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Abstract 

Background 
Apathy is a deficit in goal-directed behavior that significantly affects quality of life and function. It
is common in Huntington’s disease (HD) and other disorders affecting cortico-striatal pathways.
Deficits in processing of reward, altered effort and executive dysfunction are associated with apathy
in other disorders, but the cognitive processes leading to apathy in HD remain largely unknown. A
previously  reported  deficit  in  learning  from  losses  in  HD  raises  the  possibility  of  a  hitherto
unrecognized mechanism leading to apathy. This study’s objective was to delineate the cognitive
processes associated with apathy in HD.

Methods
We tested 51 HD participants and 26 controls on a battery of novel and established measures to
assess  the  contribution  to  apathy  in  HD  of  executive  function,  reward  value,  reward-effort
calculations,  instrumental learning and response to reward and loss.

Results
HD  participants  had  deficits  in  instrumental  learning  with  impaired  response  to  loss,  but  no
evidence to suggest altered reward-related behavior or effort.  We also saw an executive dysfunction
contribution to apathy in HD. 

Discussion
We report the novel finding that apathy in HD is associated with blunted responses to losses and
impaired instrumental learning. This association is consistent with the known early degeneration of
the indirect pathway and amygdala involvement in apathy in HD, but is previously unreported in
any disorder. In keeping with the comparative preservation of the ventral striatum and orbito-frontal
cortex in HD, reward valuation and reward-effort calculations did not contribute to apathy.
 

Background 
Apathy, a deficit in goal-directed behavior, is common in neurological diseases affecting frontal
cortex, white matter and basal ganglia1–5. Apathy severely impairs function and quality of life for
patients and carers6–11.

A number of cognitive processes are hypothesized to contribute to goal-directed behavior: initiation;
including  option  generation  and  selection  (reward  valuation  and  reward-effort  calculations),
planning (executive function), and outcome evaluation (learning from loss and reward)12,13. Deficits
in  reward  valuation,  reward-effort  calculations,  learning  from  reward  and  executive  function
leading to apathy have been demonstrated across disorders14–16. However, one important aspect of
goal-directed behavior: avoiding aversive stimuli and stopping deleterious actions, has so far not
been directly linked to clinical apathy. 



Apathy  occurs  in  up  to  80%  of  patients  with  Huntington’s  disease  (HD;  an  inherited
neurodegenerative disorder focused on the striatum, affecting the indirect pathway earliest, before
involving  the  direct  pathway,  cortex  (progressing  occipito-frontally),  and  white  matter)5,12,17–21.
Apathy is a core feature of HD: showing progression with disease course, occurring before motor
onset and occurring at higher rates in HD gene carriers compared to non-gene carriers blinded to
their genetic status17,22,23.   

Despite apathy’s impact on HD patients and central status to the disease, knowledge of the cognitive
processes underpinning apathy in HD is limited. Apathy in HD has been correlated with executive
dysfunction16,24, but none of the other potentially contributory processes have been probed. 

Although apathy is common in diseases affecting cortico-striatal circuits, the distribution of neuro-
pathology differs across diseases. This suggests that the mechanisms leading to apathy may also
differ.  Without  knowing  the  relative  contribution  of  different  processes  to  apathetic  behavior,
targeted treatments cannot be developed. Since a selective deficit in learning from loss, but not
reward25 has  been  previously  reported  in  HD,  it  may be  that  apathy in  HD is  associated  with
impaired sensitivity to loss.  This is  in keeping with the known preferential degeneration of the
indirect pathway in HD19,26–30. 

We explored this concept using a battery of cognitive tasks measuring reward-value, reward-effort
calculation, response to failure, and instrumental learning from loss and reward, to delineate the
cognitive processes leading to apathy in HD. 

Methods  

All procedures were approved by the NHS research ethics committee for Wales (13/WA/0300) in
accordance with the Declaration of Helsinki. 

Recruitment and Inclusion Criteria
We recruited 51 genetically confirmed HD participants (pre-symptomatic to moderately affected)
from the South Wales HD Service; and 26 control participants from university students, university
staff, and family members not at risk of HD. All participants gave informed consent.  We excluded
pregnant women, children under the age of 18, and any participant with a history of neurological
disorders other than HD, or previous brain injury. Participants were paid expenses (maximum £20),
but were explicitly told this amount was not affected by task performance or study completion.

Initial Assessments
Prior to the cognitive tasks, participants completed the Apathy Evaluation Scale (AES)31, Problem
Behaviors Assessment for HD32 (PBAs; the best-verified neuropsychiatric assessment in HD); a
measure of reward, risk-taking and impulsivity (Behavioral Inhibition, Behavioral Activation Scale:
BISBAS33);  a  review of  their  medical  history;  and a  unified  Huntington’s  disease  rating  scale
(UHDRS) motor examination (total  motor  score (TMS)34)if  they had not  been examined in the
preceding 3 months. 

Apathy Assessment
This study used the AES(range 18-72) and PBAs Apathy(range 0-16, product of the severity (0-4)
and frequency (0-4))  scores as apathy measures. 

BISBAS Reward Score



The  BISBAS has  four  sub-scores  –  Reward,  Fun-seeking,  Drive  and  Inhibition.  The  BISBAS
reward subscore was analyzed separately as a measure of subjective reward value.

Cognitive Tasks
All tasks were coded in E-Prime 2.0, breaks were encouraged ad libitum, and testing was performed
in a distraction-free environment on a Lenovo ThinkPad laptop computer. Tasks were drawn from a
larger  battery  of  14  cognitive  tasks  (including  tasks  measuring  irritability  and  low  mood),
administered in random order. A schematic diagram of the novel assessments (Reward Reaction
Time (RRTT) and Persistence tasks) is given in Figure 1, with further details in supplementary data.

