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Abstract 14 

Major depressive disorder (MDD) is one of the leading global causes of disability. Symptoms 15 

of MDD can vary person to person, and current treatments often fail to alleviate the poor 16 

quality of life that patients experience. One of the two, core diagnostic criteria for MDD is the 17 

loss of interest in previously pleasurable activities, which suggests a link between the disease 18 

aetiology and reward processing. Cognitive impairments are also common in patients with 19 

MDD, and more recently, emotional processing deficits known as affective biases have been 20 

recognised as a key feature of the disorder. Studies in animals have found similar affective 21 

biases related to reward.  In this review we consider these affective biases in the context of 22 

other reward-related deficits and examine how affective biases associated with learning and 23 

memory may interact with the wider behavioural symptoms seen in MDD. We discuss recent 24 

developments in how analogues of affective biases and other aspects of reward processing 25 

can be assessed in rodents, as well as how these behaviours are influenced in models of MDD. 26 

We subsequently discuss evidence for the neurobiological mechanisms contributing to one 27 

or more reward-related deficits in preclinical models of MDD, identified using these 28 

behavioural assays. We consider how the relationships between these selective behavioural 29 

assays and the neurobiological mechanisms for affective bias and reward processing could be 30 

used to identify potential treatment strategies.  31 
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1. Introduction 34 

Depression is currently the leading global cause of disability [1]. According to the DSM-5, 35 

clinical depression or major depressive disorder (MDD) is a serious mood disorder 36 

mailto:lewislr@cardiff.ac.uk
mailto:dwyerdm@cardiff.ac.uk
mailto:emma.s.j.robinson@bristol.ac.uk


2 

 

characterised by the presence of several symptoms including low mood, diminished interest 37 

or pleasure in almost all activities, slowness of thought processes/physical movements, and a 38 

diminished ability to think or concentrate [2]. 39 

This latter symptom may relate to two types of cognitive dysfunction experienced by patients 40 

with MDD, affective biases and cognitive deficits [3]. In this review, we focus on affective 41 

biases, which refer to how emotional or ‘affective’ states alter different cognitive processes. 42 

These biases can influence multiple cognitive domains including learning, memory and 43 

decision-making [4]. Affective biases have also been linked to the development of other 44 

symptoms of the disorder, suggesting some inter-relationship between negative affective 45 

biases and depressed mood, amotivation, anhedonia etc. [5]. It has been suggested that 46 

cognitive impairments that do not directly involve emotional/affective stimuli could still be 47 

linked to affective biases, for example, greater sensitivity to negative feedback from cognitive 48 

tasks or reduced positive associations during cognitive tasks involving rewards could lead to 49 

changes in goal-directed behaviour and motivation to perform the task [4].  50 

Although descriptive accounts and more formal diagnoses of depression have been made for 51 

some centuries [6], it is only more recently that the idea of heterogeneity in depressed 52 

populations has been addressed. An individual patient can have a number of symptoms but 53 

not share a single one with another patient, even though they are diagnosed with the same 54 

disorder [7]. Despite this, treatments are not personalised to match the symptoms present in 55 

each patient, partly because we do not yet have a full understanding of the neurobiology 56 

underlying symptoms individually. Differences in the neurobiology of components in reward 57 

processing are becoming increasingly recognised [8], some of which can match to symptoms 58 

seen in MDD patients, and MDD can be seen as a disorder of reward processing [9]. Thus, in 59 

order to understand the neurobiological mechanisms of this complex disorder, we need to 60 

analyse the individual reward-related symptoms of MDD, for which reliable animal models 61 

and translational behavioural assays are essential. Recent developments to back translate the 62 

ideas of affective biases in MDD to rodent studies has revealed biases in rodents related to 63 

reward-related learning, memory and decision-making [10].  This work suggests that biases in 64 

reward-related behaviour may be relevant to the wider symptoms of anhedonia in MDD. 65 

Current animal models of depression appear to demonstrate face validity in relation to 66 

behaviours comparable to distinct symptomology defined by the DSM criteria of MDD, 67 

including impairments following exposure to chronic stress, a major risk factor for depression 68 

[11, 12]. Whilst these behavioural assays (discussed in section 3) show good validity in terms 69 

of stress-induced behavioural deficits and are sensitive to some antidepressant treatments, 70 

how well they recapitulate the human condition, and hence can demonstrate translational 71 

validity, has been questioned [10, 13]. Recently, the idea that affective biases can be modelled 72 

in animals and provide a more translational approach to studying MDD in non-human species 73 

has emerged. The nature of the animal experiments has meant that such behaviours are often 74 

seen as biases in processing of reward-related stimuli, which has led us to consider the wider 75 

deficits in MDD, particularly anhedonia and the loss of motivation for previously rewarding 76 

activities [9, 14, 15].  77 
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Reliable behavioural assays in animal models can help to parse the underlying neurobiological 78 

mechanisms of these deficits, as well as how they interact, and provide clear targets for 79 

treating individual symptoms [8]. Traditional behavioural assays have focused on symptoms 80 

of behavioural despair/learned helplessness, in which MDD patients are conditioned to 81 

experience negative events such that they give up trying to escape such situations [16]. In 82 

rodents, this is often measured with the forced swim test (FST) for both mice and rats, or the 83 

tail suspension test (TST) for mice. Inescapable shock is also described as a method to induce 84 

learned helplessness [17] and has been used to induce a depression-like phenotype in animals 85 

with evidence for both vulnerable and resilient populations [18, 19]. In the FST, rodents are 86 

placed into an open container of water for a short period of time and their behaviour is 87 

recorded [20]. The animal swims around the container and attempts to escape, but eventually 88 

they stop moving and stay immobile. The time taken for the animal to become immobile can 89 

be used to measure this theory of learned helplessness. Pharmacological studies with pro- 90 

and anti-depressants have helped to validate this assay, with immobility time reducing with 91 

pro-depressants such as stressors, and increasing with typical antidepressants (see [21, 22] 92 

for a full review). The TST works on a similar principle, where mice are suspended by their tail 93 

so cannot escape. Immobility time is again used as a marker of learned helplessness [23].  94 

Although widely used in both fundamental biology research and drug development, the 95 

validity of these methods has been questioned, particularly given evidence of a number of 96 

false positive and false negative findings [23-25], and a lack of sensitivity to atypical 97 

antidepressants [26]. Impairments in immobility time is observed in some, but not all, disease 98 

models where risk factors for MDD have been used (for a full review of animal models of 99 

depression, see [27]). For example, the FST and TST are generally sensitive to stress-related 100 

manipulations, but deficits are not reliably observed in immunomodulatory or early life 101 

adversity interventions [28-31]. Recent arguments against the validity of such measurements 102 

include suggestions of anthropomorphising natural rodent survival and adaptation 103 

mechanisms [29], as well as the possibility of changes in motor function underlying these 104 

behaviours [32]. Although these methods are some of the most commonly used to measure 105 

depressive phenotypes and can, in some cases, be used to screen novel psychotropic drugs, 106 

they cannot be said to accurately model ‘depressive phenotypes’ that would be seen in 107 

patients (for detailed reviews see [33, 34]).   108 

This review will focus on direct assays of reward-related deficits which can be translated to 109 

symptoms often seen across patients with MDD. As anhedonia, the reduced ability to 110 

experience pleasure, is a core symptom of MDD, the most commonly used assay of reward-111 

related deficits in rodents aims to model this symptom in the sucrose preference test (SPT), 112 

in which overall consumption of a rewarding solution containing sucrose in comparison to 113 

plain water is measured as a choice test [35]. This method has been used for decades as one 114 

of the go-to measurement of depressive-like behaviours and reduced sucrose preference has 115 

commonly been assumed to indicate consummatory anhedonia [12, 36]. However, it is 116 

