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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

With the development of energy technologies, the electricity, cooling, heat, natural gas and other energy sources are tightly linked 
to improve the overall efficiency of energy system in integrated energy systems (IES). As the basis of optimization and simulation, 
the standardized modeling method of IES has become a challenge considering the deeply coupling of multi-energy resources. This 
paper proposes an energy bus structure that could realize the systematic modeling of IES. By adopting energy bus model, the 
components and the structure of IES can be mathematically presented. Then the matrix-based modeling method is proposed to 
describe the topology of the IES and the characteristics of energy converters. The equations that describe the energy flow 
relationship of the entire system can be listed out. Finally, a case study of Northern Customer Service Center (NCSC) of State Grid 
Corporation of China is conducted to verify the effectiveness of the proposed method. 
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investment, environment unfriendly and low energy efficiency. Therefore, exploring new energy supply solutions is 
of great value for scientific and industrial. 

Integrated energy systems (IES) that bring together the electricity, cooling, heat, natural gas and other energy 
sources has become an important method to overcome these shortcomings. IES can effectively coordinate and optimize 
the production, distribution, storage, and consumption of the involved energies, which is of great significance to 
improve the overall energy efficiency and increase the penetration of renewable energy sources. Therefore, IES has 
become the focus point of researchers in recent years all over the world. 

As the basis of further optimization and simulation, the modeling method of IES has become a challenge 
considering the deeply coupling of multi-energy resources. As the topology and energy equipment has become more 
complex, many scholars have put forward different modeling methods from different scales and complexities. Geidl 
et al. [1] presented Energy Hub (EH) concept in 2007. An energy hub is considered a unit where multiple energy 
carriers can be converted, conditioned, and stored [2]. Reference [3] proposes a matrix modeling method based on EH 
to build the coupling matrix. Moreover, there are a number of papers focus on the modeling of a specific IES. Reference 
[4] proposed an optimization model of an IES consist of CCHP and wind power. Reference [5] established an 
optimization method of energy flow considering combined electricity and gas network system. Reference [6] 
established an energy flow analysis method considering combined electricity, gas and heat system. 

This paper proposes an energy bus structure that could realize the systematic modeling of IES. By adopting energy 
bus model, the components and the structure of IES can be presented clearly. Then the matrix-based modeling method 
is proposed to describe the topology of the IES and the characteristics of energy converters. On this basis, the equations 
that describe the energy flow relationship of the entire system can be listed out. Finally, a case study of NCSC of State 
Grid Corporation of China is conducted to verify the effectiveness of the proposed method. 

2. Components of energy bus model 

Fig. 1 shows the energy bus model of IES in NCSC, which consists of four types of energy sources, electricity, 
heat, cooling and hot water. The source equipment includes power grid, photovoltaic system and solar water heat 
system. The converters include microgrid with power storage, electrical cooling system, ice storage system, ground 
source heat pump, and electrical boiler with heat storage. This example will be used to illustrate how to formulate an 
energy bus model and how to use the model to calculate the energy flow of the IES. 

Nomenclature 
Indices 𝑄𝑄HS input/output power of heat storage 
𝑚𝑚 indices of buses, from 1 to 𝑁𝑁bus 𝑅𝑅IS input/output power of ice storage tank 
𝑛𝑛 indices of branches, from 1 to 𝑁𝑁bran 𝑅𝑅CS input/output power of cooling storage 
𝑘𝑘 indices of converters, from 1 to 𝑁𝑁conv 𝑅𝑅HE,1/𝑅𝑅HEO,1 input/output power of heat exchanger 1 
Variables 𝑄𝑄HE,2/𝑄𝑄HEO,2 input/output power of heat exchanger 2 
𝑊𝑊 electric power 𝑄𝑄HE,3/𝐹𝐹HEO,3 input/output power of heat exchanger 3 
𝑅𝑅 cooling power 𝐹𝐹HE,4/𝐹𝐹HEO,4 input/output power of heat exchanger 4 
𝑄𝑄 heat power 𝐹𝐹HWT 𝐹𝐹HWTO input/output power of hot water tank 
𝐹𝐹 hot water power 𝑊𝑊EL electric load 
𝑊𝑊grid output power of grid 𝑅𝑅CL cooling load 
𝑊𝑊PV output power of PV 𝑄𝑄HL heat load 
𝐹𝐹SWH output power of solar water heat system 𝐹𝐹HWL hot water load 
𝑊𝑊EC/𝑅𝑅EC input/output power of electric cooling  