Persistence (Sensitivity to Failure, Learning from Failure)
This  novel  task  was  designed  to  measure  participants’ sensitivity  to  failure.  Participants  were
instructed  to  race  against  a  computerized  opponent.  They  were  asked  to  keep  tapping  on  the
keyboard to make their car go, and to press Q if they wished to stop the race. The “opponent” was
always faster: traveling more rapidly and passing through checkpoints more frequently (see Figure
1 for stimuli and information displayed to participants). To account for the memory and executive
function  deficits  seen  in  HD,  instructions  were  displayed  on-screen  at  all  times.  The  outcome
variable was the total duration of the race (608s maximum). 

Phonemic Verbal Fluency (PVF): (Executive Function)35.  Impaired executive function is associated
with disease progression and apathy in HD16,24,36. Participants were told they had a minute to think
of as many words beginning with one letter as they could, there were three trials (letters F, A and S).
The outcome variable was the total number of novel words generated across all trials (PVF score).

Balloon Analogue Risk Task (BART): (Learning, Response to Stimulus)37

This task was used to measure instrumental learning and response to loss and gain. Participants
were instructed to inflate balloons to earn money (£0.05 per pump), and told that if the balloons
became ‘too big’ they would pop and the points would be lost. Three types of balloon were shown
(distinguished by color): each had a different risk of popping and maximum number of pumps.
Consequently each type of balloon had an optimal number of pumps (the maximum number of
pumps before expected gain exceeded expected loss: optimum pump value, (OPV)). The outcome
variable was inaccuracy i.e.  the number of pumps above or  below the OPV. Although initially
developed as a measure of risk-taking and impulsivity, a meta analysis has shown that impulsivity
and related constructs make comparatively small contributions to performance38. Later work has
shown BART performance is influenced by executive function and in particular, neural response to
feedback38–41.

Reward Reaction Time Task (RRTT): (Change in Effort with increasing Reward Value) 
This task measured participants willingness to increase effort for higher rewards. Participants were
instructed to react as quickly as possible to a visual stimulus (Fixation Cross 500ms-2500ms; Visual
Stimulus: “PPPP” displayed in the center of the screen, timeout after 10000ms; Feedback 5000ms;
0ms inter-trial  interval)  by pressing spacebar,  and that the points on offer increased as the task
progressed.  Thirty practice trials  were included to assess mean reaction time in an unrewarded
condition. Points scored in the 4 test blocks were based on mean reaction time to account for motor
disability. 7000ms breaks were given between each level. Previous work has shown that in healthy
participants, reaction times shorten for higher reward42, whilst apathy in CADASIL and Parkinson’s
disease  reduces  effort  expended  for  reward15,43.  The  outcome  variable  was  reward  sensitivity
(reward-value related change in reaction time). 

Analysis and Statistical Methods



Missing  data  (secondary  to  time  constraints)  was  excluded  on  a  pairwise  basis.  46/51  HD
participants completed the BART and Persistence tasks, whilst motor impairment (5) and software
failure (4) limited RRTT completion to 37. The phonemic verbal fluency task was included later in
the study,  and completed by 24 HD participants.  All  controls  completed the battery.  Full  scale
intelligence quotient (IQ) was calculated using Crawford’s demographic method, as reading-based
IQ  tests  have  proven  unreliable  in  HD44–46.  Dopaminergic  and  serotonergic  medications  were
converted into olanzapine and fluoxetine equivalent doses47,48. Bonferroni corrected alpha was 0.013
for the linear regression models.
The demographic variables, executive function(PVF score), PBAs and BISBAS scores from Table 1
were all considered to be potential confounding variables and were included as such in the  model
analyses detailed below. 

BISBAS  Reward  score,  PVF  score  and  Persistence  duration:  firstly,  group  effects  (of  cases
compared with controls) were assessed by constructing regression models with task performance as
the dependent variable and case status (HD versus control) as the independent variable. Secondly,
regression  models  within  the  HD group  were  constructed  to  measure  the  association  between
cognitive task performance and apathy scores in HD. Simple regression models were constructed
(of case status on task performance, and task performance on apathy score in HD participants) and
then compared with models including confounding variables as fixed effects using likelihood ratio
tests. Any significant confounding variables were included in the final multiple regression model.
Formal  testing  (normality  of  residuals,  Goldfeld-Quandt  and  Durbin  Watson  tests)  of  linear
regression assumptions was satisfactory for all models, except for group comparisons of BISBAS
reward and Persistence: Poisson and Gamma regressions, were used respectively. 

BART Logistic Mixed Models
Our analyses focused on learning, and response to punishment and reward. The dependent variable
was inaccuracy(number of pumps above or below OPV) for analyses 1&2, and absolute number of
pumps for analysis  3.   Analyses: 1) instrumental learning (change in inaccuracy over time and
change in inaccuracy by balloon type:  the independent variables were trial and balloon size),  2)
immediate  response  to  stimulus  (change  in  inaccuracy  in  response  to  different  stimulus  value
(magnitude of monetary loss or gain) and type of stimulus (loss or gain)), and 3) response to loss
and gain over time: independent variables of stimulus value, stimulus type and trial.  A weighting
factor for OPV was included in logistic models.

RRTT  Linear Mixed Models
Our analyses assessed change in effort for different reward value and decrement in effort with time
in each block. RRTT linear mixed models included  log reaction time (reaction time was positively
skewed) as the dependent variable. TMS was included in all models as a separate fixed effect to
account for motor disability. Analysis 1) the independent variable was an interaction term between
maximum reward value (increasing from 10-40 points with block) and block order, to avoid the
confounding  effects  of  fatigue49.  Analysis  2)  the  independent  variable  was  trial  number  within
block(1-30) to separate the effects of reward and effort.

Mixed Model Construction and Comparison
We compared interaction, fixed-effect and null models using AICtab in R as described by Bolker50–

53, and report the weight (the explanation of variation in the data, penalized for model complexity,
maximum value=1.0). Model comparison within the whole group included independent variables of
apathy score (AES&PBAs) and case status (HD compared with control), whilst model comparisons
within the HD cohort included apathy score. Likelihood ratio tests were used to compare models
with  and  without  potential  confounding  demographic,  medication,  disease-related  and



neuropsychiatric variables from Table 1. Unless otherwise stated,  confounding variables did not
improve the models. Further details of the analysis are outlined in supplementary data.