important to note, there are many limitations in the current assays of reward deficits in 117 

animal models. For example, the direct link between sucrose preference and anhedonia has 118 

been questioned over the years [13, 14, 37-40]. While a reduced hedonic reaction to sucrose 119 

would be expected to lower sucrose preference, it should also be noted that general 120 
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consumption of reward relies highly on being motivated to attain it, and choice tests require 121 

intact cognitive processes to learn where the rewarding solution is. Thus, it cannot be 122 

concluded that differences in overall consumption of sucrose or sucrose preference 123 

specifically reflect hedonic deficits alone. This highlights the importance of improving current 124 

assays of depressive-like phenotypes such that they specifically measure the symptoms they 125 

are claimed to, and can therefore be used to parse differences in the underlying 126 

neurobiological mechanisms of this complex psychiatric disorder. 127 

It can be difficult to reliably separate reward-related deficits given their interactions, and 128 

measurements of anhedonia in rodent models are often focused on consummatory 129 

behaviours, which may not capture the possibility that patients also experience anticipatory 130 

anhedonia [41, 42]. However, recent developments in our work investigating affective biases 131 

in putative models of depression has revealed some interesting and novel behavioural 132 

differences which could provide new insights into these questions.  133 

In this review, we aim to highlight the importance of modelling symptoms of MDD with more 134 

sensitive behavioural assays in rodent. We will summarise findings in conventional models as 135 

well as discussing new developments in relation to affective biases and reward processing 136 

including potential neurobiological underpinnings of reward processing deficits relevant to 137 

symptoms of MDD. As affective biases are a key symptom of MDD and novel, translatable 138 

methods have recently begun to be described, this review will focus on these recent 139 

developments, as well as how these biases may be dissociable from, but also interact with, 140 

other reward-related deficits. 141 

2. Affective biases in MDD 142 

Impairments in cognitive processes such as executive function, attention, learning and 143 

memory and decision-making have been shown to be core features in patients with MDD [43]. 144 

Such impairments can be separated based on whether they involve dysfunctional processing 145 

of emotional information (“hot”), for example faces displaying different emotional 146 

expressions, or dysfunctional processing of information without emotional influences 147 

(“cold”), for example verbal learning (see Roiser & Sahakian 2013 for a full review [44]). 148 

Patients with MDD show significant impairments in the processing of both “hot” and “cold” 149 

stimuli, with some “cold” processing deficits proposed to result from negative emotions 150 

developed from feedback in the tasks [44]. This concept of “hot” stimuli processing can also 151 

be applied to reward-related stimuli, given that rewards have emotional value [4].  152 

Early theories of cognitive dysfunction in MDD note that negative stimuli and events are more 153 

salient to patients compared to healthy individuals, attributed to a negative self-schema 154 

caused by past experiences, which can lead to biases in processing their environment [45]. 155 

These ‘cognitive’ biases can influence learning and memory, for example, patients often 156 

demonstrate increased recall of negative stimuli compared to positive stimuli [46], and learn 157 

to assign negative connotations to ambiguous stimuli, whilst healthy individuals would show 158 

more positive associations [47, 48]. This processing bias induces negative expectations of 159 

future events, and can alter other cognitive domains  such as decision making and judgement 160 

[49, 50]. In addition to enhanced negative processing biases, patients with MDD show 161 
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reduced biases toward positively valenced stimuli including reduced recognition or 162 

interpretation of positive emotions, decreased memory for positively associated words and 163 

blunted responses to rewards [51, 52]. Studies have also shown that acute antidepressant 164 

treatment can enhance positive biases in healthy volunteers and patients with MDD [53-55]. 165 

For a more detailed discussion of the proposed relationship between affective biases and 166 

mood disorders, and the neuropsychological hypothesis of antidepressant action see Harmer, 167 

Duman and Cowen 2017 [56]. 168 

A task frequently used to specifically measure reward processing biases in humans is the 169 

‘Response Bias Probabilistic Reward Task’ [57]. Here, subjects are presented with two 170 

ambiguous stimuli to which they must discriminatively respond to gain a reward. The correct 171 

identification of one stimulus is more frequently rewarded, so the expected response of 172 

healthy subjects would be to develop a bias for responding to the more frequently rewarded 173 

stimulus, thus demonstrating intact learning and decision-making about reward-related 174 

stimuli. Patients with MDD consistently show an impaired response bias to the more 175 

frequently rewarded cue when the reward is not present, compared to healthy controls [58-176 

61]. This suggests depressed patients have impaired learning and decision-making biases for 177 

“hot” stimuli, i.e. stimuli with emotional value. 178 

More recent theories of these deficits have argued that emotional processing biases are not 179 

solely a result of negative past experiences, but are also driven by aberrant neurobiological 180 

mechanisms. Such mechanisms are thought to involve environmental and/or genetic factors 181 

altering the normal transmission of monoamines [4], which have long been hypothesised to 182 

play a role in depression [62]. This dysfunctional monoamine transmission may then induce 183 

negatively biased expectations, and so it has been suggested these play a causal role in the 184 

development and treatment of depressive symptoms [63, 64].  185 

Evidence for this latter theory comes from studies demonstrating that emotion and reward 186 

processing biases are present in individuals at risk of depression, but not yet demonstrating 187 

other symptoms [65-67], as well as patients in remission [68]. Some studies have also shown 188 

that negative processing biases can predict future diagnoses of MDD [69-71], and can be 189 

correlated with measures of anhedonia [58], whilst the presence of depression in other 190 

disorders has been associated with deficits in reward learning biases [72]. Finally, 191 

monoaminergic antidepressants are shown to reduce negative and induce positive affective 192 

biases prior to changes in mood [64, 73], suggesting affective states influenced by monoamine 193 

transmission works in a bottom-up approach to alter processing of rewarding stimuli leading 194 

to mood changes [74]. 195 

These findings may indeed suggest a relationship between affective biases and the 196 

development of other symptoms of depression. However, as mentioned previously, the 197 

symptomology of MDD is highly heterogeneous, and some evidence suggesting negative 198 

biases can be ameliorated through specifically treating other symptoms of depression [75]. 199 

2.1. Relationship between affective biases and other reward-related deficits 200 

For the purposes of this review, reward-related deficits are categorised in to three 201 

mechanisms of processing involving hedonic responses (‘liking’), motivation (‘wanting’), and 202 
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learning (including anticipation of reward and decision-making capability) [76]. A lack of 203 

consistent evidence for the traditional view of consummatory anhedonia in MDD patients has 204 

led to a re-conceptualization of the term ‘anhedonia’ to refer to an “impaired ability to 205 

pursue, experience and/or learn about pleasure” [77], suggesting anhedonia is not a deficit 206 

only in ‘liking’ but additionally encompasses ‘wanting’ and learning. Although the recognition 207 

of heterogeneity in patients indicates anhedonia might seem to include these three aspects, 208 

but they may not be seen all at the same time, nor all within the same individual.  209 

Evidence suggests these three aspects are inter-related. As mentioned previously, affective 210 

biases are argued to precede other symptoms of MDD including anhedonia and motivational 211 

deficits. In contrast, formal psychological models of learning suggest that reward value 212 

determines the degree and strength of learning about reward [78]. Thus, an under-valuation 213 

of reward, perhaps by reduced hedonic experience, could impair learning about affective 214 

stimuli. Similarly, motivationally-relevant cues for rewards are shown to modulate cognitive 215 

processes such as attention in healthy mice, but not transgenic schizophrenia models [79]. 216 

