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Transcriptional profiling unveils type I and II
interferon networks in blood and tissues
across diseases
Akul Singhania et al.#

Understanding how immune challenges elicit different responses is critical for diagnosing and

deciphering immune regulation. Using a modular strategy to interpret the complex tran-

scriptional host response in mouse models of infection and inflammation, we show a breadth

of immune responses in the lung. Lung immune signatures are dominated by either IFN-γ and
IFN-inducible, IL-17-induced neutrophil- or allergy-associated gene expression. Type I IFN and

IFN-γ-inducible, but not IL-17- or allergy-associated signatures, are preserved in the blood.

While IL-17-associated genes identified in lung are detected in blood, the allergy signature is

only detectable in blood CD4+ effector cells. Type I IFN-inducible genes are abrogated in the

absence of IFN-γ signaling and decrease in the absence of IFNAR signaling, both indepen-

dently contributing to the regulation of granulocyte responses and pathology during Tox-

oplasma gondii infection. Our framework provides an ideal tool for comparative analyses of

transcriptional signatures contributing to protection or pathogenesis in disease.
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The host response during infection and inflammation, in
both mouse models and human disease is complex, with a
spectrum of responses having been reported across infec-

tions with intracellular pathogens, viruses, fungi, or allergy, often
driven and dominated by specific groups of cytokines, activating
protective responses or pathology1–6. There are few transcrip-
tional studies or data resources on the global immune responses
spanning different experimental models of diseases across distinct
types of immune responses. While tissue transcriptomic
approaches have been applied widely to different experimental
models of disease individually, this has been reported to a lesser
extent for the blood7,8. Conversely, in humans, transcriptomic
approaches have been applied to whole blood or peripheral blood
mononuclear cells (PBMC)9–16, however, little is known about
how immune responses in blood are reflected at disease sites.
Moreover, application of whole blood transcriptomics has not
always discerned signatures of disease, revealed only upon tran-
scriptomic analysis of purified cells or PBMC17,18.

Many published whole blood disease-specific signatures are
dominated by IFN-inducible signatures and those attributable to
innate immune responses, as broadly described in both experi-
mental models and human diseases9–12,15,19. Although mainly
dominated by a type I IFN transcriptional signature, some are
accompanied by a cluster of genes that have been attributed to
IFN-γ signaling, classically referred to as IFN-stimulated genes
(ISGs)20,21. Cytokines, chemokines, signaling, and cell membrane
molecules can also form part of the IFN signature22. How type I
IFN and IFN-γ-inducible genes are expressed across a spectrum
of different diseases and how the blood transcriptional signature
reflects the tissue response are unclear. Effects of type I IFN are
clearly not limited to antiviral responses, but also play a role in
bacterial3,4,9,11,23,24, helminth, allergy25, and other inflammatory
responses, with beneficial or detrimental effects3,4,26–33. IFN-γ is
key to activating cell-mediated immune responses to control
intracellular pathogens29,34, but dampens allergic and anti-
helminthic responses5,34, and if uncontrolled can lead to
immune pathology35,36. A blood signature of allergy, asthma, or
helminth responses in humans, reflecting TH2-type responses or a
TH17-type37,38 signature in inflammation, have as yet not been
reported. Whether analysis of such signatures has been attempted
and such signatures are not detectable in blood, or as yet have not
been investigated, is unclear.

We purposefully chose pathogens and an allergen to yield a
wide breadth of different types of immune response in the lung,
representative of TH1, type I IFN, TH17, and TH2 responses,
hypothesizing that distinct responses underlying the immune
response in each model could be determined by the transcrip-
tional signature of unseparated lung cells. To this end, we have
used bioinformatics approaches, including modular and cellular
deconvolution analyses, to decipher the global transcriptional
response in the lungs of mice infected or challenged with a broad
spectrum of infectious pathogens, including parasites, bacteria,
viruses, fungi, or allergens, and also to determine to what extent
each of these responses is preserved in the blood. We demonstrate
a unique global transcriptional signature for each of the different
diseases against the controls in both lung and blood. The lung
transcriptional signatures showed a gradation, ranging from IFN-
inducible gene clusters, to those associated with granulocyte/
neutrophil/IL-17 dominated genes, to responses dominated by
expression of genes encoding TH2 cytokines, mast cells and B
cells, with only preservation of some signatures in the blood.
Unique and overlapping regulatory functions of both type I IFNs
and IFN-γ signaling pathways during infection with Toxoplasma
gondii, and a role for both IFNs in regulating the TH17/neu-
trophil-induced pathology, was observed. Our study provides a
useful resource of the global differential immune responses in

both blood and tissue across a broad spectrum of diseases, also
providing translational knowledge on how the blood signature
reflects the local tissue immune response. This resource is now
easily accessible with the use of an online webapp: https://ogarra.
shinyapps.io/MouseModules/.

Results
Transcriptional signatures across diseases. To determine the
global changes in the host response to infection and allergens, we
performed RNA-based next-generation sequencing (RNA-Seq)
on RNA isolated from both lung and blood, at the pre-
determined peak of the response of mice infected with T. gon-
dii; influenza A virus (influenza); respiratory syncytial virus
(RSV); acute Burkholderia pseudomallei (B. pseudomallei); Can-
dida albicans (C. albicans); or challenged with the allergen house
dust mite (HDM), to capture the breadth of TH1, to type I IFN, to
TH17, to TH2 responses (Fig. 1a; Supplementary Fig. 1a; Sup-
plementary Data 1a). Principal component analysis of the RNA-
Seq data depicted a unique global transcriptional signature for
each of the different diseases as compared to controls (PC1) in
lung (Fig. 1b), and to a lesser extent in blood (Fig. 1c). The total
differentially expressed genes in all datasets are shown in Sup-
plementary Data 1b. PC2 representing the second largest varia-
tion in the data, separated the different diseases in the lung, with
B. pseudomallei infected mice positioned in between fungal and
other infections (Fig. 1b). Mice infected with RSV and HDM
allergy, although distinct from each other, clustered more closely
to the controls (Fig. 1b, c). The blood transcriptional signatures
were also investigated in a distinct set of mice infected with
Plasmodium chabaudi chabaudi (P. chabaudi, malaria), murine
cytomegalovirus (MCMV), Listeria monocytogenes (Listeria) and
chronic B. pseudomallei (Supplementary Fig. 1a), and shown also
to cluster away from the controls, with each disease clustering
independently of each other, although transcriptional signatures
of P. chabaudi and MCMV clustered closely to each other
(Supplementary Fig. 1b).