Results 

Demographics and Questionnaires (Table 1)
HD participants had higher apathy scores than controls, in addition to lower IQ, and higher  TMS,
medication dose, impulsivity scores and neuropsychiatric scores.

Persistence Task (Figures 2A,B&C: Sensitivity to Failures, Learning from Failures)
The HD group had significantly prolonged duration of game play compared with controls  (the
model  included  olanzapine;  case  status  -  coefficient  0.40,p=0.0078),  consistent  with  impaired
response to failure. Regression models showed an association between longer Persistence duration
and  apathy  score  (PBAs:  adjusted  R2  0.33,  Persistence-  coefficient  0.013,p=1.84x10-5;  AES:
adjusted R2 0.26, Persistence- coefficient 0.04, p=0.00021). Likelihood ratio tests showed that only
age  and  IQ  improved  both  models,  whilst  TMS  score  improved  the  PBAs  model.  Multiple
regression  models  including  Persistence  duration,  and  confounders  maintained  the  positive
relationship between Persistence duration (impaired response to failure) and apathy score (PBAs:
adjusted  R2=0.47, Persistence- coefficient 0.012, p=0.00012; AES: adjusted R2=0.42, Persistence-
coefficient 0.034,p=0.0014)(Supplementary data – Table S1A&S1B). 

BISBAS Reward (Supplementary Figures S1A,B&C: Subjective Reward Value)
The model of case status adjusted for confounding variables (age), did not show group differences
of BISBAS reward scores(coefficient -0.041,p=0.49). Regression models predicting apathy scores
from BISBAS reward score in cases were also not significant (AES model:  adjusted R2=0.006,
BISBAS  reward-  coefficient  -0.24,p=0.26,  PBAs  model:  adjusted  R2=-0.018,  BISBAS  reward-
coefficient  0.25,p=0.75).  Inclusion  of  significant  confounders,  did  not  change  these
relationships(Supplementary data – Table S1C&S1D).

Phonemic Verbal Fluency (Figures 2D,E&F: Executive Function)
Models of case status, IQ (as a significant confounder) and PVF score showed HD was associated
with  impaired  executive  function  (adjusted  R2=0.31,  coefficient  −14.33,p=0.00061).  Simple
regression  models  showed  inverse  relationships  between  apathy  scores  and  PVF  score(PBAs
adjusted R2 =0.26, coefficient -0.22,p=0.0069; AES adjusted R2 =0.24, coefficient -0.68,p=0.0083).
Inclusion of significant confounders(TMS, PBAs depression score and Olanzapine dose for both
scores,  age  for  the  PBAs),  based  on  likelihood  ratio  tests  resulted  in  loss  of
significance(Supplementary data – Table S1E&F).

BART (Figure 3A&B: Instrumental Learning)
The best  model  in  the  whole  group (HD cases  and controls;  weight  1.0)  showed a significant
interaction between case, apathy and trial: apathy led to more inaccuracy over time in HD cases,
consistent with an apathy related deficit in instrumental learning (PBAs model p=1.73x10−15, AES
model p<2x10-16).  Likelihood ratio tests of potential confounding variables from Table 1, showed
that inclusion of IQ as a fixed effect improved the model  (likelihood ratio tests:  PBAs model
p=0.0080, AES model p=0.0083; higher IQ score was associated with less inaccuracy- PBAs model
p=0.0065, AES model p=0.0066) as did PBAs irritability score (likelihood ratio tests: PBAs model
p=0.020, AES model p=0.041; increased irritability was associated with more inaccuracy- PBAs
model p=0.018, AES model p=0.038). However, neither of these models altered the direction or
significance of the case, apathy and trial interaction(Supplementary data - Table S2A). The best
model in the HD group (weight=1.0) also included a significant interaction between trial and apathy



(p<2x10-16):  confirming that  apathy was associated with more inaccuracy over time.  Models  of
balloon type and apathy in HD cases showed that apathy scores improved the model (weights for
both PBAs and AES models=1.0). A significant interaction between balloon size and apathy showed
that  apathy  impaired  accuracy  on  smaller  balloons  (p<2x10-16  for  AES  and  PBAs  models,
supplementary data table S2E), which popped more frequently (p<2x10-16), consistent with impaired
learning from loss compared with reward associated with apathy in HD. 

BART (Figure 3B: Response to Stimulus)
The  best  model  (weight  0.54)  in  the  whole  group  (including  HD cases  and  controls)  had  an
interaction between group and stimulus-value(size of loss/gain): the fixed effects showed higher
inaccuracy in HD cases(p=0.014) and less inaccuracy with larger stimulus value(p=1.9x10-12), with
a trend level interaction between stimulus value and case, suggesting better accuracy in HD with
increasing stimulus value (p=0.097). Models of stimulus value and stimulus type (gain or loss) in
the HD group showed this was due to a dual dissociation: the best model (weight 1.0) showed an
interaction  between  stimulus  type,  stimulus  value  and  apathy:  increasing  apathy  led  to  more
inaccuracy following large loss (popped balloon) compared with large reward (banked balloon)
(p=7.33x10-8).  Separate  analysis  of  trials  following reward  and trials  following loss  in  the  HD
group,  showed apathy in  HD led  to  more  inaccuracy after  large  loss,  (,  p=1.15x10-5),  but  less
inaccuracy following large reward (p=0.00030). 

Contrastingly,  in  controls,  an  interaction  model  of  stimulus  value  and  stimulus  type  showed
inaccuracy improved more after large loss than large reward (p=0.00018). Separate analysis of trials
following loss, and trials following reward in the control group showed that inaccuracy improved
after both large loss(p=6.73x10-12),  and large reward(p=1.85x10-5) (Supplementary data – Tables
S2B&C)

BART (Supplementary Data Figure S2: Learning after Gain and Loss)
Models of pumps following losses and gains over time, showed a significant interaction between
stimulus value, stimulus type, trial and apathy score: over time, apathetic HD participants made
more  pumps  following  large  losses  than  large  gains  (PBAs  interaction-  coefficient
0.0033,p=0.00087;  AES interaction-  coefficient  0.0012,p=3.64x10−10,  Supplementary  data  Table
2D). 

