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ABSTRACT   

Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing 

advantages for biomedical applications, due to their customizable porosity, mechanical 

strength, translucency and environmental biodegradability.  Here we investigated the 

growth of multi-species wound biofilms on CNF formulated as aerogels and films 

incorporating the low molecular weight alginate oligosaccharide OligoG CF-5/20 to 

evaluate their structural and antimicrobial properties.  Overnight microbial cultures 

were adjusted to 2.8 x 109 colony forming units (cfu) mL-1 in Mueller Hinton broth and 

growth rates of P. aeruginosa PAO1 and S. aureus 1061A monitored for 24 h in CNF 

dispersions sterilized by -irradiation.  Two CNF formulations were prepared (20 g m-

2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation 

of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or 

bionanocomposite respectively. The materials were structurally characterized by 

scanning electron microscopy (SEM) and laser profilometry (LP).  The antimicrobial 

properties of the formulations were assessed using single- and mixed-species biofilms 

grown on the materials and analysed using LIVE/DEAD® staining with confocal laser 

scanning microscopy (CLSM) and COMSTAT software.  OligoG-CNF suspensions 

significantly decreased the growth of both bacterial strains at OligoG concentrations 

>2.58% (P<0.05).  SEM showed that aerogel-OligoG bionanocomposite formulations 

had a more open 3-dimensional structure, while LP showed film formulations coated 

with OligoG were significantly smoother than untreated films or films incorporating 

PEG400 as a plasticizer (P<0.05).  CLSM of biofilms grown on films incorporating 

OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased 

cell-viability.  The OligoG-CNF formulations as aerogels or films both inhibited 

pyocyanin production (P<0.05).  These novel CNF formulations or bio-nanocomposites 

were able to modify bacterial growth, biofilm development and virulence factor 

production in vitro.  These data support the potential of OligoG and CNF bio-

nanocomposites for use in biomedical applications where prevention of infection or 

biofilm growth is required. 

  



 

 

INTRODUCTION 

In the last 10 years, nanocellulose research has expanded exponentially.  Nanocellulose 

includes cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs) and bacterial 

cellulose (BC).  As a potentially inexhaustible natural polymer from sustainable 

sources, its bio-sustainability is a major driving force behind this increased interest.1  

Nanocelluloses possess a myriad of useful material properties such as biodegradability 

in nature, mechanical strength, modifiable surface chemistry and biocompatibility 

which may be applied in a wide range of industrial and clinical applications.2  One of 

these applications is in the design of wound dressing materials.  

Chronic, non-healing skin wounds are an important, often recognized source of 

morbidity,3 which is increasing in incidence annually, with the ageing population and 

the inexorable rise of obesity and diabetes.  In health, the skin is colonized by a diverse 

“reservoir” of pathogenic and beneficial bacteria, which do not abnormally affect the 

host.  In disease however, pathogens from the normal skin microbiota can become a 

serious problem in terms of infection, morbidity and quality of life.  Infections in 

chronic wounds have been found to be associated with the presence of bacterial biofilms 

in up to 75% of cases.4  Bacteria in these biofilms are encased in a charged “polymeric 

mesh” of host- and bacteria-derived extracellular polymers which resist physical and 

chemical (antimicrobial) disruption and have increased resistance to antimicrobial and 

antibiotic therapy due to both the physical barrier, and also alterations of bacterial 

metabolism within the biofilm matrix.5  Chronic wounds are polymicrobial, the most 

common isolates being the commensals, Pseudomonas aeruginosa and Staphylococcus 

aureus.6  Whilst the aetiology of non-healing wounds is undoubtedly multi-factorial, 

bacteria play a significant role in perpetuating the inflammation and proteolytic wound 

environment.  Indeed, studies have demonstrated impaired wound healing associated 

with bacterial and fungal colonization.7,8  

In the current treatment of chronic wounds a wide array of wound dressings are 

employed varying in their physical composition (films, foams, hydrogels, 

hydrocolloids) and biological activity (dermis, cell-based products and anti-bacterial 

compounds) and are made from an increasing number of materials such as 

polyurethane, carboxymethylcellulose and natural polymers e.g. collagen, alginates, 

starches, and hyaluronic acid.9  

The potential to “customize” nanocellulose dressing materials with different 

mechanical and physical properties for distinct indications in wound dressing materials 



 