To infer the immune cellular composition from transcriptomic
data, cellular deconvolution analyses39,40 were first applied to the
RNA-Seq dataset obtained from the ImmGen Consortium
(GSE109125) on flow cytometry sorted cells, to verify the
accuracy of the immune subsets being identified from the
deconvolution analysis. Based on this comparative analysis, we
grouped the 25 immune cell types from the cellular deconvolu-
tion analyses39,40 into a broader set of 9 categories, representing
the major immune cell types (Supplementary Fig. 2a). Applica-
tion of the validated cellular deconvolution analyses to the lung
and blood transcriptional data (Fig. 1a) identified a dominance of
diverse cellular populations in the different diseases (Fig. 1d).
Natural killer (NK) cells were increased in T. gondii and influenza
infection in both lung and blood, with only a weaker increase
during RSV infection, but were reduced during B. pseudomallei
and C. albicans infections, and remained unaltered in HDM
allergy (Fig. 1d). Neutrophils/granulocytes were significantly
over-represented in the lungs and blood of mice infected with
B. pseudomallei and C. albicans (Fig. 1d). Cellular deconvolution
analysis did not reveal an increase of mast cells or eosinophils in
the lungs or blood from HDM-allergen-challenged mice (Fig. 1d).
Although accurate mast cell identification by the deconvolution
analysis was confirmed using the ImmGen sorted cell dataset,
eosinophils could not be verified using this approach since the
ImmGen database lacked this population (Supplementary Fig. 2a).
To determine that the absence of eosinophil detection was not a
limitation of the deconvolution analysis, we analyzed bronch-
oalveolar lavage cells (BAL) from HDM allergen-challenged mice,
since this compartment has previously been reported to contain
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Mouse models of infectious and
inflammatory diseases
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Fig. 1 Global transcriptional analysis captures differences across infectious and inflammatory diseases. a RNA-seq analysis was performed on lung and
blood samples (Supplementary Data 1) obtained from experimental mouse models of 6 infectious and inflammatory diseases. b, c Principal component
analysis in lung (b) and blood (c) samples, depicting the variation in the global gene expression profiles across diseases. Principal components 1 (PC1) and
2 (PC2), which capture the greatest variation in gene expression, are shown. Circles and triangles represent lung and blood samples, respectively, empty
and filled symbols represent control and disease samples, respectively, and color represents mouse models. d Stacked bar plots depicting in silico immune
cell composition of lung and blood RNA-seq samples, derived using the CIBERSORT algorithm based on cellular signatures obtained from ImmuCC. Each
bar represents percent fractions for 9 representative cell types for an individual mouse sample, with colors representing the different cell types. White and
black bars at the bottom of each plot represent control and disease samples, respectively. ILC innate lymphoid cells, NK cells natural killer cells
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eosinophils after allergen challenge41. Indeed, this confirmed an
increase in eosinophils in BAL from HDM allergen-challenged
mice (Supplementary Fig. 2b). Overall, these findings demon-
strate clear distinctions in the transcriptional signatures and
immune cell compositions across a spectrum of infectious and
inflammatory diseases, from whole lung and blood.

Modular transcriptional signatures across diseases. We next
applied Weighted Gene Co-expression Network Analysis
(WCGNA)42, a modular approach, to identify groups of genes co-
expressed together across the lung and blood samples obtained
from the various mouse models of infectious and inflammatory
diseases. These groups of genes, termed modules, were derived in
an unbiased way based on the transcriptional profiles of the
protein coding genes across all control and disease samples,
resulting in 38 modules in lung (L1–L38, Supplementary Data 2)
and 41 modules in blood (B1–B41; Supplementary Data 3). The
genes within the modules were functionally annotated using
Ingenuity Pathway Analysis (IPA), MetaCore, and Gene Ontol-
ogy (GO), (Supplementary Data 4 and 5); those commonly
identified by the three methods were retained and validated by
further manual curation. Next, these modules were assessed in
each dataset in lung (Fig. 2a, left panel) and in blood (Fig. 2b, left
panel), using QuSAGE43 to identify over-abundant (red) and
under-abundant (blue) modules in disease datasets against
respective controls (Fig. 2a, b, left panels). Cell types associated
with each module were identified by comparing cell-type-specific
signatures derived for 10 cell types using the ImmGen Ultra Low
Input (ULI) RNA-seq dataset (Supplementary Figs. 2a and 3a,
Supplementary Data 6) against the genes within each module,
using a hypergeometric test (Fig. 2a, b, right panels).

The lung transcriptional signatures showed a gradation,
ranging from IFN-inducible gene clusters (IFN-γ/Type II and
Type I IFN), to those associated with granulocyte/neutrophil/IL-
17 dominated genes, to responses dominated by expression of
genes encoding TH2 cytokines, mast cells and B cells. Two
modules of interferon-related genes were identified—type I IFN
inducible genes (Module L5), which included genes associated
with innate immune responses, and classical ISGs, such as Ifnb1,
Ifit1 and 3, Oas1a, 2 and 3, Oasl1 and 2, Mx1, Stat2, Irf7 and Irf9;
and the IFN-γ-inducible (Type II) gene module (L7), which
included Ifng, Irf1, 2 and 8, and other downstream targets Il12rb1
and b2, Tap1 and 2, and genes associated with APC function such
as H2-MHC molecules, and host defence, such as Gbps (Fig. 2a
left panel; Supplementary Data 2). The majority of genes in each
respective module (L5 and L7) were attributed to either Type I
and/or Type II using the interferome database44 (Supplementary
Data 2). Both L5 and L7 modules, were over-abundant in lungs
from mice infected with T. gondii, influenza, RSV, acute B.
pseudomallei, albeit to different levels, and to a very low extent in
HDM allergen-challenged mice. Conversely, in lungs of C.
albicans infected mice, both L5 and L7 modules were under-
abundant. Genes such as Irf7, Irf9, Mx1, Ifit3, Oas1a (L5) were
induced most highly in lungs of virally infected mice (influenza
and RSV). (Supplementary Data 2). The type I IFN signaling
module (L5) was accompanied by the Leukocytes/Myeloid/
Signaling (L3, over-abundant across all diseases) module and
both showed enrichment for cell types of the macrophage,
dendritic cell and granulocyte lineages, with L3 also being
enriched for innate lymphoid cells (ILCs) and αβ T cells (Fig. 2a,
right panel). In contrast to the type I IFN-inducible module (L5),
the IFN-γ-dominated module (L7) showed cell-type enrichment
for αβ T cells, dendritic cells, and ILCs. The lungs from mice
infected with C. albicans, were dominated by modules encoding
myeloid cells (L10, L12–L15), granulocytes (L10, L11) and Il17

and IL-17-associated cytokines (L11) and Il1b/IL-1 signaling
(L12, L13, respectively). However, IL-17 (including increased
expressions of Il17a, Il1a and Il22) and granulocyte-associated
(L10 and L11) responses were most pronounced during B.
pseudomallei infection, with this infection also exhibiting
increased IFN gene signatures (L5 and L7) in contrast to the C.
albicans infection. These IL-17 (L11) and Il1b/IL-1 signaling (L12,
L13) associated modules, and modules L10 and L14 showed
significant enrichment for granulocytes and/or myeloid cells
(Fig. 2a, right panel), indicating an increase in these cell types
upon infection with B. pseudomallei and C. albicans, in keeping
with the cellular deconvolution analysis (Fig. 1d). The HDM
allergen-challenged mice generally exhibited weaker responses in
the lung, except for the L26 module containing genes associated
with allergic manifestations, which dominated this response
(Fig. 2a, left panel). This dominant module (L26) in HDM allergy,
contained increased expression of genes such as Il4, Il5, Il13, and
Il33, and the eosinophil-attracting chemokines, Ccl11 and Ccl24,
in keeping with the cellular deconvolution analysis (Supplemen-
tary Fig. 2b), and genes associated with mast cell function45, in
keeping with the significant enrichment for mast cells in this
module (Fig. 2a, right panel) (Supplementary Data 2). The HDM
allergy lung response was also accompanied by an over-
abundance of immunoglobulin genes (L25) enriched for B cells
(Fig. 2a), which was absent or under-represented across all the
other diseases.