Thus, even though affective bias may influence other symptoms in some cases, the interaction 217 

between hedonic experience, motivation, and learning may be multifaceted. 218 

Although there are potential interactions between reward-related deficits, it is unlikely that 219 

they can be reduced to any single cause or set of causes. Patient symptoms are highly 220 

heterogeneous; there can be elements of reward processing which are intact whilst other 221 

aspects are dysfunctional. In animal models, combining behavioural assessments of individual 222 

aspects has identified dissociations between the presence of anhedonia and negative 223 

affective bias following pro-depressant treatments [80]. Models of schizophrenia have also 224 

been shown to display reduced positive bias for a greater reward value [81], whilst other 225 

studies show they do not show anhedonia-like deficits [82]. In addition, pharmacological 226 

agents have been identified as specific to influencing either ‘wanting’ or ‘liking’ separately, or 227 

in opposite directions [83]. This indicates mechanisms underlying hedonic experience, 228 

motivation and learning can be separated, implying that – while they may interact – reward-229 

processing deficits are not monolithic, and each needs to be investigated individually.  230 

3. Reward-related deficits in rodents 231 

A major aim for developing tests that can dissociate different symptoms of clinical depression 232 

in animal models is to apply them to understanding the neurobiological mechanisms 233 

underpinning these symptoms and elucidate the causes behind this disorder. Initial theories 234 

of the neurobiological underpinnings of MDD suggest symptoms are caused by a deficiency 235 

in monoamine levels or neurotransmission in the central nervous system, mainly evidenced 236 

by understanding the mechanisms of antidepressants [84]. However, the low success rate in 237 

treating MDD has led to developments of more recent theories which encompass a range of 238 

potential causal mechanisms, such as stress-induced neurotrophic deficits [85, 86] and 239 

aberrant glutamatergic and GABAergic transmission [87]. There are also several different risk 240 

factors which contribute to the development of MDD, suggesting a number of possible 241 

biological and genetic causes of the disorder [14].  242 
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In the following sections, we discuss three major types of reward-related deficit and the 243 

behavioural assays used to measure these deficits in both patients and rodent models of 244 

MDD.  Given the relationship observed between affective biases and reward-related learning, 245 

memory and decision-making, these are discussed within section 3.1. We describe our current 246 

understanding of the neurobiological substrates that might be underpinning these behaviours 247 

from using pharmacological and psychological manipulations, with the aim of elucidating 248 

where distinct or interacting, neurobiological mechanisms contributing to these reward-249 

related deficits. 250 

3.1. Reward learning 251 

Given that impairments in different cognitive domains are a major component of MDD in 252 

patients, it is unsurprising that many assays have been developed to capture these 253 

impairments in rodents. Rodents where a disease model is induced using manipulations based 254 

on relevant risk factors have been shown to develop impairments in multiple types of learning 255 

and memory, ranging from working memory to associative learning (see [88]) with examples 256 

summarised separately below.   257 

3.1.1. Associative learning 258 

Pavlovian associations between a neutral stimulus and an unconditioned stimulus (i.e. 259 

reward) are well known to be formed with repeated pairings [89], and can be strengthened 260 

with greater reward value or altering expectation of reward through prediction error [78]. 261 

Instrumental associations are formed between a neutral stimulus requiring a response to 262 

produce a reward [90]. Dysfunctional associative learning has been linked to the development 263 

of depression, with patients often demonstrating impairments in positive reward associations 264 

[91].  265 

Instrumental learning for reward-related stimuli in rodents typically involve tasks of lever 266 

pressing or nose poking to trigger the release of a reward. In one study, rats were trained to 267 

press a lever for delivery of a sucrose solution. Healthy rats produce progressively more lever 268 

presses as the number of training days increase, indicating they are learning the stimulus-269 

response association, and rodent models of depression have been shown to display a 270 

reduced/slower improvement  [92]. 271 

Many Pavlovian associative learning tasks in rodents involve fear conditioning, for example, 272 

Darcet et al [93] trained mice to associate being placed in a conditioning chamber once with 273 

a foot shock. Models of depression such as the chronic corticosterone model display reduced 274 

freezing time when re-introduced in to the chamber, suggesting reduced fear conditioning 275 

strength. However, since reward-related deficits are a core component of depression 276 

symptoms, reward-related associative learning tasks have also been developed.  277 

In similar, contextual Pavlovian association tasks, Papp et al [12] demonstrated that healthy 278 

rodents show a greater preference for the environment in which several types of rewards 279 

were presented to them, indicating a learned conditioned place preference (CPP). However, 280 

models of chronic unpredictable stress showed reduced CPP, indicating they had reduced 281 

Pavlovian associative learning of reward-related contextual environments.  282 
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Xu et al [94] trained rats to enter a magazine for a sucrose reward, then paired the presence 283 

of a blue light with the delivery of this reward (stimulus-outcome association). They found 284 

that the chronic corticosterone rat model of depression did not demonstrate an increased 285 

number of magazine entries as would be expected with improved learning compared to 286 

controls, indicating that some models of depression display impaired reward-related 287 

associative learning. 288 

3.1.2. Rodent behavioural assays of affective bias 289 

The influence of emotional cues on cognitive function is a major area of depression research 290 

[95] and the reward neuro-circuitry has been heavily linked to disrupted cognition in MDD 291 

[96]. Thus, changes in processing of rewarding stimuli is an important aspect to investigate 292 

when assessing rodent models. 293 

As mentioned previously, the Response-Bias Probabilistic Reward Task (PRT) is used in patient 294 

populations to assess biases in reward processing, and as a result of this a translational 295 

method for rodent models has been developed [97]. Rats were trained to discriminate 296 

between two auditory stimuli, each of which would require a specific operant response to 297 

gain a reward. They were then presented with similar tones, and correct discriminative 298 

responses to one tone would be reinforced with a reward more frequently than correct 299 

responses to the other tone. Like in patient studies, healthy rats develop response biases 300 

toward the stimulus more frequently rewarded, indicating a clear positive response bias.  301 

Alternatively, the probabilistic reversal learning task (PRL) has also been developed, which 302 

assesses alterations in decision-making to positive and negative feedback, enabling detection 303 

of changes in reward sensitivity [98]. In this task, rats are trained to nose poke in an 304 

illuminated hole for a reward, and then presented with two illuminated holes in which one 305 

was more frequently reinforced. The two holes’ probability of reward was then reversed 306 

following eight consecutive correct choices in the more frequently rewarded hole. In a 307 

validation experiment, it was shown that altering serotonin levels differentially influenced the 308 

ability to shift decision-making following reversal (i.e. cognitive flexibility), win-stay behaviour 309 

(i.e. reward sensitivity) and lose-shift behaviour (i.e. negative feedback sensitivity). These 310 

findings are similar to observations in healthy humans [99], and sensitivity to negative 311 

feedback is enhanced in depressed patients [100]. 312 

Emotional decision-making biases in humans can be measured by the affective Go/No-Go 313 

task, where subjects are presented with positive or negative stimuli, e.g. images, to which 314 

they are required to respond. They are also required to withhold responding to distractor 315 

stimuli. Depressed patients display attentional biases for negative stimuli in this task [101], 316 

and also tend to show a bias toward withholding responses with negative outcomes [102]. 317 

Decision making and interpretation biases induced by affective biases in rodents can be 318 

measured by the judgement bias task (JBT) [103]. Rodents are trained to produce one 319 

response to the presentation of a positive stimulus, and a different response to the 320 

presentation of a negative or less positive stimulus. Rodents hypothesised to have a positive 321 

affective state display a bias whereby ambiguous stimuli are more likely to elicit the response 322 

trained to the positive stimulus. In contrast, rodents in a negative affective state exposed to 323 
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the same ambiguous stimuli display a bias to responses trained to the negative stimulus [104-324 

