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Abstract 

In meteorology term, nowcasting is weather forecasting 

for the next few minutes to six hours using all 

immediately available weather data. It is a relatively new 

subject, which often involves remote sensing, numerical 

weather prediction models, and advanced data 

communication infrastructure.  

High-quality weather nowcasting is crucial for optimising 

building performance in the near future. A range of 

nowcasting techniques has been used for such purposes.  

It includes statistical, machine learning, Numerical 

Weather Prediction (NWP), top-down and bottom-up 

approaches. 

This paper firstly reviews the advantages and 

disadvantages of common nowcasting methods with the 

focus on solar radiation nowcasting. Based on the review, 

popular methods have been classified into five categories. 

Authors then investigated further the nowcasting data 

provided by weather Application Programming Interfaces 

(APIs) that is backed by Numerical Weather Prediction. 

This is due to its large-scale application potential and the 

significances in the most recent update on solar radiation 

nowcast. 

Secondly, the paper explores the implications of applying 

weather nowcasting to dynamic building simulations, 

most importantly, examining its impact on the accuracy 

of indoor temperature prediction for free float buildings, 

heating load prediction and heating energy for heated 

buildings. The study used three buildings from BESTEST 

ANSI/ASHRAE Standard 140-2014 as the case studies.  

The results show that the most recent update of weather 

API includes meaningful solar radiation prediction. If the 

building does not have a large south facing glazing, the 

indoor temperature and heating load predictions from 

dynamic models are reasonably accurate.   

Introduction 

Previous research (Lazos et al., 2014) shows that weather 

variables are significant components of minimising the 

uncertainty in prediction, which can lead to 15-30% 

savings compared to deterministic and non-weather 

sensitive control approach. The accuracy of the weather 

forecast has always been a challenge for many decades. 

In recent years, significant progress has been made 

Numerical Weather Prediction, especially when 

nowcasting technologies have been discussed in 

meteorology communicates. 

The World Meteorological Organisation has organised 

few international nowcasting workshops starting from 

2007 and published Guidelines for Nowcasting 

Techniques in 2017. Remote sensing, numerical weather 

prediction models, and advanced data communication 

infrastructure have contributed to the improvement of 

weather forecast accuracy. This provided an excellent 

platform for optimising building performance which 

relies heavily on weather inputs. 

Nowcasting methods for solar radiations 

With the increasing number of weather stations and open 

data platforms available around the world, a range of 

techniques has been used to predict weather parameters. 

Solar radiation prediction remains challenging due to its 

dynamic feature. 

Inman et al. (2013), Diagne et al. (2013), Antonanzas et 

al. (2016) and Yang et al. (2018) have provided good 

reviews on solar irradiance and PV outputs. The key 

methods include time series method, regression, 

numerical weather prediction model, machine learning 

and image-based forecasting. 

For building simulation industry, Direct Normal 

Irradiance and Diffuse Horizontal Irradiance are equally 

important as Global Horizontal Irradiance due to the 

complex geometry of buildings and their energy 

implications. Therefore, more localised prediction 

methods are developed for building performance 

optimisation. In the view of authors, they can be classified 

into the following five categories (also see table 1): 

• Statistical and Learning method  

• Numerical Weather Prediction (NWP) models 

• NWP plus bottom-up measurements 

• NWP plus top-down observations 

• Weather API supported by Numerical Weather 

Prediction 

Statistical and Learning methods essentially utilise the 

pattern of historical data to predict future values. The most 

typical statistical method is ARIMA (Autoregressive 

Integrated Moving Average) model. The most 

representative learning method is undoubtedly the 

Artificial Neural Network (ANN). Based on the ANN 

architectures, different algorithms were introduced to 

optimise the performance of the ANN model including 

BP LM, SCG, CGP, etc. (see the first section of Table 1). 

These methods have good flexibility in spatial and 

temporal resolution. However, the primary challenge is 

their replicability, which often involves the manual 



handling process of selecting input variables, models, 

algorithms, and validation methods.  