Independent modular and cell enrichment analysis in blood
also revealed common and reciprocal signatures across diseases
(Fig. 2b; Supplementary Data 3 and 5), although the response in
the blood appeared weaker than the lung (Fig. 2a, b). IFN-
signaling was observed across two modules: B11, containing genes
including Gbps, Ido, Il10, Oas1a and Oas1g; and B14, containing
Ifng, Gbps, H2, Ifits, Irf1 and 7, Irgm1 and 2, Mx1, Oas3, Oasl1, 2,
Stat1 and Stat2, Tap1 and 2 (Fig. 2b, left panel; Supplementary
Data 3). Both modules were over-abundant in blood of mice
infected with T. gondii, influenza, RSV, acute B. pseudomallei,
albeit to different levels, with module B14 being enriched for
T cells and ILCs, but module B11 showing no enrichment for
specific cell types, possibly indicating a broader distribution
across many blood cell types (Fig. 2b, right panel). Blood
signatures from mice infected with malaria, MCMV, Listeria, and
chronic B. pseudomallei, also demonstrated a strong contribution
of both IFN signaling modules (B11 and B14) (Supplementary
Fig. 1c). In contrast to the lung, modular derivation directly from
the blood did not reveal a detectable Il17a and IL-17-associated
cytokine gene module, although myeloid cell/granulocyte-asso-
ciated gene modules (B16–B18) were present in blood of acute B.
pseudomallei, C. albicans, and T. gondii and to a lesser extent in
influenza and RSV infected mice (Fig. 2b, left panel). This is in
keeping with the cellular enrichment for macrophages and
granulocytes (Fig. 2b, right panel). Additionally, modular
derivation directly from the blood did not reveal a module
showing perturbation of allergy-associated genes that had been
detected in the lung (Fig. 2a, L26). Modules representing
immunoglobulin or B cell-related genes were either unchanged
or under-abundant in the blood (B28, B38), except for module
B30, which contained B cell and myeloid-associated genes, and
was over-abundant during HDM-allergen challenge and influenza
infection (Fig. 2b). Under-representation of modules associated
with T and some B cell functions was observed, for the most part,
in the blood across all diseases (Fig. 2b, left panel; Supplementary
Fig. 1c, right panel; B28; and B36–B41), in keeping with previous
studies7,9,46.

The Cytotoxic/T cells/NK/Tbx21/Eomes lung and blood
modules (L35 and B15) showed unexpected discordancy from
the Ifng modules (L7 and B14), with acute B. pseudomallei (Fig. 2;
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Supplementary Fig. 4) giving rise to this apparent discordancy in
the modules (Fig. 2a, b; Supplementary Fig. 4; Supplementary
Datas 2 and 3). The Cytotoxic/T cells/NK/Tbx21/Eomes modules
(L35 and B15), were most abundant during infection with T.
gondii and influenza but significantly under-abundant during B.
pseudomallei infection (Fig. 2a, left panel), whereas the Ifng
module, was abundant in all three infections. This disassociation
of tbx21 and ifng expression (Supplementary Fig. 4) is in keeping
with a previous report47.

Overall, these findings, using both RNA-Seq (Fig. 2) and
microarray platforms (Supplementary Figs. 5 and 6), demonstrate
distinct modular transcriptional patterns in the lungs from the
infected/challenged mice reflective of T helper (TH)1-type
responses (T. gondii, influenza, RSV; and more weakly B.
pseudomallei infection), TH17-type (B.peusodomallei and C.
albicans infection) and TH2-type (HDM allergy) in vivo (Fig. 2a).

To test whether in vitro-differentiated cells from TH1(+IL-27)
cells, TH2 cells and TH17 cells reflect the in vivo responses, we
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assessed their in vitro-derived TH cell48 signatures (Supplemen-
tary Data 7) in lung (Fig. 2c) and blood (Fig. 2d) RNA-Seq
samples across all diseases. In vitro-derived TH1(+IL-27)
populations showed enrichment in blood and lungs from T.
gondii, influenza, RSV, B. pseudomallei infected mice; TH2 cells
showed dominance in the lungs from HDM allergy challenged
mice, but not in blood from HDM allergy challenged mice; and
TH17 cells showed a very strong enrichment in the lungs from B.
pseudomallei infected mice, with weaker enrichments in C.
albicans, influenza infected and HDM-allergen-challenged mice,
and in blood of C. albicans infected mice (Fig. 2d). Collectively
this demonstrates that in vitro-derived TH cell subsets express
genes reflective of the local in vivo responses to distinct pathogens
or allergens, and that each TH cell subset is represented in specific
diseases.

Fidelity of some lung transcriptional profiles in blood. Little
has been reported on how different immune responses in blood
are reflected at the site of disease. To assess the similarity between
the co-expression patterns of genes in lung and blood, the
reproducibility and robustness of gene network topology was
tested as assessed by Zsummary scores indicative of the degree of
preservation, with scores >10 considered strongly preserved
(Fig. 3a, b; Supplementary Data 8 and 9). The cell cycle/DNA
processes modules (L6 and B10) were highly preserved across
tissues in their co-expression pattern (Fig. 3a, b, Supplementary
Fig. 7). The IFN modules were also significantly conserved
between lung and blood (L5, L7 and B11, B14) (Fig. 3a–d; Sup-
plementary Fig. 7). The lung granulocyte/myeloid modules
(L11–L14) were only moderately preserved in blood (Fig. 3a, c;
Supplementary Fig. 7), whereas the equivalent blood modules B17
and B18 granulocyte/myeloid modules were strongly preserved in
lung (Fig. 3b, d; Supplementary Fig. 7). Testing the lung modular
signature on the blood dataset did reveal that this TH17 and
granulocyte (L11 and L14) modules were actually preserved in
blood (Fig. 3a, c), although the expression of Il17a itself was
extremely low in the blood (Supplementary Data 2 and 3). The
lung allergy module (L26) was not preserved in the blood (Fig. 3a
and Supplementary Data 8), in keeping with the inability to detect
increased expression of Il4, Il5, Il13, and Ccl11 (Supplementary
Data 2 and 3) and showed weak correlations between the fold
changes for genes within this module between lung and blood
(Fig. 3c). Overall, the global modular lung signature showed lower
correlation in blood samples (Fig. 3c, right panel) than when the
blood modular signature was assessed in lung samples (Fig. 3d,
right panel). These findings highlight that certain infections, such
as T. gondii and B. pseudomallei, are better preserved between
lung and blood than others such as RSV and HDM allergy, and

that certain immune responses, such as the IFN response, are
better reflected between the lung and blood upon infection,
suggesting which immune pathways can become systemic and
those which remain local to the insult.

