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Abstract. Many methods have been proposed to automatically extend knowl-
edge bases, but the vast majority of these methods focus on finding plausible
missing facts, and knowledge graph triples in particular. In this paper, we instead
focus on automatically extending ontologies that are encoded as a set of exis-
tential rules. In particular, our aim is to find rules that are plausible, but which
cannot be deduced from the given ontology. To this end, we propose a graph-
based representation of rule bases. Nodes of the considered graphs correspond
to predicates, and they are annotated with vectors encoding our prior knowledge
about the meaning of these predicates. The vectors may be obtained from ex-
ternal resources such as word embeddings or they could be estimated from the
rule base itself. Edges connect predicates that co-occur in the same rule and their
annotations reflect the types of rules in which the predicates co-occur. We then
use a neural network model based on Graph Convolutional Networks (GCNs) to
refine the initial vector representation of the predicates, to obtain a representation
which is predictive of which rules are plausible. We present experimental results
that demonstrate the strong performance of this method.

Keywords: knowledge base completion · rule induction · graph convolutional
networks · commonsense reasoning.

1 Introduction

Many approaches have been proposed in recent years for the problem of finding plau-
sible missing facts in knowledge graphs, typically by learning vector space representa-
tions of the entities and relations that are predictive of plausible triples [8,27,33,43,48].
Beyond knowledge graphs, however, ontologies also play an important role on the Web
[19]. For the ease of presentation, in this paper we will consider ontologies which are
encoded as sets of existential rules [4], although our model would be straightforward to
adapt to other formalisms such as description logics [2]. Similar to knowledge graphs,
existing ontologies are often incomplete, hence there is a need for methods that can au-
tomatically predict plausible missing rules for a given ontology. For some ontologies,
where we have a large database of facts (often called an ABox), plausible rules can be
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learned similarly to how rules are learned in inductive logic programming and statistical
relational learning [11,31,40,44]. However, for many commonly used ontologies, such
a database of facts is not available. In this paper, we therefore address the challenge of
predicting plausible missing rules based only on the rules that are in a given ontology
(along with word embeddings in some variants of our proposed model).

This problem has thus far hardly received any attention, with the exception of [10].
The main underlying idea behind the approach from [10], which we will build on in
this paper, is that ontologies often contain large sets of rules which only differ in one
predicate. As a simple example, consider the following rules

Beer(x)→ R(x)

Gin(x)→ R(x)

Without knowing what the predicate R represents, we can infer that the following rule
is also valid:

Wine(x)→ R(x)

This is intuitively because almost all natural properties which beer and gin have in
common are also satisfied by wine. To formalize this intuition, [10] considered the
notion of rule templates.

A rule template ρ is a second-order predicate, which corresponds to a rule in which
one predicate occurrence has been replaced by a placeholder. For example, in the above
example, we can consider a template ρ such that ρ(P ) holds if the rule P (x) → R(x)
is valid, meaning that we would expect this rule to be entailed by the ontology if the
ontology were complete. Given such a template ρ, we can consider the set of all in-
stances P1, ..., Pn such that the corresponding rules ρ(P1), ..., ρ(Pn) are entailed by
the given ontology. The main strategy for finding plausible rules proposed in [10] then
essentially consists in finding predicates P which are similar to P1, ..., Pn. More pre-
cisely, the predicates are represented as vectors and it is assumed that each template ρ
can be modelled as a Gaussian distribution over the considered vector space, i.e. the
probability that ρ(P ) is a valid rule is considered to be proportional to Gρ(p), with p
the vector representation of P and Gρ the Gaussian distribution modelling ρ. In addition
to the templates described above, which are called unary templates, [10] also consid-
ered binary templates, which correspond to rules in which two predicate occurrences
have been replaced by a placeholder. While unary templates enable a strategy known
as interpolation, using binary templates leads to a form of analogical reasoning, both of
which are well-established commonsense reasoning principles.

A critical aspect of this strategy for ontology completion is how the vector represen-
tation of the predicates is obtained. The approach from [10] relies on the combination of
two types of vectors : (i) the word vector of the predicate name, obtained from a standard
pre-trained word embedding [29]; (ii) a vector representation which is learned from the
ontology itself, using a variant of the AnalogySpace method [41]. However, there are
important limitations with this strategy. For instance, it is not clear why the predicates
that satisfy a given template should follow a Gaussian distribution in the considered
vector space. Moreover, the way in which the predicate representations are constructed
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does not maximally take advantage of the available information. In particular, the ap-
proach based on the AnalogySpace method only relies on the known instances of the
unary templates, i.e. binary templates are completely ignored for constructing the vector
representations of the predicates. This is clearly sub-optimal, as knowing that ρ(P,R)
is a valid rule, for a given binary template ρ, intuitively tells us something about the
semantic relationship between the predicates P and R, which should in turn allow us to
improve our representation of P and R.