RRTT (Figure 3C:  Reward Value and Effort)
All models of reaction time included TMS as a fixed effect (to account for motor disability). Models
comparing the effect of the interaction between maximum reward value and block order on reaction
time  in  the  whole  group  (HD cases  and  controls)  revealed  that  the  best  model  (weight=0.61)
included case as a separate fixed effect: higher maximum reward shortened reaction time overall
(p=0.011), whilst cases had slower reaction times than controls (p=0.013). In the HD group, the
relationship between maximum reward value and reaction time was present at trend level (p=0.063).
Inclusion of apathy scores did not improve any of the models. Models assessing a decrement in
maintained effort (slowing of reaction time over the course of each block), did not show a change in
reaction time towards the end of each block in the whole group, or in HD participants, and were not
improved  by  inclusion  of  case  status  or  apathy  score  (Supplementary  data–  Tables
S3A,S3B,S4A&S4B). 

Discussion 
Our findings show that apathy in HD is associated with blunted response to loss and deficits in
instrumental learning; demonstrated on an established task of monetary loss and novel naturalistic
task of sensitivity to failure.  Furthermore, higher apathy in HD was associated with better accuracy



on the BART following large gains. In keeping with Cools et al40, we found reward-related speeding
of reaction time, but apathy in HD did not affect this behavior.

We considered alternative explanations for our finding of an association between apathy in HD and
a selective deficit in response to losses. Executive dysfunction (associated with apathy in HD16,24)
and perseverative behavior are common in HD, and could have led to inappropriate or excessive
responses on the BART or Persistence task,  but neither  the PVF or PBAs perseveration scores
altered the models. Memory impairment is also common in HD36,54. The Persistence task included
instructions on-screen at all times, whilst a recall deficit would not explain the disparity between
response after loss and response after reward found on the BART, as both would have been equally
affected. Irritable and impulsive behavior (which may share underlying cognitive processes with
apathy55) is also common in HD18,56,57, and HD patients show altered risk-reward behavior,58–60 but
none of the BISBAS scores improved the models, whilst inclusion of the PBAs irritability score did
not affect the significant interaction in the BART models.

Losses and gains are processed in separable networks61–64, and a disparity between response to loss
compared with response to reward,  has been previously reported in HD and other neurological
disorders. Palminteri found deficits in learning from loss, compared with learning from reward in
patients with Huntington’s disease and a cohort of patients with insular cortex damage25. Similarly,
Perry et al65 showed insensitivity to aversive stimuli but preserved response to rewarding stimuli
(noxious and pleasant odors) in fronto-temporal dementia. Impaired sensitivity to monetary loss has
also  been  seen  in  fronto-temporal  dementia66.  However,  none  of  these  groups  looked  for  an
association with apathy in the patient cohort. Apathy in Parkinson’s disease has shown blunting of
response to losses and reward, but no selective deficit  in response to loss67,68.  In HD, there are
several  neurobiological  mechanisms by which differential  learning from loss and reward might
arise. The indirect pathway mediates learning from loss, whilst the direct pathway mediates learning
from reward25,28,69–72. There is selective early degeneration of the indirect pathway at the level of the
striatum compared with the direct pathway in HD19,26,27 and apathy in HD has been correlated with
altered resting state activity in a circuit centered on the dorsal striatum73.  Apathy in HD has also
been correlated with amygdala atrophy and hypoperfusion74. The amygdala is heavily involved in
stimulus-response learning and there is evidence to suggest distinct neuronal groups are involved
with learning from loss and reward64,75,76. 

This  work suggests that effort  for reward (HD cases had slower reaction times at  all  levels of
reward  on  the  RRTT,  despite  correction  for  TMS)  was  abnormal  in  HD cases  compared  with
controls,  but  this  deficit  did  not  mediate  apathy.  Consistent  with  Cools  et  al42,  we  found that
increased reward led to faster reaction times. A reduction in effort for reward has been demonstrated
in  association  with  apathy  in  CADASIL and  Parkinson’s  disease,  and  anhedonia  in  affective
disorders 15,43,77,78. The tasks used by these groups offered explicit choice between a series of options
mediating effort and reward, whilst the choice in our task was less explicit, as the different values of
reward available were not stated at the outset of the task. However, participants could still have
withheld effort  early in the task,  only to increase effort  later as reward on offer increased. Our
findings are in keeping with the neurobiology of HD: reward networks (ventral striatum and orbito-
frontal  cortex)  are  relatively  preserved  until  late  in  the  disease  course20,79.  However  our  most
severely affected patients could not complete the task, so any contribution to apathy in HD made by
reward sensitivity or effort may have been missed. The RRTT had some limitations: practice effects
are  seen  in  reaction  time  tasks35,80,  but  we included a  practice  block  to  avoid  this.  Given that
maximum  reward  increased  until  the  final  level,  reward-related  speeding  might  have  been
confounded by fatigue: our analysis reports the interaction between reward value and block order to
counter this problem. The possibility of fatigue confounding our results remains. Finally, we looked
for a reduction of effort at the end of each trial block to isolate reward value from effort, but did not



find any effect of apathy or HD status. Future exploration of effort and reward in HD, should vary
effort and reward on a trial-by-trial basis rather than by block.

In keeping with earlier studies16,24, executive dysfunction and apathy are linked in HD. However,
this relationship was only present at trend level in the multiple regression model. This may reflect
the smaller sample size, a lack of robust control of confounders in previous studies, or that PVF
may not be the executive function task most closely associated with apathy in HD. Previous work in
HD showed associations between apathy and the symbol digit modality test, Stroop task and trail
making test16,24. Furthermore, sequencing and planning processes are likely to have more significant
involvement in goal directed behavior than those processes tested to date, which assess updating,
attention and inhibition.  A more robust task of planning (such as the Towers of London task -
known to be impaired in HD36,54) should be included in future work.