Lung allergy signatures are not conserved in blood. Since the
lung allergy module, including Il4, Il5, and Il13 genes, (L26) was
not preserved in blood of HDM allergen-challenged mice
(Figs. 2a, b and 3a, c), we tested this module in the lungs (BAL)
and blood from an alternative nasal sensitization mouse model of
allergy to HDM (also, alternative vivarium CML, WB Imperial
College)41, where similarly the Allergy module L26 was detected
in BAL but not blood (Supplementary Fig. 8; Supplementary
Data 10). It has been suggested that certain T-cell signatures of
disease can only be detected in T cells purified from blood and
not whole blood or PBMC17,18. To determine whether we could
detect any genes from the Allergy Module (L26) in purified CD4+

T cells, or activated effector CD4+CD44hi versus CD4+CD44lo

T cells from the blood, RNA-Seq was applied to flow cytometry
purified blood populations and compared to the equivalent
populations from the lungs of HDM allergen-challenged mice.
TH2-specific genes were detected at high level in CD4+ T cells
and activated effector CD4+CD44hi from the lungs of HDM-
allergen-challenged mice (Fig. 3e; Supplementary Data 11) and
now also in the blood of HDM-allergen-challenged mice (Fig. 3e;
Supplementary Data 11). These findings are in keeping with the
cellular attribution of the TH2-type cytokine genes over-expressed
within the lung Allergy Module (L26) to αβ T cells and ILCs, with
the majority of genes attributable to other cell types in the lung,
perhaps explaining the absence of this module in the blood
(Supplementary Fig. 9).

Conservation of lung IFN-inducible signatures in blood. Since
the lung Type I IFN/Ifit/Oas (L5) and the Ifng/Gbp/Antigen
presentation (L7) modules were conserved in the blood (Fig. 3a, c;
Supplementary Fig. 7), we examined the “hub” genes, i.e., genes
most representative of the transcriptional profile of the module
and most connected with all other genes within each module, in
lung and blood (Supplementary Data 12 and 13; Fig. 4). Over-
abundance of both Type I IFN (L5) and IFN-γ (L7) inducible
genes was observed in mice infected with T. gondii, influenza,
RSV, and B. pseudomallei infected mice correlating between lung
and blood, but not in HDM allergen-challenged or C. albicans
infected mice. Strikingly, high expression in both modules was
observed in the lungs of T. gondii infected mice, with all genes
within these modules correlating highly across tissues (Fig. 4).

Fig. 2Modular transcriptional signatures define a spectrum of immune responses across diseases. a, b Fold enrichment in disease compared to controls for
modules of co-expressed genes derived using WGCNA in lung (L1–L38) (a) and blood (B1–B41) (b) samples. Module name indicates biological processes
associated with the genes within the module, and number of genes within each module are shown. Fold enrichment scores were derived using QuSAGE,
with red and blue circles indicating the cumulative over- or under-abundance of all genes within the module, for each disease compared to the respective
controls. Color intensity of the dots represents the degree of perturbation, indicated by the color scale. Size of the dots represents the relative degree of
perturbation, with the largest dot representing the highest degree of perturbation within the plot. Within each disease, only modules with FDR p-value <
0.05 were considered significant and depicted here. Cell types associated with genes within each module were identified using cell-type-specific signatures
obtained for 10 cell types from the ImmGen ULI RNA-seq dataset (Supplementary Fig. 3). Cell-type enrichment was calculated using a hypergeometric test,
with only FDR p-value < 0.05 considered significant and depicted here. Color intensity represents significance of enrichment. GCC glucocorticoid, K-
channel potassium channel, Ox phos oxidative phosphorylation, TM transmembrane, Ubiq ubiquitination. c, d Fold enrichment for in vitro-derived T helper
cell signatures for TH1 cells treated with IL-27 (TH1+ IL-27), TH2 cells, and TH17 cells in lung (c) and blood (d) samples across diseases. Fold enrichment
scores were derived using QuSAGE, with red and blue circles indicating the cumulative over- or under-abundance of all genes within the module, for each
disease compared to the respective controls. Color intensity of the dots represents the degree of perturbation, indicated by the color scale. Size of the dots
represents the relative degree of perturbation, with the largest dot representing the highest degree of perturbation within the plot. Within each disease,
only T helper cell signatures with FDR p-value < 0.05 were considered significant and depicted here

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10601-6

6 NATURE COMMUNICATIONS |         (2019) 10:2887 | https://doi.org/10.1038/s41467-019-10601-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Type I IFN and IFN-γ signaling in T. gondii infection. Because
of the striking preservation of the type I IFN and IFN-γ pathways
in blood and lungs of mice infected with T. gondii, we decided to
further investigate their role in the global immune response to
this pathogen as well as their contribution to disease. To this end,

Wild type C57Bl/6, Ifnar−/−, Ifngr−/− and double Ifnar−/− ×
Ifngr−/−, were infected with T. gondii and tissues (lung, blood,
liver, and spleen) harvested at peak disease for RNA-Seq and
histology. PCA plots from the RNA-Seq data showed the biggest
separation between tissues, over-and-above the separation
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observed between uninfected and infected mice, and Wild type
versus the different IFN-receptor-deficient mice, with blood and
spleen being the most closely associated (Fig. 5a). To reveal
within tissue differences, PCA plots were constructed for each
tissue separately, where the uninfected mice of all genotypes
separated from the T. gondii infected mice and accounted for the
largest variation in the data (PC1) (Fig. 5b). The second largest
variation (PC2) was based on the deficiency of Ifngr, upon
infection with T. gondii (Fig. 5b). To investigate the potential
changes in the modular response, which may result from each
different IFN-receptor-deficient mice upon infection, we assessed
the previously defined modular lung (from Fig. 2a) and blood
(from Fig. 2b) signatures across all tissues from these mice, as
compared to Wild type uninfected controls for each respective
tissue (Fig. 5c).

In T. gondii infected Ifnar−/− mice, decreased modular over-
abundance was observed in the Type I IFN module (L5),
including lower gene expression for Ifit, Oas, Irf7 (Supplementary
Data 14–18), in the lungs, blood, liver, and spleen, in comparison
to the Wild type mice, with the greatest contrast observed in the
blood and spleen (Fig. 5c). Strikingly, Ifngr−/− and Ifnar−/− ×
Ifngr−/− mice, showed a much greater decrease in abundance of
Type I IFN (L5)-inducible genes, including classical ISGs, such as,
Ifit, Oas, Irf7, across all tissues (Fig. 5c; Supplementary Data 14–
18). There was also highly decreased abundance of IFN-γ-
inducible genes within the (L7) module in the Ifngr−/− and
Ifnar−/− × Ifngr−/− mice across all tissues, but in Ifnar−/− mice
this decreased abundance was only prominent in the spleens
(Fig. 5c). An under-abundance of the NK cell Module (L36), and
the Cytotoxic/T cells/ILC/Tbx21/Eomes/B cells (L35) was
observed in the blood of Ifnar−/−, Ifngr−/− and Ifnar−/− ×
Ifngr−/− mice (Fig. 5c). IL-17 pathway/granulocytes (L11),
myeloid/granulocyte function (L10) and the inflammation/IL-
1 signaling/myeloid Cells (L12) modules were more over-
abundant in lungs and blood from Ifnar−/−, Ifngr−/− and
Ifnar−/− × Ifngr−/− mice in contrast to the Wild type compar-
ison, with only small changes observed in liver and spleen
(Fig. 5c). Additionally, increased abundance of the immunoglo-
bulin module (L25) was observed in the spleen in the absence of
IFN-γ signaling (Fig. 5c). Similar findings were observed, when
the blood-derived modular signature (from Fig. 2b) was assessed
in all tissues from T. gondii infected Wild type or IFN-receptor-
deficient mice. A decreased modular over-abundance was
observed in the equivalent IFN blood modules (B11 and B14)

in the Ifngr−/− and Ifnar−/− × Ifngr−/− mice across all tissues
(Supplementary Fig. 10). Ifnar−/− mice, again showed a slight
decrease in the IFN-inducible modules (B11 and B14) including
genes such as Oas, Mx1, as well as a decrease in the cytotoxic/
T cells/ILC/Tbx21/Eomes module (B15) (Supplementary Fig. 10;
Supplementary Data 14–18). In keeping with the results obtained
from the lung-derived modules, the blood-derived modules also
showed increased abundance, albeit weaker, in the granulocyte
(B16) module from the Ifnar−/−, as well as Ifngr−/− and
Ifnar−/− × Ifngr−/− mice, being more pronounced in the blood
and lung (Supplementary Fig. 10).

