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ABSTRACT

Reduction of energy consumption in the steel industry is a global issue where government is actively 

taking measures to pursue. A steel plant can manage its energy better if the consumption can be 

modelled and predicted. The existing methods used for energy consumption modelling rely on the 

quantity of labelled data. However, if the labelled energy consumption data is deficient, its underlying 

process of modelling and prediction tends to be difficult. The purpose of this study is to establish an 

energy value prediction model through a big data-driven approach. Owing to the fact that labelled 

energy data is often limited and expensive to obtain, while unlabelled data is abundant in the real-

world industry, a semi-supervised learning approach, i.e., deep learning embedded semi-supervised 

learning (DLeSSL), is proposed to tackle the issue. Based on DLeSSL, unlabelled data can be labelled 

and compensated using a semi-supervised learning approach that has a deep learning technique 

embedded so to expand the labelled data set. An experimental study using a large amount of furnace 

energy consumption data shows the merits of the proposed approach. Results derived using the 

proposed method reveal that deep learning (DLeSSL based) outperforms the deep learning 

(supervised) and deep learning (label propagation based) when the labelled data is limited. In addition, 

the effect on performance due to the size of labelled data and unlabelled data is also reported. 

Keywords: Energy Modelling; Intelligent Manufacturing; Deep Learning; Semi-supervised Learning; 

Data Mining 
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1. INTRODUCTION

The rapid development of the world has led to a strong demand for steel, while the steel industry faces 

several challenges, including decreasing natural resources, greenhouse gas emission and high energy 

consumption. In order to tackle these challenges, the steel industry has constantly tried to explore 

novel techniques for production that are sustainable, efficient and environmentally friendly. Moreover, 

producing steel products with better quality at a lower cost is a target of the steel industry (Delgado & 

Ferreira, 2010). 

Recently, issues regarding environmental degradations have gained considerably increasing attention 

around the world. The steel industry is active in emitting greenhouse gas. According to the report 

from the (Commission, 2010) which analyses the carbon dioxide emission and assesses the risk of 

carbon leakage, the European Union endorsed a policy that aims to cut approximately 20% of the 

1990 greenhouse emission levels by 2020. In the current steel industry, there are two main types of 

equipment for steelmaking: the basic oxygen furnace (BOF) and the electric arc furnace (EAF) 

(Proctor et al., 2000). Approximately one-third of the world’s steel is produced by EAF, which 

consumes a large sum of electricity during the steelmaking process (Yearbook, 2014). The increasing 

energy consumed in steelmaking process leads to more carbon dioxide emission. The industry has to 

reduce energy consumption to meet the requirements of strict laws and policies (Pardo & Moya, 

2012). During the steelmaking process, the EAF energy consumption is mainly affected by the 

ingredients and process parameters. If the EAF energy consumption can be predicted based on the 

information of ingredients and process parameters, energy management can be optimised so as to 

lower the energy consumption.

The EAF energy consumption modelling can be used to predict the EAF energy consumption which 

can offer some insights to the steel industry (Kirschen et al., 2011; MacRosty & Swartz, 2007). The 

energy consumption prediction model can be built in various ways. The statistical approaches have 
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been used for energy modelling (Kirschen et al., 2011; Woodside et al., 1970), and they are useful 

when the data size is small. However, the algorithm performance could be damaged when the data 

size grows due to the increasing impurity and noise (Köksal et al., 2011). Recently, data mining 

techniques have been widely used in industrial data analytics (Veaux et al., 2016). It is also applicable 

in the energy consumption modelling of EAF. In the data mining field, supervised and unsupervised 

learning are used to tackle the labelled and unlabelled data, respectively (Mohri et al., 2012). Deep 

learning, as a kind of supervised learning techniques, has acquired growing attention and it is under 

much development in recent years. It is well known for its capacity for learning hidden patterns in 

data (LeCun et al., 2015). Moreover, the performance of deep learning model tends to be better when 

the dataset size grows, and deep learning techniques have become useful tools in data analytics 

(LeCun et al., 2015). However, when the data size is small, the performance of deep learning tends to 

be jeopardised.

In data mining field, a technique called semi-supervised learning aims to make full use of the 

unlabelled data for a supervised or unsupervised learning task (Hady & Schwenker, 2013). In the real 

world, labelled data is often expensive to be collected as it requires efforts to categorise the data. One 

of the critical factors which influences the supervised learning model with satisfactory performance is 

the size of the labelled data. When the labelled data is insufficient, it is hard to train a model with 

decent performance. However, with the help of unlabelled data, the performance of supervised 

learning algorithm could be improved (Hady & Schwenker, 2013). In semi-supervised learning, firstly, 

the unsupervised learning technique is used to determine the label of unlabelled data. Then the 

supervised learning approach is used to build a classification or regression model based on the 

original labelled data and the unlabelled data with new labels. The enriched data set can promote the 

performance of supervised learning (Zhu, 2011). Hence, introducing the semi-supervised learning 

technique could enable deep learning to be applicable when the labelled dataset is small.