In this paper, we introduce a new method for predicting plausible rules which ad-
dresses both concerns. Our model is based on Graph Convolutional Networks (GCNs),
a popular neural network architecture for graph-structured data [13,23,38]. We start
from a graph-based representation of the rule base, in which the nodes correspond to
predicates. Each node is annotated with a vector representation of the corresponding
predicate. In this paper, we will use the vector representations from [10] for this pur-
pose. Crucially, however, rather than using these vectors directly for making predictions
as in [10], in our case they are merely used for initializing the GCN. Edges are annotated
with the binary templates that are satisfied by the corresponding pair of predicates. We
then propose a GCN model, which iteratively refines the vector encoding of the nodes,
taking advantage of the edge annotations based on the binary templates. The resulting
node vectors are then used to predict which predicates satisfy the different unary tem-
plates and which pairs of predicates satisfy the different binary templates, and thus to
predict which rules are plausible. Note in particular, that our aim is to learn a vector rep-
resentation of the predicates which is predictive of plausible rules, rather than relying
on assumptions about a given vector representation. Our experimental results confirm
that this approach is able to substantially outperform the method from [10].

2 Related Work

Within the area of knowledge base completion, we can broadly distinguish between two
classes of methods: methods focused on finding plausible facts and methods focused on
finding plausible rules.

Predicting Facts. In the last few years, there has been a large amount of work on finding
missing triples in knowledge graphs. A popular strategy for this task is to rely on knowl-
edge graph embedding, which aims to identify plausible triples by representing entities
as vectors in a low-dimensional vector space and learning a parametrized scoring func-
tion for each relation. For instance, in the influential TransE model, relations are mod-
elled as translations between the embeddings of entities [7], that is, eh+ er ≈ et, if (h,
r, t) holds. Some other well-known approaches make use of bilinear scoring functions.
For example, in [48] the authors propose to learn entity embeddings such that eThRret
is higher for correct triples (h, r, t) than for incorrect triples. Here eh and et are the em-
beddings of the entities h and t, and Rr is a diagonal matrix representing the relation
r. The ComplEx model [43] is an extension of [48] in the complex space. A different
strategy consists in learning latent soft clusters of predicates to predict missing facts in
relational data, for example by using Markov logic network [24] or by applying neural
network models [36,40]. Several rule-based approaches have also been proposed, where
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observed regularities in the given knowledge graph are summarized as a weighted set of
rules, which is then used to derive plausible missing facts. For instance, a soft inference
procedure was proposed in [26] to infer different relations by tuning the weights asso-
ciated with random walks that follow different paths through the graph. [16] proposed
a novel method with iterative guidance from soft rules with various confidence levels
extracted automatically from the knowledge graph. The aforementioned strategies all
rely on exploiting statistical regularities in the given knowledge graph. There are also
several ways in which external knowledge can be used to predict missing facts. One
possibility is to rely on information extraction from text corpora [1,25]. In this setting,
one can distinguish between methods based on a generic question answering system
[45] and methods which use the given knowledge bases as a distant supervision sig-
nal [30,34]. Apart from directly relying on text corpora, some approaches have instead
relied on pre-trained entity embeddings, which can be learned from open-domain re-
sources such as Wikipedia, WikiData or BabelNet [12,20]. For instance [9] focused on
finding missing instances of concepts in the context of ontologies, by modelling these
concepts as Gaussians in a given vector space. This problem of ABox induction was
also considered in [6], which instead relied on kernels for structured data to capture
similarities between entities. A similar problem was also considered in [32], which re-
lied on features that were directly derived from Wikipedia. Finally, various approaches
have also been proposed to combine the two main aforementioned strategies, for ex-
ample by incorporating textual descriptions of entities when learning knowledge graph
embeddings [21,46,47,49], or by incorporating relation extraction methods [35,42].

Predicting Rules. The problem of learning rules, in the context of ontologies, has been
approached from two different angles. First, we can identify methods that induce rules
based on the given (relational) facts, e.g. based on ideas from the field of Statistical
Relational Learning. For example, [11] proposed a system inspired by inductive logic
programming, while [44] introduced statistical schema induction to mine association
rule from RDF data and then generate ontologies. More recently, [40] used so-called
Lifted Relational Neural Networks to learn rules in an implicit way. In [31], meta-rules
were found automatically by meta-interpretive learning. Some other methods, e.g. [3],
used Formal Concept Analysis. What all these approaches have in common is that a
sufficiently large database is required to be able to learn rules from a given ontology,
which is however, not the case for the majority of available ontologies on the Web. The
second class of methods is concerned with predicting rules directly from the ontology
itself, which did not receive much attention yet. From a purely theoretical side, this
problem has been studied in a propositional setting in [39], where methods based on
interpolation and extrapolation of rules were proposed. However, the implementation
of these methods requires some background knowledge (e.g. a betweenness relation
is required to apply interpolation), which is not often available. In [5], a method that
implements a kind of similarity based reasoning using Markov logic has been proposed
in order to find plausible rules. The idea of similarity based reasoning has been also
pursued in logic programming to extend the unification mechanism [28,37]. As already
mentioned in Section 1, [10] recently proposed a method that relies on the notion of
rule templates and the estimation of Gaussian distributions over predicate embeddings
to make predictions.
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Graph Convolutional Networks. In this paper, we use a variant of Graph Convolutional
Networks (GCNs) to learn a vector representation of the predicates that occur in our
rule base which is suitable for predicting plausible rules. GCNs are a generalization of
Convolutional Neural Networks (CNNs). Whereas the latter require data with a regular
structure, such as images or sequences, GCNs allow for irregular graph-structured data.
GCNs can learn to extract features from the given node representations, and compose
these features to construct highly expressive node vectors. These node vectors can then
be used in a wide variety of graph-related tasks, such as graph classification [13] and
graph generation [15]. Recently, researchers have applied GCNs to find missing facts
in knowledge bases [17,38]. For example, [17] use GCNs for the standard triple clas-
sification and out-of-knowledge-base entity problems. Schlichtkrull et al. [38] model
multi-relational data using GCNs for entity classification and link prediction. However,
to our knowledge, this paper is to first to use GCNs for rule base completion.

