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Abstract.

The concentration of CO2 in the atmosphere is sensitive to changes in the depth at which sinking particulate organic matter

is remineralised: often described as a change in the exponent “b” of the Martin curve. Sediment trap observations from deep

and intermediate depths suggest there is a spatially heterogeneous pattern of b, particularly varying with latitude, but disagree

over the exact spatial patterns. Here we use a biogeochemical model of the phosphorus cycle coupled with a steady-state5

representation of ocean circulation to explore the sensitivity of preformed phosphate and atmospheric CO2 to spatial variability

in remineralisation depths. A Latin hypercube sampling method is used to simultaneously vary the Martin curve indepedently

within 15 different regions, as a basis for a regression-based analysis used to derive a quantitative measure of sensitivity.

Approximately 30% of the sensitivity of atmospheric CO2 to changes in remineralisation depths is driven by changes in

the Subantarctic region (36◦S to 60◦S), simliar in magnitude to the Pacific basin despite the much smaller area and lower10

productivity. Overall, the absolute magnitude of sensitivity is controlled by export production but the relative spatial patterns

in sensitivity are predominantly constrained by ocean circulation pathways. The high sensitivity in the Subantarctic regions

is driven by a combination of high export production and the high connectivity of these regions to regions important for the

export of preformed nutrients such as the Southern Ocean and North Atlantic. Overall, regionally varying remineralisation

depths contribute to variability in CO2 of between ± 5 - 15 ppm relative to a global mean change in remineralisation depth.15

Future changes in the environmental and ecological drivers of remineralisation, such as temperature and ocean acidification, are

expected to be most significant in the high latitudes where CO2 sensitivity to remineralisation is also highest. The importance

of ocean circulation pathways to the high sensitivity in Subantarctic regions also has significance for past climates given the

importance of circulation changes in the Southern Ocean.

1 Introduction20

Sinking particles of organic matter transfer 5-10 Pg C per year from the upper ocean to the ocean interior (Henson et al.,

2011), as part of a process known as the biological pump. As these particles sink, they are remineralised through bacterial

and zooplankton-related activity, releasing the carbon and nutrients back into solution at depth. Vertical fluxes of particulate
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organic carbon (POC) in the water column have historically been described by the Martin Curve, a power-law function that

describes the rapid decrease in flux (Fz) from a maximum value at depth z0, nominally the base of the mixed layer, to a small

asymptotic value in deep waters (equation 1: Martin et al., 1987) (Fig. 1):

Fz = Fz0

(
z

z0

)−b

(1)

The dimensionless exponent in the power-law (‘b’) describes whether organic matter is remineralised predominantly at5

shallower (larger values of b, e.g., b=1.6) or deeper depths (smaller values of b, e.g., b=0.4) (Fig. 1). The exponent itself

parameterises the rate at which POC sinks through the water column (units of m day−1) and the rate at which it is remineralised

(units of day−1) (Kriest and Oschlies, 2008; Lam et al., 2011). In this paper we use the term ‘remineralisation depth’, defined

as the depth at which ∼63% of POC has been remineralised (Kwon et al., 2009), to refer to changes in POC remineralisation

as it is relatable to alternative mathematical functions also used (e.g., Cael and Bisson, 2018).10

Ocean biogeochemical models predict that the concentration of CO2 in the atmosphere is sensitive to changes in a globally

uniform remineralisation depth. Kwon et al. (2009) showed that a deepening of the remineralisation depth globally of 24 m

(from b =1.0 to 0.9), redistributed dissolved inorganic carbon (DIC) from the intermediate waters to the deep ocean leading

to a reduction in atmospheric CO2 of between 10 and 27 ppm. The drawdown was also associated with a decrease in the

global mean concentration of preformed nutrients in the ocean interior (nutrients that are not utilised by biology in the surface15

ocean and enter the ocean interior via circulation: Ito and Follows, 2005). Kwon et al. (2009) found that increase in respired

carbon in the deep ocean was balanced by a reduction in preformed nutrients exported in the North Atlantic. Deepening of the

POC remineralisation depth could also drive dissolution of calcium carbonate (CaCO3) in ocean sediments ultimately drawing

down more CO2 over millennial timescales (Roth et al., 2014). The potential impact of remineralisation depth changes on

atmospheric CO2 is therefore a highly relevant component of the marine carbon cycle for both past and current changes in20

climate (Riebesell et al., 2009; Hülse et al., 2017; Meyer et al., 2016).