Numerical Weather Prediction (NWP) began in the early 

20th century and experienced a series of improvements in 

recent decades. Modern NWP models commonly include 

Table 1: Previous studies on solar radiation nowcasting 

Article Parameter Frequency Data used Method 

Statistical and Learning method 

 

(Paoli et al., 2010) GHI Daily Public Weather Stations MLP 

(Sfetsos and Coonick, 

2000) 

GHI Hourly Public Weather Stations BP/LM/RBF/ANFIS 

(Cao and Lin, 2008) GHI Hourly Public Weather Stations DRWNN 

(Chen et al., 2011) GHI Daily Private Measurement SOM 

(Sharma et al., 2016) GHI Hourly/15 Mins Private Measurement WNN 

(Willy. M et al., 2018) GHI 10 Mins Private Measurement MLP/LM 

(Renno et al., 2016) DNI Daily/Hourly Private Measurement MLP/BP/LM 

(Yang et al., 2012) GHI Hourly Public Weather Stations ARIMA 

(Jiang and Dong, 2016) GHI Hourly Public Weather Stations SVM 

(Chu et al., 2015) DNI 5/10/15/20 Mins Private Measurement kNN 

Numerical Weather Prediction (NWP) models 

 

(Mathiesen and Kleissl, 

2011, Perez et al., 2010) 

GHI Intra-day Public Meteorological 

Institution 

NAM/GFS/ECMWF 

(Yang and Kleissl, 2016) GHI Intra-day Public Meteorological 

Systems 

WRF 

(Mathiesen et al., 2013) GHI Day Ahead/Intra-

day/Intra-hour 

Satellite, 

Public Weather Stations 

WRF-CLDDA 

(Lara-Fanego et al., 2012) GHI+DNI Hourly Public Meteorological 

Systems 

WRF 

Numerical Weather Prediction Plus Bottom-Up Measurements 

 

(Richardson et al., 2017) GHI Intra-hour Public + Private Weather 

Stations 

Ground Cloud Image 

(Yang et al., 2014) GHI 30s-15Mins Public + Private Weather 

Stations 

Ground Cloud Image 

(Peng et al., 2015) GHI 1/5/10/15 Mins Public + Private Weather 

Stations 

Ground Cloud Image 

(Marquez and Coimbra, 

2013) 

DNI 3-15 Mins Public + Private Weather 

Stations 

Ground Cloud Image 

(Cervantes et al., 2016) DNI 5 Mins Public Weather Stations 

Private Measurement 

Ground Cloud Image 

Numerical Weather Prediction Plus Top-Down Observations 

 

(Perez et al., 2010) GHI 6 Hours Public Meteorological 

Satellite/Systems 

Satellite Cloud Image 

(Nonnenmacher and 

Coimbra, 2014) 

GHI 1/2/3 Hours Public Meteorological 

Satellite/Systems 

Satellite Cloud Image 

(Lorenz et al., 2004) GHI 30 Mins-6 Hours Public Meteorological 

Satellite/Systems 

Satellite Cloud Image 

(Hammer et al., 1999) GHI 30 Mins-2 Hours Public Meteorological 

Satellite/Systems 

Satellite Cloud Image 

Weather API supported by Numerical Weather Prediction 

 

(Du et al., 2016)  GHI Hourly Public + Private Weather 

Stations 

Forecast API 

(Du et al. 2017a) GHI+DHI Hourly Public + Private Weather 

Stations 

Forecast API + further work 

on solar radiation 

GHI: Global Horizontal Irradiance, DNI: Direct Normal Irradiance, DHI: Diffuse Horizontal Irradiance 

 



Global Forecast System (GFS) such as Weather Research 

and Forecasting (WRF)., or regional models such as 

North American Mesoscale (NAM), European Centre for 

Medium-Range Weather Forecasts (ECMWF), and Met 

Office United Kingdom (UK) Atmospheric Hi-Res Model 

Deterministic UK (UKV). They are suitable for 

forecasting solar radiation in large spatial horizon (5km-

20km) and temporal horizon (4hours-36hours) that thus 

contributes to a region forecast. Although NWP methods 

usually are able to provide meteorological forecast 

including radiation, the forecast of solar radiation data 

tends not to be offered freely to the public until very 

recently. 