107]. Thus, their judgements and/or interpretations of stimuli can be altered by changes to 325 

their affective states. A novel version of this task has also been developed which utilizes 326 

rodent natural investigative behaviours rather than lever pressing, which recapitulate similar 327 

effects of affective state manipulations on judgement bias [108]. Further, recent studies have 328 

evaluated translational human versions of this task, which link negative biases with 329 

pathological anxiety [95, 109, 110]. 330 

More recently, the affective bias test (ABT) has been developed to address the gap in 331 

assessing learning and memory impairments driven by affective biases (for full reviews of the 332 

ABT see [4, 10, 74]). In this task, rodents associate a particular digging substrate with a reward 333 

and a different substrate with no reward (figure 1a). Rodents hypothesised to have a 334 

pharmacologically induced positive affective state during the presentation of one reward-335 

paired substrate will demonstrate a bias toward that substrate in a choice test with a different 336 

reward-paired substrate in which their affective state was not manipulated (neutral). In 337 

contrast, rodents in a negative affective state will show bias toward the neutral reward-paired 338 

substrate. [80, 111]. Thus, biases in reward-related learning and memory can be influenced 339 

by affective states and such biases can be modelled in rodents.  340 

This task has also been modified to investigate the effects of long-term affective state 341 

manipulations, for example chronic drug treatments or environmental stressors on reward 342 

learning and the ability of an animal to develop a bias towards a cue previously associated 343 

with a higher value reward. In the modified ABT (mABT, figure 1b), rodents are given pairing 344 

sessions to learn the association between one digging substrate and a high value reward (i.e. 345 

two reward pellets), and another digging substrate with a low value reward (i.e. one reward 346 

pellet). A healthy animal develops a bias toward the substrate associated with the higher 347 

valued reward when presented with a choice between the two previously paired substrates, 348 

i.e. a reward-induced positive bias. In contrast, rodents in a putative negative affective state 349 

display no or reduced bias for the higher valued reward [80]. Thus indicating that a negative 350 

affective state can alter reward-related learning and memory. Important for this discussion, 351 

these same animals did not show consistent impairments in SPT or PR tasks suggesting this 352 

reward-learning deficit is not mediated by the same underlying neurobiology as reward 353 

consumption and motivation, and does not result from a change in either of these aspects of 354 

reward processing [80]. 355 
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Some theories of associative learning suggest it is an automatic, mechanistic process which 356 

does not involve higher-order cognition, although it is argued that this is true for smaller 357 

animals like rodents but human learning involves more complex expectancies of reward [112]. 358 

The loss of reward-induced positive bias that is observed in the mABT could reflect deficits in 359 

expectancies and anticipation of reward, given that this task requires animals to use more 360 

complex cognitive processes involving recalling prior experiences of reward-related stimuli, 361 

modulate decision making and stimulate a directed behaviour [80].  362 

3.1.3. Neurobiological substrates of affective bias 363 

In humans, reductions in monoamines including serotonin, dopamine and noradrenaline have 364 

been linked to impaired reward learning [113], and negative processing biases of rewarding 365 

stimuli [114-118], whilst serotonergic receptor antagonists negatively shift affective 366 

processing biases [119]. In remitted MDD patients, depletions in monoamines can trigger 367 

symptom relapse and changes in emotional processing [120, 121] without directly influencing 368 

mood [122], suggesting this generates a potential vulnerability for developing depressive 369 

symptoms. This is in line with theories of affective bias preceding changes in mood. 370 

   Day 1                    Day 2                   Day 3                   Day 4                            Day 5 

A+ 

Drug  Drug  Vehicle  Vehicle  

Preference 

test 

a 

Figure 1. Method overview of the original affective bias test (ABT, a) and the modified ABT (mABT, b).  

In the ABT, rodents undergo four pairing sessions of an affective state-manipulating drug with one type of 

digging substrate (A) or a vehicle with another type (B). A+ and B+ are both rewarded with one reward pellet, 

but are presented alongside a ‘blank’ substrate with no reward (C-). On a preference test day, they are given 

the choice between A or B to investigate with random reinforcement. If their affective state at the time of 

learning about A was positive, they display a preference for A, and vice versa show a bias for B if their 

affective state was negative at the time of learning about A.  

In the mABT, rodents undergo a chronic affective state manipulation via drug treatment or environmental 

factors, then are given four pairing sessions with one digging substrate containing two reward pellets (A++) 

or another substrate containing one reward pellet (B+), each presented alongside C-. Rodents with a neutral 

affective state display a preference for A during the choice test compared to B. If the chronic manipulation 

is proposed to induce a positive affective state, this preference for A will increase, whilst if the manipulation 

is proposed to induce a negative affective state, rodents will show reduced or no preference for A. 
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In rodents, pharmacological manipulations have been used to identify potential 371 

neurochemical factors and neurobiological pathways in affective processing biases (see table 372 

2 for a list of example evidence, for a detailed review see [74]). Taking the main affective bias 373 

assays in turn, administration of D2/D3 agonists expected to decrease dopamine signalling 374 

are shown to impair reward bias in rats using the PRT described in 3.2.2 [97], which matches 375 

findings in humans using the original task [123]. Psychosocial stress also impairs reward bias 376 

in both species with the PRT [124, 125]. 377 

Using the JBT, the number of studies investigating neurobiological mechanisms are still 378 

limited but do suggest involvement of monoamines (dopamine and 5-HT, although data for 379 

5-HT is mixed and may depend on acute versus chronic treatment) and the endocannabinoid 380 

system in inducing positive interpretation biases [126, 127]. The benzodiazepine inverse 381 

agonist and, interestingly, noradrenaline re-uptake inhibitors induce a negative bias following 382 

acute treatment [127]. Further, psychosocial stress induces negative interpretation biases 383 

[107] whilst environmental enrichment enhances positive biases [128]. 384 

Negative learning and memory biases have been found in the ABT with acute antagonism of 385 

the endocannabinoid system, along with psychosocial stress, whilst drugs of abuse do not 386 

influence biases [111], indicating the affective state manipulation drives altered learning and 387 

memory bias, not simply activation of the dopamine reward system. Monoamine depletors, 388 

such as tetrabenazine, and several immunomodulators are also shown to induce negative 389 

biases in the ABT [80]. Furthermore, chronic treatment with interferon-alpha (IFN-α) or 390 

retinoic acid reduced reward-induced positive biases in the mABT compared to vehicle 391 

treated controls, whereas consummatory behaviour in the SPT was unaffected by these 392 

treatments [80]. IFN-α is used to treated viral diseases, such as hepatitis C, and has been 393 

associated with the development of depressive symptoms in patients receiving this treatment 394 

[129]. Similarly to findings in the ABT, hepatitis C patients receiving this treatment present 395 

negative biases in processing of emotional facial expressions, though these biases did not 396 

correlate with depression ratings [130]. 397 

Taken together, these current findings suggest that affective biases in learning and memory 398 

are influenced by several biological pathways including altered monoamine transmission, 399 

immunomodulators and stress. Findings in the ABT and JBT using conventional and rapid-400 

onset antidepressants (discussed in section 4) suggest that the formation of affective biases 401 

may be mediated by the amygdala region, while recall of these biases are mediated through 402 

higher cortical and hippocampal regions [106, 131]. These regions can then input to the limbic 403 

reward pathway suggested to play a role in other reward-related behaviours [132, 133]. 404 

Neurobiological studies have linked the amygdala to the formation of an affective bias and 405 

the medial prefrontal cortex linked to recall of this bias [131]. Comparison with other reward 406 

behaviour assays, such as the SPT, suggest the neurobiological mechanisms underpinning 407 

affective biases are, in some cases, separate from other reward-related deficits such as 408 

consummatory anhedonia. 409 

3.2. Hedonic experience 410 
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There are three main domains of reward-related impairments observed in MDD patients. 411 

