Conclusion
SFOV 4D-CBCT images were found to improve visually when subjected to a simple streak correction. Improvements were likewise observed on quantitative measurements of gradients as well as on CBCT HU to CT HU comparisons, and did not degrade the overall HU levels of the image. With gpu-optimization the calculation time of the method can potentially be reduced to less than a minute which will make it usable for on-line IGRT.

EP-2140 A Bayesian mixture-model for ion identification and filter in particle imaging
C.A. Collins Fekete
National Physical Laboratory, Chemical-Medical and Environmental Science, Teddington, United Kingdom

Purpose or Objective
Proton imaging promises to produce accurate relative stopping power (RSP) maps crucial for particle therapy treatment planning. Yet, protons suffer from multiple Coulomb scattering that degrades the image spatial resolution. Less deflected-heavier ions have been suggested to reduce this problem. However, those ions produce secondary particles through nuclear interactions, which increase the detector noise. A Bayesian mixture-model (BMM) is developed to predict the most-likely particle related to each set of measurements produced by an event.

Material and Methods
In a mixture model, it is assumed that a given event can be drawn from one of N generating processes. In particle imaging, it is assumed that the detector’s measurements for a single event are caused by either a primary or secondary particle generated from electromagnetic or nuclear processes. First, a likelihood model with loose parameters is constructed for each process. The indicator q_i \in [0,N] is introduced to point the i-th measurement to a model. The likelihood of the measurement to origin from this process is then calculated from the chosen model. The BMM posterior is the product of this likelihood over all particles with a prior estimated from the expected ratio of primaries and secondaries. The set of indicators q is modified iteratively, while improving the models’ parameters, to maximize the posterior. The optimal set indicates the most-likely particle attached to each event. The BMM is compared to the classical three-sigma clipping filter. To validate the BMM, helium ions (n=10^6, 330 MeV/u) were simulated through an abdomen anthropomorphic phantom to generate this figure.

Results
The three-sigma filter identifies correctly 51.2% real positive (RP) and 1.2% real negative (RN) measurements, giving a total of 52.3% true identifications. This filter lacks precision in rejecting secondary events. The proposed BMM identifies correctly 49.2% RP and 48.8% RN measurements, giving a total of 98.0% true identifications. In addition, the BMM correctly identifies 79.3% of the charged secondaries as protons, deuteron, tritium and ‘He.

Figure 1: Fraction of the particles identified correctly and incorrectly when compared to their actual identity for both techniques (BMM and three-sigma filter). Helium ions (n=10^6, 330 MeV/u) were simulated through an abdomen anthropomorphic phantom to generate this figure.

Figure 2: Percentage of the secondary particles correctly and incorrectly identified by the BMM technique against the particle type. Helium ions (n=10^6, 330 MeV/u) were simulated through an abdomen anthropomorphic phantom to generate this figure.

Conclusion
The higher rate of true identifications compared to the three-sigma method shows that the BMM is a prime candidate for filtering in helium imaging. This development opens the way for precise particle imaging, which is hypothesized to produce high accuracy/resolution RSP maps. Furthermore, the precise classification of charged secondaries is encouraging for future applications, e.g. nuclear fluence loss tomography.

EP-2141 Evaluation of 2D and 3D radiomics features extracted from CT images of oesophageal cancer patients
C. Piazzese¹, P. Whybra¹, R. Carrington², T. Crosby², J. Staffurth³, K. Foley¹, E. Spezi¹
¹Cardiff University, School of Engineering, Cardiff, United Kingdom
²Velindre Cancer Centre, Cardiff, United Kingdom
³Cardiff University, School of Medicine, Cardiff, United Kingdom

Purpose or Objective
Radiomics is the practice of extracting large number of quantitative features from medical images and it can be used to inform decision support systems. Radiomic features can be computed by considering one tumour layer at a time in 2D or the whole tumour layers in 3D. Due to lower complexity and faster calculation, 2D
developed data analytics software to provide a computational environment for radiotherapy research. Med Phys. 2003 May;30(5):979-85.


EP-2142 Implementation of registration quality assurance
K. Anderle1, T. Brandt2, J. Wölfelschneider2, C. Bert1, C. Graeff1
1GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Darmstadt, Germany
2Universitätsklinikum Erlangen, Radiotherapy, Erlangen, Germany

Purpose or Objective
A registration is nowadays commonly used in radiotherapy, most commonly to connect different image modalities. With a more precise deformable image registration (DIR) several new fields in radiotherapy arise, such as contour propagation, plan adaptation and time-resolved (4D) dose calculation. However, DIR is prone to errors and a rigorous quality assurance (QA) is required to implement DIR in clinical environment. We have developed an open-source software to provide a registration QA with several different measures.

Material and Methods
We have followed the guidelines of recently published AAPM task group report (Brock et al., 2017), where 8 different measures are proposed to be verified during registration QA. As shown on Figure 1, there are several different inputs necessary to fulfill all 8 measures and the list doubles with forward and backward registration (fixed and moving images are reversed in registration) present. We have incorporated all measures as an extension in the open-source software Slicer 3D, called RegQA. The RegQA module combines existing Slicer 3D functionality (measure 1, 2 and 4), SlicerRT Segment Comparison module logic (measure 6), three custom designed command-line modules based on ITK (measure 3, 7 and 8) and custom design logic (measure 5). All inputs can be loaded manually or automatically, if the paths to files are specified. The user can export the result of DIR QA as a set of images and as a table with quantitative results from measures 5, 6, 7 and 8.

Results
Our software was validated on several CT-CT, CT-MRI and inter-4DCT DIR. The resulting DIR QA pointed out errors in either image acquisition or DIR results. A special efficiency was proven for the 4DCT DIR QA, where 10 4DCT phases, along with forward and backward registration resulted in a large number of different inputs (414 DIR). An automation process in our software enabled quantitative DIR QA on 414 different DIR with minimal