Further analysis of our data against the interferome database
(Supplementary Datas 2, 3 and 14a, b), revealed that although
many modules contain genes that are associated with type I and
type II, the most significant enrichment was indeed found in L5
(Type I IFN/ifit/Oas) and L7 (ifng/Gbp/Antigen presentation)
modules (Supplementary Data 19), in keeping with our annota-
tion. Our data demonstrate partial dependence of genes in the L5
module on type I-inducible signaling, and complete dependence
of all the genes in this module on IFNGR signaling during T.
gondii infection (Fig. 5c). This may be explained by our findings
that type I and type II IFNs induce some genes in common
(Supplementary Datas 2, 3 and 14), and secondly by our data
showing genes classically attributed to type I IFN-inducible
signaling by the literature and the interferome data base are
actually strongly dependent on IFNGR signaling (Fig. 5c). The
module L7 was not affected by abrogation of IFNAR signaling but
was completely abrogated in the absence of IFNGR signaling
(Fig. 5c), demonstrating their dependence on Type II (IFN-γ)
signaling, in keeping with our annotation. A negative role for
IFNAR signaling in T. gondii infected mice, was observed with
increase in the module L11 (IL-17 pathway/granulocytes)
(Fig. 5c), although a more profound negative effective was
observed in the absence of IFNGR signaling, with increases in
modules L10 (myeloid/granulocyte function) and L11 (IL-17
pathway/granulocytes), as well as the L25 (immunoglobulin h/k
enriched) module in the spleen only (Fig. 5c).

Type I IFNs have been reported to be constitutively produced
at low quantities in the absence of infectious insult, and yet exert
profound effects49, with different sets of genes being affected
under tonic or Type I IFN-stimulated conditions22. To investigate
further a change in Type I IFN induced tonic signaling, we
examined global and modular effects of the uninfected Ifnar−/−,
Ifngr−/− and double Ifnar−/− × Ifngr−/− mice. Indeed, within the

Fig. 3 Comparison between the transcriptional profiles in lung and blood across diseases. a, b Modular preservation to assess the reproducibility and
robustness of network topology of the lung modules in blood samples (a), and of the blood modules in lung samples (b) across the control and disease
samples across all mouse models. Zsummary scores indicative of the degree of preservation were calculated in WGCNA using permutation testing, with
scores >10 considered strongly preserved. Each circle represents a module indicated by the module number, with colors assigned in WGCNA for visual
distinction. c, d Assessment of fold enrichment of the lung modules in blood samples (c), and of the blood modules in lung samples (d) in disease
compared to controls. Red and blue circles indicate the cumulative over- or under-abundance of all genes within the module, for each disease compared to
the respective controls. Color intensity of the dots represents the degree of perturbation, indicated by the color scale. Size of the dots represents the
relative degree of perturbation, with the largest dot representing the highest degree of perturbation within the plot. Within each disease, only modules with
FDR p-value < 0.05 were considered significant and depicted here. Pearson correlation of foldchanges for genes within the module (disease samples
compared to respective controls) between lung and blood is shown, with dark red and blue squares representing positively and negatively correlated gene
perturbations, respectively. Significance was calculated using a two-tailed probability of t-test values for each correlation, and adjusted for multiple tests
within each disease. Only FDR p-values < 0.05 were considered significant and depicted here. GCC glucocorticoid, K-channel potassium channel, Ox phos
oxidative phosphorylation, TM transmembrane, Ubiq ubiquitination. e Volcano plots depicting differential gene expression for all genes, in HDM allergy
compared to controls, in sorted CD4 T cells (total CD4+, CD4+CD44hi, and CD4+CD44lo) from lung and blood samples. Significantly differentially
expressed genes (log2 fold change >1 or <−1, and FDR p-value < 0.05) are represented as red (up-regulated) or blue (down-regulated) dots. The numbers
of down- (in blue) or up-regulated (in red) genes are listed in the volcano plot. Below each volcano plot, the genes significantly differentially expressed in
the 121 genes in the L26 Allergy module are shown in red (up-regulated) or blue (down-regulated). Heatmaps are shown for log2 gene expression values
for Il4, Il5, and Il13. Gene expression values were averaged and scaled across the row to indicate the number of standard deviations above (red) or below
(blue) the mean, denoted as row Z-score
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Type I IFN/Ifit/Oas module (L5), lungs from uninfected Ifnar−/−

mice showed decreased expression as compared to Wild type
controls for a subset of genes, which included Ifit1, Ifit3, Oas1a,
Oas2, Oas3, Irf7, Irf9, and Mx1 (Fig. 6a, b; Supplementary Fig. 11;
Supplementary Data 15). Upon T. gondii infection, these genes

were upregulated in the lungs of Ifnar−/− mice, similarly to the
Wild type mice, however to a lesser extent (Fig. 6b), in keeping
with the modular analysis (Fig. 5c). These data suggest that other
signaling pathways induced during infection can compensate for
type I IFN in the induction of these genes. Strikingly, the
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upregulation of these type I IFN-inducible genes during infection
was totally abrogated in the lungs of the Ifngr−/− and Ifnar−/− ×
Ifngr−/− mice, demonstrating the dependence of these genes,
reported to be induced by type I IFN, on IFN-γ signaling during
T. gondii infection (Fig. 6b). In the Ifng/Gbp/antigen presentation
module (L7), decreased expression of a subset of genes, including
the known IFN-γ-induced genes such as Gbps, Tap1, and MHC

molecules, was observed in the lungs of uninfected Ifngr−/− mice
and double Ifnar−/− × Ifngr−/− mice (Fig. 6a, b; Supplementary
Fig. 11; Supplementary Data 15). Even upon T. gondii infection,
these tonically regulated genes by IFN-γ, were not increased in
the lungs of Ifngr−/− and Ifnar−/− × Ifngr−/− mice (Fig. 6a, b).
Collectively these data demonstrate genes involved in the tonic
type I IFN and IFN-γ signaling in lungs (Fig. 6a, b; Supplementary