Analyses of global sediment trap observations suggest there is a spatially heterogeneous pattern of remineralisation depths in

the modern ocean that varies particularly with latitude. A synthesis of observations from deep sediment traps (>1500–2000 m:

Henson et al., 2012) suggests that POC fluxes in high latitudes attenuate faster with depth (shallower remineralisation depth:

b=1.6) than in low latitudes, where a greater proportion of POC is transported to depth (deeper remineralisation depth: b=0.4),25

(Fig. 1). However, POC fluxes measured using neutrally buoyant sediment traps at shallower depths (<1000 m) suggest the

inverse of this latitudinal pattern (Marsay et al., 2015) (see also, Weber et al., 2016). A recent compilation of sediment trap

data and profiles of particle size distributions observed in the water column highlight additional intra-basin variability in

b (e.g., shallower remineralisation in the East Equatorial Pacific than in the West) and inter-basin variability (e.g., deeper

remineralisation in the Atlantic and Indian basins compared to the Pacific) (Guidi et al., 2015). The uncertainty in the spatial30

variability of remineralisation depths presents a challenge for determining which mechanisms may be responsible for changes

in remineralisation depths and how these might drive future or past changes in remineralisation (e.g., Boyd, 2015). Additionally,

this also presents a challenge for biogeochemical models that are beginning to resolve the mechanisms that are potentially
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responsible for these spatial patterns such as particle size dependent sinking rates (DeVries et al., 2014), temperature dependent

remineralisation (John et al., 2014), and oxygen dependence (Laufkötter et al., 2017).

A key question in light of the observed spatial variability in remineralisation depths and the associated uncertainty in spatial

patterns is: what is the sensitivity of atmospheric CO2 concentrations to spatial variability in remineralisation depths? Kwon

et al. (2009) further quantified the sensitivity of atmospheric CO2 to basin scale changes in remineralisation depths by perturb-5

ing them in each basin individually, finding that the Pacific, Southern Ocean (defined as >40◦S), Atlantic and Indian Oceans

contributed 38%, 22%, 21% and 19% of the total CO2 drawdown respectively (Kwon et al., 2009). The variability in CO2

sensitivity between basins matched the variability in the magnitude of export production integrated over the basins and basin

area, suggesting that no one region was more significant when varying the globally uniform remineralisation depth (Kwon

et al., 2009). However, this basin-scale analysis does not resolve the sensitivity of atmospheric CO2 occuring at the resolution10

suggested by observations, i.e., a latitudinal and within-basin scale, or at the resolution of ecological and biogeochemical vari-

ability (Longhurst, 1998; Fay and McKinley, 2014). Additionally the analysis does not allow for the identification of potential

interactions and feedbacks between regions when remineralisation depths are changing simultaneously.

Here we aim to address these issues by performing a global sensitivity analysis of regionally varying remineralisation depths.

To this end, we use the 2.8◦ resolution MITgcm transport matrix (a steady-state computationally efficient representation of15

ocean transport) with a model of phosphorus cycling where the ocean is divided into 15 regions in which remineralisation

depths can change independently. Remineralisation depths are perturbed simultaneously using Latin hypercube sampling and

sensitivity quantified using regression analysis, and related to changes in atmospheric CO2 via preformed nutrients.

2 Methods

2.1 Model Description20

We provide a brief description of the model here and a more detailed description in Appendix A. The approach to quantifying

sensitivity used here relies on the ability to run an ensemble of model experiments. To make this approach feasible we use the

‘transport matrix method’ (Khatiwala et al., 2005; Khatiwala, 2007), a steady-state computationally efficient representation of

ocean transport derived from a dynamic ocean model. We use monthly mean transport matrices derived from the 2.8◦ global

configuration of the MIT ocean model with 15 vertical levels (Khatiwala et al., 2005; Khatiwala, 2007). These specific matrices25

have been previously applied to model biogeochemistry (Kriest et al., 2012; Kriest and Oschlies, 2015).

The biogeochemical model used here is a model of the marine phosphorus cycle that resolves phosphate ([PO4]) and dis-

solved organic phosphorus (DOP), similar to other models used to quantify the sensitivity of the biological pump (DeVries

et al., 2012, 2014; Pasquier and Holzer, 2016). Following Kwon et al. (2009), we calculate the production of organic mat-

ter using either a nutrient-restoring scheme, [PO4] is restored to monthly observations of [PO4] (Garcia et al., 2014) with a30

timescale of 30 days (eqn. A3), and one with constant export production where export production is fixed to that of the control

run unless nutrients fall below zero. These two schemes represent two end-member scenarios where organic matter production

either depends entirely on macronutrient concentrations and can increase with higher nutrient fluxes (restoring) or is limited by
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other factors such as light or micronutrients (constant export). The remineralisation of particulate organic phosphorus (POP)

is parameterised using the Martin curve (eqn 1). We use preformed PO4 (POpre
4 ) to relate changes in the modelled phosphorus

cycle to changes in atmospheric CO2 using a statistical relationship derived from published experiments (Appendix B). This

provides a way of relating changes in our model of phosphorous to changes in atmospheric CO2 without simulating a relatively

