water surface and the blade tip positioned at the top164

dead centre. Therefore, the power output and corresponding CP values (power coefficients) could be165

obtained for each case.166

Figure 2. Case studies for BEM simulations considering the hub location within the water column
as well as the development of velocity profiles based on power law fitting curve based on ADCP
measurements

The performance of the rotor operating at peak power was considered in the simulations. Previous167

analysis retrieved from [21], showed that this operating point occurs at tip speed ratio (TSR) of 6.75.168
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The diameter of the rotor was limited to 5 m since large diameter rotors will require complex gearing169

mechanisms; thus, increasing the cost of turbines.170

4. Results171

4.1. Flow velocities and power estimation172

A preliminary description of the circulation related to the eastern Yucatan coast and its relationship173

with the Cozumel Channel shows the velocity field averaged from 2010 to 2013 as presented by [35]174

(Figure 3a) with a well-defined northward flowing from latitude ∼19.5◦N and beyond ∼22◦N. It flows175

almost parallel to mainland Mexico with average velocity magnitudes increasing northwards, and176

values higher than 1.0 m s−1. In the southern region, velocity magnitudes between ∼0.2-0.4 m s−1 can177

be observed at latitudes below 20 ◦N, before the Cozumel Channel divides the Yucatan Current. The178

flow velocities within the Cozumel Channel increase rapidly, reaching values higher than 1.0 m s−1 at179

a latitude of 20.5-20.6◦N (Figure 3a). The effect of Cozumel Island over the Yucatan Current is also180

evident when observing the increase of flow velocities at the east of the Island.181

Measured sea water level variations in Xcaret and Chankanaab from pressure sensors (HOBO182

Water level loggers) provided an average water level range within the 7-day period measurements183

(peak-to-peak amplitude) of 0.23 m (σ = ±0.04 m) and 0.24 m (σ = ±0.04 m), respectively (Figure 3b).184

An increase in the water level range during the field survey period was observed in Punta Sur with an185

average of 0.31 m and σ = ±0.04 m. Maximum amplitude range occurred at Punta Sur with 0.38 m,186

whereas the minimum was reached for Xcaret with 0.16 m (i.e. similar to Chankanaab). The microtidal187

regime within the Cozumel Channel was thus featured by a semidiurnal behaviour with a water level188

range of 0.26 m (σ = ±0.04 m) (Figure 3b). Although seawater level fluctuations occur in the study189

area, the main forcing for the development of kinetic energy within the Channel is noticeably driven190

by the ocean current rather than tidal like oscillations.191

Temperature and salinity profiles resulting from CTD measurements showed nearly homogeneous192

water column for the entirety of the field survey, thus indicating barotropic conditions for the west193

shallow waters of the Cozumel Channel (Figure 3c). Average values of salinity and temperature were194

of 37.03 PSU (σ = ±0.05 PSU), and 29.25 ◦C (σ = ±0.05 ◦C) leading to a water density of 1023.6 kg m−3.195

Figure 3. Flow velocity magnitudes and circulation of the Yucatan Current in the Caribbean Sea (a).
Results of sea water level variations in Chankanaab, Punta Sur and Xcaret (b), from field measurements
within the Channel as well as temperature, salinity and water density (c) during the field survey period
(September 23rd-29th, 2018.



Version April 25, 2019 submitted to J. Mar. Sci. Eng. 7 of 17

Flow velocity direction and magnitudes along the insular shelf of Cozumel are further described196

in detail based on ADCP in-situ measurements. The general rose diagram in Figure 4 (left panel)197

demonstrates that the flow direction oscillates between 30◦ < θ < 90◦, but it is predominantly driven198

towards the north-east (40-50◦), aligned with the ocean current flow. Rose diagrams for different199

regions (Z1-Z4) are portrayed in Fig. 4 (right panel). The highest velocity magnitudes of about 0.6-1.2200

m s−1 (relative frequency >72 %) occurred in the northern region of the Channel, between latitudes201

