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ABSTRACT

Context. We present the study of a magnitude limited sample (mB " 16.6 mag) of 13 late type galaxies (LTGs), observed inside the
virial radius,Rvir # 0.7 Mpc, of the Fornax cluster within the Fornax Deep Survey (FDS).The deep multi-band images (u,g, r, i
bands) allow us to investigate the composition and structure of the discs in these galaxies.
Aims. The main objective is to use surface brightness proÞles andg $ i colour maps to obtain information on the internal structure of
these galaxies and Þnd signatures of the mechanisms (e.g. strangulation, ram-pressure stripping, galaxy-galaxy harassment) that drive
their evolution in high-density environment, which is inside the virial radius of the cluster.
Methods. By modelling galaxy isophotes, we extract the azimuthally averaged surface brightness proÞles in four optical bands. We
also deriveg $ i colour proÞles, and relevant structural parameters like total magnitude, and e! ective radius. For 10 of the galaxies in
this sample, we observe a clear discontinuity in their typical exponential surface brightness proÞles, derive their Òbreak radiusÓ, and
classify their disc-breaks into Type II (down-bending) or Type III (up-bending).
Results. We Þnd that Type-II galaxies have bluer average (g $ i) colour in their outer discs while Type-III galaxies are redder.
The break radius increases with stellar mass and molecular gas mass while decreases with molecular gas-fractions. The inner
and outer scale-lengths increase monotonically with absolute magnitude, as found in other works. For galaxies with CO(1-0)
measurements, there is no detected cold gas beyond the break radius (within the uncertainties). In the context of morphological
segregation of LTGs in clusters, we also Þnd that, in Fornax, galaxies with morphological type 5< T" 9 (#60 % of the sample)
are located beyond the high-density, ETG-dominated regions. We do not Þnd any correlation of average (g $ i) colours with
cluster-centric distance, but we Þnd a positive trend of average (g $ i) colours with absolute magnitude,Mi (colour-magnitude
relation).
Conclusions. The main results of this work suggest that the evolutionary path taken by LTGs inside the virial radius of the
Fornax cluster not only depends on the density of the environment they are located in but also on their initial mass and
structure while falling into the cluster. Their disc breaks seem to have arisen through a variety of mechanisms (e.g. ram-
pressure stripping, tidal disruption), which is evident in their outer-disc colours and the absence of molecular gas beyond
their break radius in some cases. This can result in a variety of stellar populations inside and outside the break radii.

Key words. Galaxies: clusters: individual: Fornax Ð Galaxies: irregular Ð Galaxies: spiral Ð Galaxies: structure Ð Galaxies:
evolution Ð Galaxies: photometry

1. Introduction

Spiral galaxies and irregular galaxies, which fall under the late
type galaxies (hereafter, LTGs) morphology classiÞcation, have
been primarily studied in the past, mostly concerning the forma-

tion of grand design structures e.g. spiral arms (Lin & Shu 1964).
These galaxies are rich in atomic and molecular gas and because
of that, they are actively forming stars. Their stellar and (cold and
di! use)gaseous discs are knownto be sensitive to the e! ect of
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the environment and their evolution (star formation history) is
slower (Boselli & Gavazzi 2006) than that of early type galaxies
(lenticular and elliptical galaxies; hereafter ETGs). This makes
them interesting probes of a cluster environment (e.g. Blanton &
Moustakas 2009; Hwang et al. 2010).

Studying the e! ect of the environment (e.g. Þeld vs cluster),
where LTGs are located, is vital for unravelling the formation of
their unique substructures (e.g. Boselli & Gavazzi 2006). More-
over, LTGs are ideal systems to study stellar population gradi-
ents (bulge and disc, inner and outer regions) which may have
come about as a consequence of external processes (e.g. Bell &
de Jong 2000; Gadotti & Dos Anjos 2001). The relative abun-
dance of galaxies with respect to their morphological types has
been shown to be related to the density of their local environment
with a fraction of 80 % of LTGs in the Þeld, 60 % in clusters,
and# 0% in the core of rich clusters (Dressler 1980; Whitmore
1993). Their infall into a cluster environment makes their inter-
stellar medium prone to hydrodynamic interactions with the hot
intracluster gas (e.g. Binney & Tremaine 1987), and their pe-
culiar morphologies have been the topic of interest, especially
concerning their structure formation and star formation regula-
tion through a series of intracluster processes like ram pressure
stripping (Gunn & Gott 1972), star formation quenching (e.g.
Abadi et al. 1999), or galaxy-galaxy harassment (e.g. Moore
et al. 1996).

Studies have shown that the Þrst stage of evolution of LTGs,
as they enter a dense environment, is characterised by the forma-
tion of a strong bar, and an open spiral pattern in the disc (Moore
et al. 1998; Mastropietro et al. 2005). Further on, their spiral
arms and rings can be wiped out by tidal interactions, as shown
by galaxy formation and evolution simulations (Mastropietro
et al. 2005). Recently, though, numerical simulations (Hwang
et al. 2018) have shown that interactions with other galaxies, es-
pecially ETGs, in high-density cluster regions can also cause an
LTG to lose its cold gas but still have more star formation activ-
ity during the collision phase (cold gas interacting with the hot
gas of the cluster). Thus, the location of a galaxy in the cluster
is a primary parameter to correlate with formation of structure
in galaxies. One of the several methodsused is to investigate
this evolution through the detailed study of the surface bright-
ness proÞles and their morphology classiÞcation based on their
substructures (e.g., lopsided or warped disc, bars, peanut shaped
bulges, spiral arms).

Particular insight can be gained from quantitative studies of
the light distribution of stellar discs down to the faintest regions,
exploring the formation of their substructures and evolutionary
paths (e.g. Courteau 1996; Trujillo et al. 2002). Light distribu-
tions of disc galaxies are characterised by an exponential decline
(de Vaucouleurs 1959). However, this so-called decline in edge-
on spiral galaxies does not continue to its last measured point,
but rather truncates after a certain radial scale-length (van der
Kruit 1979). The origin of these truncations can be explained
though several models suggesting that accretion of external ma-
terial in the discs of galaxies can produce extended discs which
can be interpreted as truncations (e.g. Larson 1976). de Jong
(1996) predicted that there is substantial age gradients across
these discs, which are not observed yet.

Alternatively, a truncation orginates by quenching of star for-
mation activity due to the fall of gas density below a threshold for
local instability e.g. interaction with other galaxies, tidal e! ect of
the environment, stochastic ßuctuations due to internal dynam-
ics (Fall & Efstathiou 1980; Schaye 2004). This star-formation
threshold is also associated with disc breaks in light proÞles of
galaxies (e.g. Martin & Kennicutt 2001).

Truncations should not be confused with disc breaks. Orig-
inally, the former was found to occur in edge-on galaxies at
4.2±0.5 scale-lengths (van der Kruit & Searle 1981a,b), while
the latter occurs around 2.5±0.6 scale-lengths (Pohlen & Tru-
jillo 2006). Kregel & van der Kruit (2004) found that the surface
brightness at the estimated truncation radius was 25.3±0.6 mag
arcsec2 (r-band). On the other hand, disc breaks were found in
the surface brightness range 23-25 mag/arcsec2 (Pohlen & Tru-
jillo 2006). In some cases, disc breaks and truncations can co-
exist, but the mechanisms causing them are di! erent (Mart’n-
Navarro et al. 2012). Depending on the shape of the surface-
brightness proÞles, disc breaks are classiÞed into (i) Type I-no
break (ii) Type II-downbending break (iii) Type III-upbending
break (see Erwin et al. 2005; Pohlen & Trujillo 2006; Erwin et al.
2008).

Di! erent mechanisms have been proposed to explain the ori-
gin of disc breaks. Type II disc breaks occur as a consequence of
star-formation threshold (Fall & Efstathiou 1980; Schaye 2004),
while Type III disc breaks have been associated to minor/major
mergers (e.g. Younger et al. 2007; Borla! et al. 2014). Further-
more, disc breaks are located at closer radial distances to the cen-
tre in face-on galaxies than in edge-on systems. Internal mecha-
nisms owing to the formation of bars and rings in spiral galaxies
can also cause disc breaks (Mu–oz-Mateos et al. 2013). As such,
there has been research on disc breaks in galaxies of di! erent
morphologies (e.g. Pohlen & Trujillo 2006) as well as a function
of the environment i.e. Þeld vs cluster (Pranger et al. 2017).

Clusters are suitable for the study of discs in LTGs as they
allow to map the dynamical processes of the galaxies in a dense
environment. After Virgo, the Fornax cluster is the nearest and
second most massive galaxy concentration within 20 Mpc, with a
virial mass of M= 9 %1013M& (Drinkwater et al. 2001). Fornax
is dynamically more evolved than Virgo, as most of its bright
(mB < 15 mag) cluster members (Ferguson 1989) are ETGs
which are mainly located in its core (Grillmair et al. 1994; Jord‡n
et al. 2007). However, the mass assembly of the Fornax cluster
is still ongoing (Scharf et al. 2005) and the intra-cluster light
(ICL) in its core indicates interactions between cluster mem-
bers (Iodice et al. 2017a; Pota et al. 2018; Spiniello et al. 2018).
Iodice et al. (2017a) found that this ICL is the counterpart in the
di! use light of the overdensity in the blue intra-cluster globu-
lar clusters (DÕAbrusco et al. 2016; Cantiello et al. 2018) and
a fraction of the ICL population are low-mass dwarf galaxies
(Venhola et al. 2017). The observed number density drop of
low surface-brightness (LSB) galaxies below a cluster-centric
distance r= 0.6 deg (180 kpc) by Venhola et al. (2017) is a
proof of the e! ect of the dense environment on the evolution of
galaxies. In the same regions, the high-velocity planetary nebu-
lae (PNe, Spiniello et al. 2018) and globular clusters (GCs, Pota
et al. 2018) show that this ICL component is unbound to galax-
ies, possibly after gravitational interactions, and is dynamically
old. All of these Þndings indicate that Fornax is an evolved, yet
active environment and a rich reservoir for the study of the evo-
lution and the structure of the galaxies in a cluster environment,
speciÞcally, inside the virial radius of the Fornax cluster.The
aim of this work is to study the structure of the LTGs in-
side the cluster and address the diverse evolutionary paths
these systems can take after falling into a cluster. In partic-
ular, by taking advantage of the deep Fornax Deep Survey
(FDS) data, we can map the light distribution down to un-
precedented limits in the Fornax cluster. This allows us to
detect any asymmetries in the outskirts of the disks as well
as tidal tails or streams that would indicate possible interac-
tions. By analysing their surface brightness distribution, we
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aim at identifying disk breaks and Þnding any correlations
with the location of galaxies inside the cluster.