Deficits in the consummatory hedonic experience derived from rewards, or consummatory 412 

anhedonia, are most often measured in animal models, in contrast to anticipatory anhedonia. 413 

3.2.1. Rodent behavioural assays of consummatory anhedonia 414 

As mentioned previously, the most common method claimed to assess consummatory 415 

anhedonia-like behaviour in rodents is the sucrose preference test (SPT) [35], however there 416 

are several limitations with using this test to isolate anhedonia from other reward-related 417 

deficits, discussed in section 1 of this review.  In patients the ‘sweet taste test’ (STT) has been 418 

used to assess consummatory anhedonia, whereby they are given varying concentrations of 419 

sweet solutions and rate their pleasantness/liking on a self-report scale [134]. Although 420 

anhedonia is repeatedly reported in patients with MDD, self-reported hedonic experience to 421 

sweet solutions appears unaltered [135, 136], which could suggest measuring consumption 422 

of sweet solutions is additionally not an accurate measure of anhedonia in patients. However, 423 

it could also be argued that subjective self-report measurements are not reliable methods to 424 

assay this symptom of MDD. Further, knowing that patients with MDD are highly 425 

heterogeneous in which symptoms they present, more sensitive methods that can reliably 426 

isolate consummatory anhedonia from other reward-related deficits are needed. 427 

To address some issues with measuring consummatory anhedonia, more selective methods 428 

have been developed (for more detailed reviews see [13, 137]). One emphasised by Berridge 429 

and colleagues assesses the natural orofacial reactions to the taste of rewarding or 430 

unpleasant solutions. Rodents display certain categorical facial expressions when tasting 431 

pleasant or unpleasant solutions, and the frequency of these reactions can reflect hedonic 432 

experience and thus are used in studying the neurobiological mechanisms underpinning the 433 

hedonic processing of reward [138].  434 

Another selective measure of objective consummatory behaviour can be taken from the 435 

microstructure of licking. Rodents drink in bouts consisting of multiple licks separated from 436 

other bouts by longer pauses, and the average number of licks within these bouts (lick cluster 437 

size, LCS) has a positive monotonic relationship with increasing concentrations of sucrose, 438 

independent of changes in consumption [139]. This LCS measurement is reduced by 439 

sensations of pain or nausea [140, 141], and our group have also shown this can be reduced 440 

in a chronic corticosterone models of depression (Unpublished; [142]), thus suggesting licking 441 

microstructure can be influenced by negative events and could be used to assay anhedonia-442 

like phenotypes in rodents. 443 

Although these methods of assessing consummatory anhedonia in rodents has been refined 444 

and optimised, and orofacial reactivity has been compared to similar facial expressions 445 

produced by new born infants, it is still open to question how translatable these are to patient 446 

symptomology. As discussed previously, there is little evidence showing blunted or altered 447 

taste reactivity to sweet tastes in depression [135, 143]. Instead, impaired consummatory 448 

anhedonia has been found following self-reported pleasure ratings [144, 145], alongside 449 

deficits in anticipatory anhedonia. This apparent difference could reflect a number of factors, 450 

including difficulties in objectively measuring consummatory behaviour in humans whose 451 
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patterns of eating/drinking are presumably more complex than that of rodents, or that the 452 

majority of human studies use more monetary rewards than the natural rewards of food and 453 

water [41]. Nevertheless, reduced LCS and reduced orofacial reactions to sucrose solutions in 454 

rodents represent a functional analogue of anhedonia (i.e. a reduced response to normatively 455 

rewarding events), regardless of the subjective experience itself [13]. That said, it is important 456 

to acknowledge that these simple measures of consummatory behaviour may not reflect the 457 

complexity of hedonic experience in humans. 458 

3.2.2. Neurobiological substrates of anhedonia 459 

Traditional views of the neuropharmacology of anhedonia in MDD suggested that dopamine 460 

was a core mediator of this reward process, given evidence that dopaminergic receptor 461 

antagonists appeared to inhibit ICSS and CPP learning [146, 147], as well as reducing sucrose 462 

preference in the SPT [148]. More recently, the application of more sensitive analyses of 463 

hedonic experience suggest that consummatory anhedonia is not influenced by dopaminergic 464 

neurotransmission. Instead, these earlier assessments of ‘anhedonia’ did not appropriately 465 

dissociate motivational processes from ‘liking’, and dopamine plays a greater role in incentive 466 

salience than hedonic experience of reward [149-151]. While dopaminergic manipulations 467 

can influence selective consumption-based assays of hedonic responses - for example, Peciña 468 

et al [152] report taste reactivity responses to be influenced by the administration of 469 

dopamine antagonists – the effects are seen either after multiple sessions or late in extended 470 

test sessions. This implies the effects of dopamine on hedonic reactions is indirect and may 471 

rely on interactions with other reward processing aspects, such as learning [13]. 472 

Furthermore, some studies investigating alteration of serotonergic neurotransmission have 473 

also found no effect on lick cluster size (LCS), though inhibition does appear to reduce overall 474 

consumption whilst activation enhances consumption [153, 154]. However, Galistu et al [155] 475 

demonstrate that the atypical antipsychotic Clozapine does increase LCS without influencing 476 

overall consumption. Since Clozapine is believed to work through multiple neurotransmitter 477 

pathways including serotonin and dopamine it could be suggested that some monoaminergic 478 

transmission is involved in hedonic experience, however, their discussion of findings 479 

compared to previous research has ruled out the possibility of 5-HT2 receptors and dopamine 480 

involvement in this process from clozapine’s multiple potential mechanistic actions.  481 

Opioid receptor stimulation in the nucleus accumbens (NAc) and ventral pallidum (VP) 482 

increase positive hedonic orofacial reactions to reward [156, 157]. Lick microstructural 483 

analysis has been less consistent in reporting opioid contribution to hedonic experience, with 484 

many studies showing direct stimulation with opioid agonists/antagonists does not affect LCS 485 

[158, 159]. Based on the evidence in orofacial reactivity studies, it is suggested there are 486 

different ‘hotspots’ in the brains reward system that mediate different aspects of reward 487 

processing. As such, opioid stimulation in specific regions such as the rostrodorsal NAc shell 488 

enhance hedonic reactions to reward [160], whilst in different regions opioid stimulation 489 

enhances motivation/incentive salience [161, 162], which could explain contradictory findings 490 

with less specific opioid stimulation.  491 



14 

 

Benzodiazepines, GABAA receptor agonists, have additionally shown to increase orofacial 492 

reactions to rewarding solutions, without affecting aversive reactions to a bitter solution 493 

[163]. Increased LCS following benzodiazepine administration has also been shown using lick 494 

microstructure analysis [164]. Evidence that blocking opioid receptors can attenuate the 495 

effects of benzodiazepines on hedonic reactions suggests the mechanisms by which 496 

benzodiazepines work in hedonic experience may involve opioid neurotransmission [165] 497 

Recent studies in our group have shown distinct effects on hedonic responses following 498 

treatment with IFN-α and corticosterone, both known to induce negative affective biases in 499 

the ABT (Unpublished work; [142]). We found that chronic IFN-α treatment did not affect LCS 500 

in rats using microstructural analysis of licking, supporting findings from previous SPT data 501 

[80, 166]. IFN-α also does not alter the rate of sucrose pellet self-administration [167] or brain 502 

stimulation reward thresholds [168], suggesting its effects on depressive symptoms are not 503 

related to hedonic experience or sucrose preference.  504 

We did find that chronic corticosterone treatment significantly reduced LCS in rats, supporting 505 

previous SPT data [169-171]. Further, psychosocial stress has consistently resulted in reduced 506 

reward sensitivity as indicated by the SPT [12, 35, 172], but there has been very limited 507 

investigation of psychosocial stress with more selective measures of hedonic experience 508 