 

now exists. Indeed, we recently described the use of CNFs from wood pulp as a 

prototype wound dressing material.10,11  Nanofibrils are produced mechanically from 

cellulose fibers by the use of high-pressure homogenisation and/or grinding which de-

laminates the fibers, releasing the nanofibrils.  The longer the homogenisation steps, 

the more nanofibrils are liberated.12  The use of chemical pre-treatments, such as 

TEMPO-mediated oxidation,13 may not only selectively introduce carboxylate groups 

onto the surface of the CNFs,14 but also radically reduce the energy costs for the 

mechanical processing; making the homogenisation steps more cost-effective.15  Hence, 

a combination of chemical and mechanical treatments are often used.  Above a critical 

concentration, TEMPO nanofibrils display gel-like properties in water16 and have a 

high aspect ratio, lengths in the micrometre-scale and widths of ~4 nm.17  

The abundance of CNFs from renewable sources, its relatively low cost, its natural 

biodegradability and its excellent mechanical properties are all distinct advantages for 

its exploitation as a wound dressing material.  Moreover, its ability to “self-assemble” 

into 3-dimensional micro-porous structures confers a high capacity for absorbance; a 

useful property in wounds with high levels of wound exudate.18  The ability to now 

produce wood CNF that is ultrapure (low endotoxin), with low cytotoxicity levels, also 

reinforces its potential as a material for biomedical applications, such as “scaffolds” in 

wound dressings.19  Manipulation and tailoring of the CNF hydrophilic surface 

chemistry can be used to functionalize the materials to make them pH responsive or to 

allow incorporation of antimicrobial agents.  We previously demonstrated that the 

physical form of CNF-derived materials may vary dependent upon their formulation; 

being antimicrobial in suspension as hydrogels (against P. aeruginosa) but not when 

prepared as films or aerogels.11  We have also established how porosity and surface 

roughness may influence bacterial growth on the CNF aerogels, with less biofilm 

growth being associated with lower porosity and roughness.  For wound dressing 

materials, the design of CNF materials with intrinsic antibacterial ability would clearly 

be useful. 

OligoG is a natural product derived from alginate extracted from the stem of the 

brown seaweed Laminaria hyperborea, and possesses antibacterial20-25 and antifungal 

properties.26,27  Unlike antibiotics and silver, prolonged exposure to OligoG does not 

lead to the acquisition of resistance.20  These antimicrobial properties, combined with 

the excellent safety profile, make alginate oligosaccharides potentially useful for 

incorporation into dressing materials for use in wound healing.   



 

 

To further investigate the potential clinical application of CNF dressing materials 

in chronic human skin wound healing, we examined single and mixed species biofilms 

grown on CNF prepared as two different structural formulations (aerogels and films) 

with or without incorporation of the antimicrobial OligoG.   

 

 

MATERIALS AND METHODS 

 

CNF Production.  Pinus radiata bleached kraft pulp fibers were used as the raw 

material for CNF production.  The pulp fibers were pretreated with TEMPO-mediated 

oxidation28 using 3.8 mM hypochlorite (NaOCl) g-1 cellulose.  The pre-treated fibers 

were then extensively washed with deionized water until the conductivity was below 5 

µS/cm. The CNF were produced through homogenization using a Rannie 15 type 

12.56X homogenizer.  The material (1% solids content) was homogenized with a 

pressure drop of 1000 pascal units and collected after 2 or 3 passes through the 

homogenizer.  

Sample Preparation.  CNF samples (Table 1) were produced by solution casting 

in sterile petri dishes, followed by either air-drying to produce low porosity films or 

freeze-drying to yield more porous aerogel structures.  PEG400 was incorporated into 

the films for increased plasticity29 with 40% PEG shown to be sufficient to improve the 

ductility of the films, whilst having adequate liquid absorption and without affecting 

its’ cytocompatibility.  In addition, the antimicrobial OligoG derived from marine 

algae20 was either incorporated into the CNF aerogels to produce a bionanocomposite 

or surface-coated onto the CNF films.   