3 A GCN Model for Rule Induction

Let R be a rule base, i.e. a set of rules. Our aim is to find additional rules that in-
tuitively appear to be plausible, even if they cannot be deduced from R. Throughout
our description, we will assume that R contains existential rules [4], i.e. rules of the
following form:

r1(x1) ∧ ... ∧ rn(xn)→ ∃y . s1(z1) ∧ ... ∧ sm(zm) (1)

where x1, ...,xn,y, z1, ..., zm are tuples of variables. We consider existential rules be-
cause they are an expressive and well-studied framework for representing ontologies.
However, because our method treats these rules as purely syntactic objects, it is in fact
not tied to any particular logical framework or semantics. We could readily apply the
same method to description logics, for instance.

3.1 Graph Representation of the Rule Base

Before we introduce our proposed method in Section 3.2, we now first describe how the
rule baseR can be encoded as a graph.

Rule Templates. As mentioned in Section 1, our graph encoding of the rule base will
rely on the notion of rule templates from [10]. Rule templates are second-order predi-
cates, which correspond to a rule in which one (for unary templates) or two (for binary
templates) occurrences of a predicate have been replaced by a placeholder. For a unary
template ρ and a predicate P , we write ρ(P ) to denote the rule that is obtained by
instantiating the placeholder with P , and similar for binary templates. We say that P
satisfies ρ if ρ(P ) is a valid rule in the considered domain. If R were complete, then
P would satisfy ρ iff R entails ρ(P ). In general, however, the rule base R is incom-
plete, which means that it only partially specifies which predicates satisfy the template
ρ. In particular, suppose that P1, ..., Pn are all the predicates for which ρ(Pi) can be
deduced from the given rule base R. Then P1, ..., Pn are the only predicates which are
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known to satisfy the template ρ. The problem we consider below is to identify addi-
tional predicates P which are likely to satisfy ρ, or equivalently, identify rules of the
form ρ(P ) which are valid in the considered domain but missing from the given rule
base. However, rather than considering this problem for a single template, we consider
all the possible templates that occur inR.

Let θ be an existential rule of the form (1). Then θ is associated with the following
unary templates:

ρ1(?) = ?(x1)∧...∧rn(xn)→∃y.s1(z1)∧...∧sm(zm)

...

ρn+m(?) = r1(x1)∧...∧rn(xn)→∃y.s1(z1)∧...∧ ? (zm)

as well as the following binary templates:

ρ1,2(?, •) = ?(x1)∧ • (x2)∧...∧rn(xn)→∃y.s1(z1)∧...∧sm(zm)

...

ρ1,n+m(?, •) = ?(x1)∧r2(x2)∧...∧rn(xn)→∃y.s1(z1)∧...∧ • (zm)

...

ρn+m−1,n+m(?, •) = r1(x1)∧...∧rn(xn)→∃y.s1(z1)∧...∧ ? (zm−1)∧ • (zm)

In addition to these templates, we also consider typed templates. In particular, assume
that the predicates are organized in a taxonomy and let ρ be a rule template that was
obtained by replacing the predicate P in the rule θ by a placeholder. Let Q be a parent
of P in the taxonomy (i.e. we have that R contains the rule P (x) → Q(x)). Then the
corresponding typed version of ρ, denoted by ρQ, is satisfied by those predicates P ′

that satisfy ρ and that also have Q as a direct parent.
We denote respectively byL1(θ) and L2(θ) the set of all unary and binary templates

that can be obtained from the rule θ (including both typed and untyped templates). We
also let L1(R) =

⋃
θ∈R L1(θ) and L2(R) =

⋃
θ∈R L2(θ) be respectively the set of all

unary and binary templates that can be obtained from the set of rulesR.