20.53◦N and 20.57◦N (Fig. 4b, zone Z2). For latitudes > 20.57◦N (Fig. 4a, zone Z1), over the insular202

shelf and between Punta Norte and Punta Molas, flow velocity magnitudes decrease considerably203

(i.e. about 82 % with velocity magnitudes 0-0.3 m s−1), possibly caused due to the Cozumel Channel204

widening.205

Between latitudes 20.53◦N and 20.44◦N (Figure 4c, zone Z3), the rose diagram exhibits components206

oriented NNE and SSW. A counter-current flow of < 0.4 m s−1 was measured with directions between207

230◦ < θ < 270◦ (i.e. SSW and S) and appears to be particularly limited to this zone. At latitudes <208

20.44◦N (Figure 4d, Z4), the velocity magnitude is mainly directed towards the north with almost 90%209

of the flow velocity magnitudes < 0.6 m s−1.210

Figure 4. General rose diagram of currents along the east and north shallow waters of the Cozumel
Channel (left panel), and for zones Z1, Z2, Z3 and Z4 featured by different conditions of flow direction
and velocity magnitude (right panel).

In Figure 5a, the distribution of power per unit area is described for the east shallow coastal211

waters of the Cozumel Channel. The power per unit area was calculated as P/A=0.5ρVMag
3 given in212

W m−2, with VMag as the depth-averaged velocity magnitudes from ADCP measurements and ρ as the213

average water density resultant from CTD results (1023.6 kg m−3). Most values of power per unit area214

were in the order of 0-10 W m−2, with some areas of 10-70 W m−2 (e.g. Chankanaab). Values larger215

than 500 W m−2, reaching up to 2500 W m−2, occur within a narrow strip of ∼200-250 m width, mainly216

in zone Z2 (Figure 5b) and close to the steep slope of the insular shelf (Figure 5c). These values are217

located within a non-protected area (NPA), south to the limit with the Natural Protected Area of Fauna218

and Flora “Isla de Cozumel” (APFFIC) and close to the northern portion of the city of San Miguel219

(Figure 5).220
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Figure 5. Power per unit area based on ADCP in-situ measurements for: a) the shallow east coastal
waters of the Cozumel Channel and b) zone Z2 (latitudes ∼20.53◦N-20.57◦N). Bathymetric details in
zone Z2 are shown in c) for the selected transects T1, T2, T3 and T4. Histograms are shown in d) for
different transects T1-T7 along the west coast of Cozumel Island.

Histograms of velocity magnitude from ADCP measurements at different transects distributed221

along the west side of the Cozumel Island are shown in Figure 5d. Velocity magnitudes varied from222

0.34 m s−1 to 1.04 m s−1 (Table 1), with average among transects of 0.71 m s−1 (σ = ±0.23). The lower223
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velocities are observed closer to the coastline, and the higher velocities occur nearly the limit edge of224

the insular shelf (Figure 5).225

Table 1. Velocity magnitude, flow direction and coordinates of selected transects in the east-coast of
Cozumel Channel.

Transect Latitude Longitude Length Depth-averaged Depth-averaged Direction* Direction
Vel. (VMag) Vel. Fluct. (σ) (θ) Fluct. (σ)

(◦) (◦) (m) (m s−1) (m s−1) (◦) (◦)

T1 Start 20.5524 -86.9279
End 20.5567 -86.9290 489.5 0.98 0.30 50.00 14.49

T2 Start 20.5529 -86.9288
End 20.5549 -86.9302 250.0 1.03 0.24 48.60 13.05

T3 Start 20.5452 -86.9326
End 20.5472 -86.9351 340.8 1.04 0.24 48.34 13.13

T4 Start 20.5138 -86.9496
End 20.5179 -86.9524 317.8 0.83 0.30 62.74 24.25

T5 Start 20.4515 -86.9962
End 20.4504 -86.9919 470.6 0.39 0.12 267.23 33.80

T6 Start 20.4041 -87.0246
End 20.4076 -87.0187 722.4 0.37 0.19 70.03 31.96

T7 Start 20.2797 -86.9974
End 20.2714 -87.0119 1778.7 0.34 0.20 73.09 43.94

Average 624.3 0.71 0.23 88.58 24.95
*The velocity direction is referred to the East and positive anticlockwise.