CNF materials (for the dried films and aerogels) were used as 0.2% suspensions 

(grammage 20 g m-2) throughout.  Bionanocomposite films were made using 0.2% 

(w/v) twice homogenised CNF dispersions ±PEG400 (40%, w/v) which were air-dried 

at room temperature (~20°C) for 5-7 days.  Surface coating with OligoG was performed 

on air-dried films using a 0.2% (w/v) OligoG solution, by pouring this evenly onto the 

film surface within the petri-dish and allowing it to air-dry at 37°C for 48 h to a final 

concentration of 0.9 mg cm-2 film (as determined by weight of material before and after 

coating).  Freeze-dried aerogels were prepared using 0.2% (w/v) thrice homogenised 

CNF dispersions ± OligoG (to give a final concentration of 2%), before being frozen in 

petri dishes at -20ºC and freeze-dried for 48 h.   



 

 

All the samples were cut into 1 or 2 cm2 sections and sterilized by γ-irradiation (15 

kGy).  Commercially-available wound dressings AquaCel® and AquaCel Ag® 

(ConvaTec Ltd, Deeside) were used as controls. 

 

Table 1.  Characteristics and Absorbency (n=3) of the CNF Materials Used.  

CNF 

material 

Sample name No. of 

homogenisation 

steps used10,11 

OligoG 

concentration 

(%) 

PEG400 

(%) 

Fluid 

Absorption 

(g/g) 

Aerogel A0.2 3 0 0 111.65 

Aerogel A0.2G 3 2‡ 0 11.31 

Film F0.2 2 0 0 5.83 

Film F0.2G 2 0.2§ 0 8.11 

Film F0.2P† 2 0 40‡ 6.70 

Control AquaCel®    25.4611 

Control AquaCel Ag®    26.2811 

†PEG400 incorporated into the film to enhance plasticity.   
‡Bio-nanocomposite, with 2% OligoG CF-5/20 incorporated into the aerogels.   
§OligoG CF-5/20 (0.2%) surface coating of films to a final concentration of 0.9 mg 

cm-2.   

 

 

 

Absorption Measurements.  Fluid absorption of the test and control materials was 

assessed as previously described.11  

Screening for the Ability of CNF to Support Bacterial Growth.  Jack et al. 

(2017) originally examined the growth of P. aeruginosa in CNF hydrogels.  For this 

study, the ability of the same CNF dispersions (homogenised three times) to inhibit or 

promote growth of another wound bacterium, S. aureus, in planktonic culture was also 

examined.  CNF dispersions were prepared at 0.2, 0.4 or 0.6% (w/v) and sterilized by 

γ-irradiation.   

For the growth curves, overnight bacterial cultures of P. aeruginosa PAO1 and S. 

aureus 1061A (both wound isolates) were diluted to 2.8 x 109 cfu mL-1 in either 

Mueller-Hinton (MH) broth, PBS or deionized water, and mixed 1:2 (v/v) with 0.2% 

(w/v) CNF dispersions or water in a 24 well plate.  Plates were incubated at 37⁰C 



 

 

aerobically for 24 h measuring optical density every hour at 600 nm (OD600) in a 

FLUOstar Optima plate reader (BMG LABTECH).   

Log10 reduction assay.  Time-kill assays were used to evaluate the antimicrobial 

efficacy of the aerogel and film materials against S. aureus 1061A in comparison to a 

commercially available wound dressing containing silver AquaCel (Ag)® as previously 

described (Jack et al 2017).  

The effect of PEG400 and/or OligoG with CNF dispersions on bacterial 

growth.  The effect of CNF dispersions with/without PEG 400 and/or OligoG on the 

growth of either P. aeruginosa PAO1 or S. aureus 1061A was determined using growth 

curves.  CNF dispersions were diluted in deionized sterilized water to final 

concentrations of 0.2% ±OligoG CF-5/20 (0.2, 2 or 2.58%) and/or ±PEG400 (40%).  

Growth curves were carried out as described above. 

Scanning Electron Microscopy (SEM).  CNF aerogel samples (A0.2 and A0.2G) 

were prepared for SEM analyses by immersion in glutaraldehyde (2.5%) for 24 h, 

before being washed with deionised water (x4) and immersed in fresh deionised water.  

The samples were then frozen (24 h) and freeze-dried for 24 h.  The material surface 

was then imaged on the Tescan Vega SEM at 5 kV.   

Biofilm growth on CNF formulations.  Samples (1 cm2) of formulations A0.2 

and A0.2G (aerogels) and F0.2, F0.2G and F0.2P (films) were added to a 12-well plate 

containing MH broth (3 mL) and 60 µL of P. aeruginosa PAO1 and/or S. aureus 1061A 

overnight cultures (adjusted to 6.1 x 109 cfu mL-1).  Plates were incubated at 37ºC in a 

static aerobic environment for 24 h before removing the supernatant and then washing 

the biofilms once with PBS.   