Graph Representation. We encode the rule base R as a graph GR = (PR, E) where
PR is a set of all predicates that occur inR and E contains all pairs of predicates (P,Q)
that co-occur in at least one rule in R. To capture the knowledge encoded in the rule
base (as well as potentially some external knowledge), we use two labelling functions.
The node labelling function η maps each predicate P from PR onto a real valued vector
η(P ) ∈ Rd. This vector can be viewed as the input encoding of the predicate P and can
be defined in different ways (see below). The edge labelling function ξ maps each pair of
predicates (P,Q) from E onto a binary vector ξ(P,Q) ∈ {0, 1}m, wherem = |L2(R)|.
In particular, let ρ1, ..., ρm be an enumeration of all binary templates from L2(R). The
ith coordinate of the vector ξ(P,Q) is 1 iff the rule ρi(P,Q) occurs inR.

Node Vectors. To construct the input encoding η(P ) of predicate P , we will either
use a vector ηw(P ) derived from the name of predicate P using a standard pre-trained
word embedding, or a vector ηt(P ) that encodes which of the unary templates from
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L1(R) are satisfied by P . Specifically, to obtain the vector ηw(P ), we first tokenize
the predicate name using a small set of simple heuristics, based on standard ontology
naming conventions4. For example, the predicate name RedWine gives the following list
of words: (red,wine). Let (w1, ..., wn) be the list of words thus obtained, then the vector
representation ηw(P ) of P is simply obtained by averaging the vector representations
of these words. Namely, ηw(P ) = 1

n (w1 + ...+wn), where wi denotes for the vector
representation of word wi in the word embedding. Even though this averaging strategy
may seem naive, it is known to be surprisingly effective for capturing the meaning of
phrases and sentences [18].

The vector ηt(P ), encoding knowledge about P derived from the unary templates,
is constructed as follows. First, we consider a binary vector ηBt (P ) ∈ {0, 1}k with
k = |L1(R)|, whose ith coordinate is 1 iff the ith unary template, in some arbitrary
but fixed enumeration of the unary templates, is satisfied by P . In other words, ηBt is
thus the counterpart of ξ for unary templates. We then define ηt(P ) ∈ Rl as the a low-
dimensional approximation of ηBt , obtained using singular value decomposition (SVD)
as in [10]. In particular, let X be a matrix with one row for each predicate, where
the row corresponding to P is given by the vector ηBt (Pi). Let X = UΣV T be the
singular value decomposition of X . Then ηt(P ) is given by the first l columns of the
row corresponding to P in the matrix UΣ. This use of the singular value decomposition
is a well-known technique to compress the information encoded in the vectors ηBt (P )
into a lower-dimensional representation. Note that the vectors ηt(P ) and ηt(Q) will be
similar if the sets of unary templates satisfied by P and Q are similar.

3.2 GCN Model

Background. Graph Convolutional Networks (GCNs) produce node-level embeddings
of graphs, by iteratively exchanging the current vector representations of the nodes
along the edges of the graph. GCNs are thus essentially message-passing models. Let
us write h

(0)
i for the initial vector representation of node ni. A GCN iteratively refines

this representation based on the following propagation rule [14]:

h
(l+1)
i = σ

∑
j∈Ni

f
(
h
(l)
i ,h

(l)
j

) (2)

where Ni is the neighborhood of ni, i.e. the set of nodes that are incident with ni.
Furthermore, f(·, ·) is a transformation function, which is used to combine the current
representation of ni with the current representation of a given neighbor nj . Both lin-
ear and non-linear transformations can be used for this purpose, but we will restrict
ourselves to linear transformations in this paper. These transformed representations are
intuitively viewed as messages which are sent from the neighbors of ni. These messages
are then aggregated (using a summation) after which a non-linear activation function σ
is used. We will use the ReLU function for this purpose, defined by σ(x) = max(0, x).

4 http://wiki.opensemanticframework.org/index.php/Ontology Best Practices

http://wiki.opensemanticframework.org/index.php/Ontology_Best_Practices
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Model Description. The standard formulation in (2) does not take into account edge
labels, which play an important role in our setting as they encode the nature of the
relationship between the (predicates corresponding to the) two nodes. Let us writeN ρi

P

for the set of all nodes Q that are connected with P in our graph for which (P,Q) is an
instance of the binary template ρi, i.e. (P,Q) ∈ ER and the ith component of ξ(P,Q)
is 1.

We specifically consider the following variant:

h
(l+1)
P = σ

W
(l)
0 h

(l)
P +

∑
ρ∈L2(R)

∑
Q∈NρP

1

|N ρ
P |

W(l)
ρ h

(l)
Q

 (3)

where we write h
(l)
P for the embeddings of the (node corresponding to) predicate P . In

the input layer, h(0)
P is the vector representation of the node P given by the label η(P ).

The matrix W
(l)
ρ encodes a template-specific linear transformation, which together with

the node transformation W
(l)
0 defines the l-th layer of our model.