computationally expensive carbon cycle.5

2.2 Experiment Design

2.2.1 Defining Regions

We define a set of oceanic regions to approximately encapsulate the large-scale variability in biogeochemistry and patterns

of remineralisation depths observed in sediment trap studies. We define regions by lines of latitude and basins, similar to the

approach used by air-sea flux inversion studies, e.g., (Gloor et al., 2001; Mikaloff Fletcher et al., 2006). 15 regions are defined10

based on a partitioning by Gloor et al. (2001) with some minor changes (Fig. 2a). The assigned regions broadly correspond with

major features in observed surface [PO4] such as higher concentrations in upwelling regions and lower concentrations in the

nutrient-depleted gyres (Fig. 2b). This suggests the regions should be a reasonable analogue for an alternative approaches that

capture key spatial variability in ecology and biogeochemistry by defining regions using vertical mixing, mixed layer depths,

sea ice and sea surface temperature (Longhurst, 1998; Sarmiento et al., 2004; Henson et al., 2010; Fay and McKinley, 2014).15

The regions are also comparable to the ocean biomes defined used in previous biological pump studies (e.g., Weber et al., 2016;

Pasquier and Holzer, 2016).

2.3 Sensitivity Analysis

We first perform a set of reference experiments where the Martin curve exponents are varied between 0.4 and 1.6 globally, i.e.,

all regions are assigned the same Martin curve exponent. The range is based on the range of spatial variability observed in the20

modern ocean (Henson et al., 2012; Marsay et al., 2015; Guidi et al., 2015). Each experiment is run for 10,000 years from initial

uniform conditions using the nutrient-restoring scheme to predict export production (eqn. A3). We define the control run as

the experiment with the lowest root mean square misfit compared to annual mean World Ocean Atlas 2013 [PO4] observations

(Garcia et al., 2014). We find the lowest misfit when b=1.0 globally, as found in other studies using the same MITgcm transport

matrices (Kriest et al., 2012). A second set of reference experiments are then run with a constant-export scheme using the25

export production from the control run.

We perform a global sensitivity analysis with the aim to quantitatively rank the sensitivity of atmospheric CO2 to remineral-

isation depth changes in each region (e.g., Pianosi et al., 2016). Latin hypercube sampling, a stratified-random procedure that

provides an efficient way of sampling high dimensional parameter space (McKay et al., 1979), is used to vary the Martin curves

in every region simultaneously for the global sensitivity analysis. Values of b are sampled from a uniform distribution ranging30

from 0.4 to 1.6 using the ‘lhsdesign’ function in MATLAB with ‘maximin’ sampling. The range of b used centres around b=1.0

as used for the control run. We generate a Latin hypercube ensemble with 200 experiments, balancing the need for higher
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sampling resolution of the parameter space and total computational time. We run two sets of the Latin hypercube experiments:

one with nutrient-restoring export production and the other with constant export production where export production is taken

from the control run. All experiments are run for 3000 years following on from the control run which is sufficient for the mean

deep ocean [PO4] to equilibrate to a global change in the Martin Curve (Kwon et al., 2009). Annual mean fields of [PO4] are

diagnosed from the last full simulation year.5

We use multiple linear regression analysis to derive the sensitivity of atmospheric CO2 to changes in b in each region (k)

where the fitted coefficients (βk) give a quantitative measure of the sensitivity (e.g., Pianosi et al., 2016):

CO2 = β0 +
∑

k

βkbk (2)

3 Results

3.1 Sensitivity of CO2 to regional variability in remineralization depths10

To quantify the sensitivity of CO2 to regional changes in b we fit linear regression models to the results of the Latin hypercube

ensembles. The resulting regression models explain a large proportion of the variability between CO2 and b (R2 = 0.88 and

0.90 for the constant-export and restoring-uptake ensembles respectively). Residuals of the regression models showed no sig-

nificant bias versus the regression output (not shown) suggesting that a linear model was appropriate. Although the relationship

between CO2 and a globally-uniform remineralisation depth is non-linear (e.g., Fig. 6), the relationship is near linear around15

the observed global mean in the centre of the range of b tested (see also, Kwon et al., 2009). Overall, the absence of a strongly

non-linear relationship suggests the use of a linear regression model is appropriate (Pianosi et al., 2016).