system 
Parameters 
𝜂𝜂𝑘𝑘 efficiency of converter  𝑘𝑘 

𝑊𝑊IC/𝑅𝑅IC input/output power of ice storage system 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 coefficient of performance of converter 𝑘𝑘  
𝑊𝑊HP/𝑅𝑅HP/𝑄𝑄HP input/output power of heat pump 𝛼𝛼𝑚𝑚𝑚𝑚 distribution coefficient of branch 𝑛𝑛 on  

bus 𝑚𝑚  𝑊𝑊ES input/output power of electric storage 
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et al. [1] presented Energy Hub (EH) concept in 2007. An energy hub is considered a unit where multiple energy 
carriers can be converted, conditioned, and stored [2]. Reference [3] proposes a matrix modeling method based on EH 
to build the coupling matrix. Moreover, there are a number of papers focus on the modeling of a specific IES. Reference 
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Fig. 1 shows the energy bus model of IES in NCSC, which consists of four types of energy sources, electricity, 
heat, cooling and hot water. The source equipment includes power grid, photovoltaic system and solar water heat 
system. The converters include microgrid with power storage, electrical cooling system, ice storage system, ground 
source heat pump, and electrical boiler with heat storage. This example will be used to illustrate how to formulate an 
energy bus model and how to use the model to calculate the energy flow of the IES. 

Nomenclature 
Indices 𝑄𝑄HS input/output power of heat storage 
𝑚𝑚 indices of buses, from 1 to 𝑁𝑁bus 𝑅𝑅IS input/output power of ice storage tank 
𝑛𝑛 indices of branches, from 1 to 𝑁𝑁bran 𝑅𝑅CS input/output power of cooling storage 
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Fig. 1. Energy bus structure of IES in NCSC 

Using energy bus structure to model an IES requires modeling the topology and the characteristics of energy 
converters. The physical equipment could be abstracted into the following components: 

 Energy bus: The type of energy bus is decided according to the carried energy sources. (e.g. gas bus, heat bus, 
cooling bus), so there will be only one type of energy on one bus at the same time. 

 Branch: A branch represents an input or output energy flow of a converter. The topology of IES can be expressed 
by connecting energy buses and branches. 

 Converter: A converter represents an energy equipment which could have one or more input and output branch. 
Source and load are special converters, with only input or output branches. 

3. Matrix modeling of energy bus structure 

3.1. Energy flow balance equation 

The energy flow balance equation on each bus can be clearly listed out by defining the bus-branch connection 
matrix 𝑨𝑨. The element 𝐴𝐴𝑚𝑚𝑚𝑚 represents the connection relationship of bus 𝑚𝑚 and branch 𝑛𝑛, which is defined as follows: 

𝐴𝐴𝑚𝑚𝑚𝑚 = {
1        if branch 𝑛𝑛 is leaving from bus 𝑚𝑚 
−1     if branch 𝑛𝑛 is entering towards bus 𝑚𝑚
0        if branch 𝑛𝑛 is not incident to bus 𝑚𝑚

(1) 

a) Energy flow balance equation of electric system 
Taking the IES in Fig.1 as example, the algebraic sum of energy flows on an energy bus should be zero. The energy 

flow balance equation is: 
𝑨𝑨E𝒗𝒗E

𝑇𝑇 = 𝟎𝟎 (2) 
The bus-branch connection matrix 𝑨𝑨𝐸𝐸of electric system can be written as: 

𝑨𝑨E = [−1 −1 1 1 1 1 1 1] (3) 
𝒗𝒗E = [𝑊𝑊grid 𝑊𝑊PV 𝑊𝑊ES 𝑊𝑊EC 𝑊𝑊IC 𝑊𝑊HP 𝑊𝑊EB 𝑊𝑊EL] (4) 
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For the same, the bus-branch connection matrix of cooling system, heat system and hot water system could also be 
listed.  

b) Energy flow balance equation of cooling system 
𝑨𝑨C𝒗𝒗C

𝑇𝑇 = 𝟎𝟎 (5) 
The bus-branch connection matrix 𝑨𝑨C and energy flow vector 𝒗𝒗C are: 