(although see [13]). 509 

These findings suggest that consummatory hedonic experience can be influenced by limited 510 

neurobiological mechanisms, which include stress and opioid transmission, but potentially 511 

does not directly involve immunomodulatory cytokines or monoaminergic 512 

neurotransmission. However, many of these studies investigate the pharmacological actions 513 

on general hedonic experience, but not in the alleviation of impairments, thus it cannot be 514 

firmly concluded what interaction these neurobiological substrates have on hedonic 515 

experience without more in-depth investigation. 516 

3.3. Motivation 517 

A third major component of reward processing deficits in depressed patients involves 518 

motivation for reward. For many years motivational processes and hedonic experience have 519 

been confounded when assessing clinical populations, potentially contributing to the 520 

difficulty in assessing consummatory anhedonia, as typical self-report measures would not 521 

adequately separate ‘wanting’ from deficits in ‘liking’ [83]. Motivational processes integrate 522 

the biological need for a reward, and learning and memory of a reward-associated stimulus 523 

to drive goal-directed actions to gain the reward [173].  524 

3.3.1. Rodent behavioural assays of motivational deficits 525 

One rodent assay that has been used for several decades to investigate the neurobiological 526 

basis of anhedonia is intracranial self-stimulation (ICSS) [174]. Electrodes are surgically 527 

implanted in specific regions of the limbic system, such as the ventral tegmental area (VTA), 528 

such that activation of the area was achieved by the rodent self-stimulating the electrodes 529 

through responding on a manipulandum. Levels of anhedonia would be scored through 530 

altering the reward stimulation frequency and assessing how much rodents would respond 531 



15 

 

to higher or lower frequencies. Models of anhedonia were suggested to show reduced 532 

responding to lower frequencies compared to healthy rodents, and the major neurobiological 533 

pathway thought to be involved in mediating ICSS were dopaminergic [175-177]. However, 534 

this task is now more associated with motivational processing, rather than hedonic 535 

experience [14, 178, 179], through measuring willingness to work for a reward. It could also 536 

be argued that changes in responding to reward frequencies may reflect alterations in motor 537 

activity, especially given dopamine’s role in motor function [180], however, the discrete-trial 538 

current threshold version of the ICSS task has been developed to reduce the sensitivity of this 539 

task to motor impairments [176, 181]. 540 

Another commonly used method for examining motivation for reward in rodents is the 541 

progressive ratio (PR) task, in which the number of lever presses required to obtain a fixed 542 

reward progressively increases, and motivation is assessed as their ‘breakpoint’, i.e. at what 543 

level of effort required will they stop responding [182]. Humans with motivational deficits 544 

show dysfunctional dopaminergic transmission [183, 184] and similarly, disrupted 545 

dopaminergic systems in rodent models impairs motivation in the progressive ratio task [182, 546 

185, 186] suggesting translational neurobiological mechanisms underpinning behaviours in 547 

the PR task. However, in animal models of depression or schizophrenia there has been a lack 548 

of consistent deficits observed in PR tasks [187-189]. There are several limitations of using PR 549 

tasks to represent motivational deficits (see [190]) including difficulty in dissociating between 550 

motivational or motor impairments, whilst some might also argue PR tasks could be 551 

influenced by habitual responding or impulse control deficits [185]. See Salamone [184, 191] 552 

for detailed discussions of a behavioural economics approach suggested to overcome some 553 

of these limitations with PR tasks, which is beyond the scope of this review. 554 

Reward motivation deficits are common in patients with MDD [178, 192] and translational 555 

behavioural assays for these impairments have been developed for humans and animal 556 

models. In patients, methods such as the computer game-based ‘Effort Expenditure for 557 

Rewards Task’ (EEfRT) [193] have been employed to measure such motivational impairments. 558 

Here, subjects have a choice between participating in a low difficulty task (requiring 30 button 559 

presses in 7 seconds) for a smaller monetary reward or a higher difficulty task (requiring 100 560 

button presses in 21 seconds) for a greater monetary reward, thus subjects are required to 561 

use a greater amount of effort to gain a higher value reward. Some studies using this task 562 

have shown a decreased amount of effort expenditure to gain the higher valued reward in 563 

both healthy people with higher ratings of anhedonia [42, 193] and with clinical MDD [194, 564 

195], and some evidence suggests these impairments in the EEfRT are predicted by greater 565 

levels of anticipatory anhedonia [42, 196].  566 

The effort-related choice paradigm task is directly comparable to the EEfRT, in which rodents 567 

are given a choice between pressing a lever several times (most commonly a fixed ratio 5 568 

schedule) to gain one high value reward, or easily accessing low value lab chow from a bowl 569 

in the operant chamber [197]. Thus, like the EEfRT, they are required to produce a greater 570 

amount of effort to gain a higher value reward, and effort-related choice tasks can assess 571 

alterations in motivation for reward as well as decision-making behaviours.   572 

3.3.2. Neurobiological substrates of motivational deficits 573 
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As mentioned previously, motivation and effort have become increasingly recognised as a 574 

process requiring an intact dopaminergic system (see [198-200] for detailed reviews). 575 

Dopamine antagonists and agonists are widely reported to reduce or increase instrumental 576 

responding for rewards respectively [197, 198, 201]. Studies have also shown that levels of 577 

dopamine neurons in the ventrolateral striatum following neurotoxic ablation with 6-578 

hydroxydopamine positively correlated with number of lever press responses in an operant 579 

task [201], indicating dopamine transmission in the reward pathway plays a role in mediating 580 

incentive instrumental responding. Though, there is some contrasting evidence suggesting a 581 

lack of instrumental response changes following acute dopamine antagonist treatment, but 582 

rather dopaminergic signalling influenced Pavlovian reward learning [202]. 583 

The progressive ratio task can be interpreted as measuring the amount of effort rodents are 584 

willing to put in to gain a reward, indicating their level of incentive motivation for such 585 

rewards. This task has thus been used to further indicate involvement of dopamine in 586 

maintaining a high effort for gaining reward [186], as well as opioids [203]. Both dopamine 587 

and opioid treatment have additionally shown to increase incentive salience for Pavlovian 588 

associated reward cues, indicating they are involved in multiple types of associative 589 

motivation for reward [132].  590 

More in-depth investigations of dopamine’s role in motivational processing demonstrate that 591 

manipulators do not affect general food consumption, and in the effort-related choice task, 592 

antagonist-treated rodents will demonstrate greater preference for freely available chow 593 

than the reward requiring operant response [182, 197]. This suggests dopamine mainly 594 

interacts with the instrumental response requirement, that is, initiating and maintaining 595 

effort for retrieving reward, rather than appetite [204]. Studies in psychiatric patients for 596 

whom amotivation is a common symptom support these findings using an effort-based 597 

reinforcement task, demonstrating a correlation between behaviour in this task and striato-598 

orbitofrontal connectivity which is predominantly a dopaminergic pathway [205].  599 

Similar findings to dopamine antagonism in the effort-related choice paradigm have been 600 

shown with agonists of adenosine A2A receptors in the NAc [206, 207], which are believed to 601 

interact with dopamine and dopaminergic receptors in the neostriatal region. Muscarinic 602 

acetylcholine receptor agonists too suppress effortful behaviour for reward and enhance easy 603 

access chow consumption when administered to the NAc core only [208]. Injections of GABAA 604 

receptor agonists in the VP reproduce this low-effort effect in an FR5 vs chow protocol [209], 605 

yet when injected to the NAc shell these agonists have no effect on progressive ratio 606 

behaviour [203].  607 

Alternately, serotonergic pathways do not appear to play a role in effort-choice/motivational 608 

processes. Denk et al demonstrated that treatment with a tryptophan hydroxylase inhibitor 609 

did not affect performance of rats in a T-maze task given a choice between climbing a barrier 610 

to gain a high valued reward or entering an obstacle-free arm to gain a low reward, whereas 611 

those treated with a dopamine receptor antagonist showed reduced effort [210]. Similarly, 612 