When b is varied as a globally uniform parameter from 0.4 to 1.6, atmospheric CO2 varies from 219 to 303 ppm (range of 84

ppm) for the constant-export scheme and from 263 to 284 ppm (range of 21 ppm) for the nutrient-restoring scheme, consistent

with previous model experiments (Kwon et al., 2009). Figure 3 shows how the sensitivity of CO2 to changes in b varies as a20

function of region. CO2 is most sensitive to changes in b occuring in the Subantarctic regions, with CO2 being most sensitive

to changes in the Indian sector of the Subantarctic (Fig. 3, Table 1). The Southern Ocean and sub-tropical gyres, with the

exception of the gyre in the North Pacific, are consistently the regions where b has the smallest impact on CO2. Other regions,

including the equatorial Indian ocean, Equatorial Pacific and North Pacific have an intermediate sensitivity. As a region, the

Subantarctic is responsible for ∼30% of the CO2 sensitivity, comparable to the Pacific basin-scale sensitivity (Table 1).25

As with the globally uniform changes in b, the magnitudes of regional sensitivities are smaller when run with nutrient-

restoring uptake as opposed to a constant-export scheme because export production is able to convert any changes in surface

nutrient fluxes back into organic matter, limiting any change in preformed nutrients. However, the relative sensitivity ranked

across regions remains similar, as shown by expressing bk as a percentage (Table 1). Therefore, the regional patterns in Figure

3 are not sensitive to assumptions about the response of nutrient uptake to the redistribution of nutrients. This suggests the30
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absolute magnitude of CO2 sensitivity to changes in b is related to global export production that is is not driven by local

changes in export production specific to any region(s).

Kwon et al. (2009) demonstrated that the sensitivity of CO2 to basin-scale changes in b correlated with the magnitude of

export production in each basin. Similarly, we find a general postitive relationship between sensitivity and regional export

production, as measured by the mean annual average export production across the 200 ensemble runs (Fig 4). Intuitively,5

regions with lower export production, i.e., that contribute less to the inventory of regenerated PO4, have a smaller impact on

the balance between preformed and regenerated nutrients and therefore on atmospheric CO2. Whilst CO2 is generally more

sensitive to remineralisation depths in regions with higher export production, sensitivity varies across regions with similar

export productivity. For example, the sensitivity for the temperate North Pacific (NTemp-PAC; Fig. 4a) (∆CO2/∆b = 15.0,

export production = 1.4±0.11 Tmol P year−1) is approximately double that of the sub-polar region of the Southern Pacific10

(STemp-PAC; Fig. 4a) (∆CO2/∆b = 6.3, export production = 1.4±0.17 Tmol P year−1). There are no apparent relationships

between the variability of export productivity across the ensemble in each region, as shown by the horizontal errorbars, and

sensitivity (Fig. 4). This further supports the finding that the response of export production to changes in nutrient distributions

are not an important factor in the sensitivity of CO2 to regional changes in b.

The variability in sensitivity not explained by the magnitude of POC export is likely a function of how changing reminerali-15

sation depths interact with ocean circulation to redistribute nutrients. To quantify this effect we calculate [POpre
4 ] in the ocean

interior derived from each region individually (see Appendix B) and repeat the sensitivity regression analysis:

POpre
4 = β0 +

∑

k

βkbk (3)

The new regression analysis (eqn. 3) now predicts the contribution of changing b in all regions to the change in [POpre
4 ]

in single region rather than globally (Fig. 5). POpre
4 is normalised prior to the regression to make the coefficients comparable20

between regions which otherwise vary by up to three orders of magnitude. As such, Figure 5 shows the relative sensitivity

of [POpre
4 ] to changes in b. R2 ranges from 0.82 to 0.97 suggesting overall the linear regression models are appropriate. The

regression coefficients specific to a single region are collected from across the 15 regression results in each panel of Figure 5 to

show the relative sensitivity of POpre
4 exported across all regions in response to changes in b local to the region corresponding

with panel. For example, the Southern Ocean panel shows how a change in b in the Southern Ocean affects POpre
4 in all other25

regions. The sensitivity locally is coloured in black and positive sensitivities indicate an increase in [POpre
4 ] as b increases in

value, i.e., shallower remineralisation. Figure 5 displays the results for the constant-export experiments whereas the equivalent

results for the restoring-uptake experiments are shown in Figure S3.

The sensitivity analysis for each region on an individual basis shows that changes in b in the Subantarctic regions have large

impacts on POpre
4 across regions globally (Fig. 5). In particular, these regions have a particular effect on the POpre

4 export in30

the Southern Ocean and in the Atlantic as a basin, comparable in magnitude to the local changes in POpre
4 (compare size of

black bars to other bars: Fig. 5). Changes in b in the equatorial upwelling regions of the Pacific and Indian Oceans also have a

large global effect but with a more pronounced local effect. These features are more pronounced with nutrient-restoring uptake
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(Fig. S3). The Southern Ocean and North Atlantic regions are those with the highest POpre
4 export and variability across the

ensemble, consistent with previous findings about the global importance of these regions for preformed PO4 (DeVries et al.,

2012; Pasquier and Holzer, 2016). This suggests the larger sensitiviy of CO2 to changes in b in the Subantarctic regions is

due to the way in which the ocean circulation connects these regions to the Southern Ocean and North Atlantic. In contrast,

changing b in the Southern Ocean and North Atlantic has a relatively minimal effect on POpre
4 (and by inference CO2) both5

locally and globally.