In this study, we present the analysis of LTGs i.e. spiral
galaxies selected from Ferguson (1989), which are brighter than
mB " 16.6 mag inside the virial radius of the Fornax cluster. We
give a short summary of the FDS in Sect. 2. We describe the
procedure and method to derive the radial proÞles, colours, and
structural parameters like e! ective radius and total magnitude in
Sect. 3. We give a detailed description of the algorithm we have
developed to derive break radii in Sect. 4. A surface photometry
analysis of each galaxy presented in this work is described in Ap-
pendix A, with their corresponding images in surface brightness,
g $ i colour maps and proÞles, with surface brightness proÞles
shown in Appendix B. We summarise our results in Sect. 5 and
6, and discuss the formation of structures caused by secular evo-
lution and the e! ect the environment in Sect. 7. Conclusions and
future perspectives are given in Sect. 8. The methodologies of
some of this work are presented in Appendix C.

2. The Fornax Deep Survey: Data

The Fornax Deep Survey, observed with the ESO VLT Sur-
vey Telescope (Schipani et al. 2012) is a deep, multi-band
imaging (u,g, r, i) survey of the Fornax cluster, covering 26
square degrees around the core of the cluster (Iodice et al.
2017b). This work focuses on the central 9 square degrees (! =
03h 38m29.024s, " = $35d 27' 03.18'' ) which cover most of the
cluster area inside the virial radius,Rvir # 0.7 Mpc (Drinkwater
et al. 2001). FDS observations are part of the Guaranteed Time
Observation surveys, FOCUS (P.I. R. Peletier) and VEGAS (P.I.
E.Iodice, Capaccioli et al. 2015) acquired with the ESO VLT
Survey Telescope (VST) operating from Cerro Paranal. VST is a
2.6 m wide-Þeld optical survey telescope with a wide-Þeld cam-
era, OmegaCam (Kuijken 2011), that covers a 1x1 degree2 Þeld
of view, and has a mean pixel scale of 0.21 arcsec/pixel.

A thorough description of the observing procedure, data re-
duction pipelines, calibration, and quality-assessment of the Þ-
nal data products were presented by Venhola et al. (2017, 2018)
and Iodice et al. (2016, 2017a). The data presented in this work
were obtained during several visitor mode runs in dark time for
u,g, r bands and in grey time fori- band (see Iodice et al. 2019b
for details on the observed FDS Þelds). Data were reduced with
two pipelines: (i) VST-Tube (Grado et al. 2012; Capaccioli et al.
2015); (ii) Astro-WISE (Valentijn et al. 2007). The VST-Tube
was used to reduce data for the central 9 square degrees, while
Astro-WISE was used for the data reduction of 26 square de-
grees. We use both data products in this work.

The FDS Þelds were acquired using astep-ditherobserving
strategy, which consists of a cycle of short exposures of 150s
each, centred on the core and its adjacent Þelds (" 1 deg) in
the Fornax cluster. Fields with few or no bright objects were
used to derive an average sky frame for each night and in all
bands, which is scaled and subtracted from each science frame.
This method has proven to provide an accurate estimation of the
sky background around bright and extended galaxies (see Iodice
et al. 2016, 2017a, 2019b; Venhola et al. 2017, 2018). For each
Þeld, we obtained 76 exposures of 150s each inu band, 54 ing
andr bands, and 35 ini band, thus resulting in a total exposure
time of 3.17 hr inu band, 2.25 hr ing andr bands, and 1.46 hr in
i band. Images with seeing FWHM" 1.5 arcsec were used in the
Þnal production of co-added frames (see Iodice et al. 2019b for
exposure times of each Þlter).The FWHM (arcsec) and depth
(mag/ arsec2) of FDS Þelds in each Þlter (u,g, r, i) are given in
Tab. 1 (see Venhola et al. 2018)

The g-band mosaic covering 9 square degrees around the
core of the Fornax cluster, with marked circles indicating the
galaxies studied and presented in this paper, is shown in Fig 1.
This is a complete sample inmB " 16.6 mag consisting of 13
LTGs inside the virial radius of the Fornax cluster (see Tab. 1).
The sample of spiral galaxies has been selected from Ferguson
(1989), and is complementary to the work presented by Iodice
et al. (2019b) on ETGs.
A detailed description of each galaxy in the sample is given in
Appendix A.

3. Analysis: Surface Photometry

In this section, we give a brief description of the method we
adopt, following Iodice et al. (2017a, 2019b), to derive galaxy
parameters: total magnitude, e! ective radius and stellar mass to
light ratio (M/L) ratio.

3.1. Method: Isophote Fitting

We extracted azimuthally averaged intensity proÞles for each ob-
ject from the sky-subtracted images in four respective bands, us-
ing theellipse (Jedrzejewski 1987) task in IRAF1 (for a thor-
ough explanation of this method, see Iodice et al. 2019b).

The main steps are as follows:

1. Create masks for bright objects (galaxy and stars) around our
galaxy of interest

2. Fit isophotes in elliptical annuli, starting from the centre of
the galaxy, up to its outer edge in the FDS Þeld (out to# 0.5
deg). We keep the geometric centre of symmetry Þxed while
the ellipticity and position angle are free parameters. For lop-
sided galaxies (FCC113 and FCC285) and barred galaxies
(FCC263 and FCC121), we use the galactic centre of one
band as the same centre for other bands so that the same re-
gions are mapped in the study and characterisation of their
structures.

3. From the intensity proÞles, we (i) estimate the limiting radius
corresponding to the outer most annulusRlim (see Tab. 3)2,
where the galaxyÕs light blends into the average background
level 3 and (ii) derive the residual sky background from the
outer annuli of all galaxies in each band.

3.2. Products: total magnitude, effective radius, colour,
and stellar mass to light ratio

We adopt the procedure of Iodice et al. (2019b) to derive pa-
rameters: total magnitude, e! ective radius, colour, stellar mass
to light ratio, for all galaxies in our sample.

1. The resulting output of the isophote Þt is used to provide
their respective intensity proÞles, from which we derive the
azimuthally averaged surface brightness (SB) proÞles. This
is followed by a correction for the residual background level
estimated atR ( Rlim, in each band for all the galaxies in
our sample. The error estimates on magnitudes take into ac-
count the uncertainties on the photometric calibration and

1 IRAF is distributed by the National Optical Astronomy Observato-
ries, which are operated by the Association of Universities for Research
in Astronomy, Inc., under cooperative agreement with the National Sci-
ence Foundation
2 Note that Rlim is di! erent from the depth of the image.
3 The average background level is the residual after subtracting the sky
frame, this results in a value close to zero (see Iodice et al. 2016).
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Table 1. Image quality of FDS Þelds.

Field u band g band r band i band
FWHM depth FWHM depth FWHM depth FWHM depth
[arcsec] [ mag

arcsec2 ] [arcsec] [ mag
arcsec2 ] [arcsec] [ mag

arcsec2 ] [arcsec] [ mag
arcsec2 ]

(1) (2) (3) (4) (5)
F2 1.21 26.89 1.11 28.35 0.90 27.78 0.79 26.75
F4 1.18 26.95 1.39 28.45 1.19 27.76 0.70 27.01
F5 1.33 27.33 1.15 28.54 1.39 27.85 1.08 26.97
F6 1.11 27.43 0.84 28.47 1.08 27.73 1.21 26.82
F7 1.04 27.3 0.83 28.56 0.95 27.81 1.42 26.62
F12 1.15 27.44 0.83 28.49 1.04 27.84 1.17 26.79
F15 1.30 27.12 1.13 28.35 0.90 27.89 0.97 26.87
F16 1.31 27.27 1.26 28.43 0.94 27.84 1.08 26.96
F17 1.27 27.1 1.11 28.29 0.87 27.96 1.01 26.92

Notes.Col.1 -FDS Þelds ;Col.2-average seeing, and surface brightness corresponding to 1# S/N per arcsec foru-band; Col.3-Col.5-same
as Col. 2 forg, r, and i bands. The PSF FWHM and depth of each Þlter in all Þelds are adopted from Venhola et al. (2018).

Table 2.LTGs brighter thanmB " 16.6 mag inside the virial radius of the Fornax cluster

object ! " Morph type radial velocity mB FDS Field Names
h:m:s d:m:s km/s mag

(1) (2) (3) (4) (5) (6) (7) (8)
FCC113 03 33 06.8 -34 48 29 ScdIII pec 1388 14.8 F15-16 ESO358-G15
FCC115 03 33 09.2 -35 43 07 Sdm(on edge) 1700 16.6 F16 ESO358-G16
FCC121 03 33 36.4 -36 08 25 SB(s)b 1635 10.32 F16-F17 NGC1365, ESO358-G17
FCC176 03 36 45.0 -36 15 22 SBa (SAB(s)a) 1414 13.74 F12-F17 NGC1369, ESO358-G34
FCC179 03 36 46.3 -35 59 58 Sa 868 12.09 F11-F12 NGC1386, ESO358-G35
FCC263 03 41 32.6 -34 53 17 SBcdIII 1724 14.04 F6 ESO358-G51
FCC267 03 41 45.4 -33 47 31 SmIV 834 16.1 F4-F5
FCC285 03 43 02.2 -36 16 24 SdIII 886 14.1 F7 NGC1437A, ESO358-G54
FCC290 03 43 37.1 -35 51 13 ScII 1387 12.41 F6-F7 NGC1437, ESO358-G58
FCC302 03 45 12.1 -35 34 15 Sdm (on edge) 803 15.5 F2-F6 ESO358-G060
FCC306 03 45 45.3 -36 20 48 SBmIII 886 15.6 F7
FCC308 03 45 54.7 -36 21 25 Sd 1487 13.97 F7 NGC1437B, ESO358-G61
FCC312 03 46 18.9 -34 56 37 Scd 1929 12.83 F2-F6 ESO358-G63

Notes.Col.1 - Fornax cluster members from Ferguson (1989);Col.2 & Col.3 - Right Ascension and Declination;Col.4 - Morphological type;
Col.5 -Heliocentric radial velocity obtained from NED;Col.6 - total magnitude inB band as given in NEDa; Col.7 -Location in the FDS Field;
Col.8 -Alternative catalog names

a The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.

sky subtraction (see Capaccioli et al. 2015; Iodice et al. 2016,
2019b).

2. From the azimuthally averaged SB proÞles, we deriveg $ i
colour proÞles for each galaxy (Appendix B). We also show
the g $ i colour maps for each of these galaxies (Appendix
B), obtained from the images.

3. From the isophote Þts, we use a growth curve analysis to
derive total magnitude and e! ective radius in each band for
all galaxies (see Tab. 4).