Given the limitations of NWP, some bottom-up 

measurements methods have become popular in recent 

years, including the usage of Total Sky Imager. These 

methods typically extract image data form local imager(s) 

along with a line or a sector upwind of the sun and apply 

regression and machine learning methods to imager 

measurements at specific pixels or groups of pixels to 

derive cloud height, speed, GHI and DNI at the sky 

imager location. Although the spatial resolution of the 

image is relatively limited because of the ability of camera 

and cost of Total Sky Imager is relatively high, it provides 

advance warning of approaching clouds at a lead-time of 

several minutes to hours that contribute to the short-term 

forecast of solar radiation. 

Unlike bottom-up measurements methods relies on 

ground-based cloud image, top-down observations 

methods tend to analyse satellite cloud image obtained 

from the atmosphere above. Hammer et al. (1999), Lorenz 

et al. (2004) and (Perez et al., 2010) presented the better 

forecasting performance of satellite cloud image method 

comparing with NWP methods for specific forecast 

horizons. The top-down observations methods show a 

good performance on 30 mins – 6 hours ahead forecasts 

and have a relatively large coverage comparing with other 

methods. However, the availability of satellite and error 

caused by the low resolution of satellite cloud image are 

the main challenges. 

Over the past decade, the accuracy of weather forecasts 

has been improving significantly. A four-day forecast 

today is more accurate than a one-day forecast in 1980. 

Author’s previous research (Du et al., 2016) (Du et al., 

2017a) shows that the UK Met Office DataPoint 

Application Programming Interface (API) provides 

accurate short-term weather data for the locations in the 

UK. Besides, UK Met Office’s next 5-day hourly 

forecasts at 1.5km grid density can be used for predicting 

building energy demands at both individual building and 

urban scale (Du et al., 2017b) which considers urban 

heating island effect. The similar forecast API service 

providers outside the UK, such as Spanish Met Office 

(aemet.es), Norway Met Office (met.no), private 

companies (openweathermap, weatherbit, darksky, 

wunderground, apixu) are also available to cover over 

200,000 locations around the world (Du et al., 2018). 

Opportunities using weather APIs 

From December 2018, Weatherbit API started offering 

hourly solar radiation forecasts for the next 48 hours. 

Table 2 listed the key parameters for building simulation 

which are available from popular APIs around the world. 

It shows that Weatherbit is the first and only API provider 

that offering such service freely available to the public. 

This paper, therefore, is focused on the application of 

Weatherbit API to building simulation due to its large-

scale application potential and the significances in the 

most recent update on solar radiation nowcast. 

Methodology 

To understand the prediction accuracy on indoor 

temperature and heating load, this work involves three 

steps: 

1. Exam the accuracy of weather nowcasting. This 

includes the comparisons between observed variables 

from a local weather station, historical weather data 

from weather API, and nowcasting data from weather 

API. The process of obtaining rolling latest weather 

data (both yesterday and next 6-hour) are shown in 

figure 1. The detailed process of producing weather 

data has been published in a journal article (Lucas et 

al., 2019). 

To obtain the latest weather data, a programme was 

developed in Matlab to automatically collect data on 

6-hourly frequency from 5th Jan to 23rd Jan 2019 (19 

days).  