An increase in the northward velocity magnitude distribution is clearly noticed, gradually shifting226

towards higher values when moving from south to north (Figure 5d). Zone Z2, represented by227

transects T1-T4, shows the higher velocity magnitudes with average of 0.93 m s−1 (σ = ±0.30) and228

81.9-93.4% of the velocity distribution with values higher than 0.6 m s−1. Peak velocities magnitudes229

of ∼1.8-1.9 m s−1 were identified in transects T1-T4, which represent an increase rate of 0.05-0.06 m s−1
230

per kilometre. This could occur due to the effect of the main current flow moving closer from the231

centre of the Cozumel Channel to the shoreline in the northern zone (Z2). In this area, the velocities232

and power per unit area (Figure 5b,d) seemed to escalate just before the stretching end of the Cozumel233

Channel and the broadening of the insular shelf, more prone to be affected by the main flow passing234

through. For transects T5-T7 (zones Z3 and Z4), the average velocity magnitude was observed to be as235

low as of 0.3-0.4 m s−1 (i.e. half the velocities at transects in Z2), with about ∼89.3-97.2% of the velocity236

distribution below 0.6 m s−1.237

The average flow direction considering T1-T7 was of ∼88.6◦ (σ = ±25.0 ◦) and seemed to be238

affected by the coastline orientation (i.e. gradually modified from 73.69◦ in the south to 50◦ in the239

northern area). Around T5, the effect of a counter-current of ∼0.38 m s−1 was identified (Figure 4c,240

Table 1), which could be caused by the interaction of the northward flowing current with the insular241

geomorphology. For transects T1-T4, the average flow direction was of ∼51.6◦ (σ = ±17.0 ◦) (NNE),242

with larger flow direction variability observed for T1 and T4, but reduced for T2 and T3 (Table 1). This243

flow directionality results in similarities observed in UK tidal sites with variations of 20◦ [44].244

Exceedance curves of flow velocity magnitudes as well as flow velocity profiles were developed245

for transects T1, T2, T3 and T4 in the northern area (Table 1, Figure 6a), where the highest power per246

unit area and velocity magnitudes were found (Figure 5). For these transects, the velocity magnitudes247

VMag > 1.6 m s−1 have a probability of exceedance f < 1.0 %. These high-intensity flow speeds reach a248

maximum of 2.7 m s−1. For a probability exceedance f = 10.0 % the velocity magnitude was of VMag,T1249

≈ 1.41 m s−1, VMag,T2≈ 1.34 m s−1, VMag,T3≈ 1.18 m s−1 and VMag,T4≈ 1.20 m s−1. Moreover, for a250

probability of exceedance f = 90%, important velocity magnitudes were found for T2-T4: VMag,T2 ≈251

0.74 m s−1, VMagT3 ≈ 0.44 m s−1 and VMag,T4 ≈ 0.47 m s−1. The lower values obtained for T1 and252

f=90% VMag,T1 ≈ 0.26 m s−1 represent a larger variability of the flow velocities possibly caused by the253

lower velocities close to the shoreline, as shown in Figure 6b. Particularly for T2, the velocities are254
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quite uniform at 20 m water depth at a distance of ∼150 m from the shoreline. A submarine mound is255

later found, where the insular shelf edge is located (Figure 6b) and where velocity magnitudes close256

to 1.2 m s−1 were measured. T3 and T4 present similar patterns as those observed on the exceedance257

curves in Figure 6a, with comparable values of f=10, 50 and 90%.258

Figure 6. Transects T1, T2, T3 and T4 in the north-west portion of Cozumel Island: a) exceedance
curves of marine current velocities and b) velocity profiles. Location of 10-meter windows (W1, W2
and W3) at each transect for a practical estimate of the power output.