In this work, the steel plant under investigation purchased over 20 different types of steel scraps 

which can be mixed in different proportions in order to get different steel products. Hence, energy 



  

4

consumption in each batch of steel product differs. Currently, the statistical approaches used in the 

steel plant cannot deliver an accurate prediction for the EAF energy consumption per batch, which the 

steel plant has a keen interest in. Hence, building a reliable prediction model for EAF energy 

consumption is necessary. Moreover, in the context that labelled data is limited and unlabelled data is 

sufficient, introducing semi-supervised learning into energy consumption modelling can bring 

tangible benefits to the steel industry. This study aims to propose a new semi-supervised learning 

approach called DLeSSL which uses a small number of labelled data and a large number of unlabelled 

data to establish an energy consumption prediction model. In DLeSSL, firstly, we determine a rough 

label of the unlabelled data through unsupervised learning technique. Secondly, deep learning is 

introduced to compensate for the rough labels. The data assigned with the compensated label is then 

combined with the labelled data to an enriched dataset. The enriched dataset obtained from DLeSSL 

is further used for modelling using deep learning. Results indicate that deep learning based on 

DLeSSL performs better in energy consumption modelling. To harness the merits of deep learning in 

supervised learning, it requires a large sum of labelled data, which requires more efforts to obtain in 

the real world. However, the proposed approach enables deep learning to be performed with a small 

number of labelled data without sacrificing the algorithm performance dramatically (The performance 

decreases by approximately 8%), which is the main contribution of this study. Meanwhile, to the best 

of our knowledge, the existing studies in semi-supervised learning have not explored the impact of the 

ratio of labelled and unlabelled data on the algorithm performance. In order to reveal this pattern, this 

study also reported the relationship between the algorithm performance and the ratio of labelled and 

unlabelled data using the proposed approach. The rest of paper is organised as follows: Existing 

energy prediction methods of EAF, the studies of semi-supervised learning in industry, and the cases 

of data analytics in the industry are reviewed in Section 2. Deep learning algorithm and the proposed 

technique are introduced in Section 3. Section 4 introduces a case study about the modelling process 

using supervised and DLeSSL techniques. Results are compared and discussed in this Section to 

reveal the performance of DLeSSL technique. In Section 5, the benefits and limitations of DLeSSL 

are concluded.
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2. LITERATURE REVIEW

2.1 Energy Consumption Modelling Using Statistical Methods
 

Energy consumption has long been a big concern for the steel industry. The energy consumption 

modelling can offer insights for the steelmaking process so as to be beneficial to the optimisation of 

the energy usage. Statistical approaches have been employed in energy modelling. In order to develop 

a statistical model so that the influence of the direct reduced iron on the energy balance of an EAF can 

be determined, several parameters regarding ingredient mass, energy conversion efficiencies and 

conversion of oxygen should be considered. A model based on chemical changes in the melting stage 

of EAF steelmaking process was designed to estimate the EAF energy efficiency. Different equations 

were introduced according to the chemical balance. To simplify the mass and energy conversion of 

the EAF melting process efficiency factors were utilized (Kirschen et al., 2011). As the efficiency 

factors are important in this study, how to set the factors should be further discussed.

MacRosty & Swartz (2007) proposed a mathematical framework to modify operating strategies for 

EAF. In this framework, a mechanistic model is incorporated using a differential-algebraic equation 

system to capture the dynamics of EAF processes. The model considers mass and energy balance, 

chemical changes and details of the EAF melting process. The hourly energy consumption was 

modelled in this study. In addition to the mechanistic model, a number of different mathematical 

procedures are used, such as Scaling equation, variable logarithmic transformations, and 

discontinuous approximations. These procedures are adopted in the framework to increase the 

robustness of the mechanistic model (MacRosty & Swartz, 2007). However, the performance of the 

proposed model will be jeopardised when the complexity of modelling increase, and therefore, its 

application will be limited.
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A computer program was developed for modelling alternating current EAF energy consumption with 

numerous production parameters (Çamdalı & Tunç, 2002). In this program, the modelling process is 

based on the first law of thermodynamics. It was developed to study the effects of temperature of 

ingredients, such as liquid steel and stack gas, on EAF energy consumption. Different algebra 

equations were developed to represent the material and energy flow of EAF. The model is proposed 

under several assumptions such as (a) The furnace is a steady state process; (b) The EAF has a 

constant surface; (c) Materials going in and coming out from the EAF are uniform. In the real-life 

steelmaking process, it is hard to satisfy all the assumptions simultaneously, which makes this 

computer program hard to be applied in the actual steelmaking process. 

Kaboli, Selvaraj, et al. (2016) Proposed a long-term electric energy consumption forecasting approach 

using artificial cooperative search algorithm. Linear, quadratic, exponential, and logarithmic model 

were first used to conduct the path-coefficient analysis in energy consumption modelling. Then, the 

artificial cooperative search algorithm is used to optimise the energy consumption prediction model. 

In another two cases for long-term electrical energy consumption prediction, a mathematical model 

was established to predict the energy consumption. Gene expression programming algorithm was 

adopted to optimise the model to obtain better performance (Kaboli, Fallahpour, et al., 2016; Kaboli et 

al., 2017).

The above cases studied energy consumption from different aspects which are chemical changes and 

thermodynamics. With the help of energy modelling, tasks such as energy balance and management 

optimisation can be achieved. Other statistical methods, such as principal component analysis, 

principal component regression, partial least squares and multiway modelling, have also been used for 

EAF energy modelling (Köhle, 2002; Sandberg, 2005). These statistical models can obtain a decent 

performance when the available data is clean and small in size. However, the performance of 

statistical model might be damaged when the size, dimension and impurity of the dataset increase.
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2.2 Deep Learning and Semi-Supervised Learning in Industry

Recently, deep learning has received dramatically increasing attention and has been applied in a 

variety of fields (LeCun et al., 2015). As a special type of machine learning, deep learning is 

popularly used to identify objects in images, transcribe speech into text, and select the required data 

from databases (Schmidhuber, 2015). However, the application of deep learning in the industrial field 

is currently underdeveloped (Lu et al., 2017), with fault diagnosis being the primary application of 

deep learning in the industry. Gan et al. (2016) designed a hierarchical diagnosis network for fault 

pattern recognition of rolling element bearings. Sun et al. (2016) proposed a sparse auto-encoder-

based deep neural network for motor fault classification. Li et al. (2016) developed a Gaussian-

Bernoulli deep Boltzmann machine for rotating machinery fault diagnosis. Additionally, 

convolutional neural networks have been used for the fault identification and classification of gearbox 

and have also been used for fault detection in the rotating machinery (Janssens et al., 2016). All of the 

above cases focus primarily on rotating machinery, as it is commonly found in an industrial setting 

and it requires control and monitoring. 