This paper used Pamplona, Spain as the example 

because a high accuracy calibrated local weather 

Table 2: Key parameters for building simulation from different APIs (updated on 5th Jan 2019) 

APIs Temp RH Wind 

Spd 

Wind 

Dir 

Pres DHI DNI GHI Solar 

Rad 

UV Weather PoP Cloud 

weatherbit 2.0 √ √ √ √ √ √ √ √ √ √ √ √ √ 

datapoint √ √ √ √ × × × × × √ √ √ × 

aemet √ √ √ √ × × × × × × √ √ × 

apixu √ √ √ √ √ × × × × √ √ √ √ 

darksky √ √ √ √ √ × × × × √ √ √ √ 

api.met.no √ √ √ √ √ × × × × × √ mm √ 

openweathermap √ √ √ √ √ × × × × × √ mm √ 

wunderground √ √ √ √ × × × × × √ √ √ × 

Temp: Temperature, Pres: Pressure, DHI: Diffuse horizontal solar irradiance at Clear Sky, DNI: Direct normal solar 

irradiance at Clear Sky, GHI: Global horizontal solar irradiance at Clear Sky, Solar Rad: Estimated Solar Radiation, UV: UV 

Index, Weather: Weather Type, PoP: Probability of Precipitation, Cloud: Cloud coverage, mm: in millimetres not percentage. 

 



station was recently installed there, and it has a BF5 

Sunshine Pyranometer manufactured by Delta-T 

Devices which offers both global and diffuse 

radiation. The whole weather station is supported by 

a 3G based HOBO RX3000 Station.  The weather 

station also measures temperature, relative humidity, 

dew point, pressure, wind speed and wind direction 

at 10 mins interval. 

2. To test the implications of applying weather 

nowcasting to dynamic building simulations, most 

importantly, exploring its impact on the accuracy of 

indoor temperature prediction for free float buildings, 

heating load prediction and heating energy for heated 

buildings.  

The study used three buildings from BESTEST case 

studies and conducted dynamic building energy 

simulation using simulation engine EnergyPlus 

Version 9.0.1. EnergyPlus software has been tested 

against ANSI/ASHRAE Standard 140-2017 and is 

widely used in both practitioners and researchers 

around the world. 

A single zone building - Case 640, Case 940 and Case 

900FF (figure 2) in ANSI/ASHRAE Standard 140-

2014 was chosen as the case study building due to its 

simplicity, and it has been widely used for 

comparative studies. The building is a single 

rectangular box (8 m wide x 6 m long x 2.7 m high) 

with no interior partitions and 12 m2 of south-facing 

windows. All buildings have walls with U-value of 

0.514, roof U-value of 0.318 and floor U-value of 

0.039 W/m2K. Case 940 is identical to Case 640 

except for high mass walls and floor. Case 900FF is 

similar to Case 900 except that it is a free float 

building which means not heating and cooling. The 

detailed descriptions of the differences are listed in 

table 3. 

Heating and cooling set points were applied in Case 

640 and Case 940 to test the energy implications of 

the heating load. Due to the nature of testing, the 

following changes have been made in Case 640 and 

Case 940 models. For Case 900FF, only location and 

run period were changed. 

• Site:Location => Pamplona, Spain 

• RunPeriod => 5th to 23rd January 2019 

• Schedule:Day:Interval – Schedule Day 1 => 22 
oC; 

• Building: North Axis => 0 (for south-facing 

glazing), 180 (for north facing glazing) 

For further details of model drawing and settings, 

please refer to ANSI/ASHRAE Standard 140-2014. 

 

Figure 2: A single zone building with large glazing - 

Case 640/940/900FF defined within ANSI/ASHRAE 

Standard 140-2014 

 

In total, 18 simulations are performed within 

EnergyPlus 9.0.1. They are covering three sets of 

weather data (local observation from the weather 

station, historical data from weather API and forecast 

weather data from API), three case studies (Case 640, 

940 and 900FF) and two orientations (south facing 

and north facing glazing). These simulation results 

can inform the impact of weather data on indoor 

temperature and heating load predictions. Two 

orientations were introduced to investigate the 

sensitivity of solar heat gain through windows. 