Fig. 4 Gene networks of IFN-associated lung modules in lung and blood across diseases. Gene networks for L5 (Type I IFN/Ifit/Oas) and L7 (Ifng/Gbp/
Antigen presentation) modules depicting the “hub” genes representing genes with high intramodular connectivity, i.e., genes most connected with all other
genes within the module. For each module, a representative network is shown for Toxoplasma with gene names, followed by smaller gene networks for the
6 diseases. Each gene is represented as a circular node with edges representing correlation between the gene expression profiles of the two respective
genes. Color of the node represents log2 foldchange of the gene for each disease compared to its respective controls, in the lung (left panel) and blood
(right panel) samples for both modules. Pearson correlation coefficients (r) for foldchanges for all genes (disease samples compared to respective
controls) in the L5 and L7 modules between lung and blood are shown
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Fig. 5 Changes in the transcriptional profiles across tissues following T. gondii infection, in the absence of Type I and/or II IFN signaling. a, b Principal
component analysis across all tissues—lung, blood, liver, and spleen (a), and individually in each tissue (b), depicting the variation in the global gene
expression profiles across tissue type, disease, and host genotype. Principal components 1 (PC1) and 2 (PC2), which describe the greatest variation in gene
expression, are shown. Shape represents the different tissues, empty and filled symbols represent control and disease samples, respectively, and color
represents host genotype: Wild type, Ifnar−/−, Ifngr−/− and double Ifnar−/− × Ifngr−/− mice. cModular transcriptional profiles of all tissues assessed using
the lung modules in Wild type and IFN receptor knockout (KO) mice after infection. Red and blue circles indicate the cumulative over- or under-abundance
of all genes within the module for each Wild type and IFN receptor KO disease group compared to the respective Wild type controls in each tissue. Color
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the largest dot representing the highest degree of perturbation within the plot. Within each group, only modules with FDR p-value < 0.05 were considered
significant and depicted here. GCC glucocorticoid, K-channel potassium channel, TM transmembrane, Ubiq ubiquitination
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Fig. 11; Supplementary Data 15). Similar findings were observed in
the blood, liver and spleen of uninfected Ifnar−/−, Ifngr−/− and
double Ifnar−/− × Ifngr−/− versus Wild type uninfected mice
(Supplementary Figs. 12–17; Supplementary Datas 16–18).

The absence of type I IFN signaling in the Ifnar−/− mice
showed a robust but not absolute decrease in the induction of the

hub genes in the Type I IFN/Ifit/Oas module (L5), across all
tissues, with the greatest decrease observed in the liver and spleen
upon T. gondii infection (Fig. 7). The genes in this network were
abrogated in the absence of IFN-γ signaling during T. gondii
infection in Ifngr−/− mice (Fig. 7), similarly to findings reported
above (Fig. 6). The biggest decrease in genes in this network of
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the L5 module was observed in the double Ifnar−/− × Ifngr−/−

mice, confirming the requirement for both Type I IFN and IFN-γ
signaling in the induction of type I IFN-inducible genes (Fig. 7).
Analysis of the network of hub genes in the IFN-γ inducible genes
module (L7) demonstrated an absolute requirement for IFN-γ
signaling but not type I IFN signaling for the induction of these
genes upon T. gondii infection (Supplementary Fig. 18).

Type I IFN and IFN-γ control pathology during infection.
Consistent with differences at the transcriptional level, major
decreases in weight loss were observed during T. gondii infection
in all IFN-receptor-deficient mice, as compared to the infected
Wild type mice (data not shown). Since the Ifnar−/− mice also
showed signs of increased pathology upon T. gondii infection
despite the rescue, in part, of Type I IFN-inducible response in
these mice upon T. gondii infection (Figs. 5c, 6 and 7), we
investigated the modular response further to understand the
mechanism underpinning the exacerbated disease in these mice.
An increase in certain neutrophil-associated genes from the IL-17
pathway/granulocytes module (L11), was observed in all IFN-
receptor-deficient mice upon infection (Cluster i and ii, Fig. 8a, b),
although ll17a itself was not detectable in T. gondii infected tissues,
except in the absence of IFN-γ signaling (Supplementary Data 14).
In keeping with this, Il1b, contained in Module L13, was also
elevated in blood and other tissues of Ifnar−/− mice (Fig. 5c;
Supplementary Data 14–18). On the other hand, increased
expression of genes in Cluster iii, such as Pf4 (reported as a
chemokine for neutrophils and monocytes) were only increased in
the lungs of Ifngr−/− and Ifnar−/− × Ifngr−/− T. gondii infected
mice (Fig. 8a). Additional to the observed increase of neutrophil-
associated genes (Figs. 5c and 8a, b), we additionally show an
increase in the proportion of granulocytes/neutrophils in the lungs
and blood of all Ifnar−/−, Ifngr−/− and Ifnar−/− × Ifngr−/− mice
as compared to Wild type infected with T. gondii, using cellular
deconvolution analyses of our RNA-Seq data (Fig. 8c).

To verify differences observed at the transcriptional level in
Ifnar−/−, Ifngr−/−, and double Ifnar−/− × Ifngr−/− as compared to
Wild type mice infected with T. gondii, we examined the mice using
histopathology. In the lungs of infected Wild type mice, mild
histiocytic and neutrophilic interstitial pneumonia with mild
necrosis of alveolar walls was generally detected (Supplementary
Fig. 19a and b). In the lungs of all of the infected IFN-receptor-
deficient mice, interstitial pneumonia ranged from mild to
moderate with frequently increased numbers of granulocytes
(neutrophils and eosinophils) and/or mononuclear cells (Supple-
mentary Fig. 19a and b). The livers of T. gondii infected Wild type
mice presented with multifocal random necrotizing and

pyogranulomatous hepatitis. Infected Ifngr−/− additionally con-
tained frequent foci of hepatocellular lytic necrosis, whereas
Ifnar−/− infected mice presented with multiple large thrombi
occluding vessels with associated hepatocellular coagulative necro-
sis, resulting from ischemic injury, both of which could be
associated with the increased neutrophilic activity observed
(Supplementary Fig. 19a). Increased numbers of granulocytes were
found in the absence of IFNR signaling in all tissues analyzed (lung,
liver, spleen) from T. gondii infected mice (Supplementary Fig. 19a
and b). This was confirmed by an increase in neutrophil numbers in
the lungs of T. gondii infected mice, as shown by staining of
myeloperoxidase (MPO), quantified by the number of positive cells
for nuclear morphology, with the greatest effect seen in the absence
of IFNGR signaling (Fig. 8d). Increased parasite loads, inferred by
parasite RNA-readcounts were observed especially in blood and
liver in the absence of both IFNAR or IFNGR signaling, although
this was more pronounced in the Ifngr−/− mice (Supplementary
Fig. 19c), in keeping with our observed decrease in Nos2 gene
expression (Supplementary Data 14). It is probable that in
the absence of IFNR signaling macrophages are unable to control
the infection which results in increased neutrophil recruitment, in
keeping with increased neutrophil levels seen in blood and lung by
deconvolution analysis (Fig. 8c) and granulocyte-associated genes
(Fig. 5c; Supplementary Fig. 10).

It should be noted that the wild type control mice infected with
T. gondii either at NIAID, NIH, or The Francis Crick Institute,
showed a similar modular lung and blood transcriptional
signature demonstrating the robust nature of this global signature
of infection, generated from a large number of high-quality
samples (Supplementary Data 20) across different vivariums
(Supplementary Fig. 20). Collectively, our transcriptome and
histology data show that type I IFN and IFN-γ signaling are both
involved in control of neutrophilic inflammation during T. gondii
infection, likely contributing to the increased pathology seen in
the Ifnar−/−, Ifngr−/−, and double Ifnar−/− × Ifngr−/− as
compared to Wild type mice upon infection, over-and-above
any type I IFN and IFN-γ induced pathways of microbial control.