4. We derive average (g$ i) and (g$ r) colours for each of these
galaxies from the radial proÞles (see Tab. 4).

5. From the average (g $ i) colour, we estimate the stellar mass
M) by using the empirical relationlog10

M)
M&

= 1.15+ 0.70(g$
i)- 0.4Mi from Taylor et al. (2011), whereMi is the absolute
magnitude ini- band4. According to Taylor et al. (2011), this
relation provides an estimate of the stellar mass-to-light ratio

4 The empirical relation proposed by Taylor et al. (2011) assumed a
Chabrier IMF.

M) / Li with 1 # accuracy of# 0.1 dex. TheM) / Li value for
each galaxy of the sample is given in Tab. 5.

A full illustration of the surface brightness proÞles,g $ i
colour proÞles and maps for individual galaxies are shown in
Appendix B.

4. Analysis: the break radius

One of the main novelties of this work is the algorithm we have
developed to derive break radii of galaxies. It is based on con-
cepts used in literature to derive break radii (e.g. Pohlen & Tru-
jillo 2006), but it is fully automatised and reproducible, as it is
based on coded rules to deÞne the break radius and bootstraps
the results over a variety of initial conditions for the best-Þtting
procedure.

In this section, we illustrate the main steps to derive the break
radius from surface brightness proÞles, and provide a detailed
description of the algorithm we use.
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Fig. 1.VST mosaic in theg-band of the Fornax cluster inside the virial radius, at about 9 sq deg. The marked circles indicate the 12 LTGs presented
in this work, with FCC267 located at the top north of the virial radius, outside this mosaic. Black contours are the X-Ray emission from ROSAT
(Paolillo et al. 2002). The X-ray contours are spaced by a factor of 1.3, with the lowest level at 3.0%10$3 counts/arcmin2/s.

4.1. Surface brightness proÞle deconvolution

We derive the break radius from surface brightness pro-
Þles in the r-band as this is one of the highest transmis-
sion OmegaCam Þlters and least-a! ected by dust absorption,
which could be quite high in LTGs.

Since the break radius is derived on the disc regions of LTGs,
it is important to account for the e! ect of the contamination from
their bright cores, which scatters their light in the regions around
them because of the e! ect of the point spread function (PSF).
The mathematical e! ect introduced by the PSF over the mea-
sured 2D light distribution is equivalent to a convolution of a
matrix of the intrinsic intensity values (the surface brightness)
and a 2D kernel (the matrix corresponding to the PSF). In order
to correct this, we need to invert this operation i.e., perform a
deconvolution, assuming the kernel is given.

The Þrst step of deconvolution (assuming the kernel is given)
is to accurately measure the PSF out to a radial distance compa-
rable to that of the galaxiesÕ disks. Capaccioli et al. (2015) found
that the scattered light can considerably a! ect the local light pro-
Þles in VST images of galaxies of various sizes in di! erent ways.
To fully account for the broadening e! ect of the seeing on their

sample of galaxy images, they characterized the PSF from the
VST images.

The sample presented in this work consists of galaxies of dif-
ferent angular extent (see Fig. 2. FCC306 is the smallest galaxy
in our sample (Re =0.94 Kpc in i-band) and FCC121 is the
largest galaxy, (Re =12.74 Kpc ini-band). From Fig. 2, it is clear
that the e! ect of the PSF (1 arcsec) scatters the light from the
central regions to the outer regions. The e! ect mitigates outside
the typical size of the PSF, where, for the conservation of the
ßux, the light scattered from the core makes the observed proÞle
brighter than the intrinsic (deconvolved) proÞle. Finally, the ef-
fect of the PSF is completely canceled far away from the center,
typically outside 10 arcsec. Thus, in order to minimise the e! ect
of the PSF on our structural analysis, we deconvolve galaxies
with the PSF, by using the Lucy-Richardson algorithm (Lucy
1974; Richardson 1972), as done bySpavone et al. (2017, here-
after SP+17). A full description of the deconvolution method
used for VST data is presented by Spavone et al. (in prep).The
robustness of the deconvolution algorithm is demonstrated
in Appendix C.1, where we compare the performance against
the method from Borla! et al. (2017).
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Table 3.Limiting radius of the intensity proÞles

object Rlim µ
arcsec mag/arcsec2

(1) (2) (3)
FCC113 42.23 25.7± 0.19
FCC115 36.04 25.5±0.11
FCC121 436.7 26.6±0.32
FCC176 86.4 26.5± 0.4
FCC179 139.2 25.83±0.3
FCC263 71.41 25.7± 0.15
FCC267 42.23 26.82± 0.4
FCC285 86.4 26.0± 0.07
FCC290 139.2 26.44± 0.03
FCC302 51.1 26.94± 0.21
FCC306 22.75 25.8± 0.1
FCC308 115.0 26.3± 0.13
FCC312 153.1 25.13± 0.14

Notes.Col.1 -Fornax cluster members from Ferguson (1989);Col.2-
Limiting radius in r$band ; Col.3- Surface brightness at the limit-
ing radius.

The surface brightness proÞles and break radii are de-
rived from the deconvolved images inr- band. We also de-
rive the deconvolved proÞles ing and i bands. The decon-
volved proÞles (r-band) are given in Fig.3 and Fig.4, and de-
convolved (g $ i) colour proÞles are shown in Appendix. B.

4.2. Algorithm: Break radius

Since discs of LTGs show exponential SB proÞles, which be-
come linear in the log-linear plane, the break radius can be de-
Þned as the radius where the logarithmic SB, deÞned asµ =-2.5
log I(R), whereI(R) is the SB as a function of the radiusR, shows
a discontinuity in the slope. The presence of this discontinuity is
Þrst guessed by Þtting the disc with a single linear model using
the following equation,

µ(R) = $ + ! R (1)

where! is the slope of the linear Þt and$ is the intercept. The
best Þt is performed via least square linear Þtting of 1D surface
brightnessproÞle in r$band (deconvolved). The least square
approximation of the linear system is based on the Euclidean
norm of the squared residuals.

This is followed by evaluating the residuals of the best Þt. If
the residuals show monotonic deviations from the best Þt (rms
residuals> 0.5 mag)5 that increase with radius, it suggests that
the proÞle has a break and needs a second component. Then,
two linear Þts are implemented, using Eq. 1. In order to take
into account di! erent intervals in radius i.e., before and after
the discontinuity, we have developed a procedure which auto-
matically deÞnes these intervals (radial ranges) to determine the
break radius (Br ). The linear Þts are performed outside the
bulge component. For most galaxies, the region where the
bulge dominates was taken from Salo et al. (2015). Though
we initially consider the whole proÞle (including inner com-
ponents), we exclude the breaks detected in the inner regions

5 The residuals in irregular galaxies correspond to the presence of
wiggles in their proÞles. We check this before concluding that it is
associated with disc-breaks.

as they are connected to component-transition rather than
disc-breaks (e.g. Laine et al. 2014, 2016).

Since the aim of this multi-linear Þt approach is to study the
disk regions of LTGs and detect any break in this component, it
cannot be considered as a tool to decompose the observed pro-
Þles into di! erent sub-components. In fact, it makes use of a
simple linear regression to deÞne the regions where there is a
signiÞcant slope change6 in the light proÞles of LTGs to mea-
sure the transition point.

In more detail, the Þrst step is to estimate the radial range
where the disc component is deÞned (i.e., an inner disc limit,
rangein, and an outer disc limit,rangeout). This is done by an
initial guess of the disc scale-lengths (hin andhout), from which
the range is derived by varying ÔnÕ7 number of data points
(maxrangein = rangein ± n; maxrangeout = rangeout ± n, we used
n=2). The procedure is repeated for the second sub-component
and so on (in case there is more than one evident break radius,
known from the residuals of the Þt). We stress here that the deter-
mination of the Þtting range only extends to the limiting radius
Rlim.
Once the domains of the di! erent disc components are deÞned,
a linear least square Þt is done to each of these ranges (rangein
andrangeout), producing (n+ 1)2 best Þts8 for the inner and outer
ranges. The! and$ parameters (in Eq.1) of each of these best
linear regression Þts are stored and used to estimate the point of
intersection, otherwise called the break radius (Br ).

The combinations of theÞtting for the rangesrangein and
rangeout are chosen such that they do not coincide and all points
of the disc regions on the surface brightness proÞle are consid-
ered.The selection of these combinations is di! erent from the
selection ofmaxrangein and maxrangeoutwhere these represent the
total range considered for rangein and rangeout, but not for
the Þtting itself. This in turn produces (n + 1)3 estimates of the
break radius. The median of (n+ 1)3 intersecting points is chosen
as the Þnal break radius. The rms residuals (the numerical rank
of the scaled Vandermonde matrix) for each linear regression
Þt are computed and the median of this is shown as the range
of variance of the Þtted modelsÕ scale-lengthshin andhout (see
Fig.3 and Fig. 4). To show the regions of variance of the inter-
secting point from the (n + 1)3 best Þts, the standard deviation
of (n + 1)3 break radii (# nBr) is marked as a signiÞcant error on
the estimation of the break radius. This procedure is repeated by
varying the initial guess of the disc scale-lengths until a minimal
standard deviation of the (n+1)3 break radii is obtained, resulting
in the best selection forhin andhout.

The regions (here,rangein and rangeout obtained from the
best Þt iteration) are given as the disc scale-lengthshin and
hout and are used to derive the average (g $ i) colour of hin
and hout.