3.2 Regional versus Global Sensitivity

Lastly, we explore whether the spatial patterns in sensitivity (Fig. 3) are significant on a global scale. Global average values of

b are calculated for each of the 200 Latin hypercube samples using an area-weighted mean and compared against experiments

where b is pertubed uniformly across regions (Fig. 6). We find that the relationship between CO2 and global mean b matches10

closely to that with the globally uniform b but with an offset of ∼20 ppm and ∼10 ppm for the constant and restoring export

schemes respecitively (Fig. 6a). We suggest this offset is likely caused by a non-linear relationship between b and the amount

of organic matter reaching the deep ocean (as measured by the e-folding depth: depth at which ∼63% of exported POC has

been remineralised) following from the fact that the Martin curve represents the scenario of a fixed remineralisation rate and an

increasing sinking rate (Kriest and Oschlies, 2008; Cael and Bisson, 2018) (see Supplementary Material). A change in b from15

1.4 to 1.3 results in a decrease in e-folding depth of 14 m whereas a change in b from 0.4 to 0.3 results in a change of 1902

m. Therefore, larger values of b, i.e., shallower remineralisation, have disproportionally more weight when averaging spatially

variable b values. To demonstrate this, we find the equivalent e-folding depths for each Latin hypercube sample, which form

a skewed distribution due to higher occurrence of shallower remineralisation, calculate the area-weighted geometric mean e-

folding depth for each sample, and re-arrange again for b (see Supplementary Material for details). The distributions in Figure20

6b now fall along the line of globally uniform experiments.

The relationship between CO2 and the globally averaged b values from the sensitivity experiments closely matches the

relationship between CO2 and globally uniform b for the both constant-export and restoring uptake schemes (Fig. 6a). The

average regionally varying b values vary within ∼±15 ppm of the globally uniform experiments with constant-export and

∼±5 ppm for the nutrient-restoring experiments, comparable to the change in CO2 for a globally uniform change in b of∼0.2.25

4 Discussion

Sediment trap observations reveal significant spatial variability in remineralisation depths. Here we have quantified the sensi-

tivity of atmospheric CO2 to regional changes in remineralisation depths and show that CO2 is most sensitive to changes in the

Subantarctic regions. Much of the observed spatial variability varies across latitudes (Henson et al., 2012; Guidi et al., 2015;

Marsay et al., 2015; Weber et al., 2016). Additionally, the mechanisms potentially driving these patterns are also likely to vary30

on a latitudinal basis, with changes in related environmental properties in response to anthropogenic CO2 emissions affecting

the high latitudes in particular: temperature changes (Kirtman et al., 2013) affecting temperature-dependent remineralisation
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rates; a reduction in carbonate saturation state with ocean acidification (Orr et al., 2005) affecting ballasting and changes in

plankton community composition; and cell size (Lefort et al., 2015) affecting aggregation dynamics and particle sinking veloc-

ities. Additionally, this is a consideration for changes in remineralisation depths occurring in past climates (Meyer et al., 2016).

This suggests that the spatial patterns in CO2 sensitivity could be significant when considering the impact of remineralisation

depth changes.5

Changes in the air-sea balance of carbon are commonly related to changes in preformed nutrients. Because of the inefficient

utilisation of upwelled nutrients in the Southern Ocean this region has been identified as key to setting the efficiency of the

biological pump (Ito and Follows, 2005; DeVries et al., 2012). Our results show that this is also key for the the sensitivity

of CO2 to regional variability in remineralisation depths because of upwelling in the Subantarctic regions (Fig. 5). This re-

lationship has implications when invoking changes in the efficiency of the biological pump in past climates such as the Last10

Glacial Maximum (LGM). Processes that increase the utilisation of nutrients in the Southern Ocean, such as iron fertilisation,

and processes that reduce the delivery of nutrients to the Southern Ocean, such as increased stratification, have been implicated

in the drawdown of atmospheric CO2 during the LGM (Sigman et al., 2010). Any changes in strafication will also impact the

sensitivity of CO2 to any additional changes in remineralisation depths, such as from changes in ballasting minerals and/or

temperature dependent remineralisation (Chikamoto et al., 2012). In comparison, processes such as iron fertilisation will not15

impact on this sensitivity. Because the spatial patterns of CO2 sensitivity to regional changes in remineralisation are predom-

inantly constrained by ocean circulation pathways, this also suggests that the sensitivity may change with a reorganisation of

ocean circulation as suggested for the LGM (Sigman et al., 2010).