Discussion
We have generated a comprehensive resource of modular tran-
scriptional signatures from various infectious and inflammatory
diseases to identify commonalities and differences in the immune
response to specific infections or challenges to aid the discovery of
pathways in disease. We show that distinct immune responses in
experimental models of TH1, type I IFN, TH17, and TH2 diseases
could be determined by the whole transcriptional signature of
unseparated lung cells. Type I IFN and IFN-γ pathways showed

Fig. 6 Tonic activity of Type I and/or II IFN signaling in lung within the IFN-associated lung modules. a Correlation of gene expression within the L5 (Type I
IFN/Ifit/Oas) and L7 (Ifng/Gbp/Antigen presentation) modules in lung samples, in control mice: control Wild type group (x-axis) compared to each of the
control IFN receptor knockout (KO) groups (y-axis), and in T. gondii infected mice: disease Wild type group (x-axis) compared to each of the disease IFN
receptor KO groups (y-axis). Each dot represents the average log2 gene expression value for a gene. Dashed gray line within each plot at the 45° slope
represents identical expression levels between Wild type and IFN receptor KO groups, with genes above or below the line showing higher expression in the
IFN receptor KO or Wild type group, respectively. Linear regression lines with 95% confidence interval, and Pearson correlation coefficients are shown for
each plot. b Heatmap depicting the log2 gene expression values of the differentially expressed genes between the IFN receptor KO controls compared to
the Wild type controls in lung (Supplementary Fig. 11), in the L5 and L7 modules. Gene expression values were averaged and scaled across the row to
indicate the number of standard deviations above (red) or below (blue) the mean, denoted as row Z-score. Dendrogram shows unsupervised hierarchical
clustering of genes, with distances calculated using Pearson correlation and clustered using the complete linkage. Enrichment scores calculated on a single-
sample basis using GSVA are shown for the differentially expressed genes below the heatmap for each module. Empty and filled circles represent control
and disease samples, respectively, and the color of the circle represents Wild type and IFN receptor KO mice. Mean and standard deviation for each group
are shown, with a dashed gray line indicating the mean of the Wild type control group. c Venn diagrams depicting the downregulated genes in each of the
IFN receptor KO control groups compared to the Wild type control group, in lung (Supplementary Fig. 11), blood (Supplementary Fig. 12), liver
(Supplementary Fig. 14), and spleen (Supplementary Fig. 15), depicting commonalities in the list of genes involved in tonic IFN signaling across tissues in
the L5 and L7 modules
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high expression in lungs of T. gondii, influenza A and RSV
infected mice. Pathways driven by IL-17 including granulocyte/
neutrophil-associated genes were abundant in the lungs of mice
infected with B. pseudomallei and C. albicans only, and a

signature of mast cells and TH2-type cytokines was only abundant
in the lungs of mice challenged with HDM allergen. IFN-
inducible gene signatures were detectable in the blood-derived
modules, similarly across the different diseases, with strongest
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Fig. 7 Type I and/or II IFN signaling regulates the expression of genes within the lung Type I IFN//Ifit/Oas (L5) module following T. gondii infection. Gene
networks depicting the “hub” genes in the lung L5 module representing genes with high intramodular connectivity, i.e., genes most connected with all other
genes within the module. Each gene is represented as a circular node with edges representing correlation between the gene expression profiles of the two
respective genes. Color of the node represents log2 foldchange of the gene for Wild type or IFN receptor knockout T. gondii infected mice compared to Wild
type controls, across lung, blood, liver, and spleen
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preservation in T. gondii infected mice, but the IL-17 pathway
module was not detectable. Testing the lung module in blood,
revealed some IL-17 pathway genes, but these did not include Il17
family members. The TH2 allergy module was not preserved in
the blood of mice challenged with HDM allergen, but only
detectable in purified blood CD4+ effector T cells.

Our obervations that TH2-associated genes were only detect-
able in purified blood CD4+ effector T cells are similar to
reported findings that certain disease-specific signatures were
only detectable in T cells purified from blood and not from whole
blood or PBMC17,18. Collectively these findings may suggest that
disease-specific signatures attributable to T cells, or other cells of

L11: IL-17 pathway/Granulocytes
(n = 121 genes)
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low abundance in the blood, may not be revealed in whole blood
or PBMC, but will require cell purification. However, a TH2-
associated gene signature can be found in whole lung where the
immune response is generated to the allergen and there are suf-
ficient effector T cell numbers. In contrast to the difficulty in
detecting TH2 allergy and TH17 signatures in the blood, our
findings suggest that cells contributing to IFN-inducible sig-
natures are more abundant in the blood, in keeping with the
numerous reports that IFN-inducible signatures are detectable in
whole blood in human disease6,9–16,19.

Type I IFN-inducible genes normally reflective of viral
infections16,19 were herein additionally observed in the lungs and
blood of bacterial infections with B. pseudomallei as previously
reported during tuberculosis disease9,11,12,15,46, and now also to a
very high extent during T. gondii infection, on a par with influ-
enza infection. For example, we observe genes such as Oas, Mx1,
Ifit, as well as those not regarded as classic IFN-inducible genes,
including cytokines, chemokines, signaling and cell membrane
molecules to form part of the IFN signature22. Accompanying
this response, were IFN-γ inducible genes such as Irf8, funda-
mental for an IL-12-driven TH1 response29, and molecules
involved in protection against intracellular bacteria and parasites
such as Gbps and Nos2. The co-existence of IFN-γ and TH17
responses during B. pseudomallei infection which we observed,
demonstrate the complex immune response to this pathogen,
where IFN-γ is essential for protection50 yet the response is
accompanied by increased granulocyte/neutrophils. The absence
of type I IFN and IFN-γ-inducible signatures during C. albicans
infection, could indicate a lack of induction of the signaling
pathways required to induce these molecules, or active inhibition
by cytokines or other regulatory factors. For example inhibition of
type I IFN by IL-1 as has been reported during Mycobacterium
tuberculosis infection51.

Type I IFN blocks IFN-γ mediated protective responses to
intracellular pathogens4,51–55, and yet a number of pathogens
elicit both type I IFN-induced gene expression and IFN-γ
responses3,4,9. However, it is unclear how type I IFN and IFN-γ-
inducible gene pathways co-operate or regulate each other,
especially when expressed to a very high level as we now show
during T. gondii infection in vivo. To examine this relationship
between type I IFN and IFN-γ-mediated regulation of
gene expression and function we infected Ifnar−/−, Ifngr−/− and
Ifnar−/− × Ifngr−/− mice with T. gondii. Classic IFN-γ-induced
genes encoding APC processing and presentation function, such
as MHC molecules and Tap1 and 2, found in lung module L7,
and Nos2, were all abrogated in the absence of IFNGR signaling,
reinforcing IFN-γ as the driver of this modular response. We
demonstrate that induction of genes such as Oas, Mx1, Ifit
reported to be regulated by type I IFN signaling, is totally

dependent on IFN-γ signaling during infection with T. gondii.
This may suggest a stronger contribution of IFN-γ signaling for
the induction of genes known to be induced by type I IFN, in a
setting such as T. gondii infection, where Ifng levels are at least
three-fold higher in lungs of mice infected with T. gondii as
compared to influenza. The expression of IFN-γ induced Nos2
was increased in livers and spleens of Ifnar−/− mice infected with
T. gondii, but this increase was abrogated when IFN-γ signaling
was absent in Ifnar−/− × Ifngr−/− mice as seen in Ifngr−/− mice.
This demonstrates in vivo blockade of IFNGR signaling by type I
IFN during a parasite infection, as has been reported for infec-
tions with bacteria such as L. monocytogenes52 or M.
tuberculosis53,54,56. Our findings collectively show the complexity
of the relationship between type I IFN and IFN-γ signaling.
Although as previously reported type I IFN can indeed negatively
regulate IFN-γ-induced genes, type I IFN-induced gene expres-
sion appears to be partially dependent on IFNAR signaling, while
totally dependent on IFN-γ signaling during infection with T.
gondii.