The break radius (in arcsec and kpc) of 10 galaxies with
their # nBr, surface brightness at the breakµBr , and average
(g$i) colour (derived from deconvolved proÞles) for the inner
hin and outer hout discs are listed in Tab. 6, with their decon-
volved surface brightness proÞles (inr- band), shown in Fig.
3 and Fig. 4. We also apply the algorithm on irregular galax-
ies: FCC113, FCC285, and FCC302. In such cases, we do not
detect disc-breaks, but rather wiggles and bumps associated
to the irregularities (star forming regions) present in these

6 This also accounts for a slope error> 0.05.
7 Heren is deÞned as the number of SB points obtained fromellipse,
using a semi-major axis (pixels) step of 0.1 (1.0+ step)
8 This combination is obtained byrule of producti.e.,n + 1 ranges for
the upper and lower limits of the radial scale-lengths
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Table 4.Derived Parameters of LTGs inside the virial radius

object mu mg mr mi Reu Reg Rer Rei
mag mag mag mag arcsec arcsec arcsec arcsec

(1) (2) (3) (4) (5) (6) (7) (8) (9)
FCC113 15.51± 0.04 15.01± 0.02 14.44± 0.01 14.3 ± 0.01 29.74± 0.76 19.51± 0.19 20.56± 0.1 20.64± 0.108
FCC115 17.18± 0.01 16.35± 0.01 15.91± 0.39 15.94± 0.01 17.9 ± 0.5 19.54± 0.11 20.58± 0.11 16.58± 0.2
FCC121 10.65± 0.05 9.33± 0.04 8.79± 0.03 8.43± 0.03 134± 3.98 142.4 ± 3.69 109.8 ± 2.15 132.8 ± 2.89
FCC176 13.95± 0.01 12.51± 0.01 11.74± 0.01 11.45± 0.01 56.76± 1.59 53.03± 0.69 53.73± 2.28 47.42± 1.20
FCC179 13.17± 0.02 11.44± 0.01 10.68± 0.01 10.34± 0.01 22.75± 0.42 29.68± 0.50 30.03± 0.50 28.01± 0.73
FCC263 14.72± 0.05 12.91± 0.05 12.7 ± 0.02 12.58± 0.01 21.82± 1.57 25.36± 1.67 27.15± 0.56 21.53± 0.14
FCC267 16.6 ± 0.08 15.68± 0.03 15.09± 0.01 14.8 ± 0.01 14.1 ± 0.5 17.6 ± 0.4 19.4 ± 0.4 20.0 ± 0.3
FCC285 14.57± 0.03 13.15± 0.02 13.02± 0.03 12.77± 0.01 40.84± 1.63 46.78± 1.29 49.9 ± 1.54 51.1 ± 0.64
FCC290 12.6 ± 0.095 11.4 ± 0.01 11.08± 0.01 10.74± 0.01 49.68± 0.53 49.65± 0.58 48.52± 0.16 48.41± 0.06
FCC302 16.29± 0.09 15.58± 0.01 15.37± 0.04 15.06± 0.1 28.49± 1.7 21.92± 0.75 24.15± 0.78 28.84± 1.64
FCC306 16.54± 0.02 15.29± 0.03 15.18± 0.01 15.0 ± 0.014 9.01± 0.16 10.52± 0.15 9.7 ± 0.06 9.85± 0.06
FCC308 14.36± 0.02 12.87± 0.01 12.54± 0.01 12.17± 0.02 53.65± 1.41 44.91± 0.56 37.11± 0.82 46.46± 0.37
FCC312 13.38± 0.05 11.4 ± 0.02 10.89± 0.09 10.45± 0.04 49.34± 2.13 76.0 ± 3.67 109.5 ± 9.33 117.8 ± 7.26

Notes.Col.1 - Fornax cluster members from Ferguson (1989);Col.2 to Col.5 -Total magnitude in theu, g, r andi bands respectively, derived
from the isophote Þt. Values were corrected for the galactic extinction, using the absorption coe" cient by Schlegel et al. (1998);Col.6 to Col.9 -
E! ective radius in theu, g, r andi bands respectively, derived from the isophote Þt.

Table 5.Stellar mass estimates of LTGs in thei -band

object Dcore Mi Re g $ r g $ i M) M/ L
deg mag kpc mag mag 1010M&

(1) (2) (3) (4) (5) (6) (7) (8)
FCC113 1.21 -16.74 1.98 0.57± 0.03 0.71± 0.02 0.02 0.56
FCC115 1.05 -15.78 1.59 0.43± 0.02 0.41± 0.02 0.01 0.35
FCC121 1.06 -22.58 12.74 0.54± 0.02 0.90± 0.02 6.49 0.77
FCC176 0.82 -19.85 4.55 0.77± 0.02 1.06± 0.02 0.68 0.99
FCC179 0.55 -20.7 2.68 0.76± 0.02 1.10± 0.02 1.58 1.06
FCC263 0.79 -18.08 2.06 0.21± 0.07 0.32± 0.06 0.04 0.3
FCC267 1.73 -15.24 1.92 0.59± 0.04 0.88± 0.04 0.01 0.74
FCC285 1.17 -17.43 4.90 0.13± 0.05 0.38± 0.04 0.02 0.33
FCC290 1.05 -20.49 4.64 0.33± 0.04 0.66± 0.04 0.64 0.52
FCC302 1.30 -15.92 2.76 0.21± 0.02 0.52± 0.02 0.01 0.41
FCC306 1.69 -15.21 0.94 0.11± 0.04 0.29± 0.04 0.003 0.29
FCC308 1.69 -17.49 4.46 0.33± 0.02 0.69± 0.03 0.04 0.55
FCC312 1.59 -20.89 11.30 0.51± 0.11 0.95± 0.06 1.48 0.83

Notes.Col.1 - Fornax cluster members from Ferguson (1989);Col.2- Projected distance from the galaxy centre in degree, i.e. from NGC 1399
(FCC213);Col.3- Absolute magnitude inr-band, derived using the distance modulus from NED and Tully et al. (2009);Col.4 - E! ective radius
(kpc) in i-band;Col.5& 6- Averageg $ r and g $ i colours ; Col.7& Col. 8-Stellar mass and mass-to-Light (M/L) in i-band.

galaxies. This is also checked by subtracting the small-scale
wiggles from the proÞles of these galaxies, and applying the
algorithm on the obtained proÞle. These three galaxies show
a Type-I proÞle.

Most of the galaxies in the sample show clear evidence of
a single break radius, however we cannot exclude that further
substructures are present beyond their outer disc scale-lengths.
For example, FCC121 shows a second break (see Fig. 4) at
µ(R) > 25.5 mag arcsec$2, which is well detected by the al-
gorithm but it is not discussed in our analysis. This second break
could be associated with the truncation radius that occurs in the
outermost optical extent of a galaxy (see e.g. Mart’n-Navarro
et al. 2012). Also, we need a minimum of 3 data points to pro-
duce (n + 1)2 Þts (with a lower limit ofn=1), that is within the
Rlim. For this reason, we do not derive a second break for
some galaxies of the sample (e.g. FCC179, FCC290, FCC267,
FCC308) though it seems to be present in their proÞles.

An example of the (n + 1)3 best Þts with minimal standard
deviation, produced by the algorithm is shown in Appendix C.
Parameters of the best Þt for LTGs with disc breaks are given in
Tab. C.1.

For all galaxies, the break radii (inner and outer disc-
breaks as in the case of FCC121) are located within regions
where the e! ects of PSF-convolution are negligible. This is
proven by deriving the break radius from deconvolved pro-
Þles and the results (original vs deconvolved proÞles) are the
same, as shown in Appendix C.1.

5. Morphological segregation of LTGs inside the
virial radius of the Fornax cluster

The sample of LTGs inside the virial radius of the Fornax
cluster is heterogeneous in morphology as measured by their
T-type Hubble classes. These are shown as a function of
the projected distance in Fig. 5. The correlation is not as
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Fig. 2.The deconvolved SB proÞles over-plotted on the original SB proÞles (red) for the smallest, FCC306 (Re =0.94 kpc ini-band) and the largest
galaxy, FCC121 (Re =12.74 kpc ini-band) in the left and right panels. The PSF (1 arcsec) for FDS data is marked in grey dotted lines.

Table 6.Parameters of LTGs with a disc break

object Br # nBr µBr hin hout Hubble Break
[arcsec] [kpc] [arcsec] [mag

arcsec2 ] [arcsec] g $ i [mag] [arcsec] g $ i[mag] Type (T) Type
(1) (2) (3) (4) (5) (6) (7) (8)

FCC113 - - - - - - - - 6 I
FCC115 15.35 1.47 1.07 23.52 6.84 0.25± 0.03 16.15 0.12± 0.03 8 II
FCC121 192.35 18.46 7.05 23.65 63.9 0.88± 0.02 175.7 1.09± 0.04 3 III+II
FCC176 38.86 3.73 6.39 22.20 28.66 1.10± 0.02 54.73 0.76± 0.2 1 II
FCC179 73.02 7.01 3.66 21.98 43.47 1.10± 0.02 50.08 1.05± 0.02 1 II
FCC263 24.12 2.32 1.58 22.06 14.42 0.49± 0.02 37.39 0.63± 0.02 2 III
FCC267 14.95 1.43 0.39 23.83 8.52 0.76± 0.03 22.11 1.26± 0.13 9 III
FCC285 - - - - - - - - 7 I
FCC290 47.31 4.54 3.42 21.45 23.22 0.72± 0.03 70.66 0.71± 0.02 4 II
FCC302 - - - - - - - - 8 I
FCC306 6.88 0.66 0.15 21.81 2.92 0.09± 0.01 14.1 -0.39± 0.07 9 II
FCC308 25.60 2.46 0.84 22.32 14.11 0.71± 0.02 92.25 0.75± 0.04 7 III
FCC312 72.06 6.91 2.93 23.38 42.17 1.16± 0.05 67.79 1.54± 0.03 7 III

Notes.Col.1 -LTGs with a disc break;Col.2 -Break Radius in units of arcsec and kpc (1 arcsec= 0.096 kpc);Col.3 -Standard deviation of the
break radii from (n + 1)3 combinations;Col.4- Surface brightness at the break radius;Col.5 - inner scale-length in units of arcsec, and average
g$ i colour forhin; Col.6-outer scale-length in units of arcsec, and averageg$ i colour forhout; Col.7-Hubble Type T;Col.8-ProÞle classiÞcation

tight as previously reported in other similar environments
e.g., Virgo (Binggeli et al. 1987) and other clusters (Whit-
more 1993). Here, the projected distances have been used
as a primary parameter to discern the formation and evo-
lution of the galaxiesÕ substructures as a function of the
cluster environment. However, one must also take into ac-
count other environment-independent mechanisms like pre-
processing (e.g. Fujita 2004), which are independent of the
local environment, In this section, we analyse the morpho-
logical structures of the galaxies in our sample by grouping
them into bins of Hubble stageT as a function of projected
cluster-centric distance (Dcore), shown in Fig. 5.

The LTGs in Fornax with morphological type 1 " T "
4 are FCC121, FCC176, FCC179, FCC263, and FCC290.
These galaxies are located withinDcore " 1.1 deg from the
cluster centre (see Fig. 1 and 5), corresponding to 0.54Rvir .
Overall, they are among the most luminous (mB < 14 mag,

refer Tab. 2) LTGs in our sample. They show regular spiral
or barred-spiral structures with clear grand design features.
Three of the above mentioned galaxies (FCC176, FCC179,
FCC263) are, in projection, located within the X-ray halo of
NGC 1399 (see Fig. 1). FCC176 and FCC179 are redder than
other LTGs inside the virial radius (see Fig. 7) with the for-
mer devoid of atomic and molecular gas (Fuller et al. 2014;
Schršder et al. 2001) and the latter shows dust and molecular
gas in its spiral arms. FCC121 and FCC290 are located be-
yond the X-ray halo with morphological type T > 3. FCC290
has spiral arms only inside 1Re (see Appendix B.9). FCC121
has grand design spiral structure with a bar.