The flow velocity presents a relevant variation along the profiles for the selected transects (Figure259

6b). In this regard, velocity magnitudes larger than 1.0 m s−1 were mostly found at 150 m shoreward260

from the insular slope, almost uniform with the water depth, up to ∼20 m. Velocities were observed to261

decrease significantly with values of about 0.2-0.4 m s−1 close to the shoreline, which is expected to262
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occur due to bottom friction and the shallower water depth as observed in T1, T3 and T4 (Figure 6b).263

Effects of bottom friction could be noticed within a layer of about 7 m from the sea bottom, mainly264

shown in T2, T3 and T4 and on a smaller portion in T1.265

Bottom profiles are given in Figure 6b also represent typical profiles along the west coast of266

Cozumel Island. T1 and T2 show the development of the insular shelf slope, which was observed267

to start at water depths of ∼35 m. Transect 4 presents a slope of 1:10, which further develops on a268

steep slope (1:5) at ∼20-34 m depth and a terrace of 50 m before reaching the end of the insular shelf.269

Transect 1 and 3 developed a slope before a terrace at 20 m depth is noticed. From the records obtained270

in the field survey, the extent of the insular shelf is estimated to be within 250-500 m (Figure 5c). It271

is worth noting that the flow velocity magnitude (∼0.4-1.4 m s−1), as well as, bathymetric variations272

observed in transects T1-T4 (Figure 6b) represent important design decision parameters which need to273

be considered in the implementation of marine turbines in nearshore sites of the Cozumel Channel.274

4.2. Power output275

The location of three 10-meter windows was established for each of the transects T1-T4. The276

velocity distribution profiles served as an input to calculate the power output of a 5 m diameter277

horizontal axis turbine installed over the insular shelf of the Cozumel Channel. The average value of278

the variables Uo and b obtained as inputs in the BEM simulations are described in Table 2. It should be279

noted that b-values for each transect varied from 2.5 to 6.5, indicating greater bed roughness than the280

usual 1/7th power law applied to more theoretical estimations, which could be induced by the reef281

systems.282

Table 2. Average values of Uo, b, water depth and distance from the shelf edge for each 10-meter
window.

Transect ID Window Uo b Water Depth Distance*
(m/s) (m) (m)

1 0.85 4.99 19.43 105-115
T1 2 0.85 3.08 18.52 150-160

3 0.80 5.43 17.88 210-220
1 1.13 3.11 17.83 130-1405

T2 2 1.12 2.82 18.47 160-170
3 1.16 3.05 18.15 230-240
1 0.86 4.99 19.43 105-115

T3 2 0.79 6.89 18.47 160-170
3 0.81 2.60 17.62 240-250
1 0.88 6.14 19.06 100-110

T4 2 0.74 6.26 16.07 150-160
3 0.87 4.32 12.86 200-210

*Distance measured shoreward with the shelf edge considered as zero reference.

The resultant power outputs obtained from the analytical model and the velocity power law283

profiles are shown in Table 3. The power outputs were 7.8% greater for the “floating turbine” (case 2)284

than for the “bottom mounted” device (case 1) (Figure 2).285

The power output in T2 by three turbines can reach values in the scale of 8.87 kW and 13.39 kW286

for case 1 and case 2, respectively (Table 3). This result was expected as the value of Uo for T2 was287

higher than for all other transects. The lowest CP for this transect was observed in the second window288

and attributed to the low value of b. The lower the value of b (Table 2), the quicker the flow velocity289

magnitudes decay to zero values towards the bottom, resulting in lower average flow speed over the290

rotor in addition to higher load variability resulting in fatigue.291

The centre-to-centre distance of each window within one transect was initially defined on 50292

m. However, since the flow velocity was noticed to be mainly perpendicular to the transect, a large293

number of turbines may be placed between windows to maximise the power output of each transect.294
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Table 3. Power output (P), power coefficients (CP) and total theoretical power derived from BEM for
each of the 10-meter windows within the selected transects T1-T4.