3. The indoor temperature simulation results from Case 

900FF and heating load simulation results from Case 

640/940 were used for comparative studies in the 

results section. The prediction errors Root Mean 

 

Figure 1: The process of obtaining weather nowcast and historical data 



Square Error (RMSE) is used for comparing 

observation and prediction. 

Table 3: Differences in three cases 

Model Short descriptions 

Case 

640 

Low mass building with the wall made of 12mm 

plasterboard (950 kg/m3) and 66mm fiberglass 

(12 kg/m3), and floor made of 25mm timber (650 

kg/m3). 

Case 

940 

Case 940 is identical to Case 640, except that 

high mass walls are made of 100mm concrete 

block (1400 kg/m3) and 6.15 mm form insulation 

(10 kg/m3), and floor is made of 80mm concrete 

slab (1400 kg/m3).  

The overall U-value is roughly same as Case 640. 

Case 

900FF 

Case 900FF is identical to Case 940, except that 

there is no mechanical heating or cooling system. 

 

Results and discussion 

Comparison of outdoor weather variables 

Authors’ previous study (Du et al., 2018) shows that 

different weather APIs as different accuracy, and 

accuracy varies depending on the location. For example, 

the UK Met Office provides an excellent forecast for the 

UK, whereas, other API providers such as DarkSky or 

Weatherbit makes the best forecast for Pamplona in 

Spain. Therefore, it is essential to understand the accuracy 

of weather prediction before using it for building 

simulation. As shown in figure 1, the forecast error and 

historical data error from API are worth to investigate. 

This section presents the errors for each of the weather 

variables including temperature, RH, pressure and most 

importantly solar radiation (both global and diffuse). 

Figure 3 illustrates three types of outdoor temperatures 

over the study period 5th – 23rd January 2019. Evidence 

shows that prediction (blue line) is close to observation 

(black line). However, it misses the peaks on 5th and 16th 

Jan. Statistical analysis in figure 4 and table 4 shows that 

the R2 between local observation and forecast is 0.7768 

which means 77.68% forecast can be explained by the 

linear regression model (yellow line). Table 4 also 

revealed that the historical data from API are very 

accurate (R2 of 0.9518). This is also evidenced in figure 4 

(see the closeness between black and red lines). Both 

indicate that when the weather station is difficult to set up 

for this location, historical data from API could be used 

to replace observation data and it still can maintain a high 

level of confidence. The results show that the most recent 

update of weather API includes meaningful solar 

radiation prediction.  

 

Figure 3: Temperature forecast vs observation. 

 

Figure 4: Comparison of observed and forecasted 

temperature for Pamplona, Spain. 

Table 4: R squared between forecast and observations - 

temperature 

R Squared History from API Forecast from API 

Local 

Observation 

0.9518 0.7768 

History from API 0.8155 

 

Figures 5-6 show that the forecast and observations for 

RH and pressure are also in good agreement. Although 

they are less important for EnergyPlus simulation, they 

could be useful information to guide the air conditioning 

operations. 

 

Figure 5: RH forecast vs observation 

 

Figure 6: Pressure forecast vs observation 

Figures 7-8 show the value and statistical analysis of 

global solar radiation. Observation during noon is slightly 

higher than the prediction. The correlation coefficient (R2 

of 0.7367) is higher than the method used in the previous 

study (R2 of 0.66) which was based on the RH regression 

model (Du et al., 2017a). Further research in table 5 shows 

that historical data from API has slightly better R2. 

However, the historical solar radiation from API is not as 

good as the historical temperature from API which has R2 

of 0.9518. 



 

Figure 7: Global radiation forecast vs observation 

 

Figure 8: Comparison of observed and forecasted 

Global Horizontal Irradiance for Pamplona, Spain. 

Table 5: R squared between forecast and observations - 

Global Horizontal Irradiance 

R Squared History from API Forecast from API 

Local 

Observation 

0.7700 0.7367 

History from API 0.8622 

 

Diffuse forecasts from API are illustrated in figure 9. The 

regular trend (evidenced in blue line) shows that it could 

not capture the peak values during noon. Also note that 

the historical diffuse solar radiations from API is same as 

the API’s forecasts, therefore red line is overlapped with 

the blue line. 