Galaxies with morphological type5 " T " 7 are FCC113,
FCC285, FCC308, and FCC312. These galaxies are located
beyond Dcore > 1.1 deg. The former two galaxies (FCC113
and FCC285) are lopsided with luminosities 14< mB < 15
mag and the latter two (FCC308, FCC312) have boxy discs
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Fig. 3. Surface brightness proÞles of galaxies with Type II disc break, with (g $ i) colour as a third parameter. In each plot, the break radius
(Br ) is marked at the intersecting pointof the linear Þts performed betweenhin andhout, with # nBr as the median of (n + 1)3 combinations of
best Þts on the inner and outer scale-lengths. The vertical dashed lines (maxhin andmaxhout) indicate the regions formaxrangein = rangein ± n and
maxrangeout = rangeout ± n where the algorithm produces (n + 1)2 linear least square Þts. The shaded regions onhin andhout indicate the median of
the rms of the residuals for (n + 1)2 linear least square Þts.
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Fig. 4.Surface brightness proÞles of galaxies with Type III disc break, similar to Fig. 3.
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with mB < 14 mag. FCC113 and FCC285 exhibit irregular
star-forming regions, which are evident in their SB images
(Appendix. B.1 and B.8). They are located on either sides of
the cluster centre with their asymmetric discs elongated to-
wards the cluster centre (see Fig. 1). FCC308 and FCC312
have irregular star-forming regions in their ill-deÞned spiral
arms. Their thick discs also have ßares which are signs of
minor mergers (e.g Knierman et al. 2012).

The very late morphological type T > 7 galaxies are
FCC115, FCC302, FCC306, FCC267. FCC115 and FCC302
are edge-on galaxies (making it hard to determine their
true morphological T-type), while FCC306 is a bright dwarf
galaxy (Drinkwater et al. 2001). FCC267 has a double nu-
cleus or a dust-obscured bar (see Appendix B.7). These
galaxies have irregular star-forming regions and lumosities
in the range 15 < mB " 16.6 mag (refer Tab. 2). All the
galaxies in this group are located beyondDcore > 1 deg. None
of the aforementioned (T > 7) have visible, regular spiral
structures with star-forming regions, unlike the galaxies at
smaller cluster-centric distances.

Despite our small heterogeneous sample of LTGs, we can
still infer that the overall morphological segregation of galax-
ies inside the virial radius strongly suggests that the number
density of ETGs is higher near the cluster centre (Dcore < 0.8
deg# 0.27 Mpc, Iodice et al. 2019b), where only the massive
LTGs of earlier types (1 " T " 4) are found (see Fig. 6: top
panel). Galaxies with morphological type 5< T " 9 (# 60
% of the sample) are located beyondDcore > 1 deg # 0.36
Mpc i.e. beyond the high-density (ETG-dominated) regions
deÞned by Iodice et al. (2019b).

We do not Þnd any trends between average (g $ i and
g$ r) colours as a function of cluster-centric distance (see Fig.
7), as observed by Iodice et al. (2019b) for ETGs. From the
colour-magnitude relation diagram (Fig. 6), we Þnd a posi-
tive correlation as expected and a clear segregation in colors
from the bright ETGs in the cluster (see Fig. 6: lower panel).

6. Analysis of the disc breaks

In this section, we analyse disc breaks by investigating possi-
ble correlations with some global properties such as colours,
total magnitudes, stellar mass, molecular gas, and with the
galaxyÕs location in the cluster. Since the sample is limited to
13 galaxies, the results cannot be considered on a statistical
basis. However, it represents the complete sample of bright
LTGs in the Fornax core and the analysis of their disc prop-
erties will provide important information on the assembly
history of the cluster.

In Fig. 5, we show the di! erent disc-break types are dis-
tributed as a function of the cluster-centric distance. There
is no evident correlation between the morphological type
(T) and the disc-break type. On the whole, we can give
the same conclusion about the distribution of di! erent disc-
break types inside the virial radius, i.e. Type II and Type III
breaks are found in galaxies at both small and large cluster-
centric distances. It is worth noting that Type I galaxies (only
3 galaxies) are found around# 1.2 deg (# 0.4 Mpc).

The surface brightness at the break radius in Type II
discs is in the range 22.5" µBr " 24 (see Fig 8). On aver-
age, these galaxies have bluer (g $ i) colours in their outer
discs (hout) in comparison to their inner discs (hin) (see Fig
9 and refer Tab. 6). FCC179 and FCC290 have bluer outer
discs (than their inner discs), with a di! erence" 0.05 mag,

Fig. 5. Hubble Type T as a function of projected cluster-centric dis-
tance. For each galaxy, their disc-break type is represented as squares
(Type I) or triangles (Type II), or circles (Type III). For 3 galaxies with
secondary breaks other than their primary break-type, they are repre-
sented as circle+triangle(Type III+II).

Fig. 6. Stellar mass as function of cluster-centric distance (top panel)
and colour-magnitude relation (lower panel) for LTGs and ETGs (data
from Iodice et al. 2019b) inside the virial radius of the Fornax cluster.

which is above the error (refer Tab. 6). However, their in-
ner discs have dust and this can cause the observed red
colour. FCC115 and FCC306 are very late type galaxies that
are bluer on average (see Fig. 7) with the former being the
faintest in the sample and the latter, a bright dwarf.

Type III disc-breaks have surface brightness levels in the
range 21.5" µBr " 23 (see Fig. 8), i.e., less luminous than the
µBr of Type II disc-breaks. These galaxies have redder (g $ i)
outer discs than their inner discs (see Fig. 9 and Tab. 6). Most
of the Type III galaxies show signs of merger events taken
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Fig. 7.g $ i (top panel) andg $ r (lower panel) colours as a function of
projected distance from the cluster centre in degrees and Mpc.

Fig. 8. Histogram of surface brightness at the break radius (µBr ) for
Type II and Type III galaxies.

place in the past e.g., FCC263 with disturbed molecular gas
(Zabel et al. 2019), tidal tails9 in FCC308 and FCC312 , dou-
ble nuclei in FCC267, which can produce up-bending pro-
Þles. The redder colour may be accounted for the transfer of
stellar mass to the outer disc during interactions (Younger
et al. 2007). The redder outer discs may also be associated
with the exhaustion of gas via ram-pressure stripping (see
e.g. Steinhauser et al. 2016; Pranger et al. 2017).

We Þnd a positive correlation between stellar mass and
the break radius (see Fig.9: top left panel). This trend is ex-
pected and has been shown before in literature (e.g Pohlen&
Trujillo 2006). In comparison to the results by Pohlen& Tru-
jillo (2006), we also Þnd that luminous galaxies have larger
inner disc scale-lengths as shown in Fig. 9 (bottom panel).

9 Galaxies with tidal tails were classiÞed as Type IIIa by Watkins et al.
(2019)

This trend is still evident in the plot of the total magnitude
as a function of the break radius normalised to the e! ective
radius (see Fig. 9: top right panel), where most of our sample
galaxies have break radius in the range of 0.5Re < Br <1.25
Re, while the two brightest galaxies haveBr ( 1.7Re.

We used the molecular gas massMH2 derived from CO
(1-0) emission, as part of the ALMA Fornax cluster Sur-
vey (Zabel et al. 2019) to obtain molecular gas-fractions
(MH2/ M) ) and plot them against the break radius for eight
galaxies in our sample, of which six are detected in CO(1-0),
and two are non-detected (see Fig. 10). TheMH2 in the lat-
ter cases is the 3# upper limit. We also plot the CO maps
in contours on our g-band images along with the break ra-
dius (see Appendix B). From this, we Þnd that the molecular
gas (CO) detection is within the uncertainties of the break
radius. Since molecular gas is a prerequisite for star forma-
tion, the break radius could also be a sign of a Ôbreak in
star formationÕ (see Ro!kar et al. 2008; S‡nchez-Bl‡zquez
et al. 2009; Christlein et al. 2010). Fig. 10 shows that galax-
ies with larger break radius have higher molecular gas mass,
and lower gas-fractions.

7. Summary of the results and Discussion

Inside the virial radius of the Fornax cluster (" 0.7 Mpc),
there are 13 LTGs brighter than mB " 16.6mag. In this work,
we investigate the structure of this small, yet complete sam-
ple of 13 LTGs and in doing so, analyse any possible correla-
tions with their position in the cluster. One aim is to study the
disc component and hence, we have developed an algorithm
to deÞne and measure break radii in their surface bright-
ness proÞles (Sect. 6). The main results of this work are sum-
marised below:

1. From Fig. 5, it is evident that our sample of LTGs is
heterogeneous in morphology. Still we Þnd that galaxies
with morphological type T " 4 located at smaller cluster-
centric distances. Among these, FCC176 and FCC179
(morphological type T=1) seem to be in a transition phase
to S0/SB0. Later morphological types (5< T " 9, # 60
% of the sample) are located atDcore > 1 deg # 0.36
Mpc i.e. beyond the high-density of ETG-dominated re-
gions (Dcore> 0.8 deg# 0.27 Mpc). Most of these show
signatures of tidal interactions in the form of lopsided-
ness (FCC113 and FCC285), thick disks and tidal tails
(FCC308 and FCC312) or double nuclei/dust-obscured
bar (FCC267).

2. There is an equal fraction (38%) of Type II and Type
III discs in the sample, while only three galaxies (23%)
show a classical Type I exponential disc. Type II galax-
ies have bluer outer discs(hout $ hin = $0.37 mag), while
Type III galaxies have redder outer discs(hout $ hin = 0.25
mag). Brighter and massive galaxies have larger break
radii. For galaxies detected in CO(1-0), the molecular gas
is within the break radius.

In the following sections, we discuss the results mentioned
above in order to address the evolution of LTGs inside the
virial radius of the Fornax cluster .

7.1. Evolution of LTGs inside the virial radius of the
Fornax cluster

The Fornax cluster has been considered as a classic example
of a virialised cluster with regular galaxy distribution (Grill-
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Fig. 9. Analysis of galaxies with a break in their surface brightness proÞles. Triangles represent Type II proÞles, and circles represent
Type-III, with average (g$ i) colour of hout-hin as colour map. Top panel (left):Stellar mass as a function of break radius; Top panel (right):
Total magnitude as a function of break radius normalised to e! ective radius; Bottom Panel: Absolute magnitude ini-band as a function
of inner scale-lengthhin(left) and outer scale-lengthhout (right).