Besides being applied in fault diagnosis, a convolutional bi-directional long short-term memory 

network was designed to analyse the sequential data that cannot be tackled by a conventional 

classifier and regressor directly. In this model, the convolutional neural network is used to extract the 

most robust and informative features from raw data. Long short-term memory networks are adopted to 

extract information from sequential data, and a bi-directional structure is introduced to the long short-

term memory networks so to capture the past and future contexts. Such a model can be used to predict 

tool wear for a CNC (computer numerical control) machine (R. Zhao et al., 2017). The above cases 

are the applications of deep learning in the industry. However, these applications are still limited, and 

most of them have focused on machine maintenance. 

Meanwhile, semi-supervised learning refers to a group of techniques which can be used for modelling 

based on labelled and unlabelled data (Zhu, 2006). There are five main research directions within the 
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field of semi-supervised learning: generative model (Baluja, 1999; Nigam et al., 2000) which is based 

on the generative assumption, self-training model (Rosenberg et al., 2005; Yarowsky, 1995) which 

adds the unlabelled sample to the model to improve performance, co-training model (Blum & 

Mitchell, 1998; Zhan & Zhang, 2017) which co-trains two models simultaneously, avoiding changes 

in dense regions (Chapelle et al., 2008) which aims to find the low data density regions , and graph-

based methods (Blum & Chawla, 2001; Talukdar & Pereira, 2010) which is originated from label 

propagation algorithm (Zhu & Ghahramani, 2002) and can be used to extract class-instance pairs from 

large unstructured and structured dataset. These techniques have all been applied to tackle different 

real-world problems. Despite this, the application of semi-supervised learning in the industry remains 

limited. 

When the available labelled data is limited, establishing a classification model with decent 

performance tends to be hard. Ge et al. (2016) proposed a kernel-driven semi-supervised Fisher 

discriminant analysis (FDA) model for nonlinear fault classification. The proposed method uses a 

semi-supervised data matrix and FDA technique to extract the discriminant information, before k-

nearest neighbours and Bayesian techniques were used for classification. The size of labelled data 

used in this case was 400, and there were 41 attributes in the dataset, with a ratio of labelled data to 

unlabelled data is 1:1. Zhou et al. (2014) proposed a semi-supervised probabilistic latent variable 

regression method to improve the performance monitoring of variations in the process and the 

features relevant to the product quality. The probabilistic latent variable regression approach was used 

for modelling, and an EM (Expectation Maximisation) algorithm was used to estimate the parameters 

of the semi-supervised model. In this case, 50 labelled instances and 450 unlabelled instances were 

utilised for model building. The performance of a probabilistic latent variable regression model is the 

sole benchmark in this case, which makes it difficult to reveal the advantages of the proposed method 

compared to other approaches. M. Zhao et al. (2017) proposed a semi-supervised model with a capped 

l2,1-norm regularisation. A loss term was used to measure the inconsistency between the prediction 

and the original labels to the labelled dataset. A global regression regularised term was developed to 

train a classification model which can achieve better performance. However, the size of the labelled 
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and unlabelled data was not mentioned in this case. Kang et al. (2016) proposed a semi-supervised 

support vector regression (SS-SVR) method based on self-training and applied it to virtual metrology 

in a semiconductor manufacturing context. The distribution of labels for the unlabelled data was 

estimated by a probabilistic regression model, and the support vector machine algorithm was used to 

build the regression model. The data of semi-conductor manufacturing was collected from the sensors 

embedded in process equipment and previous metrology values. SS-SVR can achieve better 

prediction accuracy and efficiency compared to the conventional support vector regression. The 

combined quantity of the labelled and unlabelled data was over 60,000 in this study, and the labelled 

data make up approximately 6% in this total. 

Such semi-supervised cases mentioned above have demonstrated that a better modelling performance 

can be achieved with the help offered by unlabelled data. However, none of the presented studies has 

assessed the impact of the different ratios of labelled and unlabelled data on performance. Moreover, 

there have been no state-of-the-art applications of semi-supervised learning in the steel industry.

2.3 Machine Learning in the Steel Industry

Approximately one-third of the world’s steel is currently being produced using the EAF steelmaking 

process (Mohsen & Akash, 1998), and there are a variety of factors that may influence different 

aspects of it; including scrap price, the molten steel temperature, and electrode voltage, etc. Despite 

the highly specialised empirical knowledge which engineers in the steel industry possess (Fernández 

et al., 2008), when a problem in the actual process is affected by numerous factors, finding solutions 

using empirical knowledge and traditional statistical methods can be challenging. Data mining, which 

extracts knowledge from a complex dataset, has gained growing attention in the manufacturing sector 

(Veaux et al., 2016). Machine learning provides the technical basis of data mining (Witten et al., 

2016). As a useful tool in data mining, machine learning can be used to find the hidden patterns which 

are helpful to the steel industry.
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Several linear regression models have been used to determine the energy balance of EAF and the 

relationship among different parameters in EAF. These parameters include the energy input and 

energy efficiency, natural gas enthalpy and electrical energy requirement (Kirschen et al., 2009). 

Fernández et al. (2008) proposed a mixed model consisting of a fuzzy inference function and an 

artificial neural network to predict the tap temperature of the EAF. In this study, an artificial neural 

network was used for classification, and the fuzzy inference function was adopted to generate the final 

tap temperature. In order to predict the gas consumption in a steel plant, Kovačič & Šarler (2014) 

investigated a model based on genetic programming. The genes used in this case can be categorised 

into two types: terminal genes which are the variables in the steelmaking process; and function genes 

which are the operation rules (i.e., addition, subtraction, multiplication and division). After the 

random generation of the program tree and the crossover process was repeated, the prediction model 

with the best performance was found. As the physical model is deficient in predicting and controlling 

the temperature of molten steel in a tundish during a continuous casting process, a grey box model 

was established by combining a first-principle model and a statistical model (Ahmad et al., 2014). The 

first-principle model was used to model the linear and nonlinear relations in the dataset, and a 

mathematical model is used for extracting the unknown ties from the data. In the end, a random forest 

algorithm was applied to the statistical model as an ensemble classifier. The above cases indicate 

machine learning techniques have been used in the steel industry for different purposes. However, 

relevant studies using machine learning in energy consumption modelling is still limited. 