Transect ID Window 1 Window 2 Window 3 Total power (kW)
Case 1 - Bottom Mounted

T1 Power (kW) 1.69 1.29 1.46 4.43
CP 0.27 0.21 0.28

T2 Power (kW) 3.19 2.68 3.01 8.87
CP 0.20 0.19 0.21

T3 Power (kW) 1.75 1.50 1.02 4.27
CP 0.27 0.31 0.19

T4 Power (kW) 2.02 1.21 1.70 4.93
CP 0.30 0.30 0.25

Case 2 - Floating device
T1 Power (kW) 2.17 1.92 1.80 5.89

CP 0.35 0.31 0.35
T2 Power (kW) 4.75 4.17 4.42 13.34

CP 0.30 0.30 0.30
T3 Power (kW) 2.24 1.78 1.53 5.56

CP 0.35 0.37 0.28
T4 Power (kW) 2.45 1.42 1.98 5.86

CP 0.36 0.35 0.30

This array formation implies that the flow on each turbine is not reduced, as they are considered to be295

installed on a staggered array downstream.296

The power output for each window in a transect does not show important variations (Table 3),297

except for T4 where a steeper seabed profile occurs reaching a water depth of 12.86 m in the last298

window (Table 2). Thus, the estimate of the power output for each transect (relative to the number of299

turbines) was obtained as the average power output of the initial set of three turbines multiplied by a300

factor n=1, 2, 3; where n = 2 translates to 6 turbines, n = 3 translates to 9 turbines. Table 4 shows the301

expected power output for each transect given this estimation.302

Table 4. Power output for transects T1-T4 relative to the number of turbines placed for each case
condition.

Number of turbines 3 (n=1) 6 (n=2) 9 (n=3) 12 (n=4) 15 (n=5)
Centre to centre distance* 50.0 (10D) 20.0 (4D) 12.5 (2.5D) 9.1 (1.8D) 7.1 (1.4D)

Transect ID Case 1 - Bottom Mounted

T1 4.43 8.87 13.30 17.74 22.17
T2 8.87 17.75 26.62 35.49 44.36
T3 4.27 8.53 12.80 17.07 21.34
T4 4.93 9.87 14.80 19.73 24.66

Total Power Output (kW) 22.5 45.02 67.52 90.03 112.53
Transect ID Case 2 - Floating device

T1 5.89 11.79 17.68 23.57 29.47
T2 13.34 26.68 40.02 53.36 66.70
T3 5.56 11.12 16.67 22.23 27.79
T4 5.86 11.72 17.58 23.44 29.30

Total Power Output (kW) 30.65 61.31 91.95 122.6 153.26
*The centre to centre distance is also referred as a function of the turbine diameter (D)

Increasing the number of turbines deployed within the studied sections results in substantial303

power outputs in the order of 153 kW. While this seems favourable, it decreases the spacing between304

each turbine. [45] has studied cross-flow turbines and found that a spacing of 3D decreases the power305

output of such devices. Although the devices analysed were axial flow turbines, the decreased spacing306

(2.5D and lower) might result in flow interaction and performance losses. Regardless, the use of a307

2.5 D lateral spacing between turbines within a section of 100 m could potentially signify an average308
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hydrodynamic power output closer to 23 kW per row (according to Table 4, case 2 and a 9 turbine309

array).310

Assuming a lateral spacing of 2.5 D [45] and a downstream spacing of 10 D (50 m), according to311

the available literature [46]; an array of “floating turbines” (case 2) could be potentially installed along312

∼5 km in the northern region Z2, from San Miguel to the limit with the APFFIC (Fig. 1). This region is313

characterised by flat seabed areas that extend 100 and 200 m from from the insular shelf edge, along 0-3314

and 3-5 km northward San Miguel, respectively. This region is located outside environmental protected315

areas and might not interfere with tourism activities and navigational channels; thus providing an316

ideal location for the deployment of the turbine array. Therefore, nearly 3.2 MW could be produced317

using three bladed horizontal axis devices, which represents 10% of the energy demands of Cozumel318