Fig. 10. Molecular gas mass (top panel) and molecular gas-fractions
(lower panel) as a function of break radius. Green triangles represent
galaxies detected in CO(1-0), and orange triangles represent galaxies
non-detected in CO(1-0) for eight LTGs in our sample, which were sur-
veyed by Zabel et al. (2019). Orange circles are galaxies with Type II
proÞle, and purple circles are galaxies with Type III proÞle.

mair et al. 1994; Jord‡n et al. 2007). This cluster is dynami-
cally more evolved than the Virgo cluster with a high fraction of

ETGs in its core (Grillmair et al. 1994; Jord‡n et al. 2007; Iodice
et al. 2019b). Inside its virial radius, Iodice et al. (2019b) found
that the ETGs are not spherically distributed around NGC 1399,
rather, they are located along a stripe i.e. N-S direction in the
West side of NGC1399 (also refer to Fig. 1). Along this direc-
tion, signatures of an ICL component have been found (Iodice
et al. 2017b), mirrored by globular clusters (GC) density sub-
structures (DÕAbrusco et al. 2016; Cantiello et al. 2018), and
supported by kinematical measurements by PNe (Spiniello et al.
2018) and GCs (Pota et al. 2018). All of this suggests that there
are interactions between Fornax cluster members (Iodice et al.
2017b) and among galaxies with the overall cluster potential
(Spiniello et al. 2018; Pota et al. 2018). This ÒstripeÓ along the
W-NW direction of NGC1399, otherwise called as W-NW sub-
clump, may have resulted from the accretion of a galaxy-group
during the build-up of the cluster, hence creating what has been
perceived to be an asymmetry (Iodice et al. 2019b). To further
substantiate this accretion and the consequences on its surround-
ings, all the LTGs brighter thanmB " 16.6 mag, presented in this
work, are not located spatially anywhere near this sub-clump of
ETGs. In fact, these LTGs are located in the opposite direction
(East side of NGC 1399, in 2D projection) of this high-density
ETG-zone (Fig. 1), except for FCC113, a lopsided galaxy. How-
ever the lopsided tail of FCC113 appears to be elongated in
the direction pointing towards the cluster centre (see Appendix.
B.1).

Our results concerning the morphological segregation of
ETGs crowding the central regions (Iodice et al. 2019b), and
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LTGs located at larger cluster-centric distance inside the virial
radius of the Fornax cluster, is consistent with previous Þndings
of the this relation in Virgo (Binggeli et al. 1987) and other clus-
ters (Dressler 1980; Whitmore 1993). Some of the mechanisms
that have been proposed to explain the morphological segrega-
tion are ram pressure stripping (Gunn & Gott 1972), galaxy ha-
rassment (Moore et al. 1996), truncated star-formation (Larson
et al. 1980), galaxy-galaxy interaction (Lavery & Henry 1988).

Due to the higher intra-cluster gas density and higher cluster-
centric velocities of galaxies, ram-pressure stripping is 16 times
more e! ective/stronger in the Virgo cluste Davies et al. (2013).
However, as the Fornax cluster hosts# 300 galaxies withBT #
18 (Ferguson 1989), which is an order of magnitude lower than
the galaxy population in Virgo, it is suggested that galaxy-
galaxy interactions play a prominent role in the evolution of For-
nax cluster members (e.g. DÕAbrusco et al. 2016; Iodice et al.
2017b,a; Venhola et al. 2017, 2018; Spiniello et al. 2018). In
addition to this, it is also necessary to take into account pre-
processing of a galaxy before falling into a cluster, and that the
enhanced ram-pressure stripping occurs when the group passes
through the cluster pericentre (Vijayaraghavan & Ricker 2013).

With these mechanisms stated, we examine the morphologi-
cal evolution of LTGs inside the virial radius of the Fornax clus-
ter.

7.1.1. Late-type spiral (Scd-Sdm) galaxies

Galaxies with morphological type 5< T " 9 are located at
Dcore > 1 deg# 0.36 Mpc. Among these, FCC308 and FCC312
show signs of interactions in the form of tidal tails. The presence
of these tails can either be explained by minor-merging events or
by the disruption of the outer discs during infall, due to the strong
tidal shear in the cluster centre (Whitmore 1993). Galaxies with
asymmetric stellar discs (FCC113 and FCC285) could have ex-
perienced similar mechanisms during infall, but after the cluster
collapse (Whitmore 1993). Since these galaxies have tidal distur-
bances similar to NGC 1427A, another possible mechanism for
this is that it was triggered by a recent ßy-by of another galaxy in
the cluster (Lee-Waddell et al. 2018). However, more analysis on
the Hi distribution of these galaxies are required to conÞrm the
possibility of ram-pressure stripping acting on them (e.g Vollmer
2003).

FCC115, FCC302, FCC267, FCC306 are faint galaxies
(mB " 16.6) with morphological typeT > 7 (Sd-Sdm). The
former two have ill-deÞned spiral arms, and the latter two have
faint spiral arms. As mentioned in the previous paragraph, these
galaxies could have experienced disruptions due to the gravita-
tional potential well of the cluster core, during infall. Since pro-
togalactic clouds which are needed to form Sd galaxies are de-
stroyed during the cluster collapse, these galaxies are dominant
at larger cluster-centric distances (Whitmore 1993).

7.1.2. Galaxies transitioning into S0

FCC176 and FCC179 are classic examples of galaxies tran-
sitioning into lenticulars (S0/SB0) in a dense environment.
FCC290 also has similar disc structure to FCC179, such that
the spiral arms are found only in their central regions (<1Re)
whereas their outer-disc is devoid of any feature (including
star-formation blobs and molecular gas). Their discs resem-
ble the smooth structure, that is typically found in the discs
of S0 galaxies.FCC176 and FCC179 are close to the cluster
core and are the redder and more massive LTGs of our sample,

with averageg $ i colour > 1 mag andM) / 1010M& > 0.6 (see
Tab. C.1). Larson et al. (1980) Þrst explained how blue galax-
ies evolve to red galaxies over Hubble time, and this was fol-
lowed by several other supporting evidences of galaxies losing
their gas as a consequence of environmental e! ects (e.g. Boselli
& Gavazzi 2006; DÕOnofrio et al. 2015; Gao et al. 2018, and
references therein). FCC176 could have formed before the clus-
ter collapse and therefore resides in the X-ray halo of NGC
1399 (e.g. Whitmore 1993). This galaxyÕs morphological evo-
lution under the inßuence of the cluster environment has caused
it to be Hi deÞcient. However, FCC179 andFCC290 are de-
tected in Hi (Schršder et al. 2001) and CO(1-0) (Zabel et al.
2019). The CO disc in spiral galaxies is usually concentrated
within 1Re (see e.g. Davis et al. 2013). The outer gas discs
in spirals that extend to their optical radius are typically H i
dominated. Hi imaging would be required to conÞrm that
these galaxies have been pre-processed (see e.g. Fujita 2004;
Vijayaraghavan & Ricker 2013), or that they have experi-
enced ram-pressure/tidal stripping during infall, which has
resulted in the loss of their outer disc gas (Larson et al. 1980).

7.2. Disc break as a proxy for the structural and
morphological evolution of LTGs

Disc breaks in the light proÞles of LTGs have known to occur as
a consequence of internal mechanisms (e.g. formation of bars) or
external mechanisms (e.g. e! ect of the environment), or some-
times both (Mart’n-Navarro et al. 2012). It has proven to be a
vital parameter in the study of the stellar and gaseous discs of
LTGs (e.g. Martin & Kennicutt 2001; Roediger et al. 2012; Pe-
ters et al. 2017, and references therein). As such, we will use
the break radius to further discuss the structural and morpho-
logical evolution of LTGs inside the virial radius of the Fornax
cluster.To this aim, we also take into account the correla-
tion of molecular gas distribution with the break radius, ob-
served for six LTGs in the sample. The CO(1-0) detection
(Zabel et al. 2019) is within the uncertainties of the inner
break radius (see Appendix B) implying that there could also
be a star-formation break e.g. in FCC290, as previously sug-
gested (e.g. Ro!kar et al. 2008; S‡nchez-Bl‡zquez et al. 2009;
Christlein et al. 2010). As the concentration of molecular
gas within the break radius could have occurred as a conse-
quence of a di! erent mechanism from that of the disc-break
itself, further analysis on their stellar populations is required
to conÞrm this correlation.

7.2.1. Type III disc break

Type III breaks in clusters are found in galaxies with past mi-
nor/major mergers. Minor mergers can cause gas-inßows to-
wards the centre of the primary gas-rich galaxy which steep-
ens the inner proÞle, and expands the outer proÞle as the
angular momentum is transferred outwards during the in-
teraction (Younger et al. 2007), while major mergers usually
produce Type-III S0 galaxies (Borla! et al. 2014). This pro-
cess can also explain the presence of molecular gas close the
center, inside their break radius.

FCC308 and FCC312 have boxy discs and morphological
type T = 7, with ßares in their disc, showing signs of minor
merger, as already stated. The disc break of these galaxies
could have also occurred as result of external mechanisms in
the cluster environment, where the tidal shear of the cluster
core causes disruptions in their disc.
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FCC121 and FCC263 are barred-spiral galaxies which
do not have cold gas beyond their break radius. Within their
break radius, these galaxies also show strong star-formation
activity (molecular gas and bright blue knots, see Appendix.
B), whereas the outer disc of FCC263 does not show any signs
of current star-formation, and in the case of FCC121, there
is a small fraction of bright knots along the spiral arms. Ex-
ternal mechanisms as previously stated, result in the removal
of gas during infall via tidal stripping by the halo potential
(Larson et al. 1980).

7.2.2. Type II disc break

Models for Type II breaks are linked to star-formation
threshold (e.g. Martin & Kennicutt 2001) and radial migra-
tion of stars (e.g. Mart’nez-Serrano et al. 2009; Roediger
et al. 2012). The stellar disc of early-type spirals tends to be
more massive than their gaseous disc, which implies a star-
formation threshold around their break radius (Martin &
Kennicutt 2001).

The disc break in barred galaxies has also been asso-
ciated with the bar radius and the Outer Lindlblad Res-
onance(OLR) (see Mu–oz-Mateos et al. 2013; Laine et al.
2014), like in the case of FCC176.

Flared discs in highly inclined galaxies like FCC115
(faintest galaxy) and FCC306 (bright dwarf) can produce a
less-pronounced break (see e.g. Borla! et al. 2016). The dis-
ruptions in the outskirts of their discs may have resulted as a
consequence of the gravitational potential well of the cluster
core.

FCC179 and FCC290 (Type II) are spiral galaxies with-
out cold gas in their outer disc (see Sect. 5 and 7.1). The
former is located within the X-ray halo (see Fig. 1), while
the latter is located beyond the X-ray halo. The break radius
of these galaxies are not only associated with the absence of
molecular gas in their outer disc but also the absence of spi-
ral arms. Erwin et al. (2012) found that there was an absence
of Type II proÞles in Virgo cluster S0s, suggesting that the
Type II proÞles can transition into Type I, in a cluster envi-
ronment, or that Type I were turning into Type II proÞles (no
models have predicted this yet). Type I was found to be more
common in early-type spirals and S0s (e.g. Erwin et al. 2012).
This would be consistent with our results of disc breaks used
as proxy for morphological evolution of LTGs such that, if
FCC 179 and FCC 290 are transitioning into S0 via external
mechanisms, their Type II proÞles could change to Type I.