𝑨𝑨C = [
−1 0 0 0 0 −1 0 −1 1
0 −1 0 1 1 0 0 0 0
0 0 −1 0 0 1 1 0 0

] (6) 

𝒗𝒗C = [𝑅𝑅EC 𝑅𝑅IC 𝑅𝑅HP 𝑅𝑅IS 𝑅𝑅HE,1 𝑅𝑅HEO,1 𝑅𝑅CS 𝑅𝑅HPO 𝑅𝑅CL] (7) 
c) Energy flow balance equation of heat system 

𝑨𝑨H𝒗𝒗H
𝑇𝑇 = 𝟎𝟎 (8) 

The energy flow vector 𝒗𝒗𝐻𝐻 and bus-branch connection matrix 𝑨𝑨H are: 
𝑨𝑨H = [ 0 0 0 0 −1 −1 1

−1 1 1 1 0 0 0] (9) 

𝒗𝒗H = [𝑄𝑄EB 𝑄𝑄HS 𝑄𝑄HE,2 𝑄𝑄HE,3 𝑄𝑄HEO,2 𝑄𝑄HP 𝑄𝑄HL] (10) 
d) Energy flow balance equation of hot water system 

𝑨𝑨HW𝒗𝒗HW
𝑇𝑇 = 𝟎𝟎 (11) 

The energy flow vector 𝒗𝒗𝐻𝐻𝐻𝐻 and bus-branch connection matrix 𝑨𝑨HW are: 

𝑨𝑨HW = [
0 0 0 0 0 −1 1

−1 1 0 0 0 0 0
0 0 −1 −1 1 0 0

] (12)

𝒗𝒗HW = [𝐹𝐹SWH 𝐹𝐹HE,4 𝐹𝐹HEO,4 𝐹𝐹HEO,3 𝐹𝐹HWT 𝐹𝐹HWTO 𝐹𝐹HWL] (13)
Thus the energy flow balance equations of the entire system could be obtained: 

𝑨𝑨𝒗𝒗𝑻𝑻 = 𝟎𝟎 (14)
The bus-branch connection matrix 𝑨𝑨 and energy flow vector 𝒗𝒗 are

𝑨𝑨 = diag(𝑨𝑨E, 𝑨𝑨C, 𝑨𝑨H, 𝑨𝑨HW ) (15)
𝒗𝒗 = [𝒗𝒗E 𝒗𝒗C 𝒗𝒗H 𝒗𝒗HW] (16)

3.2. Converter efficiency equation 

The converter efficiency equations represent the characteristic of converters in the system. As mentioned above, 
there are four types of converters: single input single output (SISO), single input multiple outputs (SIMO), multiple 
inputs single output (MISO), and multiple inputs multiple outputs (MIMO). In the energy bus model, these converters 
are standardized that each converter will only have one input branch and one output branch. Thus the converter 
efficiency matrix 𝑩𝑩 could be easily obtained, which is shown in Table 1.  
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Using energy bus structure to model an IES requires modeling the topology and the characteristics of energy 
converters. The physical equipment could be abstracted into the following components: 

 Energy bus: The type of energy bus is decided according to the carried energy sources. (e.g. gas bus, heat bus, 
cooling bus), so there will be only one type of energy on one bus at the same time. 

 Branch: A branch represents an input or output energy flow of a converter. The topology of IES can be expressed 
by connecting energy buses and branches. 

 Converter: A converter represents an energy equipment which could have one or more input and output branch. 
Source and load are special converters, with only input or output branches. 

3. Matrix modeling of energy bus structure 

3.1. Energy flow balance equation 

The energy flow balance equation on each bus can be clearly listed out by defining the bus-branch connection 
matrix 𝑨𝑨. The element 𝐴𝐴𝑚𝑚𝑚𝑚 represents the connection relationship of bus 𝑚𝑚 and branch 𝑛𝑛, which is defined as follows: 
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0        if branch 𝑛𝑛 is not incident to bus 𝑚𝑚

(1) 
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flow balance equation is: 
𝑨𝑨E𝒗𝒗E