Confocal Laser Scanning Microscopy (CLSM) imaging of Biofilm Growth on 

CNF Materials.  Biofilms were stained with LIVE/DEAD® BacLight™ bacterial 

viability kit (Invitrogen, Paisley, UK) containing SYTO 9 dye (staining LIVE cells, 

green) and propidium iodide (staining DEAD cells, red) and incubated in the dark (10 

min). The samples were then mounted onto microscope slides with spacers with the 

addition of Vectorshield (Vector Laboratories, UK), before being covered with a 

coverslip and sealed with clear nail-varnish.  Biofilms were imaged with a Leica TCS 

SP5 confocal system using a x63 lens.  Bacterial growth was quantified using 

COMSTAT image-analysis software.30 

Effect of CNFs on Pyocyanin Production.  Overnight cultures of P. aeruginosa 

PAO1 were adjusted to 6 x 1011 cfu mL-1, and 60 µL added to MH-broth (6 mL) in a 6-



 

 

well plate and grown statically for 24 h ± CNF formulations (A0.2, A0.2G, F0.2, F0.2G 

and F0.2P) or AquaCel (Ag)® (2 x 2 cm2).  Bacterial cultures were then centrifuged 

(10000 g) for 10 min to produce a cell-free culture supernatant and used for the 

extraction of virulence factors.  

Pyocyanin pigment was extracted from the cell-free supernatant using chloroform 

(3:2; v/v).  Pyocyanin (in the chloroform-phase) was re-extracted with 0.2 M HCl (2:1; 

v/v) and the absorbance read at 540 nm.31 

Laser Profilometry.  To directly study the surface of the CNF materials, samples 

(10 mm x 10 mm) were cut from the dried film materials (F0.2, F0.2G and F0.2P) for 

surface analysis (and surface roughness measurements) using laser profilometry (LP) 

as previously described.32  LP could not be performed on the aerogels due to the 

limitations of the laser beam/detector system in detecting the steep surface gradients 

associated with these materials.   

Ion Milling.  To directly study biofilm growth on the CNF materials, cross-

sections of the A0.2 and A0.2G aerogels with P. aeruginosa PAO1 biofilm growth, 

(prepared as for SEM), were made by ion-milling using an IM4000 system and a milling 

time of 5 h at 2.5 kV.  Images of the samples were then acquired using a Hitachi 

scanning electron microscope (SU3500) in secondary electron imaging, low-vacuum 

mode, using 3-5 kV acceleration voltage. 

Statistical Analysis.  SPSS (IBM Corp, New York, USA) or GraphPad Prism 3 

(GraphPad software Inc, La Jolla, USA) were used to perform statistical analysis.  The 

following tests were used including: minimum significant difference (MSD) calculated 

using the Tukey-Kramer method (growth curve data), ANOVAs of log or log(2-X) 

transformed data (to correct for normality) using Kw, Tukey-Kramer or Dunn’s 

Multiple Comparisons Tests (COMSTAT and laser profilometry data) and Student’s T-

test (pyocyanin data).  P<0.05 was considered significant. 

 

 

RESULTS 

Bacterial growth in CNF dispersions.  As we have previously shown with P. 

aeruginosa,11 S. aureus was unable to use CNF as a carbon source.  CNF incubated 

with MH broth (Supporting Information, Figure S1A) showed good growth, but this 

was not seen in CNF incubated with water or PBS (Supporting Information, Figure 

S1B and C), suggesting any observed growth was solely due to the MH broth and not 



 

 

the CNF.  In addition, a slight inhibitory effect of the CNF hydrogel was observed 

compared to the MH control (Supporting Information, Figure S1A).  This inhibitory 

effect was not seen in the Log10 reduction assay with the dried aerogel or film materials 

(Supporting Information, Figure S1D). 

Growth curves for the wound microorganisms S. aureus (1061A) and P. 

aeruginosa PAO1 were performed with CNF dispersions with/without OligoG CF-5/20 

and PEG400 (Figure 1).  When grown with OligoG alone, a significant decrease in 

growth of both S. aureus (Figure 1A; MSD=0.1756) and P. aeruginosa PAO1 (Figure 

1B; MSD=0.2489) was observed at 10%.  PEG400 (40%) alone (without MH broth) 

did not appear to support the growth of either microorganism (Figures 1C and 1D; 

MSD=0.2241 and 0.1168 respectively).  In contrast, low levels of bacterial growth were 

evident in PEG400 with the addition of MH, with similar growth levels also seen for 

the PEG400 + OligoG CF-5/20 growth curves, (at every concentration of OligoG 

tested) with only P. aeruginosa at 2.58% OligoG demonstrating any apparent, but 

slight, inhibition of growth.   