7.2.3. What can the average (g $ i) colour of the inner and
outer discs of LTGs indicate?

We Þnd that Type II galaxies have bluer outer discs, while
Type III galaxies have redder outer discs. In addition, the
molecular gas detection is only within the break radius of six
LTGs. Both Þndings might suggest that there is a stellar pop-
ulation gradient across the disc (e.g. Bell& de Jong 2000).
Since we do not Þnd any segregation inside the virial radius
of the cluster for Type II and Type III discs, this might indi-
cate that di! erent processes acted in di! erent regions of the
cluster.

There have been numerous studies concerning the outer-
colour of LTGs with disc breaks (see e.g. Bakos et al. 2008;
Roediger et al. 2012; Laine et al. 2016; Watkins et al. 2019,
and references therein), but no conclusive results have been

given to explain these Þndings. External mechanisms like
ram-pressure stripping (removal of cold gas) and strangu-
lation (removal of hot gas), or stellar migration (e.g Ro!kar
et al. 2008) have been found to cause reddening in clus-
ter LTGs (e.g. Steinhauser et al. 2016; Pranger et al. 2017).
The ram-pressure stripping or strangulation could have been
responsible for the reddening in the outer Type III discs
in FCC263 and FCC121, which are located (projected dis-
tance) in the transition region from high-to-low density re-
gion of the cluster, where the X-ray emission is decreasing
(see Fig. 1). For the other two Type III galaxies (FCC267 and
FCC312) far away from the cluster core, with a signiÞcant
color gradient between inner and outer disc, a di! erent pro-
cess could have been responsible for the redder colors in the
outskirts. Both of them, show also evident signs of past merg-
ing (see Appendix B.7 and Appendix B.14).

Simulations by Hwang et al. (2018) have shown that
LTGs entering a cluster could have encounters with ETGs,
and during this phase, they can have strong star-formation
activity yet losing their cold gas, which can also cause the
presence of bluer outer discs. This could be the case of
Type II galaxies inside the high density regions of the cluster,
as FCC176 and FCC179 that show a color di! erence larger
than the error estimate (see Tab. 6) and an ongoing star for-
mation in the centre (see Appendix B.4 and Appendix B.5).

8. Concluding remarks and future perspectives

FDS data allow us to map the light distribution of galaxies
down to the faintest magnitudes where the e! ects of the envi-
ronment on the evolutionary stages of Fornax cluster galax-
ies can be studied in depth. In this work we have shown
how such studies are especially useful in the analysis of disc
breaks, which in turn provides a ground in further analysis
of the stellar populations beyond the break radius.

Despite the limited size of our LTG sample (13 objects),
the morphological segregation of LTGs inside the virial ra-
dius of the Fornax cluster is clearly detected and is consistent
with previous results that suggest that high-density ETG-
dominated zones inhibit the formation of LTGs (5 <T " 9)
in a cluster environment.

The break radius of LTGs in this sample not only shows
a break in the SB proÞle, but has also been used as a proxy
for understanding the morphological evolution of LTGs in a
cluster environment. The averageg $ i colour of the outer
disc i.e., beyond the break radius of LTGs, depends on their
morphological type. For galaxies detected in CO(1-0), if star
formation di ! erences created their disc-breaks, then molec-
ular gas within their primary break radius deÞnes the break
radius.

Further investigation on the stellar population content of
the discs in LTGs from the Fornax3D data (Sarzi et al. 2018;
Iodice et al. 2019a) and infall time via phase-space analysis
(e.g. Rhee et al. 2017) could address the origin of the di! erent
color gradients in Type II and Type III in the Fornax cluster.
In a forthcoming paper, we provide a detailed comparison
of structure and evolution of LTGs in the cluster core and
LTGs in the infalling SW subgroup centered on Fornax A
(M.A.Raj, H.-S.Su et al. in prep), which is a di! erent envi-
ronment mainly populated by LTGs (Iodice et al. 2017b).
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Appendix A: The Sample: Late Type Galaxies inside
the virial radius

In this section, we give a detailed description of the main prop-
erties of each galaxy analysed in this paper.
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Appendix A.1: FCC113

FCC113, is an ScdIII pec, was classiÞed as a star forming dwarf
galaxy by Drinkwater et al. (2001), but is a late type lopsided
spiral galaxy with e! ective radius 1.98 kpc. Unlike the other reg-
ular late type galaxies studied, as part of this paper, FCC113 is
located near the low-density region of galaxies in the virial ra-
dius of the Fornax cluster, at a projected distance of 1.209 deg.
This galaxy, following on similar substructures, explained in the
Sect. A.8. Drinkwater et al. (2001) point out to the ongoing star
formation of this galaxy, which can be seen in the bright knots
irregularly distributed in the northern regions of this galaxy. It
appears to look like the galaxy is being pulled into the cluster
centre, in the southern direction.

Appendix A.2: FCC115

FCC115, an Sdm (edge on) galaxy, is the faintest galaxy in our
sample. Due to the edge-on characteristics of this galaxy, it is
di" cult to discern the presence of spiral arms. It is located at a
projected distanceDcore = 1.05 deg from the cluster centre, in
the low-density regime. From image B.2, the SB image shows a
dust lane in the centre, which is presumably the spiral arm (see
Appendix. B.2). This galaxy has a Type II proÞle, with a break
radius of 1.47 kpc. The outer disc is bluer with the SB of 23.52
mag/ arcsec2 at the break radius.

Appendix A.3: FCC121

Also known as the great barred spiral galaxy NGC 1365 has been
studied in the past mostly concerning the supermassive black
hole present in its core. The bar of this galaxy has dust and star
formation that extends to the end of the spiral arms. With an ef-
fective radius of 12.74 kpc, this galaxy is located at a projected
distanceDcore = 1.06 deg from the cluster centre. It has a Type
III proÞle, with a break radius of 18.46 kpc, and redder outer
disc.

Appendix A.4: FCC176

FCC176, also known as NGC 1369 is an SBa galaxy, consists of
a bar and an outer ring formed by its spiral arms. It is located
in the X-ray regions of NGC 1399 in the central cluster. The
e! ective radius of this galaxy is 2.68 kpc. It is at a projected dis-
tanceDcore = 0.82 deg from the cluster centre. The asymmetric
halo (in the SE direction) and the outer ring which show intrinsic
characteristics in the disc, suggest that this is an early type spiral
galaxy (Elmegreen et al. 1992; Mastropietro et al. 2005), where
the star formation in the outer regions appears to be stalled. This
galaxy has a Type II proÞle with aBr of 3.73 kpc. The outer disc
is bluer with averageg $ i colour of 0.76± 0.2 mag (refer Tab.
6).The break radius is beyond the ring (OLR) of the galaxy at a
SB of 22.20mag/ arcsec2.

Appendix A.5: FCC179

FCC179, also known as NGC 1386 is an Sa, Seyfert 2 galaxy,
located at a projected distanceDcore= 0.55 deg from the cen-
tral galaxy, in the X ray regions of the Fornax cluster. It has
an e! ective radius of 2.68 kpc. This galaxy has been a topic
of interest concerning its outßows (e.g. Rodr’guez-Ardila et al.
2017) and gas kinematics (e.g. Lena et al. 2015). Being in the
hot, high-density regime of the Fornax cluster, the spiral arms
of this galaxy are concentrated in its central regions of 1 arcmin

diameter. These spiral arms contains a lot of dust, which can be
seen in itsg $ i colour map at a level of 1.1 mag (see Appendix.
B.5. This galaxy has a Type II proÞle, with a break radius of 7.01
kpc, that is# 2.5 times the e! ective radius inr-band.

Appendix A.6: FCC263

FCC263 is classiÞed as a SBcd-III, barred spiral, located at
Dcore= 0.79 deg from the cluster centre. With an e! ective radius
of 2.06 kpc, this galaxy is detected in Hi and CO(1-0), showing
signs of ongoing star formation in its spiral arms (see Zabel et al.
2019; Schršder et al. 2001). This galaxy has a Type III proÞle,
with a break radius of 2.32 kpc. Zabel et al. (2019) point out to
the irregular distribution of molecular gas, suggesting the pos-
sibility of tidal encounters or past minor mergers. Though we
include this in our morphological segregation of regular spiral
galaxies at smaller projected distance to the cluster centre, it is
not clear if this galaxy is indeed within the X-ray halo or far-
ther away, yet appears to have its spiral arms stripped. The outer
isophotes are not aligned with the inner isophotes, and the galaxy
is more thickened along the direction pointing towards the clus-
ter centre.

Appendix A.7: FCC267

FCC267, a Sm(IV) galaxy, is located at farthest projected dis-
tance (1.73 deg) from the cluster centre. This galaxyÕs spiral
arms are concentrated in the innermost regions with double nu-
cleus. It has an e! ective radius of 1.92 kpc. This galaxy has a
Type III proÞle with a break radius of 1.43 kpc.

Appendix A.8: FCC285

FCC 285, also known as NGC 1437A , is an Sd-III galaxy. In the
SB image, the galaxyÕs extended spiral arms are marked. This
galaxy is detected in Hi (Schršder et al. 2001) and studied in
FIR (Fuller et al. 2014) and is located atDcore = 1.17 deg from
the cluster centre, with an e! ective radius of 4.90 kpc. According
to the De Vaucouleurs system of classiÞcation, Sd galaxies are
usually di! use, with a faint central bulge. These galaxies also
have irregular star forming regions or star clusters spread out
(see Appendix B.8).NGC 1437A has a similar arrow-shaped op-
tical appearance as NGC 1427A and seems to be travelling in a
southeast direction (based on the location of its own star-forming
region) that is parallel with the orientation of NGC 1427A. The
tail shows low SB regions, and the top part is elongated with
the south, moving in opposite directions. NGC 1437A has about
one third the Himass as NGC 1427A and the velocity di! erence
between these dIrrs is 1150 km s$1, which is three times higher
than the velocity dispersion of the Fornax cluster (Lee-Waddell
et al. 2018) with no indication of recent tidal interactions.

Appendix A.9: FCC290

FCC290, also known as NGC 1436 is an ScII galaxy at a pro-
jected distanceDcore= 1.05 deg from the cluster centre, located
within the X-ray regions of the central galaxy, with an e! ective
radius of 4.64 kpc. The inner spiral arms have about a size of 2
arcmin consisting of dust lanes. As the spiral arms are concen-
trated in the central regions (within 1Re) of the galaxy, with a
regular shape of disc in the outer regions, this galaxy appears to
be moving to an S0 phase in its morphological evolution. This
galaxy has a Type II proÞle with a break radius of 4.54 kpc.
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CO(1-0) detection (Zabel et al. 2019) shows presence of molec-
ular gas in its spiral arms, within its break radius (see Appendix.
B.9).