The steel plant being investigated in this study uses a Microsoft Excel-based software call solver to 

establish the best combination of different scraps, energy consumption and outputs, based on the 

values of specific parameters which are input by engineers. This dataset contains the information of 

ingredients (i.e. scraps and additives) and processing parameters, including some impurity as well. 

The application of statistical method is not advantageous, as it has strict requirements with regards to 

the input dataset. Moreover, it has to be cleaned and low in impurity, and the large size and 

dimensions of the dataset may damage the modelling performance of statistical approach. As 
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previously mentioned, deep learning, as a machine learning algorithm, is currently widely applied in 

different fields, and it is a useful tool in building models with a high dimensional and large size 

dataset. In our previous study, we introduced deep learning into energy consumption modelling. The 

experimental results indicated that deep learning shows merits in energy consumption modelling in 

comparison with several machine learning algorithms (Chen et al., 2018). However, to the best of our 

knowledge, all the state-of-the-art energy modelling methods are based on supervised learning 

techniques, despite labelled data being expensive and hard to obtain in the real world when compared 

with unlabelled data (Zhu, 2011). Since semi-supervised learning techniques aim for modelling based 

on the small size of labelled data (Zhu, 2011), it is a potentially useful tool in energy modelling when 

the labelled data is insufficient and the unlabelled data is abundant.

3. DEEP LEARNING EMBEDDED SEMI-SUPERVISED 

LEARNING: ALGORITHM AND APPROACH

In this work, a new approach called deep learning embedded semi-supervised learning (DLeSSL) is 

proposed to help energy modelling based on a small number of labelled data and a large number of 

unlabelled data. In this approach, deep learning is embedded into semi-supervised learning algorithm 

to improve its performance. In Section 3.1, the design procedure of deep learning model is introduced 

and how deep learning is embedded into semi-supervised learning is detailed in Section 3.2. 

3.1 The Design of Deep Learning Models

Deep learning is a neural network-based technique that contains a large number of hidden layers for 

discovering the hidden knowledge from data (LeCun et al., 2015). It is a highly interconnected system 

that consists of an input layer, hidden layers and an output layer. Each layer is made up of plentiful 

hidden neurons, which is collectively known as nodes. 
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There are several types of existed deep learning models, with expertise in carrying out different tasks 

and process different types of data. The prediction of energy consumption is based on the data of raw 

materials and process parameters of EAF, which can be handled by fully connected layers. There are 

mass neurons in a fully connected layer, which offer a powerful computational ability. Hence, a deep 

neural network, which consists of multi-fully connected layers, is adopted. It is trained using 

backpropagation algorithm, which is used to the determine weight and bias of the neural network 

(LeCun et al., 2015). The design of a deep learning model needs to determine the necessary elements, 

which are the type of layer, activation function, loss function and optimiser. In order to build a 

prediction model, all the elements need to be well considered according to their properties and the 

characteristics of the data.

Firstly, the type of layer needs to be selected according to the characteristics of data. The type of layer 

is determined by the type of data. For instance, a recurrent layer is suitable for dealing with sequential 

data, and a convolutional layer is good at tackling image data (Schmidhuber, 2015). Secondly, there 

are several different types of activation functions, loss functions and optimisers. The selection of these 

elements is highly data dependent. In order to get optimal performance, they need to be tested and 

finetuned using the actual data. 

Meanwhile, another issue that needs to be considered is that there is no explicit guideline for the 

determination of the number of nodes and hidden layers because these parameters are highly data 

dependent. First, the number of nodes in each layer should be the same as it can yield better 

performance than the pyramid-like node setting (Bergstra & Bengio, 2012). Secondly, a larger 

number of nodes and hidden layers result in a large computational load. When the number of nodes 

and hidden layers are insufficient, the model may not able to learn enough hidden patterns. Hence, 

they need to be determined in the actual case.
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3.2 Deep Learning Embedded Semi-supervised Learning

Notations

I The total number of labelled data

J The total number of unlabelled data

Instance in labelled dataset 𝒍𝒊 𝒍𝒊 ∈ {𝒍𝟏, …, 𝒍𝑰}

The labels of the instances in labelled dataset,  𝒚𝒊 𝒚𝒊 ∈ {𝒚𝟏, …,𝒚𝑰}

Instance in unlabelled dataset 𝒖𝒋 𝒖𝒋 ∈ {𝒖𝟏, …, 𝒖𝑱}

The most similar  for , 𝒍𝒊 𝒍𝒊 𝒖𝒋 𝒍𝒊 ∈ {𝒍𝟏, …, 𝒍𝑰}

The new label of , 𝒚𝒋 𝒖𝒋 𝒚𝒋 ∈ {𝒚𝟏, …,𝒚𝑱}

Bias between new label  and the actual label of , ∆𝒚𝒋 𝒚𝒋 𝒖𝒋 ∆𝒚𝒋 ∈ {∆𝒚𝟏, …,∆𝒚𝑱}

Difference of   and , ∆𝒖𝒋 𝒍𝒊 𝒖𝒋 ∆𝒖𝒋 ∈ {∆𝒖𝟏, …, ∆𝒖𝑱}

Difference of each two , , ∆𝒍𝒊 𝒍𝒊 ∆𝒍𝒊 ∈ {∆𝒍𝟏, …,∆ 𝒍𝑵} 𝑁 =
𝑰(𝑰 ‒ 𝟏)