Scanning Electron Microscopy of CNF formulations.  Surface 

characterisation of the aerogels (A0.2 and A0.2G) using SEM demonstrated distinct 

differences between the two materials.  The A0.2 formulation had an undulating 

surface, which appeared to be much denser than the CNF-OligoG bionanocomposite 

(A0.2G), which had a much rougher, more open network of fibres with fissures 

penetrating into the 3-dimensional structure (Figure 2A). 

Laser profilometry of CNF film formulations.  Laser profilometry of the 

films F0.2, F0.2G and F0.2P, (Figures 2B and C) showed distinct differences in the 

material surfaces, especially for the OligoG-surface coated formulation (F0.2G) and the 

bionanocomposite film incorporating PEG400 (F0.2P) which both exhibited 

significantly decreased surface-roughness (P<0.05).  The OligoG coated film (F0.2G) 

was also much smoother than the bionanocomposite containing PEG (F0.2P). 

 

 



 

 

 

Figure 1. Effect of PEG400 (40%, w/v) and/or OligoG CF-5/20 (0.2, 2 or 2.58%) on bacterial growth in T3 CNF (0.2%) in MH broth 

(unless otherwise stated) of (a, c) S. aureus 1061A. (b, d) P. aeruginosa (PAO1).  MSD, minimum significant difference (n=3; P<0.05).  



 

 

 

 

 

 

 

 

 

Confocal laser scanning microscopy of P. aeruginosa and S. aureus single 

and mixed species biofilms grown on CNF formulations.  CLSM of biofilms grown 

on the films and then stained with LIVE/DEAD® cell viability dyes showed that the 

untreated (control) films (F0.2) produced the thickest biofilms, as well as complete 

surface coverage with bacteria (Figure 3A).  for films coated with OligoG (F0.2G; 

Figure 3B), a markedly reduced bacterial biofilm biomass was evident, with 

significantly decreased biomass observed by Comstat analysis in both the P. 

aeruginosa and the mixed species biofilms (p<0.05; Figure 3D) which was associated 

with increased bacterial “clumping”, i.e. aggregation, compared to that observed in the 

control (F0.2).  However, this effect was not evident in films incorporating PEG400 

(F0.2P; Figure 3C).  In addition, significant decreases in mean thickness and 

significant increases in surface roughness (Figure S2) in single species P. aeruginosa 

and S. aureus biofilms were evident after growth on OligoG coated surfaces (p<0.05).  

In contrast, although mixed species biofilms grown on the CNF films with PEG400 

exhibited an increased loss of cell viability when compared to P. aeruginosa and S. 

aureus only biofilms (Figure 3C), this was not shown to be significant in the Comstat 

analysis (Figures 3D and S2A,B).     

Figure 2. Structural characterization of CNF formulations. Scanning electron 

microscopy (SEM) of (a) aerogels A0.2 and A0.2G. (b) Laser profilometry (LP) of 

films F0.2, F0.2G and F0.2P.  (c) Corresponding surface roughness measurements 

(from LP only). (*significantly different compared to the F0.2 control; n=3; P<0.05).  



 

 

Figure 3. CLSM images of LIVE/DEAD
®
 staining of 24 h single and dual species biofilms grown on CNF films. (a) Control F0.2. (b) 

OligoG-coated F0.2G. (c) PEG400 biocomposite F0.2P.   COMSTAT image analysis showing (d) mean biofilm biomass of LIVE (green) 

and DEAD (red) cells.  (*significantly different compared to the equivalent no OligoG control; n=10 images each from n=3 replicates; 

P<0.05).  



 

 

  

Figure 4. CLSM images of LIVE/DEAD
®
 staining of 24 h single and dual species biofilms grown on CNF aerogels. (a) Control A0.2. (b) 

Oligo-bio-nanocomposite A0.2G.  COMSTAT image analysis showing mean biofilm of LIVE (green) and DEAD (red) cells:  (c) Biomass.  