We now describe how the GCN model can be used to predict plausible instances of
the considered unary and binary templates. Note that each such a prediction corresponds
to the prediction of a plausible rule, as mentioned in Section 3.1.

Unary Template Prediction. We treat the problem of predicting plausible instances of
unary templates as a multi-label node classification problem. To this end, we add an out-
put layer to the GCN which has one neuron for each unary template and each predicate,
i.e. for each predicate-template combination we make a prediction about whether the
template applies to that predicate. We use a sigmoid activation function for this output
layer and we use the cross-entropy loss function to train the model:

J = −
∑

ρ∈L1(R)

∑
Q∈PR

yρQ log(pρQ) + (1− yρQ) log(1− p
ρ
Q)

where pρQ ∈ [0, 1] is the model’s prediction that predicate Q satisfies template ρ and
yρQ ∈ {0, 1} is the corresponding ground truth, i.e. yρQ = 1 iff ρ(Q) can be entailed from
R. Note that when training this model, we thus implicitly assume that the rule baseR is
complete. However, the capacity of the GCN model is not sufficient to perfectly satisfy
this training objective, which means that it will make some mistakes and predict some
rules which are, in fact, not entailed by R. These “mistakes” then correspond to the
rules which we view to be plausible. Indeed, the reason why the GCN model predicts
such a rule ρ(P ) is it is not able to separate P from the predicates that are known to
satisfy ρ, which suggests that P is semantically similar to such predicates, and thus that
ρ(P ) should be considered as plausible.

For the ease of presentation, in the formulation of the loss function above, we as-
sumed that all templates are untyped. For typed templates, rather than considering all
predicates Q ∈ PR, we only consider those of the correct type. Furthermore, in the
experiments, we add the following regularization term to the loss function, which we
empirically found to be helpful:

Jreg =
∑

ρ∈L2(R)

∑
(Q,S)∈NρP

‖hQ − hS‖22
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where we write hP for the embedding of predicate P in the final layer. Note that this
regularization is thus only applied to the final embeddings, i.e. the layer before the
classification layer, instead of all layers.

The intuitive justification is that predicates which often co-occur in the same rule
are likely to be semantically related. This is particularly useful because the majority of
the rules in a typical ontology are basic subsumption rules of the form P (x)→ Q(x). In
some cases, we do not have much information about the parent concept Q (e.g. because
Q is an abstract concept), in which case the regularization term will encourage its rep-
resentation to be close to the average of the representations of its children. Conversely,
it may also be the case that we instead do not have much information about P (e.g.
because it is too specialized), in which case the regularization term would encourage
the representation of P to stay close to the representation of its parent.

Binary Template Prediction. We view the problem of predicting binary template in-
stances as a link prediction problem. For each pair of predicates (P,Q) from PR and
each binary template ρ ∈ L2(R), the task is to predict whether (P,Q) satisfies ρ. To
this end, we need a scoring function for each template ρ such that sρ(P,Q) is high for
valid pairs (P,Q) and low for other pairs. In principle, any of the scoring functions that
have been proposed for knowledge graph embedding could be used for this purpose. In
our experiments, we will use the following bilinear scoring function [48]:

s(P, ρ,Q) = hTPRρhQ,

where hP and hQ are the final-layer vector representations of the predicates, as before.
Furthermore, Rρ is a diagonal matrix which corresponds to the representation that is
learned for the binary template ρ. Note that while this scoring function is symmetric,
this symmetry is broken in practice when using typed binary templates. This is because
the only situation in which both the rules ρ(P,Q) and ρ(Q,P ) would be considered
is when they are of the same type (i.e. they have the same parent), which is almost
never the case. In order to train the model, we sample negative examples by randomly
corrupting one of the predicates in positive examples. We apply a sigmoid function to
the scoring function and then again train the model using a cross-entropy loss.

4 Model Evaluation

In this section, we experimentally evaluate our method5, comparing it against the method
from [10] as our baseline.

Methodology. The datasets we consider are constructed from the OWL version of the
following ontologies: SUMO6, which is a large open domain ontology, as well as Wine7,

5 Implementation and data are available at https://github.com/bzdt/
GCN-based-Ontology-Completion.git

6 http://www.adampease.org/OP/
7 https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine

https://github.com/bzdt/GCN-based-Ontology-Completion.git
https://github.com/bzdt/GCN-based-Ontology-Completion.git
http://www.adampease.org/OP/
https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine
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Table 1: Parameter settings for GCN models.
Wine Economy Olympics Transport SUMO