Island.319

Further estimations will need to consider the temporal variability of the current around region Z2,320

which at this stage has been considered as a current of continuous nature. The use of other technology321

such as vertical axis or cross flow devices should also be pondered so as to identify areas where floating322

horizontal axis turbines could not be deployed.323

5. Discussion and Concluding remarks324

The kinetic energy of the Yucatan Current flowing over the insular shelf of Cozumel Island was325

spatially analysed. A review of the averaged flow velocity from daily HYCOM outputs as presented in326

[35] showed that the energy potential around Cozumel Island could reach flow speeds higher than327

1.2 m s−1 in some regions. The microtidal conditions for the study area (water level range of 0.26 m,328

σ = ±0.04 m) also provided additional evidence that the current flow is mainly driven by a nearly329

continuous and almost constant ocean current, contrary to tidal streams that vary both in directionality330

and intensity [47,48]. However, further research is required to estimate the contribution of the average331

microtidal signal to the ocean current velocities, and consider field validation along the Mexican332

Caribbean as well as detailed modelling within the Cozumel Channel and its coastal areas. In addition,333

a tidal analysis should be performed to determine the sea water level fluctuations for the study area334

considering longer time series of sea level records than those contemplated at present in order to335

provide a more accurate prediction.336

In the south region of Cozumel Island (zone Z3 and Z4), flow velocity magnitudes below337

0.6 m s−1 are mostly developed, matching to locations where coral reef formations and tourism338

activities are largely featured as the cornerstone of the economic activities in the study area (i.e., scuba339

diving, snorkelling and aquatic sports) [30], making it an unsuitable location to deploy marine energy340

converters. In the central area (zone Z3), a counter-current with velocity magnitudes of ∼0.4 m s−1
341

was identified, as also observed in previous studies from [23,49]. This flow pattern could relate to the342

interaction of the current with the coastline morphology and where infrastructure is mainly developed343

(i.e., cruise ship piers and sea terminals). The energy potential in Z3 is further constrained by the water344

depth; development of bathymetric changes (e.g. steep slopes); bottom friction (e.g. induced by large345

roughness from reef systems), coastline shapes and orientation as well as possible interaction with346

maritime infrastructure.347

The most suitable areas to harvest energy from the ocean current by marine turbines are found348

in zone Z2, closer to the northern insular shelf-edge of Cozumel Island with an energy content of349

nearly 0.5-2.5 W m-2. An average velocity of 0.93 m s -1 (σ = 0.30 m s-1) and peak flow velocities in350

the range of 1.8 to 1.9 m s-1 were detected at water depths between 20 to 35 m which are suitable for351

the installation of floating devices. A specific area located between latitudes 20.5185 to 20.5524◦N and352

outside the delimitation framed by marine protected areas, navigational channels and tourism activities353

was of particular interest. It extends to approximately 5 km long and 100-200 m wide corresponding354

to circa 70 ha of the seabed. All these characteristics indicate that this particular region within Z2355

should be considered as the prime location to deploy marine energy devices in the insular shelf of the356
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Cozumel which also benefits from sandy bottoms with low presence of coral reef formations [50–52],357

thus decreasing possible damage to the ecosystem .358

Challenges associated with the design of marine energy converters should consider additional359

parameters related to the flow characteristics. The averaged flow direction in zone Z2 was360

predominantly NE (∼ 51.6◦ and σ = ±17.0 ◦), aligned with the ocean current flow and similar to361

that observed on tidal streams [44]. Nevertheless, power losses could be expected as a consequence of362

the directional fluctuations. Considering results for all transects over the east coast of the Cozumel363