The Martin curve is a commonly used parameterisation of the remineralisation of particulate organic matter with depth in

marine biogeochemical models, and is commonly applied with a globally uniform exponent (b) (Hülse et al., 2017). However,20

the Martin curve used in this way has potential limitations: it is an empirical and static parameterisation that does not represent

the mechanisms affecting remineralisation and sinking rates; and it does not capture spatial variability in remineralisation

observed in sediment trap data (Henson et al., 2012; Marsay et al., 2015; Guidi et al., 2015). In our sensitivity analysis, we

have shown that CO2 has a similar sensitivity to the global mean change in b as compared to a globally uniform change in b

with an uncertainty of ±5 - 15 ppm, equivalent to a change in b of ∼0.2 (Fig. 6). Kwon et al. (2009) suggest a decrease of25

0.3 from the modern remineralisation depth is sufficient to explain the increase in deep ocean nutrient concentrations during

the Last Glacial Maximum. For the 21st century, (Laufkötter et al., 2017) predict a decrease of POC export at 500 m by 2100

under RCP8.5 in response to temperature and oxygen-dependent remineralisation, equivalent to a decrease in b of ∼0.25. As

such, the global mean change in potential future and past changes in remineralisation depth may be larger than the uncertainty

associated with spatial variability. This has potentially useful implications for modelling the remineralisation of particulate30

organic matter fluxes. Models resolving the various processes that affect remineralisation rates and sinking velocities have

recently been developed (Jokulsdottir and Archer, 2016; Cram et al., 2018) however, the requirements to model processes such

as particle aggregation can be computationally expensive, limiting their application to 1-D models (Jokulsdottir and Archer,

2016; Cram et al., 2018) or to offline models (DeVries et al., 2014). A globally uniform change in b informed by these models

could then used to calculate the impact on atmospheric CO2 if the change in b is greater than 0.2.35
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Our results are dependent on the use of transport matrices derived from one ocean circulation model. The model is com-

monly applied to study biogeochemistry which means that our results should be consistent with a number of existing studies

(e.g., Kriest et al., 2012). In addition, our results have key similarites, including absolute and relative magnitudes of regional

preformed PO4 export, to other studies using alternative steady-state circulations (DeVries et al., 2012; Pasquier and Holzer,

2016). As such, our results should be broadly reproducible with other models. A disadvantage to using a steady-state circulation5

is that we cannot quantify impact of the CO2-climate feedback on ocean circulation and atmospheric CO2. Studies exploring

the simultaneous effects of warming temperatures on circulation and biology in response to anthropogenic CO2 emissions

show that changes in circulation could be as important as biological changes (Cao and Zhang, 2017), (but see, Yamamoto

et al., 2018). Quantifying the regional sensitivity with a dynamic ocean is therefore an important focus for future research.

Lastly, our modelling approach uses an empirical relationship between preformed nutrients and CO2 that enfolds the effects10

of processes such as air-sea gas exchange and the export of CaCO3. Ratios of CaCO3 to POC vary latitudinally, and could

therefore modify our sensitivity results. Segschneider and Bendtsen (2013) found important feedbacks involving interactions

between calcifiers and silicifiers in an marine ecosystem model when exploring temperature dependent remineralisation rates

in the 21st Century. Future model experiments including a representation of plankton ecosystems would therefore help explore

the impact of CaCO3 export on regional sensitivity patterns.15

5 Conclusions

We have presented a sensitivity analysis that quantifies the sensitivity of atmospheric CO2 to regional variability in particulate

organic carbon remineralisation depths. CO2 is most sensitive to changes in remineralisation depths occurring in the Sub-

antarctic regions, particularly the Indian Sector. As a whole, the Subantarctic regions have a sensitivity similar to that of the

Pacific basin despite the smaller area and levels of productivity. Sensitivity patterns are in part a function of the magnitude of20

export production in each region and the physical circulation pathways specific to each region. Whilst the overall magnitude of

CO2 sensitivity to regional changes is dependent on the magnitude and response of export production to changes in nutrients,

the relative spatial patterns in sensitivity are predominantly constrained by ocean circulation pathways. We also find that the

regional variability adds ±5 - 15 ppm uncertainty to global mean changes in remineralisation depths. The regional patterns

in sensitivity could be significant if a number of processes that potentially drive changes in remineralisation depths, includ-25

ing temperature-dependent remineralisation rates and plankton community structure, vary predominantly in the high latitudes.

However, this uncertainty is similar to the change in CO2 for a globally uniform change in b of ∼0.2 meaning that larger

changes in b could be reliably approximated by a globally uniform b as commonly used in biogeochemical models.
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Appendix A: Model Description

The Latin hypercube sampling approach used relies on the ability to run an ensemble of model experiments. To make this

approach feasible we use the ‘transport matrix method’ (Khatiwala et al., 2005; Khatiwala, 2007). The model is written in

Fortran 90 and achieves ∼1500 years hour−1 on a single core.