UT BT UT BT UT BT UT BT UT BT
GCNmf lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001
GCNmf hid 32 32 64 32 32 32 64 32 32 32
GCNmf ly 3 4 3 4 3 4 3 4 5 5
GCNmf l2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1
GCNwe lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001
GCNwe hid 32 32 64 32 32 32 64 32 32 32
GCNwe ly 3 4 3 4 3 4 3 4 5 5
GCNwe l2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1
GCNcm lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001
GCNcm hid 32 32 64 32 32 32 64 32 32 32
GCNcm ly 3 4 3 4 3 4 3 4 5 6
GCNcm l2 0.1 0.1 0 0.1 0 0.1 0 0.1 0 0.1
GCNcon lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001
GCNcon hid 32 128 64 32 64 64 32 64 32 32
GCNcon ly 3 4 3 4 4 4 3 4 5 6
GCNcon l2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1

Economy8, Transport9 and Olympics10, which are smaller domain-specific ontologies.
These OWL ontologies were then converted into existential rules (where we simply
omitted those OWL axioms that cannot be expressed in this way). In the experiments,
we use a standard pre-trained 300-dimensional word embedding learned using Skip-
gram on the 100B words Google News corpus11.

To evaluate the performance of our model, we split the considered rule bases into
training and test sets. We use 10-fold cross validation for the small ontologies, while for
the larger SUMO ontology, we use a fixed 2/3 split for training and 1/3 for testing. Af-
ter splitting each rule base, we applied Pellet Reasoner12 to determine all rules that can
be derived from each training split. Subsequently, we removed from the corresponding
test split all rules that could be derived from the training split. The derived rules are
kept in the training split, i.e. we apply our model to the deductive closure of the rules in
the training data.

Clearly, because it is based on rule templates, our GCN model can only predict
rules that correspond to instances of rule templates which occur in the training data.
Our evaluation therefore focuses on predicting, for all of the unary (resp. binary) tem-
plates found in the training data, which predicates (resp. pairs of predicates) are likely
to satisfy them, beyond those instances that are already found in the training data. Fur-
thermore, we can only make predictions about predicates that occur in the training data,
so any predicates that only appear in the test split are also ignored.

8 http://reliant.teknowledge.com/DAML/Economy.owl
9 http://reliant.teknowledge.com/DAML/Transportation.owl

10 http://swat.cse.lehigh.edu/resources/onto/olympics.owl
11 https://code.google.com/archive/p/word2vec/
12 https://github.com/stardog-union/pellet

http://reliant.teknowledge.com/DAML/Economy.owl
http://reliant.teknowledge.com/DAML/Transportation.owl
http://swat.cse.lehigh.edu/resources/onto/olympics.owl
https://code.google.com/archive/p/word2vec/
https://github.com/stardog-union/pellet
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For evaluation purposes, we assume that a prediction is correct iff the correspond-
ing rule can be derived from the given ontology (i.e. training and test split). This is
clearly a simplifying assumption, given that our starting point is that some valid rules
are actually missing. As a result, the reported evaluation scores should be viewed as a
lower approximation of the performance of the methods (given that some predictions
which are assessed to be false may actually be correct rules that were missing in the
original ontology). Importantly, however, this still allows us to compare the relative
performance of different methods. This evaluation strategy follows common practice in
the context of knowledge base completion (e.g. the standard benchmarks for knowledge
graph completion also rely on this simplifying assumption).

We choose the number of layers according to the size of the ontology. For small
ontologies (e.g. Wine), a limited number of layers is preferable to avoid overfitting,
while for larger ontologies (e.g. SUMO), it makes sense to use more layers as more
training data is available for these cases. Specifically, for unary template prediction, we
use a model consisting of 3 GCN layers for the small datasets (which includes the output
layer), and 5 GCN layers for SUMO. For the first two layers we use a ReLU activation
function, while sigmoid is used for the output layer. Regardless of the number of GCN
layers, sigmoid is always used for the last layer and ReLU for the other layers. For the
binary template prediction, we use 2 GCN layers with ReLU activation for the small
datasets, and 3 GCN layers for SUMO. This is followed by a scoring layer and a fully
connected layer using sigmoid. Crucially, to avoid overfitting and encourage the model
to generalize beyond the given instances of the templates, we apply dropout (dropout
rate = 0.5) to the hidden layers. We also use L2-norm regularization, which encourages
the model to focus on the most informative binary templates only when aggregating the
messages (noting that the model would converge to W

(l)
ρ = 0 if template ρ were not

informative). We have implemented the model in the Deep Graph Library (DGL) 13,
using the Adam optimizer [22] for training. We considered four variants of the GCN
model:

– GCNmf uses the ηt(P ) vector based on SVD decomposition as initial representation
of P .

– GCNwe uses the predicate representations ηw(P ) obtained from the word embed-
ding as input vectors.

– GCNcm combines the two independent models, i.e. it trains models for both ηt(P )
and ηw(P ) independently, and combines their predictions. We calculate the perfor-
mance measures of the union set of the rules predicted using both models. For a
given rule, as long as one of the two models predicts it correctly, it is considered a
correct prediction.

– GCNcon combines the two representations, i.e. it uses the concatenation of ηt(P )
and ηw(P ) as the input encoding of P .