𝟐

Difference of each two , , ∆𝒚𝒊 𝒚𝒊 ∆𝒚𝒊 ∈ {∆𝒚𝟏, …,∆ 𝒚𝑵} 𝑁 =
𝑰(𝑰 ‒ 𝟏)

𝟐

The compensated label of    𝒚𝒋 𝒖𝒋 𝒚𝒋 ∈ {𝒚𝟏, …𝒚𝑱}

We assume that there are a labelled dataset and an unlabelled dataset. The size of the unlabelled 

dataset is significantly larger than that of the labelled dataset. If the labelled data is insufficient to 

train a model with a decent performance, exploiting the unlabelled data emerges as an available 

option to improve the algorithm performance. Different kinds of supervised learning algorithms have 

been introduced for energy modelling for the steel industry. Such tools show advantages on building 

the prediction model based on labelled data. However, when the labelled data is insufficient, the 

performance of supervised learning approach tends to be unsatisfactory. 

In order to improve the algorithm performance when the labelled data is limited DLeSSL was 

proposed. The general flow of DLeSSL is shown in Fig. 1. The proposed approach can be separated 

into two stages i.e. the label finding stage and the label compensating stage. The label finding stage is 
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originated from label propagation algorithm (Zhu & Ghahramani, 2002). In the label finding stage, 

new labels of the unlabelled data are determined. In the label compensating stage, the new labels are 

compensated using deep learning technique. When the compensated labels of the unlabelled data are 

obtained, the labelled data and the unlabelled data with the compensated label are combined as an 

enriched dataset. The enriched dataset obtained from DLeSSL is used to train a new deep learning 

model, which is used to predict energy consumption. 

Fig. 1. The flow chart of DLeSSL

The label finding stage aims to identify the labels for the unlabelled data. Firstly, the most similar 

labelled instances for the unlabelled data is determined. In this case, we have adopted radial basis 

function (RBF) to determine the similarity between two instances base on its performance and 

convenience (Vert et al., 2004). The RBF is used to represent the similarity or distance between  and 𝒍𝒊
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. When the  close to zero, it indicates the similarity between the label instance  and the 𝒖𝒋 𝑅𝐵𝐹 (𝒍𝒊,𝒖𝒋) 𝒍𝒊

unlabelled instance  is considerably high. An RBF is denoted as:  𝒖𝒋

                                                    (1)𝑅𝐵𝐹 (𝒍𝒊,𝒖𝒋) = 𝑒𝑥𝑝 ( ‒
𝑑(𝒍𝒊, 𝒖𝒋)2

2𝜎2 )
where σ is a parameter of RBF and  is the Euclidean distance.𝑑

Secondly, label propagation is carried out based on the , which means the most similar 𝑅𝐵𝐹 (𝒍𝒊,𝒖𝒋)

instance  for  will be found. Then, the label of  is propagated to . The details of the label 𝒍𝒊 𝒖𝒋 𝒍𝒊 𝒖𝒋

propagation algorithm can be found in the work of (Zhu & Ghahramani, 2002). Basically, when  is 𝒚𝒊

known and  is unidentified,  can be considered approximately equal to . The label propagation 𝒚𝒋 𝒚𝒊 𝒚𝒋

process can be represented as:

 =>   =                                (2)(𝒍𝒊,𝒚𝒊)→(𝒖𝒋) ( 𝒍𝒋,𝒚𝒊) ( 𝒖𝒋,𝒚𝒋)

However, even  is the most similar instance for  in the labelled dataset, it does not mean the new 𝒍𝒊 𝒖𝒋

label  is equal to the actual label of . There is still a slight difference between  and . In order 𝒚𝒋 𝒖𝒋 𝒚𝒋 𝒖𝒋

to get close to the actual label of , compensation to  need to be carried out. In this stage,  is 𝒖𝒋 𝒚𝒋 𝒖𝒋

unknown and the bias  between new label  and the actual label of  is estimated in the next ∆𝒚𝒋 𝒚𝒋 𝒖𝒋

stage.

In the label compensating stage, we model the relationship between  and  by utilising deep ∆𝒍𝒊 ∆𝒚𝒊

learning technique due to its excellent performance in data analytics (LeCun et al., 2015). The number 

of  is , which grows rapidly when the number of label data increases. The model which ∆𝒍𝒊 𝑁 =
𝑰(𝑰 ‒ 𝟏)

𝟐

is used to represent the relationship between and  can be modelled using deep learning ∆𝒍𝒊 ∆𝒚𝒊

algorithms. It can be denoted as： 

                                                                                                                                                                 ∆𝒚𝒊 = 𝑓(∆𝒍𝒊)

(3)

where  is the label compensating model training deep learning algorithm. 𝑓()
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After the label compensating model  is obtained, it can be used to determine the bias . In the 𝑓() ∆𝒚𝒋

label compensating model ,  is used as the input of  to yield , which can be denoted as:𝑓() ∆𝒖𝒋 𝑓() ∆𝒚𝒋

                                                                  (4)                                                                ∆𝒚𝒋 = 𝑓(∆𝒖𝒋)

Finally, with the new label  and the bias , the compensated label  is denoted as:𝒚𝒋 ∆𝒚𝒋 𝒚𝒋

                                                                   (5)           𝒚𝒋 = 𝒚𝒋 +  ∆𝒚𝒋

When the new label  is obtained, the unlabelled data and the label data is combined as an enriched 𝒚𝒋

dataset. The enriched dataset yielded by DLeSSL is then used to build a deep learning model to 

predict energy consumption. 