Channel, local fluctuations on flow directionality were observed to be mainly developed due to364

the coastline orientation. As this study was primarily based on spatial variability measurements,365

temporal variations of the flow in this region must be carried out in the future to account for further366

flow particularities that are time-variable and time-dependent and relevant to turbine designing; e.g.367

turbulence length scales, turbulent kinetic energy, wave-current interactions, etc, which may be more368

detrimental in slower flow streams [53].369

Given the flow intensities and the locations prone to harvest energy from the oceanic current,370

HATTs were considered as the most feasible option as this may lower the costs by minimising learning371

procedures established by those that are already in use. Additionally, higher power efficiencies have372

been reported with their use compared with other technologies; for example, the device used in [45].373

The present study has shown the possibility of utilising floating turbines in the order of 5 m in diameter,374

able to achieve a maximum CP of ∼0.35 at a TSR = 6.75. As expected, the closer the turbine is to the375

surface, the more energy can be captured, which translates to an average improvement of 7.80% when376

compared to the bottom mounted device. These floating devices of 5 m of rotor diameter may become377

more cost effective with time since operational procedures can be minimised due to its accessibility378

[54]. Further investigations will consider relations between rotor diameter and cost of energy.379

It was foreseen that nearly 3.2 MW could be supplied (i.e. 10% of the electricity consumption),380

considering an array of devices along 5 km in zone Z2 with a lateral and downstream spacing of381

2.5 D and 10D, respectively. It is clear that the dynamics of the fluid will change drastically with382

the deployment of turbine arrays; therefore, the assumptions used to calculate the energy yield of a383

farm may not be completely realistic[55]. Despite of the conjectures employed for the latter part of384

this analysis, the lateral and downstream spacing applied in this study were retrieved from existing385

physical and numerical modelling of tidal turbine arrays giving an insight into the energy delivery386

that can be achieved with the proposed technology in this small section of the Channel. Clearly, the387

investigation of turbine interactions is an ongoing research question, and it is anticipated that the388

power output and loading characteristics of individual turbines within an array will be site dependent.389

This estimate may be somewhat discouraging, however, the implementation of devices in sites390

influenced by strong ocean currents compared to tidal energy sites, provides advantages such as: a)391

the continuous and almost uniform energy generation due to the single-directional current flows (i.e.392

not dependent on the tidal cycle) and b) the possibility of reducing operational and maintenance costs393

using lightweight and inexpensive materials that could also benefit the development of turbine arrays394

in the region but this will be contemplated in future work. Moreover, it should be noted that the region395

evaluated in this study is only a small proportion of the channel which corresponds to less than 1%396

of the channel’s width. According to the convention reported in [55], the array proposed here can be397

identified as a medium size marine farm. Additional work will not only contemplate a better estimate398

of the overall power output based on numerical evaluations done explicitly for this region but also399

extend this analysis to other potential sites; for example the mainland side of the Cozumel Channel400

(i.e. closer to Playa del Carmen), where large tourism developments can be found.401

It is noteworthy that technology available is currently not fully developed to be used in sites402

such as those found along the Cozumel Island. Concerns must be addressed to engineer an efficient403

device for turbine operation under these conditions. One of the main limitations could be related to404

the aspect ratio of the rotor blades [21]. A turbine design able to operate at high rotational speeds405

due to the velocity flow (∼1.0 m s−1) will inherently need to employ slenderer blades than those used406
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to date, which could lead to rapid failure considering the shear and turbulent flows of the current407

[56,57]; hence the importance of temporal flow studies in Z2..408

The implementation of marine energy innovative technologies, such as HATTs or further, may409

tackle to some extent the electric demands of Cozumel Island which increase rapidly mainly due410

to tourism activities. The transition to a renewable energy baseload system should also consider411

hybrid renewable energies solutions [58]. Hybrid systems could reduce the levelised costs of energy412

in Cozumel, according to studies done by [59,60]. Future work should consider the cost of energy413

associated with the implementation of a marine turbine array in the insular shelf of Cozumel, including414

capital and operational costs to envisage the techno-economic opportunities that could be achieved415

with the implementation of marine renewables in the area.416
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