As our baseline, we consider the model from [10], which we will refer to as BRI. We
consider four variants of this model, being direct counterparts to the four variants of our
model:

– BRImf uses the ηt(P ) vector to represent predicates.
13 https://docs.dgl.ai

https://docs.dgl.ai
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Table 2: Results of the rule induction experiments.
Wine Economy Olympics Transport SUMO

UT BT UT BT UT BT UT BT UT BT
BRImf Pr 0.030 0.583 0.091 0.992 0.150 0.286 0.000 0.600 0.534 1.000
BRImf Rec 0.045 0.180 0.070 0.309 0.108 0.191 0.000 0.173 0.201 0.072
BRImf F1 0.032 0.259 0.075 0.445 0.114 0.214 0.000 0.251 0.292 0.134
BRIwe Pr 0.118 0.400 0.093 0.993 0.307 0.286 0.000 1.000 0.791 0.969
BRIwe Rec 0.311 0.073 0.294 0.599 0.225 0.238 0.000 0.464 0.287 0.328
BRIwe F1 0.159 0.124 0.138 0.742 0.234 0.257 0.000 0.609 0.421 0.490
BRIcm Pr 0.118 0.700 0.089 0.992 0.407 0.250 0.000 1.000 0.802 0.971
BRIcm Rec 0.331 0.234 0.297 0.627 0.325 0.250 0.000 0.538 0.316 0.348
BRIcm F1 0.162 0.330 0.135 0.765 0.334 0.250 0.000 0.667 0.453 0.513
BRIcon Pr 0.094 0.600 0.072 0.855 0.200 0.286 0.000 0.367 0.250 0.750
BRIcon Rec 0.102 0.288 0.101 0.267 0.050 0.191 0.000 0.132 0.002 0.015
BRIcon F1 0.085 0.364 0.083 0.387 0.079 0.214 0.000 0.187 0.005 0.030
GCNmf Pr 0.489 0.475 0.750 0.733 0.278 0.286 0.010 0.400 0.543 0.732
GCNmf Rec 0.349 0.244 0.153 0.180 0.292 0.286 0.018 0.077 0.421 0.409
GCNmf F1 0.334 0.313 0.243 0.269 0.273 0.286 0.013 0.125 0.474 0.524
GCNwe Pr 0.645 0.900 0.172 0.911 0.350 0.429 0.020 0.850 0.719 0.836
GCNwe Rec 0.259 0.356 0.218 0.526 0.392 0.429 0.033 0.267 0.396 0.493
GCNwe F1 0.355 0.488 0.183 0.651 0.328 0.429 0.021 0.387 0.510 0.620
GCNcm Pr 0.465 0.875 0.175 0.891 0.465 0.429 0.118 0.850 0.778 0.884
GCNcm Rec 0.382 0.444 0.232 0.591 0.533 0.429 0.033 0.313 0.437 0.516
GCNcm F1 0.353 0.563 0.189 0.688 0.463 0.429 0.036 0.434 0.559 0.651
GCNcon Pr 0.416 0.900 0.163 0.912 0.233 0.857 0.371 0.454 0.692 0.812
GCNcon Rec 0.356 0.476 0.245 0.585 0.267 0.762 0.044 0.139 0.374 0.485
GCNcon F1 0.356 0.607 0.191 0.698 0.242 0.786 0.077 0.201 0.485 0.607

– BRIwe uses the representation ηw(P ) based on word vectors.

– BRIcm combines the predictions of the BRImf and BRIwe models.

– BRIcon uses the concatenation of ηt(P ) and ηw(P ).

To tune the parameters of the models, we randomly select 10% of the training data as
a validation set. The parameters to be tuned include the learning rate (chosen from {0.1,
0.01, 0.001}) for Adam optimization, the number of units in the hidden layers (chosen
from {16, 32, 64, 128, 256}), the dimensionality of the input encodings of the predicates
in cases where we use the SVD based method (chosen from {20, 30, 40, 50, 100}) and
the threshold for classification and the hyperparameter for L2 regularization. Table 1
reports the different settings that were selected. The trade-off hyperparameters of the
regularzier Jreg for unary template prediction are 0.01 for the Economy and Transport
ontologies and 0.1 for Wine and Olympics ontologies. We use the same parameters for
each fold. For instance, for the Wine ontology, the number of units is 32 and we use a
40-dimensional input encoding of the predicates. The hyperparameter for L2 is set to 0
for the unary template prediction and to 0.1 for binary template prediction respectively.
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Quantitative Evaluation. Table 2 reports the performance of the different models in
terms of precision (Pr), recall (Rec) and F1 score. Note that both unary template predic-
tions and binary template predictions are the multi-label classification tasks. However,
what matters in the prediction is not how many nodes or links are classified correctly,
but how successful the models are at predicting missing rules. Therefore, the precision,
recall and F1 scores are computed w.r.t. the number of correctly predicted rules instead.
In all cases, we use micro-averaging to calculate the overall precision, recall and F1
scores.