𝑇𝑇 = 𝟎𝟎 (2) 
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𝒗𝒗E = [𝑊𝑊grid 𝑊𝑊PV 𝑊𝑊ES 𝑊𝑊EC 𝑊𝑊IC 𝑊𝑊HP 𝑊𝑊EB 𝑊𝑊EL] (4) 
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For the same, the bus-branch connection matrix of cooling system, heat system and hot water system could also be 
listed.  
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0 0 −1 0 0 1 1 0 0
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𝑨𝑨HW = [
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0 0 −1 −1 1 0 0

] (12)

𝒗𝒗HW = [𝐹𝐹SWH 𝐹𝐹HE,4 𝐹𝐹HEO,4 𝐹𝐹HEO,3 𝐹𝐹HWT 𝐹𝐹HWTO 𝐹𝐹HWL] (13)
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there are four types of converters: single input single output (SISO), single input multiple outputs (SIMO), multiple 
inputs single output (MISO), and multiple inputs multiple outputs (MIMO). In the energy bus model, these converters 
are standardized that each converter will only have one input branch and one output branch. Thus the converter 
efficiency matrix 𝑩𝑩 could be easily obtained, which is shown in Table 1.  
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Therefore, the input and output relationship of each converter can be described. The element 𝐵𝐵𝑘𝑘𝑘𝑘 is defined as 
follows: 

𝐵𝐵𝑘𝑘𝑘𝑘 = {
−1       if branch n is leaving from converter k
𝜂𝜂𝑘𝑘        if branch n is entering towards converter k
0          if branch n is not incident to converter k

(17)

Then the converter efficiency equation of the system is listed out: 
𝑩𝑩𝒗𝒗𝑻𝑻 = 𝟎𝟎 (18)

3.3. Distribution coefficient equation 

In the case shown in Fig.1, for a given cooling load, the production of electric cooling system, ice storage system 
and ground source heat pump could not be decided. That’s because there are more than one available paths between 
electric bus and cooling bus. The proportion of these converters need to be decided by defining distribution coefficient 
matrix 𝑪𝑪. The element 𝐶𝐶𝑚𝑚𝑘𝑘 is defined as follows: 

𝐶𝐶𝑚𝑚𝑘𝑘 = {
−1     if branch n is leaving from bus m
𝛼𝛼𝑚𝑚𝑘𝑘   if branch n is entering towards bus m
0         if branch n is not incident to bus m

(19)

Then the distribution coefficient equation can be written as: 
𝑪𝑪𝒗𝒗𝑻𝑻 = 𝟎𝟎 (20)

Combining (16), (18) and (20), the comprehensive energy flow balance equation of this IES is listed as follow: 

[
𝑨𝑨
𝑩𝑩
𝑪𝑪

] 𝒗𝒗𝑻𝑻 = 𝟎𝟎 (21)

By solving the matrix equation, the solution of energy flow vector 𝒗𝒗 of the entire system could be obtained. 

4. Case study 

In this section, the effectiveness of the proposed method is verified through the IES of NCSC shown in Fig.1. The 
parameters of the energy converters and buses in the system is listed in Table 2, including COP, efficiency and 
distribution coefficient. 

Considering different operation period, two cases of the system are considered: 
Case 1: During the cooling period, the heat load is zero and electric boiler is only used for hot water supply. And 

ground source heat pump produces cooling power. 
Case 2: During the heat period, the cooling load is zero, so that electric cooling system and ice storage system 

stopped working. Electric boiler is used for both heat and hot water supply. Ground source heat pump produces heat 
power. 

The output power of source equipment in the cooling period and heat period is shown in Table 3. 
 

Table 2. Parameters of the energy converters and buses. 

Converter COP Converter Efficiency Bus Distribution coefficient 

Electric cooling system 5.2 Electric boiler 0.95 Heat bus 0.8/0.2 

Ice storage system 4.9 Heat exchanger 0.98 Cooling bus 1.0/0/0 

Heat pump (heat) 5.4 Hot water storage 0.9   

Heat pump (cooling) 4.2     
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Table 3. Output power of source equipment in cooling period and heat period 