A1 Steady-state Ocean Circulation Model5

The matrix used here is the 2.8◦ global configuration of the MIT model with 15 vertical levels driven by seasonally cycling

fluxes of momentum, heat, and freshwater, publicly available from http://kelvin.earth.ox.ac.uk/spk/Research/TMM/TransportMatrixConfigs.

Seasonally varying ocean circulation is calculated at each timestep by linearly interpolating between monthly mean matrices.

An advantage of using transport matrices is that the timestep can be made longer to reduce computational expense (Khatiwala,

2007). Here we extend the circulation timestep to 3.8 days.10

A2 Biogeochemical Model

The biogeochemical model represents the cycle of phosphorus in the ocean with two dissolved tracers, PO4 and dissolved

organic phosphorus (DOP).. The biogeochemical model has the same timestep as the ocean circulation model (3.8 days). PO4

and DOP are governed by the following equations:

dPO4

dt
= APO4− Jup + JPOP + JDOP (A1)15

dDOP
dt

= ADOP + v · Jup− JDOP (A2)

where A denotes the transport matrix calculation of ocean transport and J denotes biogeochemical source/sink terms.

The uptake of PO4 during production of organic matter occurs in the euphotic zone, here defined as the base of the upper two

grid-boxes (120 m). Following Kwon et al. (2009) we calculate the production of organic matter using either a nutrient-restoring

scheme or a constant-export scheme. The nutrient-restoring scheme restores surface concentrations of PO4 to observed [PO4]20

with a restoring timescale (τ = 30 days Najjar et al., 2007) and is scaled by the fraction of seaice present (Fseaice):

Jup =
1
τ

max
((

PO4−PO4,obs

)
,0
)

(1−Fseaice) (A3)

Organic matter production in the constant-export scheme is fixed to that of the experiment defined as the control run unless

surface [PO4] is depleted below zero in which case Jup is set to zero at that timestep. The control run is defined as having the

run with the lowest root mean square misfit compared to annual mean World Ocean Atlas [PO4] observations.25

10

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-509
Manuscript under review for journal Biogeosciences
Discussion started: 17 December 2018
c© Author(s) 2018. CC BY 4.0 License.



A fixed fraction (v=0.66) of the organic matter production integrated across the upper two grid-boxes is routed directly to

dissolved organic phosphorus (DOP) and remineralised back to PO4 in a first-order reaction with decay rate κ throughout the

water column:

JDOP = κDOP (A4)

The remaining fraction of organic matter production ((1− kappa=0.34) is integrated across the upper two grid-boxes and5

exported as particulate organic phosphorus (POP) at the base of the euphotic zone (120 m). The remineralisation of POP is

parameterised with the Martin Curve (Equation 1). POP that has reached the sediment is remineralised fully in the lowermost

grid-box of the water column, maintaining a closed system with respect to [PO4]. As such, there is no sediment component in

this model.

Appendix B: Preformed PO4 and atmospheric CO210

Changes in atmospheric CO2 due to changes in the biological pump can be directly related to the inventory or average concen-

tration of preformed PO4 (POpre
4 ) if total nutrient concentrations are conserved (Ito and Follows, 2005; Marinov et al., 2008).

This provides a way of relating changes in our model of the phosphorous cycle to changes in atmospheric CO2 without simu-

lating a relatively computationally expensive carbon cycle. The distribution of annual mean [POpre
4 ] for each run is calculated

by splitting the transport matrices into “interior” matrices (AI) and “exterior” matrices (B) for both the explicit and implicit15

matrices (subscripts e and i respectively) (see Khatiwala, 2007). The annual mean surface [PO4] from the end of a simulation

is set as a boundary condition and solving for the interior distribution of POpre
4 :

(AI
iA

I
e− I)POpre

4 = (AI
iBe + Bi)PO4 (B1)

The global mean concentration of of POpre
4 ([POpre

4 ] ) is related to CO2 using a empirical quadratic function (eqn. B2). The

functon is derived from a compilation of published POpre
4 sensitivity experiments performed from three different models (Ito20

and Follows, 2005; Marinov et al., 2008; Kwon et al., 2009) using a non-linear least squares regression (Fig. A1). Although

the inventories of POpre
4 are model dependent (Duteil et al., 2012), the changes in [POpre

4 ] and CO2 relative to those of the

control run show consistent trends across the different models. The resulting regression fit (details in Figure caption) is used to

estimate changes in CO2:

CO2 = (β1∆POpre 2
4 +β2∆POpre

4 +β3) + COctrl
2 (B2)25
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Figure 1. The normalised water column distribution of particulate fluxes defined using the Martin curve. As a comparison, Martin curves are

shown with the exponent found by Martin et al. (1987) (b=0.858) and minimum and maximum exponent values used in this study based on

sediment trap data compilations (b=0.4, b=1.6 Henson et al., 2012; Marsay et al., 2015; Guidi et al., 2015). All curves have export depth (z0,

eqn. 1) of 120 m.
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Figure 2. a) Location and names of the 15 regions defined on the model grid based on Gloor et al. (2001). Boundaries are at 58◦S, 36◦S,