The results in Table 2 show that the GCN model is indeed able to outperform the
BRI model from [10]. The table separately shows the performance of models which
only rely on unary templates (UT) for predicting plausible rules and models which only
rely on binary templates (BT). As can be seen, for UT, the GCN models consistently,
and often substantially, outperform the BRI counterparts, which demonstrates that the
GCN models are able to improve the representation of the predicates by propagating
and incorporating the information received from related predicates. In the case of the
BT results, the GCN models perform best on the Wine, Olympics and SUMO ontolo-
gies, but they perform less well on the Economy and Transport ontologies. This can be
explained by the fact that the number of examples we have for each binary template in
these cases is much lower, which can result in overfitting on the training data. In con-
trast, for SUMO, which is by far the largest ontology, the outperformance of our model
is consistent and very substantial. Finally, when comparing the GCNmf and GCNwe
variants, we clearly see that using word embeddings to initialize the node vectors leads
to the best results, although both models are outperformed by the concatenation based
model GCNcon or the combined model GCNcm. Comparing the performance of GCNcm
and GCNcon, we can see that the concatenation model GCNcon generally performs bet-
ter. Interestingly, the difference in performance between GCNcm and GCNcon is more
mixed.

Qualitative Analysis. We illustrate the performance of the GCN model by discussing
some examples of predicted rules. As an example from the UT setting, our model was
able to correctly predict the following rule from the Wine ontology:

DryRedWine(x)→ TableWine(x)

by using the template ρ(?) = ?(x)→ TableWine(x). The instances of this template that
were given in the training data are RedTableWine, DryWhiteWine and Burgundy. Based
on these instances, the BRI model was not able to predict that DryRedWine is also a
plausible instance. The GCN models, however, were able to exploit edges (i.e. binary
templates) corresponding to the following rules:

Merlot(x)→ DryRedWine(x)

Merlot(x)→ RedTableWine(x)

DryRedWine(x)→ DryWine(x)

DryWhiteWine(x)→ DryWine(x)

Burgundy(x)→ DryWine(x)
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As an example from the BT setting, the GCN model was able to correctly predict the
following rule from the Olympics ontology:

WomansTeam(x)→ ∃y . hasMember(x, y) ∧Woman(y)

based on the following rules from the training data:

MensTeam(x)→ ∃y . hasMember(x, y) ∧Man(y)

MixedTeam(x)→ ∃y . hasMember(x, y) ∧Woman(y)

This illustrates the ability of models based on binary templates to perform analogical
reasoning. Note that this rule cannot be predicted in the setting where only unary tem-
plates are used.

From a practical perspective, an important question is whether our model is able to
find rules which are missing from the existing ontologies, rather than merely identifying
held-out rules (as we did in the experiments above). Here we present some examples
of rules that were predicted by our model, but which cannot be deduced from the full
ontologies. These predictions are based on a GCN model that was trained on the full
ontologies. Some of the rules we obtained are as follows:

Cycle(x)→ LandVehicle(x)

AgriculturalProduct(x)→ Product(x) ∧ Exporting(x)

CargoShip(x)→ Ship(x) ∧ DryBulkCargo(x)

As can be seen, these rules intuitively make sense, which suggests that our approach
could indeed be useful to suggest missing rules in a given ontology. Since there exists
rule Bicycle(x)→ Cycle(x) in the Transport ontology, which makes Cycle(x)→ Land-
Vehicle(x) plausible. AgriculturalProduct(x) → Product(x) ∧ Exporting(x) is plausi-
ble, here “Exporting”, according to the Economy ontology, is employed in international
trade, because of the rules Exporting(x) → ChangeOfPossession(x) and Exporting(x)
→ FinancialTransaction(x).

5 Conclusion

In this paper, we proposed a method for predicting plausible missing rules from a given
ontology (or rule base) based on Graph Convolutional Networks (GCNs). To this end,
we introduced an encoding of the ontology as a graph. We then introduced a GCN
model that can take advantage of this graph encoding to predict rules in a more faithful
way than existing methods. This is essentially due to the fact that the GCN model is able
to derive structural features from the rule base, to learn much richer representations of
predicates than those that are used in existing approaches.

The problem considered in this paper is not yet as mature as related topics such as
knowledge graph completion, and accordingly there are still several important and in-
teresting avenues for future work. One natural extension of our current approach would
be to use a joint prediction framework, which would ensure that the collection of rules
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predicted by the model is consistent with the given rule base. Essentially, such an ap-
proach would be able to use the requirement that the set of rules needs to be logically
consistent as a kind of additional supervision signal. More generally, there is a clear
benefit in developing methods that can integrate induction (in the sense of predicting
plausible rules) and deduction in a tighter way. In terms of the technical details of our
GCN model, one area that could be improved is that the parameters which are learned
for each of the binary templates are currently independent from each other, which can
lead to overfitting, given the small number of instances of many templates. As a pos-
sible alternative, the edge labels could be replaced by a low rank approximation of the
current binary vectors.
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