Equipment Cooling period/kW Heat period/kW 

Photovoltaics 354.4 19.7 

Solar water heat system 43.5 35.7 

Microgrid with power storage 11.3 1.2 

Hot water storage tank 232.6 477.8 

Ice storage 0 0 

Cooling storage 1650.3 0 

Electricity load 2063.1 1871.2 

Cooling load 2679.9 0 

Heat load 0 2194.6 

Hot water load 243.5 161.7 

Fig. 2 shows the energy flow calculation results of cooling period and heat period.  
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 Fig.2 (a) Energy flow of cooling period  (b) Energy flow of heat period 

5. Conclusion 

This paper proposes an energy bus structure that could realize the systematic modeling of IES. The matrix-based 
modeling method is proposed to describe the topology of the IES and the characteristics of energy converters. On this 
basis, the equations that describe the energy flow relationship of the entire system can be listed out. Finally, the 
effectiveness of the proposed method is verified through a case study of NCSC of State Grid Corporation of China 
considering cooling and heat period. 
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Therefore, the input and output relationship of each converter can be described. The element 𝐵𝐵𝑘𝑘𝑘𝑘 is defined as 
follows: 

𝐵𝐵𝑘𝑘𝑘𝑘 = {
−1       if branch n is leaving from converter k
𝜂𝜂𝑘𝑘        if branch n is entering towards converter k
0          if branch n is not incident to converter k

(17)

Then the converter efficiency equation of the system is listed out: 
𝑩𝑩𝒗𝒗𝑻𝑻 = 𝟎𝟎 (18)

3.3. Distribution coefficient equation 

In the case shown in Fig.1, for a given cooling load, the production of electric cooling system, ice storage system 
and ground source heat pump could not be decided. That’s because there are more than one available paths between 
electric bus and cooling bus. The proportion of these converters need to be decided by defining distribution coefficient 
matrix 𝑪𝑪. The element 𝐶𝐶𝑚𝑚𝑘𝑘 is defined as follows: 
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(19)

Then the distribution coefficient equation can be written as: 
𝑪𝑪𝒗𝒗𝑻𝑻 = 𝟎𝟎 (20)

Combining (16), (18) and (20), the comprehensive energy flow balance equation of this IES is listed as follow: 

[
𝑨𝑨
𝑩𝑩
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] 𝒗𝒗𝑻𝑻 = 𝟎𝟎 (21)

By solving the matrix equation, the solution of energy flow vector 𝒗𝒗 of the entire system could be obtained. 

4. Case study 

In this section, the effectiveness of the proposed method is verified through the IES of NCSC shown in Fig.1. The 
parameters of the energy converters and buses in the system is listed in Table 2, including COP, efficiency and 
distribution coefficient. 

Considering different operation period, two cases of the system are considered: 
Case 1: During the cooling period, the heat load is zero and electric boiler is only used for hot water supply. And 

ground source heat pump produces cooling power. 
Case 2: During the heat period, the cooling load is zero, so that electric cooling system and ice storage system 

stopped working. Electric boiler is used for both heat and hot water supply. Ground source heat pump produces heat 
power. 

The output power of source equipment in the cooling period and heat period is shown in Table 3. 
 

Table 2. Parameters of the energy converters and buses. 

Converter COP Converter Efficiency Bus Distribution coefficient 

Electric cooling system 5.2 Electric boiler 0.95 Heat bus 0.8/0.2 

Ice storage system 4.9 Heat exchanger 0.98 Cooling bus 1.0/0/0 
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Table 3. Output power of source equipment in cooling period and heat period 

Equipment Cooling period/kW Heat period/kW 

Photovoltaics 354.4 19.7 

Solar water heat system 43.5 35.7 

Microgrid with power storage 11.3 1.2 

Hot water storage tank 232.6 477.8 

Ice storage 0 0 

Cooling storage 1650.3 0 

Electricity load 2063.1 1871.2 

Cooling load 2679.9 0 

Heat load 0 2194.6 

Hot water load 243.5 161.7 

Fig. 2 shows the energy flow calculation results of cooling period and heat period.  
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5. Conclusion 

This paper proposes an energy bus structure that could realize the systematic modeling of IES. The matrix-based 
modeling method is proposed to describe the topology of the IES and the characteristics of energy converters. On this 
basis, the equations that describe the energy flow relationship of the entire system can be listed out. Finally, the 
effectiveness of the proposed method is verified through a case study of NCSC of State Grid Corporation of China 
considering cooling and heat period. 
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