(d) Thickness. (*significantly different compared to the equivalent no OligoG control; n=10 images each from n=3 replicates; P<0.05).    



 

 

CLSM studies on the aerogel formulations revealed that untreated aerogels 

supported considerable biofilm biomass on the material surface (Figure 4A).  Although 

a small number of dead cells were apparent in these images, non-vital bacterial cells 

within P. aeruginosa and mixed species biofilms increased on aerogels incorporating 

2% OligoG (A0.2G; Figure 4B,C) however, this was not evident in the S. aureus 

biofilms.  Whilst the OligoG aerogels (A0.2G) appeared to exhibit decreased bacterial 

biofilm biomass (Figure 4C) and thickness (Figure 4D), when compared to the 

untreated material (A0.2), these effects did not reach statistical significance (Figure 

4C,D and S2; P>0.05).  This lack of significance in the aerogel assays could be due to 

the inherent surface roughness of these materials, producing irregular biofilm 

structures, making them difficult to quantify. 

Effect of the different CNF materials on production of the virulence factor 

pyocyanin by P. aeruginosa PAO1.  The untreated CNF materials (A0.2 and F0.2) 

had no apparent effect on production of pyocyanin by PAO1 (Figure 5).  However, 

incorporation of OligoG in both formulations (F0.2G, A0.2G) or PEG in the films 

(F0.2P) inhibited pyocyanin production (P<0.05).  This inhibition was statistically 

significant in the F0.2P and A0.2G formulations.   

 

 

 

 

 

Figure 5. The effect of the different CNF formulations on pyocyanin production by 

P. aeruginosa PAO1. PAO1 and MH broth only were positive and negative controls 

respectively.  (*significantly different compared to the PAO1 control; n=3; P<0.05).    



 

 

 

SEM imaging of P. aeruginosa and S. aureus mixed species biofilms on CNF 

aerogels.  Ion-milling of the aerogels (A0.2 and A0.2G) showed distinct differences 

between the 3-dimensional structure of the materials, with the CNF-OligoG 

bionanocomposite A0.2G displaying more numerous, tightly packed ruffles 

(stratification) in cross-section than the untreated aerogel A0.2 (Figure 6A).  Biofilms 

were also clearly visible growing on the surface of the untreated formulation (A0.2), 

compared to the aerogel containing the antimicrobial alginate OligoG (A0.2G; Figure 

6B). 

 

 

 

 

 

 

 

DISCUSSION 

Nanocellulose is increasingly being used for medical applications such as wound 

dressing materials, and as tissue engineering scaffolds to support host cell attachment 

and cell delivery.33-35  Mechanically delaminated cellulose nanofibrils are attractive for 

biomedical applications due to their physical properties and biocompatibility.36-38  

Figure 6. Scanning electron microscopy (SEM) imaging of a P. aeruginosa and S. 

aureus mixed species biofilm growing on untreated aerogels A0.2 or the OligoG bio-

nanocomposite A0.2G. (a) Cross-sectional view following ion milling. (b) Aerial 

view with inset magnified areas showing biofilm growth.  

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=28&SID=1A9C3sASMmFzAi3ZD67&page=2&doc=14


 

 

Importantly, alongside their sustainability, the recent ability to employ 

environmentally-friendly, non-toxic chemical processes, such as freeze-drying of 

aerogels as opposed to solvent exchange,39 to produce CNF materials is 

environmentally attractive.  Moreover, the surface chemistry of CNF materials can also 

be tailored (for example, by altering the choice of crosslinking ions such as calcium or 

copper) to have very different antimicrobial properties.40  In the design of future CNF-

based wound dressing materials, the incorporation of antimicrobials might clearly 

afford clinical benefit.   

The incorporation of antimicrobials (e.g. silver or iodine) into wound dressing 

materials for sustained release has already been utilised in clinical settings.  A recent 

study demonstrated that antibacterial agents can be readily released from freeze-dried 

CNF materials on conversion into a hydrogel in an aqueous environment,41 highlighting 

the ability of stored dried aerogels to be ‘activated’ by hydration and still retain their 

antimicrobial properties, as might occur on exposure to an exudating wound. 