In summary, we have shown that apathy in HD is associated with a deficit in response to losses,
whilst altered response to reward, or altered  reward-effort valuation is not necessary to develop
apathetic behavior. This discovery facilitates the development of translational tasks of apathy for
animal models, task-based functional imaging work to delineate the neurobiology, and paves the
way for behavioral interventions to treat apathy in HD. 
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Table and Figure Legends
Figure 1



A Persistence Task. Diagram of racing screen and checkpoint screens, with race ending screens
shown below.
B Reward Reaction Time Task. The fixation cross, visual stimulus and feedback screens for the
practice level (below) and rewarded task (above) are shown).

Figure 2
Persistence  (A,B&C)  &   Phonemic  Verbal  Fluency  (D,E&F):  HD  participants  had  longer
Persistence duration and lower PVF scores than controls. Apathy was associated with increased
Persistence duration and lower PVF score.

Figure 3
BART Behavior (A,B,C&D) Apathy in HD was significantly associated with impaired instrumental
learning, worse accuracy following large losses, and better accuracy after large reward.
RRTT (E,F) Higher rewards led to faster reaction times in the whole group analysis

Table 1
Significance: * <0.05 ** <0.01 *** <0.001
Means and range (in brackets) are shown.
Abbreviations: HD - Huntington’s disease,  IQ - full  scale intelligence quotient,  PBA - Problem
Behaviors
Assessment (Short Form), BISBAS - Behavioural Inhibition Scale Behavioural Activation Scale.
AES - Apathy Evaluation Scale



Supplementary Data

Description of Tasks

Persistence
Participants were instructed “You must race against a second player. Tapping quickly on the ‘s’ key makes your
car go faster. There are 2 races; in the second race, your car’s speed will increase. If you wish to end the race
at any point, press ‘Q’.” The opponent was always faster – the opponent’s ‘distance travelled’ incremented by
2 units every 250ms in race 1, and 3 units every 250ms in race 2, whilst the maximum the player could travel
was 1 unit every 250ms in both races. Checkpoints were shown for the opponent and the player every time
they travelled another 50 units. If participants asked “does this race end”, they were told that it did, any other
questions were met with “all I can tell you is keep pressing S to go or Q to quit”, participants who withdrew
completely from any activity for more than 60 seconds were asked if they wished to stop the task. Instructions
were displayed at all times during the task on-screen (Figure 1A). The outcome variable was the total duration
of the race (608s maximum).

Balloon Analogue Risk Task
Participants were instructed “You must inflate balloons to earn money. The larger the balloon gets, the more
money you win. If the balloon pops the money is lost and the next trial starts. Pressing ‘bank’ saves the money
and ends each trial”. Each pump gained the participants £0.05. Participants were told they would not receive
the total at the end of the game, but to compete to win as much as possible. There were 90 trials, and 3 types
of balloon distinguished by colour and maximum possible value of pumps. The number of pumps before the
balloon popped randomly varied on each trial between the following values for each balloon: yellow balloons
2-16 pumps, pink balloons 2-32 pumps and blue balloons 2-128 pumps. Each pump increased the points total
for the trial, but also increased the risk of losing all points for the trial. Successful performance on this task
required participants to learn the optimum value of each balloon (the highest number of pumps where expected
gain exceeded expected loss). The outcome variable used was inaccuracy: number of pumps above or below
optimum pump value.

Reward Reaction Time Task
Participants received instructions stating; 1) the aim of the task was to win as many points as possible, 2) the
faster they reacted, the more points they would win, and 3) the maximum points on offer would increase during
the task. They were told that if they did not react quickly enough, they would not win points. Participants
were given a practice run of 30 trials (feedback screen shown in Figure 1B), followed by the live task, where
trials were rewarded with points (feedback screen shown above). If participants did not react within the timeout
window, they scored 0 points. There were 5 blocks including the practice level (points available (0 – practice
level, 0-10, 0-20, 0-40, 0-40 respectively), each block consisted of 30 trials minimum. Participants could not
progress to the next block until they had scored the equivalent of maximum points for 30 trials for the current
block. Maximum points were scored for responses quicker than mean baseline reaction time (calculated from
the practice run), zero points were awarded for responses slower than 6 x mean reaction time and 50% of maxi-
mum points were scored for response between these parameters. Breaks (7000ms) were given between each block.

BART - Calculation of Optimum Pump Value and Inaccuracy
Optimum pump value was calculated for each of the 3 balloons as the maximum number of pumps before ex-
pected gain (probability of gain x magnitude of gain) exceeded expected loss (probability of loss x magnitude of
loss). In practice this was equal to 50% of the maximum pump value for each balloon. Proportional inaccuracy
was calculated as number of pumps greater or less than the optimum pump value, divided by optimum pump
value. BART logistic models included proportional inaccuracy as the dependent variable (weighted for total
number of potential ‘successes’ or ‘failures’ i.e. optimum pump value).
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Model Construction

* denotes interaction

+ denotes fixed effect

Whole cohort (HD cases and controls)

Full Interaction Model
dependent variable = independent variable * case status * apathy + random effect (individual subject)

Apathy Interaction Model
dependent variable = independent variable * apathy + random effect (individual subject)

Case Interaction Model
dependent variable = independent variable * case status + random effect (individual subject)

Full Fixed Effect Model
dependent variable = independent variable + case status + apathy + random effect (individual subject)

Apathy Fixed Effect Model
dependent variable = independent variable + apathy + random effect (individual subject)

Case Fixed Effect Model
dependent variable = independent variable + case status + random effect (individual subject)

Simple Model
dependent variable = independent variable + random effect (individual subject)

Null Model
dependent variable = random effect (individual subject)

HD Cohort (HD cases only)

Apathy Interaction Model
dependent variable = independent variable * apathy + random effect (individual subject)

Apathy Fixed Effect Model
dependent variable = independent variable + apathy + random effect (individual subject)