Izquierdo et al reproduced this lack of effect of the tryptophan hydroxylase inhibitor on the 613 

same task, but found that instead rats showed an impaired reversal learning, suggesting the 614 

serotonergic system may be more involved in cognitive reward processing [211]. However, it 615 
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has been shown that an antagonist for serotonin 2C receptors can enhance instrumental 616 

responding in a progressive ratio task and increase effort for greater reward in the effort-617 

related choice paradigm [212]. Given that antagonism of these receptors increase 618 

dopaminergic firing from the ventral tegmental area and NAc, it is thought that this underlying 619 

mechanism involves dopamine signalling more than serotonin itself. 620 

These recent developments in uncovering the psychopharmacology of effort-related choice 621 

behaviour highlight a specific network of neurotransmitters that interact and target NAc and 622 

VP regions to regulate motivational processing of reward.  623 

3.4. Summary 624 

The challenge of reliably measuring and dissociating reward processing deficits has been 625 

highlighted through inconsistencies in reporting and treating patient symptoms. Assays often 626 

used in patients do not effectively differentiate between multiple reward-related 627 

components that may be disrupted, and as a result, treatments have had poor efficacy. 628 

Developments in rodent assays of reward-related deficits are beginning to reveal dissociable 629 

behaviours specifically linked to separate domains of reward processing. Important to this 630 

discussion is data for the same manipulations inducing dissociable effects on different 631 

measures of reward, as illustrated in figure 2. Here, and in Stuart et al [80], chronic 632 

pharmacological treatments were shown to induce a deficit in reward-induced positive biases 633 

with no effect in the SPT. We have also undertaken a pilot study to investigate reward learning 634 

using a lever press task where chronic IFN-α treatment had no effect, further supporting our 635 

conclusions that the effects seen in the modified ABT are specific.  636 

Findings in these more sensitive pre-clinical behavioural assays have revealed complex 637 

neurobiological pathways that may be involved in reward processing and their associated 638 

deficits in disease. Although hedonic value, motivation and reward-related cognition all 639 

contribute the arising behaviour, animal studies are revealing that important differences 640 

underlie these behaviours. From recent studies, monoaminergic and GABAergic 641 

neurotransmitter pathways have been identified as playing a role in mediating affective 642 

biases and motivational processing, while consummatory hedonic experience appears to be 643 

mediated more by opioid transmission with some overlapping GABAergic effects. Notably, 644 

several forms of stress induction negatively influence all three aspects of reward processing, 645 

whilst immunomodulatory manipulations do not influence current measures of 646 

consummatory anhedonia, but do modify affective biases. Neuro-circuit analyses are also 647 

starting to reveal the distinct neural circuits underlying these behaviours [131].  648 

From the evidence to date, we can support the hypothesis that distinct neurobiological 649 

mechanisms may underpin reward-related learning and memory deficits in models of MDD, 650 

as well as mechanisms involved in incentive motivation arising from the re-activation of 651 

reward-associated memories, compared to hedonic experience [74]. However, there are still 652 

some overlaps and interactions between these processes which indicate they are not entirely 653 

separate, thus, heterogeneity seen in patients may arise from differences in aberrant 654 

neurobiological changes, along with different environmental and genetic factors. Further, 655 

issues with clinical assessments remain, in particular relating to hedonic experience. 656 

Development of human tasks that can similarly dissociate between these different aspects of 657 
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reward processing would be valuable both in terms of understanding the relationship 658 

between these deficits and disease symptoms, but also to enhance the translational validity 659 

of rodent models [178]. 660 
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Figure 2. Specific affective bias deficits with chronic interferon-alpha (IFN-α) treatment.  

Chronic interferon-alpha (IFN-α) treatment induces a deficit in reward-induced positive bias (panel 

A) but has no effect on sucrose preference (panel B).  The data shown in panel A and B are from 

the same animals which received a 14-day treatment with IFN-α (100u/kg, i.p. once daily) or control 

and then tested in the modified affective bias test and a 1% sucrose preference test (data taken 

from Stuart et al., 2017).  In a separate cohort of rats (n=6 per group) a preliminary study using a 

lever press task failed to show any deficit in learning to associated one lever with a higher value 

reward (panel C, data unpublished, Benn et al). In this pilot studies, animals were first trained using 

a continuous reinforcement schedule where each lever was presented on alternate days until they 

were consistently responding with >50 lever presses/session.  Animals were then switched to a 

protocol where both levers were presented and responses paired with either a one or 2 pellet 

reward (left or right lever press was paired with the higher value reward, counter-balanced across 

animals). IFN-α treatment (14 days, once daily, dosing before testing) failed to induce any learning 

deficit with the animals treated with IFN-α showing a higher rate of acquisition (main effect of 

Session F (2.4, 24.1) = 19.95, p <0.001 and Group F (1, 10) = 8.32, p = 0.016 but no Grp*Session F 

(2.4, 24.1) = 0.56, p = 0.607).  Although only a small scale pilot experiment, these data do support 

our hypothesis that the deficits seen in the m-ABT are related to the ability to use reward 

information to guide behaviour when the current information available is ambiguous.  During the 

choice test, rats must rely on their prior knowledge to make a decision about which substrate to 

choose as the reinforcement schedule is randomised for this phase of the task.  In the sucrose 

preference test and lever press task, the information about reward value is available throughout 

the task and animals do not show the same impairment.   
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Effort Expenditure for Rewards Task 
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Key findings: MDD patients show reduced 

effort expenditure [194].  

Effort expenditure is predicted by levels of 

anticipatory anhedonia [42, 196] 
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Example Psychopharmacological Effects 

Dopamine and opioid administration enhances incentive motivation/effort for reward, not 

general food intake. 

 

Stimulation of adenosine A2A and acetylcholine muscarinic receptors in the NAc core 

reduces incentive motivation/effort for reward. 

 

GABAA agonists in the VP reduces incentive motivation/effort for reward. 

Opioids enhance consummatory hedonic reactions to both rewarding and unpalatable 

solutions. 

 

GABAA receptor agonists, i.e. benzodiazepines, increase positive orofacial reactions to 

rewarding solutions but not aversive, and increase LCS when analysing lick microstructure.  

 

Chronic corticosterone treatment reduces LCS,  and both chronic corticosterone and 

psychosocial stress reduce sucrose  preference in the SPT. 

Decreased dopamine signalling through D2/D3 agonist administration, and psychosocial 

stress, impairs reward bias in the PRT in humans and rats. 

 

Enhanced endocannabinoid, serotonergic and dopaminergic stimulation, and 

environmental enrichment induces positive judgement biases in the JBT.  

Noradrenergic stimulation and psychosocial stress induce negative judgement biases in 

JBT.  

 

In the ABT, negative biases are induced by acute treatment with: endocannabinoid 

antagonists, GABAA receptor agonist (FG7142), retinoic acid, monoamine depletors 

(tetrabenazine), corticosterone immunomodulators (lipopolysaccharide, IFN-α).  
Positive biases induced by social enrichment. 

 

In the mABT, negative biases are induced by chronic treatment with IFN-α and retinoic 
acid. 