After the prediction models are established, algorithm performance is mainly evaluated by model 

correlation coefficient (MCC) (Taylor, 1997). MCC is used to represent the similarity between two 

variables. In this study, MCC is used to measure the similarity between a predicted value and its 

corresponding actual value. It can be denoted as:

,                                                                (6)MCC =
𝑆𝑃𝐴

𝑆𝑃𝑆𝐴

where,

𝑆𝑃𝐴 =
∑

𝑖
(𝑝𝑖 ‒ 𝑝)(𝑎𝑖 ‒ 𝑎)

𝑛 ‒ 1 ; 𝑆𝑃 =
∑

𝑖
(𝑝𝑖 ‒ 𝑝)2

𝑛 ‒ 1 ;

𝑆𝐴 =
∑

𝑖
(𝑎𝑖 ‒ 𝑎)2

𝑛 ‒ 1 ;

  is the predicted value and  is the average of the predicted value.  is the actual value and the  is 𝑝𝑖 𝑝 𝑎𝑖 𝑎

the average actual value.  is the number of the training data.𝑛

4. CASE STUDY

4.1 Experiment Setup
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The understanding of a steelmaking process is essential to process modelling. The first step in the 

steelmaking process is adding the collected scraps and additive into EAF. Then, the scraps are melted, 

before the impurity of the scraps is removed with the help of additive. The next stage is carbon 

adjustment where carbon is injected to meet the required carbon content in steel. In the final stage, 

steel products, such as plate and tube, are obtained after hot rolling and casting process.

In our study, the dataset was collected from the melt shop in an established steel plant in South Wales, 

UK. The steel plant uses a data-management software called System Analysis and Program 

Development to record and upload data to a cloud drive. The data collected from the steel plant has 40 

attributes and 10,987 instances. The attributes in the dataset can be categorised into seven groups 

according to their properties. Table 1 shows the results of attributes classification.

Table 1. 

The classification of attributes.

Category Attribute

Scraps
Clean bales 1, Clean bales 2, Merchant 1 & 2, Tin Can, Estructural, Fragmentized scrap, Steel 

turnings, Recovered Scrap, Total Scrap Mix

Additive Main Oxygen, Secondary Oxygen, Natural Gas, Carbon injected, Lime, Dolomite 

Index Heat Number

Nominal Steel Grade

Power
Average power LEVEL 2, PON time (min), TTT Level 2, Power factor, Apparent Power, Reactive 

Power, Current/kA, Foaming Index, Primary Volts (Onload), Varc

Temperature T TAP (ºC), TLF entry (ºC), Ladle Energy Cons (KWh), PRECIPITATION (mm), Temperature (ºc)

Pressure Average of cb1oxymainpressure, Average of cb2oxymainpressure, Average of cb3oxymainpressure

Output EAF (MWh), Billet Tons

4.2 Feature Selection and Data Pre-processing 

Feature selection aims to improve the performance and generalisation ability of data mining 

algorithms to reduce computation load and to provide a deeper understanding of features in the 
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problem domain (Guyon & Elisseeff, 2003). In this study, firstly, features such as scraps and additives 

that are directly related to the energy consumption of EAF are adopted. EAF (MWh) is the target 

variable (i.e. energy consumption of EAF) in this case. Secondly, other attributes, whose relationship 

to the energy consumption is hard to determine, are analysed by an attribute selection algorithm in the 

Weka software (Hall et al., 2009). The algorithm deployed in this case is CfsSubEval, and it contains 

two strategies: BestFirst (Xu et al., 1988) and GreedyStepwise (Caruana & Freitag, 1994). The results 

of different strategies are very similar. Table 2 shows the results of the feature selection. 

Table 2. 

The result of feature selection.

Note relevancy is a metric that reveals the correlation between the listed attributes and energy 

consumption. A higher relevancy indicates that attribute is more relevant to the energy consumption. 

The results of feature selection indicate that PON time (min), TTT level 2, Primary Volts (Onload) and 

Average of cb1oxymainpressure are more related to the energy consumption of EAF. However, there 

are 49% and 16% missing values in Primary Volts (Onload) and Average of cb1oxymainpressure, 

respectively. Since it is very often the case that a large percentage of missing values will jeopardise 

the performance during model building, Primary Volts (Onload) and Average of cb1oxymainpressure 

were not selected. Hence, including PON time (min) and TTT level 2, there are in total of 17 features 

Attribute Relevancy Attribute Relevancy

Heat Number 0% Primary Volts (Onload) 100%

Billet Tons 0% Varc 0%

Average power LEVEL 2 0% Secondary Oxygen 0%

PONtime (min) 100% T TAP (ºC) 0%

TTT Level 2 10 % TLF entry (ºC) 0%

Power factor 0% Ladle Energy Cons (kwh) 0%

Apparent Power 0% PRECIPITATION (mm) 0%

Reactive Power 0% Temperature (ºc) 0%

Current/kA 0% Average of cb1oxymainpressure 10%

Foaming Index 0% Average of cb2oxymainpressure 0%

%C Tapping 0% Average of cb3oxymainpressure 0%
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that were selected to establish an energy consumption model. Fig.2 shows the EAF modelling using 

the selected features.

Fig. 2. EAF modelling process using the selected features

The dataset was pre-processed before it was input for modelling. Firstly, abnormal values need to be 

replaced. The statistical distribution of most features is Gaussian except for Dolomite. Approximately 

80% of the instances in Dolomites are located near 800 kg, while the rest of the instances are discrete 

from 0 kg to 7,000 kg. There are approximately 1% of instances from Dolomite are over 7,000 kg, 

since domain expertise says it is not reasonable to add that much Dolomites into the EAF, hence, 

those values were replaced by the most frequent values. Secondly, approximately 3% of instances 

have missing values of Second oxygen, Main oxygen, Natural gas and Carbon injected. This is likely 

due to sensor failures. Because the missing values of the other attributes make up about approximately 

0.05% of the dataset, it is difficult to estimate all the missing values precisely. Hence, instances which 

contain these missing values were deleted. the number of the remaining instances in the dataset was 

10,710. Thirdly, the data were normalised to reduce data redundancy and enhancing data integrity. 