Simple Model
dependent variable = independent variable + random effect (individual subject)

Null Model
dependent variable = random effect (individual subject)
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Table S1A - Persistence Group Comparison

Persistence

Estimate P Value

(Intercept) 5.57 <2x10−16

Case HD 0.40 0.0078
Olanzapine Equivalent (mg) 0.018 0.20

Log Likelihood −483.91
Akaike Inf. Crit. 973.82

Abbreviations: HD - Huntington’s disease

Table S1B - Persistence Regression

PBA Apathy AES

Estimate P Value Estimate P Value

(Intercept) −0.29 0.81 21.59 0.00002
Persistence 0.013 1.84x10−5 0.040 0.00021

R2 0.34 0.27
Adjusted R2 0.33 0.26
F Statistic (df = 1; 44) 23.068∗∗∗ 16.37∗∗∗

(Intercept) −1.050 0.85 5.14 0.61
Persistence 0.012 0.00012 0.034 0.0014
Age 0.065 0.22 0.22 0.24
TMS 0.035 0.23 0.20 0.069
IQ −0.037 0.42 − −

R2 0.47 0.42
Adjusted R2 0.41 0.38
F Statistic 8.49∗∗∗ (df = 4; 39) 10.31∗∗∗ (df = 3; 42)

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Abbreviations: IQ - full scale intelligence quotient, AES - Apathy Evaluation Scale
PBA - Problem Behaviors Assessment (Short Form), TMS - total motor score
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Table S1C - BISBAS Reward Group Comparison

BISBAS Reward

Estimate P Value

(Intercept) 2.99 <2x10−16

Case HD −0.041 0.49
Age −0.0029 0.13

Log Likelihood −200.06
Akaike Inf. Crit. 406.12

Abbreviations: HD - Huntington’s disease
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Table S1D - BISBAS Reward Regression

PBA Apathy AES

Estimate P Value Estimate P Value

(Intercept) 8.90 0.018 41.99 0.0017
BISBAS Reward −0.25 0.26 −0.24 0.75

R2 0.026 0.002
Adjusted R2 0.006 −0.018
F Statistic (df = 1; 49) 1.32 0.10

(Intercept) 7.72 0.20 30.037 0.047
BISBAS Reward −0.25 0.37 −0.57 0.39
TMS 0.088 79 0.30 0.0066
PBA Perseveration 0.14 0.55 0.58 0.41
Olanzapine Equivalent (mg) 1.11 0.0068 0.54 0.13
Age −0.095 0.19 − −

PVF Score − − 0.092 0.61

R2 0.62 0.36
Adjusted R2 0.51 0.29
F Statistic 5.64∗∗∗ (df = 5; 17) 5.085∗∗∗ (df = 5; 45)

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Abbreviations: PVF - Phonemic Verbal Fluency, PBA - Problem Behaviors Assessment (Short Form),
BISBAS - Behavioural Inhibition Scale Behavioural Activation Scale, TMS - total motor score.
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Figure S1A - BISBAS Reward Group Comparison
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Figure S1C - BISBAS Reward - AES Score

20

40

60

7.5 10.0 12.5 15.0 17.5 20.0
BISBAS reward score

A
E

S
 s

c
o
re

Apathy Evaluation Scale − BISBAS Reward Score

7



Table S1E - Verbal Fluency Group Comparison

Verbal Fluency

Estimate P Value

(Intercept) 2.74 0.89
Case HD −14.33 0.00061
IQ 0.39 0.036

R2 0.34
Adjusted R2 0.31
F Statistic 11.31∗∗∗ (df = 2; 44)

Abbreviations: HD - Huntington’s disease
IQ - full scale intelligence quotient

Table S1F - Phonemic Verbal Fluency Regression

PBA Apathy AES

Estimate P Value Estimate P Value

(Intercept) 11.26 6.46x10−6 56.036 1.5x10−7

Verbal Fluency −0.22 0.0069 −0.68 0.0083

R2 0.29 0.28
Adjusted R2 0.26 0.24
F Statistic (df = 1; 22) 8.89∗∗ 8.40∗∗

(Intercept) 3.34 0.39 33.83 0.00088
Verbal Fluency −0.12 0.071 −0.32 0.097
TMS 0.075 0.057 0.302 0.0019
PBA Depression −0.15 0.53 −0.47 0.50
Olanzapine Equivalent 1.051 0.014 3.90 0.0026
Age 0.044 0.51 − −

R2 0.69 0.72
Adjusted R2 0.60 0.66
F Statistic 7.92∗∗∗ (df = 5; 18) 12.39∗∗∗ (df = 4; 19)

p<0.05; ∗∗p<0.01; ∗∗∗p<0.005
Abbreviations: PVF - Phonemic Verbal Fluency,
PBA - Problem Behaviors Assessment (Short Form), TMS - total motor score.
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Table S2A - Effect of Apathy on Instrumental Learning

Inaccuracy

Estimate P Value

(Intercept) 0.88 5.29x10−14

Case HD 0.55 0.00095
PBA Apathy 0.094 0.30
Trial −0.016 <2x10−16

Case HD*PBA Apathy*Trial 0.0028 1.73x10−15

Log Likelihood −25,065.78
Akaike Inf. Crit. 50,149.55
Bayesian Inf. Crit. 50,210.44

(Intercept) −0.97 0.35
Case HD 2.55 0.015
AES 0.10 0.064
Trial 0.018<2x10−16

Case HD*AES*Trial 0.0028 1.75x10−15

Observations 6,408
Log Likelihood −25,037.33
Akaike Inf. Crit. 50,092.66
Bayesian Inf. Crit. 50,153.55

* denotes interaction
Abbreviations: HD - Huntington’s disease,
PBA - Problem Behaviors Assessment (Short Form)

Table S2B(i)- Response to Stimulus in Whole Group

Inaccuracy

Estimate P Value

(Intercept) 0.32 0.0021
Stimulus Value −0.42 1.9x10−12

Case HD 0.32 0.014
Case HD*Stimulus Value −0.12 0.097

Observations 6,408
Log Likelihood −28,054.3
Akaike Inf. Crit. 56,118.6
Bayesian Inf. Crit. 56,152.4