Reward-related deficit 

Apathy / Motivation 

Consummatory 

Anhedonia 

Affective Bias 

Table 2. A summary of example psychopharmacological evidence in behavioural assays of reward-related deficits in rodents. 
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4. Antidepressant actions and implications for treatments 676 

Current treatments for MDD are limited in their robustness, with one third of patients 677 

remaining unresponsive following several courses of antidepressant and psychological 678 

therapies [217], and current antidepressants have limited impact on reward processing 679 

deficits such as anhedonia [218]. To improve treatment efficacy, valid animal models 680 

appropriately reflecting the behavioural and neurobiological impairments seen in patients are 681 

essential for testing novel therapies. Here, we will discuss some of the current literature 682 

describing potential mechanisms of action of antidepressants, as shown in the more sensitive 683 

behavioural assays discussed previously, and related to our updated knowledge of the 684 

neurobiological substrates underpinning such behaviours. 685 

Aberrant monoamine neurotransmission has been implicated in the development of affective 686 

biases. Typical antidepressants tend to target these systems and have been shown to reverse 687 

negative affective processing biases and enhance positive biases in patients [219], as well as 688 

healthy subjects [55]. Similarly, this has been shown with various atypical antidepressants 689 

that involve some manipulation of monoaminergic pathways [53]. Some of the most 690 

commonly prescribed antidepressants are selective serotonin reuptake inhibitors (SSRIs), 691 

which have been shown to increase reward learning in patients [54]. The effects of 692 

monoamine-targeting antidepressants on other aspects of reward processing deficits is much 693 

less consistent, often having little effect on motivational deficits and anhedonia in MDD 694 

patients [15, 220]. Though, patient studies on antidepressant actions in motivation tasks such 695 

as the EEfRT, along with translational assays of anhedonia, are limited, but recent theories 696 

suggest dopamine-targeting antidepressants should be used in combination with SSRIs to 697 

enhance the motivational deficits of depression [221].  698 

In animal models, studies have shown that reward preference deficits following chronic stress 699 

seen in the SPT can be reversed with typical antidepressant treatments [35, 222, 223], while 700 

there is limited pharmacological evidence for antidepressant effects in the more sensitive 701 

methods of anhedonia discussed previously. Dopamine enhancing drugs not typically 702 

prescribed as antidepressants have shown to reverse amotivational shifts in the effort-related 703 

choice task in rats [224], whilst serotonin-targeting typical antidepressants do not [225], 704 

supporting the specific role of dopamine in motivational processing. However, studies where 705 

tetrabenazine is used to induce a deficit have shown subsequent reversal with 706 

monoaminergic antidepressants [225]. 707 

However, serotonergic modifying antidepressants are shown to enhance positive reward 708 

sensitivity and learning in the PRL task [98]. Various monoaminergic and atypical 709 

antidepressants also enhance positive affective biases in the ABT [80, 111, 226, 227] (see 710 

figure 1 and [74] for a recent overview of antidepressant actions). The recent development of 711 

these tasks mean no studies, to our knowledge, have yet investigated the effects of these 712 

antidepressants on reversing negative depression-like phenotypes induced by known risk 713 

factors.  Thus, more studies are needed to determine whether, and how, these 714 

antidepressants can alleviate negative processing biases induced by negative affective states, 715 

as well as further examinations of how different antidepressants might influence hedonic and 716 

motivational processing. 717 
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Despite this evidence that enhancing monoaminergic transmission may improve affective bias 718 

and dopamine replenishment could improve motivational deficits, the therapeutic effects of 719 

monoaminergic antidepressants take several weeks to become effective, even though 720 

increases in monoamine release can be detected immediately [228]. This observation has led 721 

to potential implications of more prolonged downstream changes in neuroplasticity leading 722 

from these monoamine changes in the efficacy of antidepressants [229].  723 

This theory of the delayed onset action of typical antidepressants has brought about an 724 

abundance of literature in support of neuro-adaptive changes involvement in the 725 

development and treatment of MDD symptoms [230-233]. However, a more recent theory 726 

has been proposed, describing a cognitive neuropsychological mechanism of action for 727 

antidepressants that combines the clinical and preclinical evidence of affective biases in MDD 728 

with this neuroplasticity hypothesis [64]. In this model, antidepressants rapidly induce a 729 

positive shift in the negative processing biases experienced by patients, which is then 730 

gradually expected to improve the impairments in behaviour and mood. Thus, suggesting 731 

positive affective biases may not directly enhance mood and other deficits in MDD but could 732 

provide a cognitive neuropsychological mechanism for this to occur. It also suggests that the 733 

delayed improvement in mood may result from the need for re-learning positive associations 734 

between affective and social stimuli [56]. This would also fit with the evidential link between 735 

neuroplasticity and learning [234], indicating potentially antidepressants improve plasticity 736 

which improves positive affective learning, or it may be that the improved learning through 737 

positive affective biases enhances plasticity as suggested in an alternative hypothesis outlined 738 

by Robinson 2018 [74]. 739 

Some antidepressants, such as the NMDA receptor antagonist ketamine, are shown to have 740 

rapid-onset improvements in MDD patients [235], including in patients shown to be 741 

unresponsive to several courses of typical antidepressant treatments. This is thought to occur 742 

through a more rapid activation of neuroplasticity changes [236, 237]. However, a new 743 

proposal suggests differences in delayed vs rapid onset antidepressants might lie in the way 744 

they influence affective biases [74]. In the ABT, FG7142- and psychosocial stress-induced 745 

negative affective biases in rodent models can be reduced following ketamine treatment, but 746 

not treatment with the delayed onset antidepressant, venlafaxine, whereas ketamine failed 747 

to induce any bias alone [131]. This effect of ketamine was specific to the medial prefrontal 748 

cortex (mPFC), whilst venlafaxine was specific to the amygdala. These findings could suggest 749 

that rapid onset antidepressants act upon previously learned negative biases through changes 750 

in the mPFC to stabilise these biases rapidly, which is separate from delayed onset actions of 751 

initiating new learning of positive biases in other limbic areas [74]. 752 

Recent studies using the JBT have also investigated the effects of ketamine on decision-753 

making biases, demonstrating similar temporal differences between rapid-onset and 754 

conventional antidepressants in inducing positive biases as seen in clinical populations, as 755 

well as indicating the involvement of distinct neurobiological substrates underlying these 756 

differences (for a more detailed discussion see Hales et al [106]). However, there are still 757 

patients for which these antidepressants do not work at all and are possibly resistant to the 758 

neuropsychological changes mentioned here. A potential hypothesis for treatment-resistant 759 
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patients is that these patients may have poorer social support and continuous negative 760 

environmental interactions that dampen the improvements in affective biases through 761 

pharmacological treatment alone [56]. This could lead to failure to re-engage with social 762 

and/or rewarding activities that is essential for re-learning positive experiences.  763 

Thus, the cognitive neuropsychological model for MDD suggests taking more integrated 764 

approaches in investigating the underlying causes, as well as treatment, of MDD, and 765 

potential differences in the neurobiological and behavioural mechanisms of distinct 766 

symptoms suggest that understanding this complex disorder should involve combining 767 

assessments of different aspects that are impaired. 768 

5. Conclusion 769 

Although hedonic value, motivation and reward-related cognition all contribute to reward 770 

processing and associated reward-related deficits, important differences underlie these 771 

behaviours. Biases in the processing of reward-related information, including biases in 772 

learning and memory and decision-making, have been observed in humans and, more 773 

recently, in rodents. These behaviours are not directly related to the more typical measures 774 

of reward, and add another dimension to the discussions relating to how reward-related 775 

behaviours may be altered in diseases such as MDD. In this review, we show that commonly 776 

impaired aspects of reward processing could have some distinct neurobiological 777 

underpinnings. We emphasise the importance of investigating different reward-related 778 

deficits separately, and potentially combining several sensitive behavioural methods in 779 

clinical and preclinical research, to thoroughly identify neurobiological targets of individual 780 

symptoms of MDD, in order to improve the development and evaluation of novel therapies.  781 
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