Finally, randomisation was implemented. In the dataset, each instance is an EAF processing record, 

and the record was uploaded to the database chronologically. To avoid local hidden patterns which 
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cannot represent global characteristics of EAF, all 10,710 data entries were randomised. After the data 

pre-processing stage, the dataset was brought forward to establish a prediction model for EAF energy 

consumption. 

4.4 Energy Consumption Modelling Using Deep Learning

In our previous study, deep learning and several prevailing machine learning algorithms (linear 

regression, support vector machine, and decision tree) were used for energy modelling. The results of 

the previous study are shown in Table 3. It can be seen from the results that the performance of deep 

learning in terms of  MCC, mean absolute error (MAE) and maximum error (MaxE) is better than the 

prevailing machine learning algorithms (Chen et al., 2018).  Because deep learning shows merits in 

comparison with the prevailing machine learning algorithms, it was selected to establish an energy 

consumption model based on the data obtained from DLeSSL in this study. 

Table 3. 

The comparison of the MCC, MAE, MaxE.

Metrics Deep learning Linear regression Support vector 
machine Decision tree

Model Correlation coefficient (MCC) 0.854 0.785 0.762 0.775

Mean Absolute Error (MAE) 1.254 2.103 1.709 1.946

Maximum Error (MaxE) 17.362 25.211 26.226 29.491

The parameters of deep learning are set as follows. Firstly, the deep learning structure used in this 

case is a deep neural network, which consists of full connected layers. The number of layers and 

neurons needs to be considered with the computational load and algorithm performance. After several 

different trials, the number of hidden layers was set at four and neurons in each layer was set at 500. 

ReLU (Rectifier Linear Unit), a prevailing activation function, was selected for the input and hidden 

layers ("Keras Documentation," 2016). Adam, a prevailing optimiser, is widely used in the deep 

learning field due to its excellent performance, and therefore it was used to build a regression model 

(Kingma & Ba, 2014). In order to measure the compatibility between predicted values and their 



  

21

corresponding actual values in deep learning, a loss function is necessary. Due to its wide application 

in prediction, the mean square error was adopted as the loss function. 

4.4 Energy Consumption Modelling Using DLeSSL

In this stage, DLeSSL was introduced into our study to label the unlabelled data. There are two 

purposes in this section. On the one hand, in what extent DLeSSL can be beneficial the algorithm 

performance using a small size of labelled data and a large size of unlabelled data needs to be 

determined. On the other hand, what is the suitable range for the ratio of labelled data and unlabelled 

data for DLeSSL needs to be investigated.

DLeSSL is composed of two stages: label finding stage and label compensating stage. As deep 

learning is used in DLeSSL, its parameters need to be well considered. The setting of deep learning 

used in label compensating stage is basically the same as the deep learning model mentioned in 

Section 4.3, except the activation function and the size of the nodes in each layer. After trails, linear 

function was adopted as the activation function in label compensating model as there are both positive 

and negative values in input data. Meanwhile, the number of nodes was reduced to 200. 

Because deep learning achieved the best performance in terms of MCC, MAE, and MaxE in energy 

consumption modelling in our previous study, it was used for energy consumption modelling in this 

study. Meanwhile, 5-fold cross-validation was implemented. MCC was used as the only metric to 

reveal the performance of different algorithms.

In this study, only a small part of the instances in the dataset were selected as labelled data. The size 

of labelled instances was set at different values in the range from 50 to 1000. The rest instances in the 

dataset were used as unlabelled data, which labels were removed. In the modelling stage, after the 

compensated labels of the unlabelled data were obtained, the labelled data was combined with the 
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unlabelled data with the compensated labels to an enriched dataset, which was used to train an energy 

consumption prediction model using deep learning. In order to reveal the performance of DLeSSL, a 

deep learning algorithm based on label propagation algorithm was adopted as a baseline. Meanwhile, 

a deep learning algorithm using a small size of labelled data was also adopted as a baseline. It is 

denoted as deep learning (supervised). Label propagation algorithm is a semi-supervised learning 

algorithm that used to determine the label of unlabelled data (Zhu & Ghahramani, 2002).

Fig. 4 shows the relation between the number of labelled data and the MCC of deep learning based on 

different algorithms, where the x-axis represents the number of labelled data and the y-axis represents 

MCC. It can be seen that the performance of the deep learning (DLeSSL based) in terms of MCC is 

the highest in every stage. Starting at 0.679, there is a dramatic increase in performance when the 

number of labelled data increased from 50 before it remains steady after 200. The highest 

performance of the deep learning (DLeSS based) in terms of MCC is 0.780, where the number of 

labelled data is 500.
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Fig. 4. The relation between the number of the labelled data and the MCC of deep learning based on 

different semi-supervised learning algorithms

In the meantime, the performance of deep learning (supervised) and deep learning (label propagation 

based) in terms of MCC are lower than that of deep learning (DLeSSL based). The performance of the 

deep learning (supervised) in terms of MCC fluctuated in all stages with the overall trend is upward. 

Increasing from 0.515, the performance of deep learning (supervised) in terms of MCC experienced a 

striking fluctuation when the number of labelled data range from 50 to 100. The highest performance 

of deep learning (supervised) in terms of MCC is 0.772, where the number of labelled data is 900. The 

peak performance of deep learning (supervised) in terms of MCC is close to that of deep learning 

(DLeSSL based). The performance of deep learning (label propagation based) in terms of MCC is the 

worst in most of the stages. Meanwhile, rsing from 0.346, there is a sharp increase in the performance 

of deep learning (label propagation based) in terms of MCC to 0.499 where the number of labelled 

data is 100. When the number of labelled data is situated in the range from 150 to 1000, the 

performance of deep learning (label propagation based) in terms of MCC is upward, with the highest 

MCC situating at 0.6823. It is obvious that the growing trend of deep learning (DLeSSL based) and 

deep learning (label propagation based) are more stable in comparison with deep learning (supervised). 