* denotes interaction
Abbreviations: HD - Huntington’s disease
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Table S2B(ii)- Response to Stimulus in Cases

Inaccuracy

Estimate P Value

(Intercept) 0.59 5.85x10−7

Stimulus Value −0.11 0.16
Prior Loss 0.45 <2x10−16

PBA Apathy −0.0021 0.91
Stimulus Value*Prior Loss*PBA Apathy 0.13 7.33x10−8

Observations 4,094
Log Likelihood −17,851.44
Akaike Inf. Crit. 35,720.89
Bayesian Inf. Crit. 35,777.74

(Intercept) 0.52 0.014
Stimulus Value 0.13 0.37
Prior Loss 0.67 1.43x10−15

AES 0.0016 0.77
Stimulus Value*Prior Loss*AES 0.043 7.13x10−10

Observations 4,094
Log Likelihood −17,847.83
Akaike Inf. Crit. 35,713.67
Bayesian Inf. Crit. 35,770.52

* denotes interaction
Abbreviations: PBA - Problem Behaviors Assessment (Short Form)
AES - Apathy Evaluation Scale

Table S2B(iii)- Response to Losses in Cases

Inaccuracy Following Losses

Estimate P Value

(Intercept) 1.0084 7.07x10−16

Stimulus Value −1.89 <2x10−16

PBA Apathy −0.038 0.057
Stimulus Value*PBA Apathy 0.096 1.15x10−5

Observations 1,104
Log Likelihood −4,420.29
Akaike Inf. Crit. 8,850.59
Bayesian Inf. Crit. 8,875.62

(Intercept) 1.13 4.47x10−7

Stimulus Value −2.62 <2x10−16

AES −0.0081 0.15
Stimulus Value*AES 0.031 3.13x10−7

Observations 1,104
Log Likelihood −4,417.002
Akaike Inf. Crit. 8,844.003
Bayesian Inf. Crit. 8,869.037

* denotes interaction
Abbreviations: PBA - Problem Behaviors Assessment (Short Form),
AES - Apathy Evaluation Scale
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Table S2B(iv)- Response to Rewards in Cases

Inaccuracy Following Reward

Estimate P Value

(Intercept) 0.57 4.54x10−6

Stimulus Value −0.038 0.62
PBA Apathy 0.00057 0.98
Stimulus Value*PBA Apathy −0.045 0.00030

Observations 2,990
Log Likelihood −13,264.92
Akaike Inf. Crit. 26,539.84
Bayesian Inf. Crit. 26,569.85

(Intercept) 0.48 0.030
Stimulus Value 0.25 0.078
AES 0.0024 0.67
Stimulus Value*AES −0.013 0.00016

Observations 2,990
Log Likelihood −13,264.40
Akaike Inf. Crit. 26,538.81
Bayesian Inf. Crit. 26,568.82

* denotes interaction
Abbreviations: PBA - Problem Behaviors Assessment (Short Form)
AES - Apathy Evaluation Scale
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Table S2C(i)- Response to Stimulus in Controls

Inaccuracy

Estimate P Value

(Intercept) 0.28 0.0027
Stimulus Value −0.31 0.000015
Prior Loss 0.17 0.000056
Stimulus Value*Prior Loss −0.52 0.00018

Observations 2,314
Log Likelihood −10,128.89
Akaike Inf. Crit. 20,267.77
Bayesian Inf. Crit. 20,296.51

* denotes interaction

Table S2C(ii) - Response to Rewards in Controls

Inaccuracy Following Reward

Estimate P Value

(Intercept) 0.28 0.0018
Stimulus Value −0.30 1.85x10−5

Observations 1,690
Log Likelihood −7,326.67
Akaike Inf. Crit. 14,659.34
Bayesian Inf. Crit. 14,675.64

* denotes interaction

Table S2C(iii) - Response to Losses in Controls

Inaccuracy Following Losses

Estimate P Value

(Intercept) 0.45 0.00019
Stimulus Value −0.85 6.73x10−12

Observations 624
Log Likelihood −2,708.98
Akaike Inf. Crit. 5,423.97
Bayesian Inf. Crit. 5,437.28

* denotes interaction
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Table S2D - Response to Loss and Reward Over Time

Pumps

Estimate P Value

(Intercept) −2.22 <2x10−16

Stimulus Value −0.084 0.46
PBA Apathy 0.025 0.19
Trial 0.019 <2x10−16

Prior Loss −0.22 0.0052
Stimulus Value*PBA Apathy*Trial*Prior Loss 0.0033 0.00087

Observations 4,094
Log Likelihood −17,481.47
Akaike Inf. Crit. 34,996.95
Bayesian Inf. Crit. 35,104.34

(Intercept) −2.27 <2x10−16

Stimulus Value −0.40 0.054
AES 0.0045 0.42
Trial 0.020 <2x10−16

Prior Loss −0.53 1.47x10−6

Stimulus Value*AES*Trial*Prior Loss 0.0012 3.64x10−10

Observations 4,094
Log Likelihood −17,480.41
Akaike Inf. Crit. 34,994.83
Bayesian Inf. Crit. 35,102.22

* denotes interaction
Abbreviations: PBA - Problem Behaviors Assessment (Short Form)
AES - Apathy Evaluation Scale

Figure S2 - Influence of Apathy on Learning following Gain and Loss

13



Table S2E - Influence of Apathy on Accuracy by Size of Balloon

Inaccuracy

Estimate P Value

(Intercept) −0.87 4.59x10−11

Maximum Balloon Value 0.022 <2x10−16

PBA Apathy 0.023 0.27
Maximum Balloon Value*PBA Apathy −0.00058 <2x10−16

Observations 4,094
Log Likelihood −12,377.13
Akaike Inf. Crit. 24,764.27
Bayesian Inf. Crit. 24,795.85