Appendix A.10: FCC302

FCC302 is a di! use, nearly edge-on galaxy with fairly uniform
surface brightness, and possibly an irregular galaxy (Matthews
& Gallagher 1997), located at a projected distanceDcore = 1.305
deg. It has an e! ective radius of 2.76 kpc and a companion
galaxy close to symmetric centre of this galaxy (NED).

Appendix A.11: FCC306

FCC306, is a SBmIII, classiÞed as a dwarf galaxy by Drinkwater
et al. (2001). It is the smallest galaxy of the sample we present,
with an e! ective radius of 0.94 kpc. Though past research says
that there is no evidence of substructure because of its small ve-
locity dispersion in the Fornax cluster Drinkwater et al. (2001),
we speculate that there are spiral arms at a SB level of 29 mag in
NW and SE directions marked in the contours of the SB image
(see Appendix B.12). FCC306 lies in the beam of FCC308 and
has been conÞrmed in a FLAIR observation with v= 915 ±15
km s$1 using emission lines (Schršder 1995).

Appendix A.12: FCC308

FCC308, also known as NGC 1437b, is an Sd galaxy, at a
projected distanceDcore = 0.3 deg to the bright dwarf galaxy
FCC306, with an e! ective radius of 4.46 kpc. The structure of
this galaxy is similar to that of FCC312. Sd galaxies are usu-
ally edge-on, with ill-deÞned spiral arms (Buta 2011). One can
say that the uneven distribution of star forming regions can be
accounted for the spiral arms loosely wound, as marked in the
g $ i colour map of this galaxy (see Appendix. B.11). There is
a lot of dust present in the central regions of this galaxy, which
can be seen in theg $ i colour map as well as theg $ i colour
proÞle, where the dust extinction can be recognised out in the
regions between 2-20 arcsec of the central galaxy. Flares on the
outskirts of the disc is clear because of the deep images of FDS
(see Appendix B.11).

Appendix A.13: FCC312

FCC312, is an Scd galaxy, with high stellar mass, detected in
Hi (Schršder et al. 2001) and CO(1-0) (Zabel et al. 2019), and
studied in FIR (250µm, Fuller et al. 2014). It has an e! ective ra-
dius of 11.30 kpc and has been a topic of interest in the past,
concerning its structure, molecular clouds and regions of star
formation. The central regions show the traces of ongoing star
formation, which can be seen in theg $ i colour proÞle. It is lo-
cated at a projected distanceDcore = 1.59 deg from the cluster
centre. Being further away from the high-density regions of the
central cluster, this galaxy shows the most extended disc (box-
iness) which is visible in the azimuthally averaged SB images
shown in Appendix B.14. It has a Type III proÞle with a break
radius of 6.91 kpc, around the same regions of star formation
(see Appendix B.14). The boxy shape of edge-on spiral galax-
ies is said to be related to the vertical distribution of light (Bu-
reau & Freeman 1999). Although past research (e.g Bureau &
Freeman 1999) suggest that the presence of a boxy or peanut
shaped bulge is due to the presence of a bar, this galaxy does
not display a boxy bulge, but rather a boxy disc, with regions of

high star formation surrounding the centre. The dust reddening
of this galaxy makes the colour magnitude appear to be redder
than bluer, and is clearly visible in theg $ i colour map of this
galaxy (see Appendix B.14). The extended tail of the disc is at
25.6mag/ arcsec2, which can be a sign of a recent minor merger
event or due to instabilities caused in the disc.

Appendix B: The Sample: Images and proÞles

In this section, we show theg-band VST images of LTGs inside
the virial radius of the Fornax cluster, surface brightness proÞle
in terms of e! ective radius,g $ i colour maps and (g $ i) decon-
volved (black) and original proÞles (grey). For 10 of the galaxies
with disc-breaks in our sample, we also mark the break radius on
theg-band images in surface brightness (black dashed lines) and
(g$ i) colour proÞles (red dashed lines). For 6 galaxies that were
detected in CO(1-0), we plot the CO contours(Zabel et al. 2019)
in white.

Appendix C: Methodologies

Parameters of the best Þt of LTGs with disc breaks are given in
Tab. C.1 with an example (FCC179) of the best Þts produced by
the algorithm shown in Fig. C.1, C.2, C.3.

Appendix C.1: Reliability test

In order to test the reliability of the method of deconvolu-
tion we use, we adopt the method illustrated by Borla! et al.
(2017, hereafter B+17).

According to B+17, images are deconvolved using the fol-
lowing operation:

Residuals= Image raw$ PS F) ModelGALFIT (C.1)

Deconvolved image= ModelGALFIT + Residuals (C.2)

Where PS F ) ModelGALFIT is the 2D model (with best-
Þtted parameters) convolved with the adopted PSF, obtained
from GALFIT3.0 (Peng et al. 2010), andModelGALFIT is the
2D model obtained using the best Þt parameters of the galaxy
from PS F) ModelGALFIT, i.e. the model of the galaxy without
PSF convolution.

We apply this method to three of the galaxies in our sam-
ple: FCC179 and FCC290 (Type II with a second break) and
FCC263 (Type III). For each of these galaxies, we use ser-
sic+single exponential disc models to deriveGALFIT3.0mod-
els with PSF convolution. We Þx the parameters obtained
from their PS F ) ModelGALFIT to extract another model,
ModelGALFIT i.e., without PSF convolution. We then decon-
volve the images using the above method. We extract the sur-
face brightness proÞles usingellipse and (see Sect. 3) com-
pare it with the method (LR algorithm) given by SP+17
(see Fig. C.4). We derive the break radius from the afore-
mentioned radial proÞles. From Fig. C.4, it is clear that our
method of deconvolution (LR algorithm) is consistent with
the above method, and that deconvolution does not a! ect the
location of the primary break radius (within the # nBr ) as well
as the break-type, as the break radius we estimate is within
the regions una! ected by the PSF. In the case of FCC179 and
FCC290, a possible secondary break radius occurs in the re-
gions that are a! ected by the PSF, where the contribution of
the scattered light is accounted for with deconvolution.
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Fig. B.1.Surface Photometry of FCC113
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Fig. B.2. Surface Photometry of FCC115. SB image: Black dashed lines represent the break radius (Type II). (g $ i) colour proÞle: Red dashed
lines represent the break radius normalised toReg.
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Fig. B.3.Surface Photometry of FCC121. SB image: Black dashed lines represent the inner break radius (Type III) and outer break radius. CO(1-0)
contours are in white. (g $ i) colour proÞle: Red dashed lines represent the break radius normalised toReg.
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Fig. B.4. Surface Photometry of FCC176. SB image: Black dashed lines represent the break radius (Type II). (g $ i) colour proÞle: Red dashed
lines represent the break radius normalised toReg.
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Fig. B.5. Surface Photometry of FCC179. SB image: Black dashed lines represent the inner break radius (Type II) and a possible second break
radius. CO(1-0) contours are in white. (g $ i) colour proÞle: Red dashed lines represent the break radius normalised toReg.
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Fig. B.6. Surface Photometry of FCC263. SB image: Black dashed lines represent the break radius (Type III). CO(1-0) contours are in white.
(g $ i) colour proÞle: Red dashed lines represent the break radius normalised toReg.

Article number, page 24 of 39



M.A.Raj et al.: LTGs inside the Virial Radius of the Fornax Cluster

Fig. B.7. Surface Photometry of FCC267. SB image: Black dashed lines represent the break radius(Type III). (g $ i) colour proÞle: Red dashed
lines represent the break radius normalised toReg.
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Fig. B.8.Surface Photometry of FCC285.
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Fig. B.9. Surface Photometry of FCC290. SB image: Black dashed lines represent the inner break radius (Type II) and a possible second break
radius. Blue dashed lines represent innerBr + 2! . CO(1-0) contours are in white. (g! i) colour proÞle: Red dashed lines represent the break radius
normalised toReg.
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Fig. B.10.Surface Photometry of FCC302.
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Fig. B.11.Surface Photometry of FCC308. SB image: Black dashed lines represent the break radius (Type III) and blue dashed lines represent
Br + 2! . CO(1-0) contours are in white. (g ! i) colour proÞle: Red dashed lines represent the break radius normalised toReg.
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FCC306 
g band

Fig. B.12.FCC306 in zoom
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Fig. B.13.Surface Photometry of FCC306. SB image: Black dashed lines represent the break radius (Type II). (g $ i) colour proÞle: Red dashed
lines represent the break radius normalised toReg.
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Fig. B.14.Surface Photometry of FCC312. SB image: Black dashed lines represent the break radius (Type III). CO(1-0) contours are in white.
(g $ i) colour proÞle: Red dashed lines represent the break radius normalised toReg.
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Table C.1.Parameters of the best Þt of LTGs with disc breaks, inside the virial radius

object hin hout

slope rms residuals slope rms residuals
(1) (2) (3)

FCC115 0.09± 0.03 0.02 0.11± 0.07 0.02
FCC121 0.02± 0.11 0.02 0.10± 0.18 0.07
FCC176 0.04± 0.06 0.09 0.06± 0.08 0.05
FCC179 0.04± 0.07 0.08 0.08± 0.70 0.23
FCC263 0.12± 0.14 0.08 0.07± 0.02 0.02
FCC267 0.17± 0.03 0.02 0.91± 0.03 0.02
FCC290 0.03± 0.09 0.07 0.05± 0.10 0.08
FCC306 0.20± 0.01 0.01 0.27± 0.07 0.08
FCC308 0.10± 0.05 0.05 0.05± 0.08 0.11
FCC312 0.05± 0.04 0.04 0.02± 0.14 0.06

Notes.Col.1 -LTGs with disc break;Col.2 -slope of the Þtted median modelhin and its correspondingrms residuals; Col.3 -slope of the Þtted
median modelhout and its correspondingrms residuals
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Fig. C.1. (n + 1)3 combinations of best Þts on the inner and outer scale-lengths with minimal standard deviation, for FCC179 (heren =2). rangein
is represented with a red spline, andrangeout is represented with acyan spline. modelrangein is marked in orange, whilemodelrangeout is marked in
green. The break radius is marked at the intersecting point. Rms residuals, errors of the intercept, and slope of the Þtted models for the inner and
outer discs are mentioned in each plot.
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Fig. C.2.Appendix C.1 continued.
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Fig. C.3.Appendix C.1 continued.
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Fig. C.4. Deconvolved SB proÞles using SP+17 method (black) and the method by Borla! et al. (2017) (grey) over-plotted on the original (red)
proÞles for Type II (FCC179 and FCC290) and Type III (FCC263).
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Fig. C.5.Type II Deconvolved (black) and original (red) proÞles inr-band with Br marked in their corresponding colours of each proÞle.
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Fig. C.6.Type III (same as Fig. C.5)
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