Meanwhile, the performance of deep learning (supervised) and deep learning (label propagation based) 

in terms of MCC are likely upward when the number of labelled data exceed 1000.

It also can be seen from Fig. 4 that when the number of labelled data is over 150, the performance of 

deep learning (DLeSSL based) in terms of MCC tends to converge. It is 0.758 when the number of the 

labelled data is 150, which is slightly lower than the optimal performance which is 0.780. Moreover, 

when the number of labelled data range from 150 to 600, deep learning (DLeSSL based) shows merits. 

In contrast, when the labelled data increases to 600, the difference in performance in terms of MCC 

between deep learning (DLeSSL based) and deep learning (supervised) is not considerable, which 

means deep learning (DLeSSL based) does not show advantages in comparison with the other two 

algorithms. Hence, the range of labelled data between 150 to 600 can be deemed as a suitable range 
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for DLeSSL. The unlabelled data used in this case is 7,568. The suitable range for the ratio of labelled 

data and unlabelled data is 1.982% to 7.923% for DLeSSL algorithm.

4.5 Discussion

Due to energy consumption has become a big concern in the steel industry, the proposed approach can 

be deployed in the steel industry to achieve better energy management. With an energy prediction 

model established using the proposed approach when the labelled data is insufficient, the impact of 

ingredients and process parameters on energy consumption can be identified. The prediction of energy 

consumption can be obtained by feeding formula and process parameters into the energy consumption 

prediction model. After different trials, the optimum formula which can lower energy consumption 

without compromising the steel quality can be determined. 

It is noticeable from the results that when the data size is insufficient, deep learning shows poor 

performance in terms of MCC. Also, the performance of deep learning tends to be unstable when the 

data size is small, which can be seen from the fluctuated trend of deep learning (supervised). The 

experimental results demonstrate that the performance of the deep learning (DLeSSL based) is better 

than deep learning (supervised). In striking contrast, the performance of deep learning (label 

propagation based) is lower than that of the deep learning (supervised), which indicate that label 

propagation algorithm damages the performance of deep learning in this case. This may be caused by 

the labels obtained using label propagation algorithm (Zhu & Ghahramani, 2002) are inaccurate. With 

the inaccurate label, the unlabelled data becomes noise in the dataset and therefore jeopardise the 

performance of deep learning. Hence, the experimental results indicate that DLeSSL can be a useful 

tool in energy consumption modelling. In this case, the best MCC of the deep learning (DLeSSL 

based) is 0.780, which is lower than the MCC of 0.854 for the deep learning in our previous study. 

The difference in performance is caused by the bias between the compensated label obtained by the 

proposed approach and the actual label of the unlabelled data. With the application of the proposed 
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technique, the required quantity of labelled data can be reduced by over 90% with the performance 

sacrificing by approximately 8%. 

To the best of our knowledge, most of the existing efforts in semi-supervised learning have tended to 

investigate the algorithm performance. However, the deployment of semi-supervised learning also 

needs to be studied. The identification of the relationship between the ratio and performance can be 

beneficial to the deployment of semi-supervised approach in the actual case. In this case, we 

determined the suitable range from 1.982% to 7.923%. This insight can be helpful in the deployment 

of DLeSSL in the actual case. Moreover, DLeSSL is used to find and compensate the label of the 

unlabelled data. By using this method, unlabelled data can be used to help the supervised learning task. 

Several existing semi-supervised learning algorithms only use unsupervised learning method to 

determine the label for unlabelled data. Different from the existing efforts, both unsupervised learning 

(label finding) and supervised learning (label compensating) are used in DLeSSL to determine the 

label of unlabelled data. In the future, the difference between the proposed approach and the existing 

semi-supervised learning algorithms will be studied to further reveal the performance of DLeSSL and 

find potential ways to improve it. 

5. CONCLUSIONS

The steel industry has a keen interest in reducing energy consumption. In this paper, the focus is on 

the modelling and prediction of energy consumption given an example of EAF in the steel industry. 

With an accurate energy consumption prediction model, the steelmaking formula and process 

parameters can be optimised to lower energy consumption. Relevant works, e.g., computational 

modelling techniques of EAF, research on semi-supervised learning, deep learning and data analytics 

in the steel industry, were reviewed. Based on deep learning and label propagation algorithms, a new 

semi-supervised approach called DLeSSL (deep learning embedded semi-supervised learning) for 

energy consumption modelling using a small size of labelled data and a large size of unlabelled data 
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was proposed. Different from the existing efforts that use unsupervised learning algorithm to 

determine the label of unlabelled data, DLeSSL uses both unsupervised and supervised learning 

algorithm to label the unlabelled data. This approach consists of two stages: the label finding and the 

label compensating stage. The aim of DLeSSL is to determine and compensate the labels of 

unlabelled data using deep learning technique. Thereafter, the new dataset yielded by DLeSSL is used 

to train a deep learning model to predict the energy consumption of EAF. A case study is carried out 

using real-world EAF data. The results have shown the merits of the proposed approach. 

Experimental results also have indicated that with the help of DLeSSL, deep learning tends to yield 

better performance when labelled data is scarce. Meanwhile, our finding highlights the suitable range 

for the ratio of labelled and unlabelled data in this study, which can offer insights to the actual 

deployment of the proposed approach. In the steel industry, DLeSSL can be a useful tool in energy 

consumption modelling when labelled data is limited.
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Energy Consumption Modelling Using Deep Learning Embedded 

Semi-supervised Learning

Research Highlights

1. An approach of deep learning embedded semi-sup learning method is proposed.

2. Via a two-stage approach, it assigns the tuned labels to unlabelled data.

3. It is used for energy consumption modelling when labelled energy data is limited.

4. A case study using real-world Electric Arc Furnace data has shown its merits.  

5. It yields better performance when the labelled energy data is scarce. 