Importantly, we have previously reported the morphology and carboxyl content of CNF 

dressing materials obtained from the same P. radiata pulp fibers. The nanofibril width 

and carboxylic acid groups were quantified to be ~3.5 nm and ~0.9 mmol/g cellulose, 

respectively.42,52  Here, we have used the low molecular weight antimicrobial OligoG 

in two formulations of CNF dressing materials, both as a surface-coating for films, and 

as a bionanocomposite by incorporation in the aerogels and shown retention of 

antimicrobial activity for both.  Moreover, we demonstrated that these changes were 

associated with significantly decreased levels of pyocyanin production (an important 

virulence factor of P. aeruginosa) when OligoG was incorporated into the aerogel.  We 

have previously shown that the CNF itself does not affect virulence factor production 

by P. aeruginosa,11 so the effects seen in this study were the direct result of the 

antimicrobials used in the CNF formulations.  In these experiments, film F0.2G 

appeared to have significantly greater antimicrobial efficacy than the aerogel 

formulation (A0.2G) in the mixed species biofilm model.  Comparison of the effective 

release of OligoG from the films and aerogels has yet to be determined, but this may 

have played a role in the observed differences in antimicrobial efficacy. 

Three-dimensional (3D) bioprinting allows the accurate deposition of specific 

biomaterials (including CNF) onto virtually any surface and shape.42,43  Indeed, CNF-

(high molecular weight) alginate bioinks are already being developed for cartilage 

regeneration.44  The future use of OligoG as a constituent of a bioink; facilitating more 



 

 

accurate surface deposition and “patterning” in tissue engineering applications such as 

dressing materials is immediately attractive.  For such printing purposes, any bioinks 

used would need to be sufficiently liquid under shear to allow for micro-extrusion, 

regain viscosity after deposition to form 3D structures and have sufficient cross-linking 

abilities to maintain a 3D structure once printed;45 all properties observed in sodium 

alginates.   

In these experiments we also employed (as a control) polyethylene glycol 

(PEG), a widely employed, US Food and Drug Administration (FDA) approved, non-

toxic, polymer that is frequently utilized in pharmaceutical preparations, including 

wound dressings.46  PEG was used as it possesses inherent antibacterial properties and 

may be employed in the context of film formation as a plasticizer to increase 

flexibility.29,47,48  In CNF films, the addition of PEG has been shown to effectively 

increase the maximum force and ‘elongation strain at break’ of CNF films, as well as 

their water absorption capacity.48  Increasing the water absorption of films is potentially 

clinically useful for dressings for exudative wounds.  Whilst the antibacterial effects of 

PEG have been described in the in vitro biofilm model here (which resembles/mimics 

the in vivo wound biofilm environment) incorporating PEG into the CNF materials did 

not result in any significant antimicrobial effects.  Significantly reduced biofilm growth 

was only evident with the surface coated OligoG films.  

Bionanocomposites are increasingly being developed for biomedical uses, such 

as wound dressing applications, in an attempt to utilise the beneficial and/or preferred 

chemical and physical properties of the individual constituents in a single biomaterial.  

Although to date, much of the research on nanocellulose composites appears to have 

focused on the use of bacterially-derived nanocellulose,49-51 it has recently been 

demonstrated that TEMPO CNF gels, films and aerogels have a number of beneficial 

characteristics10,11,19,29 and varying immunogenic properties, which could be valuable 

for specific wound healing applications.52  In the present study, CNF aerogels 

containing OligoG, produced a material with considerably different physical 

characteristics (i.e. increased stratification) from the control materials and when 

compared to the air-dried films.  Most importantly we have shown that OligoG, retains 

its’ anti-bacterial and anti-biofilm properties in TEMPO CNF formulations. 

 

 

 



 

 

CONCLUSIONS   

 

This study showed that CNF-based nanomaterials, in film- or aerogel formulations, can 

be used to design and deliver sustainable dressing materials, with antibacterial and anti-

biofilm properties and which are biodegradable in nature.  The effectiveness of the 

alginate oligosaccharide OligoG as an antimicrobial agent against common wound 

pathogens in the “most difficult to treat” infection model (a bacterial biofilm system) 

was also apparent.  Surface-coating (rather than a bionanocomposite material) proved 

the most effective against both single- and mixed-species bacterial biofilms, with the 

treated dressings exhibiting impaired bacterial growth, disrupted biofilm architecture 

and reduced bacterial virulence factor production in vitro.  In addition to having a lower 

environmental impact than conventional polymer-based dressings, CNF-based 

nanomaterials have been shown here to have considerable potential clinical utility to 

deliver topical antibacterial and anti-biofilm wound healing therapies.   
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