(Intercept) −1.046 1.20x10−5

Maximum Balloon Value 0.024 <2x10−16

AES 0.0076 0.20
Maximum Balloon Value*AES −0.00013 <2x10−16

Observations 4,094
Log Likelihood −12,403.15
Akaike Inf. Crit. 24,816.30
Bayesian Inf. Crit. 24,847.88

* denotes interaction
Abbreviations: PBA - Problem Behaviors Assessment (Short Form)
AES - Apathy Evaluation Scale
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Table S3A(i)- Effect of Reward Value on Reaction Time in Whole Group

Log Reaction Time

Estimate P Value

(Intercept) 5.71 <2x10−16

Block Order 0.040 0.10
Maximum Reward 0.0057 0.0026
Case HD 0.22 0.013
TMS 0.0084 0.000028
Block Order*Maximum Reward −0.0015 0.011

Observations 7,246
Log Likelihood −3,805.65
Akaike Inf. Crit. 7,627.29
Bayesian Inf. Crit. 7,682.40

* denotes interaction
Abbreviations: HD - Huntington’s disease, TMS - total motor score

Table S3A(ii)- Effect of Reward Value on Reaction Time in Cases

Log Reaction Time

Estimate P Value

(Intercept) 5.95 <2x10−16

Block Order 0.037 0.30
Maximum Reward 0.0058 0.033
TMS 0.0082 0.00011
Block Order*Maximum Reward −0.0016 0.063

Observations 4,235
Log Likelihood −2,634.31
Akaike Inf. Crit. 5,282.61
Bayesian Inf. Crit. 5,327.07

* denotes interaction
Abbreviations: TMS - total motor score

Table S3B - Non-Log Transformed Reaction Time

Reaction Time

Estimate P Value

(Intercept) 260.33 0.00034
Block Order 41.38 0.16
Maximum Reward 5.57 0.012
Case HD 96.91 0.11
TMS 6.07 8.7x10−5

Block Order*Maximum Reward −1.63 0.019

Observations 7,246
Log Likelihood −54,981.14
Akaike Inf. Crit. 109,978.30
Bayesian Inf. Crit. 110,033.40

* denotes interaction
Abbreviations: HD - Huntington’s disease, TMS - total motor score
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Table S4A - Effect of Maintained Effort on Reaction Time

Log Reaction Time

Estimate P Value

(Intercept) 5.86 <2x10−16

Trial −0.00072 0.18
Case HD 0.22 0.013
TMS 0.0084 2.77x10−5

Observations 7,246
Log Likelihood −3,800.30
Akaike Inf. Crit. 7,612.59 Bayesian Inf. Crit. 7,653.92

* denotes interaction
Abbreviations: HD - Huntington’s disease, TMS - total motor score

Table S4B - Effect of Maintained Effort on Reaction Time in Cases

Log Reaction Time

Estimate P Value

(Intercept) 6.089 <2x10−16

Trial −0.0015 0.048
TMS 0.0082 0.00011

Observations 4,235
Log Likelihood −2,625.037
Akaike Inf. Crit. 5,260.074
Bayesian Inf. Crit. 5,291.83

* denotes interaction
Abbreviations:TMS - total motor score
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Figure 1
A Persistence Task. Diagram of racing screen and checkpoint screens, with race ending screens shown below.
B Reward Reaction Time Task. The fixation cross, visual stimulus and feedback screens for the practice level (below) and 
rewarded task (above) are shown).
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Figure 2
Persistence (A,B&C) &  Phonemic Verbal Fluency (D,E&F): HD participants had longer Persistence duration and lower 
PVF scores than controls. Apathy was associated with increased Persistence duration and lower PVF score.
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Figure 3
BART Behavior (A,B,C&D) Apathy in HD was significantly associated with impaired instrumental learning, worse accuracy 
following large losses, and better accuracy after large reward.
RRTT (E,F) Higher rewards led to faster reaction times in the whole group analysis.
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Table 1 - Demographics and Neuropsychiatric Scores

Case Status

HD Controls

Age 53.27 (33-82) 46.85 (20-75)
IQ 103.55 (88.75-125.27) 109.73 (89.79-128.51) *
Gender 26/51 female 17/26 female
Antipsychotic dose (Olanzapine Equivalent - mg) 1.92 (0-41.25) 0 ***
Antidepressant dose (Fluoxetine Equivalent - mg) 22.27 (0-146.5) 2.4 (0-22.2) ***
CAG Repeat Length 42.5 (38-50) -
Total Motor Score 35.49 (0-89) 1.48 (0-6) ***
Disease Burden 366.04 (90-575) 0

AES 38.48 (18-72) 18.85 (18-86) ***

PBA Apathy 5.02 (0-16) 0.5 (0-4) ***
PBA Perseveration 1.9 (0-12) 0 ***
PBA Disorientation 2.12 (0-8) 0.12 (0-2) ***
PBA Irritability 3.12 (0-12) 0.38 (0-2) ***
PBA Aggression 2.08 (0-12) 0.31 (0-4) ***
PBA Depression 3.14 (0-12) 1.81 (0-9)
PBA Suicidal Ideation 0.37 (0-6) 0.04 (0-1)
PBA Anxiety 2.69 (0-12) 1.69 (0-6)
PBA Obsessions and Compulsions 0.8 (0-12) 0.12 (0-3)
PBA Delusions 0.43 (0-9) 0
PBA Hallucinations 0.16 (0-8) 0

BISBAS Inhibition 19.31 (3-28) 22.38 (10-28) *
BISBAS Reward 16.51 (8-20) 17.54(8-20) *
BISBAS Drive 9.12 (4-16) 8 (4-16)
BISBAS Fun Seeking 10.33 (4-16) 9.38 (6-13)

Significance: * <0.05 ** <0.01 *** <0.001
Means and range (in brackets) are shown.
Abbreviations: HD - Huntington’s disease, IQ - full scale intelligence quotient, PBA - Problem Behaviors
Assessment (Short Form), BISBAS - Behavioural Inhibition Scale Behavioural Activation Scale.
AES - Apathy Evaluation Scale
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