 

Figure 9: Diffuse horizontal irradiance forecast vs 

observation 

Comparison of indoor temperature 

This section presents the indoor temperature simulation 

results from Case 900FF including the building with south 

facing glazing (figure 10) and the building with north 

facing glazing (figure 11). The solid blue lines show 

simulation results using observed weather variables, 

whereas the blue dash lines show simulation results from 

predicted weather variables. For comparison purpose, 

yellow lines illustrate outdoor global radiation. In figure 

10 (south facing), the temperature drops when outdoor 

radiation is not strong enough.  

The prediction Root Mean Square Error (RMSE) is used 

for comparing indoor temperature from observed outdoor 

weather and indoor temperature from predicted outdoor 

weather. The RMSE for the building with south facing 

glazing is significantly higher than the building with north 

facing glazing (RMSE 0.79 oC). The results show that if 

the building does not have a large south facing glazing, 

the indoor temperature predictions from dynamic models 

are reasonably accurate.  However, if there are large south 

facing glazing, the RMSE could rise to 2.68 oC. Please 

note that although a 2-3 degree of difference is noticeable 

in the figures, the predicted temperature trend is identical 

comparing with the simulation using observed data. 

Therefore, the indicative trend from prediction is still 

valuable for optimisation and control purpose even for 

south facing buildings. 

 

Figure 10: Indoor temperature prediction on building 

with south facing glazing (RMSE=2.68 oC) 

 

Figure 11: Indoor temperature prediction on building 

with north facing glazing (RMSE=0.79 oC) 

Comparison of heating load 

For the building with north facing glazing, the heating 

load results from both lightweight and heavyweight 

buildings are shown in figure 12. Solid lines show 

simulation results using observed weather variables, and 

the dot lines show simulation results from predicted 

weather variables. The predicted heating profile is similar 

to heating profile from observed weather data (with very 

like RMSE values). 

In term of heating energy demand over the study period 

(5th to 23rd January 2019), the difference between 

prediction and observation is 4.5% for the heavyweight 

north facing building, and 2.1% for the lightweight north 

facing building (figure 13). For a heavyweight building 



with south facing glazing, the difference could be up to 

13.7%. 

 

Figure 12: Heating load for building with north facing 

glazing (RMSE_lightweight=0.1643 kW, 

RMSE_heavyweight=0.1128 kW) 

 

Figure 13: Heating energy demand for building with 

north facing glazing (19 days, 5-23 Jan 2019) 

Conclusion 

The paper demonstrated the use of the latest weather 

forecast API (including solar radiation nowcasting) for 

building simulation and indoor temperature and heating 

load prediction.  

The results show that the most recent update of weather 

API does include a meaningful short-term prediction for 

global solar radiation. For the building without large south 

facing glazing, the indoor temperature and heating load 

predictions from dynamic models are reasonably accurate 

(RMSE=0.79 oC for indoor temperature and RMSE 

=0.1643 kW for lightweight building heating load).  

For the building with large south facing glazing, the 

development of more accurate solar radiation nowcasting 

methods is needed, particularly for diffuse horizontal 

irradiance. The current weather API offers diffuse 

horizontal irradiance under clear sky condition. This 

could be adjusted according to cloud cover prediction. 

Authors expect to continue the monitoring and plan to 

exam the solar radiation forecast’s impact on cooling load 

and indoor temperature in summer 2019.  

This manuscript is part of ongoing work to develop 

nowcasting methods for solar radiations including both 

diffuse and direct. Authors are in the process to validate 

and enhance the low-cost nowcasting methods developed 

through the European Union's Seventh Programme 

DNIcast project (€3m, 2013-2017) and the INTEGRATE 

project funded by the United State Department of Energy 

($6.5m, 2014-2017). More results are expected to be 

published in a journal paper. 
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