13◦S, 13◦N, and 36◦N. The equatorial Pacific is split at 98.75◦E following Mikaloff Fletcher et al. (2006). Each region can be assigned a

value of b that is independent of other regions. b) Location of regions superimposed on the annual mean surface [PO4] from World Ocean

Atlas 13 (Garcia et al., 2014) regridded to the model grid.
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Figure 3. Regional sensitivity (∆CO2/∆b) of atmospheric CO2 (ppm) to changes in Martin curve exponents (b: unitless) for (a) the constant-

export scheme and (b) the restoring-uptake scheme. A positive value relects an increase in CO2 (preformed PO4) with increasing b (shallower

remineralisation). Atmospheric CO2 is inferred from modelled preformed PO4 using the empirical relationship in Figure A1.
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Figure 4. Relationship between regional CO2 sensitivity and annual export of PO4 in each region using (a) the constant-export scheme and

(b) the restoring-uptake scheme. Annual export is shown as the mean of the 200 ensemble experiments with±1 standard deviation error bars.
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Figure 5. Normalised sensitivity of steady-state mean preformed [PO4] in all regions to a local change in b calculated with the constant-

export scheme. Sensitivity is calculated using equation 3 and preformed [PO4] is normalised before so that sensitivity can be compared on

the same scale. The regression coefficients specific to a single region are collected from across the 15 regression results in each panel to

show the relative sensitivity of POpre
4 exported across all regions (grey) in response to changes in b local to the region (black) corresponding

with panel. Panels are arranged by basins and by latitude. The equivalent plot for the restoring-uptake scheme is found in the supplementary

material.
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Figure 6. Comparison of CO2 sensitivity when b is varied as globally uniform parameter (solid lines) and when b is varied regionally

in the Latin hypercube samples and calculated as an (a) area-weighted global mean and (b) area-weighted geometric mean of e-folding

depths converted back to b to correct for non-linearities in the Martin Curve. Runs using the constant-export scheme are shown in black and

restoring-uptake runs are shown in grey.
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Figure A1. Relationship between relative changes in preformed PO4 and atmospheric CO2 from previously published model experiments

(see legend for details). Relative changes are calculated by subtracting the respective values from the control run (for Marinov et al., 2008 this

is defined as the LL - regular gas exchange run). All models feature gas exchange and no export production of CaCO3. A quadratic function

(∆CO2 = β1∆PO4,pre
2 +β2∆PO4,pre +β3) fitted to the combined data with non-linear least squares is shown with 95 % confidence

intervals. The R2 for the regression model is 0.97. The coefficients for the fit are β1=54.12, β2=170.15 and β3=1.37
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Table 1. Key metrics for each region including area, region-integrated mean annual POC export from the control run, CO2 sensitivity for

both the restoring-uptake and constant-export ensembles.

area (%) POC Export (%)a β (∆CO2/∆b) β (%) β (∆CO2/∆b) β (%)

SO 6.70 2.81 6.40 3.89 1.83 4.59

SubPol-PAC 7.67 8.35 17.11 10.40 4.20 10.55

STemp-PAC 10.37 7.86 6.25 3.80 1.01 2.54

Weq-PAC 7.21 7.46 9.42 5.72 2.48 6.23

Eeq-PAC 8.20 11.53 17.45 10.60 2.96 7.43

Ntemp-PAC 9.69 7.66 15.04 9.14 3.56 8.94

NN-PAC 4.94 3.50 6.99 4.25 1.73 4.34

SubPol-ATL 4.84 5.52 15.23 9.25 3.75 9.41

Stemp-ATL 4.46 3.53 5.79 3.52 1.79 4.49

Eq-ATL 5.45 6.06 10.58 6.43 3.28 8.22

NTemp-ATL 5.13 3.09 3.44 2.09 1.18 2.96

NN-ATL 4.84 7.04 9.16 5.57 2.91 7.29

SubPol-IND 6.86 9.18 20.26 12.31 4.68 11.73

STemp-IND 6.31 5.63 7.47 4.54 1.69 4.23

Eq-IND 7.32 10.85 13.98 8.49 2.81 7.06

Subantarcticb 19.38 23.04 n/a 31.96 n/a 31.69

Pacific 40.41 37.96 n/a 33.52 n/a 29.47

Atlantic 19.88 19.72 n/a 17.60 n/a 22.97

Indian 13.63 16.48 n/a 13.03 n/a 11.29

aPOC export from the control run. bSubPol-PAC, SubPol-ATL and SubPol-IND
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