While IFN-γ has been shown to be a dominant cytokine in
protection against T. gondii infection29,57, type I IFN has also
been shown to offer protective effects58,59, with both of these
IFNs exhibiting microbicidal effects in vitro60 against T. gondii
infection. Mechanisms of protection by IFN-γ against T. gondi
infection have been broadly described61, but it is unclear how
type I IFN controls disease. Supportive of a role for type I IFN in
protection against T. gondii infection, enhancement of NK cell
IFN-γ production by type I IFN has been reported62. TLR-12
signaling promoting type I IFN production by plasmacytoid
dendritic cells, has also been shown to increase IL-12 produc-
tion63. In both cases type I IFN would therefore augment TH1
immunity, fundamental for protection against T. gondii infec-
tion29. Here we show that the absence of type I IFN results in
increased parasite loads in the blood and liver of T. gondii
infected mice accompanied by exacerbated pathology. This cor-
related with increased transcriptional modules encoding
granulocyte-related genes and higher neutrophil numbers.
Although neutrophils have been shown to dampen T. gondii
infection, uncontrolled and very high numbers of neutrophils
may contribute to inflammation, further exacerbating pathology
and pathogen load, such as has been reported during M. tuber-
culosis infections64–67.

Tonic activity of the type I IFN signaling pathway has been
reported in the absence of infection8,22,49, which we also show
here, although we additionally show that these genes, including
classical ISGs, are highly upregulated during infection with T.
gondii. We show here the findings that IFN-γ can also mediate a
tonic effect on a small number of genes, such as Gbps, Cxcl9 and
genes of the MHC-complex, distinct from ISGs associated with

Fig. 8 Type I and/or II IFN signaling differentially regulates granulocyte-associated genes and neutrophil recruitment during T. gondii infection.
a, b Heatmaps depicting the log2 expression values of all genes within the L11 (IL-17 pathway/granulocytes) lung module in lung (a) and blood (b) samples,
across Wild type and IFN receptor knockout (KO) mice, and control and disease samples. Gene expression values were averaged and scaled across the row
to indicate the number of standard deviations above (red) or below (blue) the mean, denoted as row Z-score. Dendrograms show unsupervised
hierarchical clustering of genes, with distances calculated using Pearson correlation and clustered using the complete linkage. Four clusters of genes within
the heatmaps are highlighted with roman numerals, showing distinct expression patterns across the groups in lung and blood samples. c Stacked bar plots
depicting in silico immune cell composition of lung, blood, liver, and spleen RNA-seq samples, derived using the CIBERSORT algorithm based on cellular
signatures obtained from ImmuCC. Each bar represents percent fractions for 9 representative cell types for an individual mouse sample, with colors
representing the different cell types. White and black bars at the bottom of each plot represent control and disease samples, respectively. ILC innate
lymphoid cells, NK cells natural killer cells. d Representative immunofluorescence confocal micrographs of thick lung sections depicting MPO-positive
neutrophils (MPO, cyan) in Wild type and IFN receptor KO mice upon T. gondii infection. Scale bar represents 50 μm. Quantification of neutrophil numbers
per field is shown, with each dot representing one field from one mouse (n= 4–5 fields from n= 4–5 mice per group), with median and 95% confidence
interval indicated. Significance was calculated using unpaired t-test for each IFN receptor KO compared to Wild type; ns not significant
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type I IFN signaling. These IFN-γ-induced tonic genes were
additionally upregulated upon infection with T. gondii, and are
totally dependent on IFNGR signaling. The observed tonic IFN-γ
signaling may further impact the immune response to pathogens.

In conclusion, using transcriptomic analyses of comprehensive
datasets generated from in vivo models of infection and inflam-
mation, we have captured a breadth of distinct immune respon-
ses. This spectrum consisted of distinct immune response
patterns in the lung, ranging from very high IFN-γ expression,
type I IFN-inducible gene expression, IL-17-induced neutrophil
dominated signatures and expression of Il4, Il5, Il13, and mast
cell-associated genes. Type I IFN and IFN-γ signatures were
found to be abundant across all the diseases, albeit to different
levels, except during C. albicans infection. IFN-inducible sig-
natures were preserved in blood, with strongest co-expression
during T. gondii infection. Our unbiased transcriptomic analyses
further revealed that although genes known to be inducible by
type I IFN were decreased in the absence of type I IFN signaling
as expected, they were completely abrogated in the absence of
IFN-γ signaling, revealing an advanced layer of regulation in an
IFN-γ-rich environment resulting from T. gondii infection.
Additionally, both type I IFN and IFN-γ signaling were shown to
each play a major role in the regulation of granulocyte responses
and the control of parasite load and pathology during T. gondii
infection. These findings, using transcriptomic analyses of blood
and whole organ tissue to capture cellular interactions con-
tributing to changes in gene expression during infection and
disease outcome, together with mice deficient in IFNAR and
IFNGR signaling, provide a framework for discovery of pathways
of gene regulation in disease.

Methods
Experimental animals. All mice were bred and maintained in specific pathogen-
free conditions according to Home Office UK Animals (Scientific Procedures) Act
1986 unless otherwise stated and were used at 6–18 weeks of age. C57BL/6J Wild-
type mice were bred at the MRC National Institute for Medical Research (NIMR)
or The Francis Crick Institute unless otherwise stated. Ifnar−/− originally provided
by Matthew Albert (Institute Pasteur, France)33 and Ifngr−/−68 on the C57BL/6
background were further inter-crossed to generate double Ifnar−/− × Ifngr−/−

mice. All animal experiments were carried out in accordance with UK Home Office
regulations unless otherwise stated, project licences: T. gondii infection of wild type
control mice, Ifnar−/−, Ifngr−/− and double Ifnar−/− × Ifngr−/− mice (for Figs. 5–8
and Supplementary Figs. 10–19) 80/2616 (at The Francis Crick Institute); Influenza
A infection, 70/7643 (MRC NIMR); RSV infection, 70/7554 (Imperial College
London); B. pseudomallei infection, 70/6934 (London School of Hygiene and
Tropical Medicine); C. albicans infection, 70/8811 (MRC NIMR); HDM allergy, 70/
7643 (MRC NIMR), P5AF488B4 (The Francis Crick Institute) and 70/7463
(Imperial College London); Aspergillus fumigatus infection, 70/8811 (The Francis
Crick Institute); P. chabaudi AS infection, 80/2358 (MRC NIMR) and 70/8326
(The Francis Crick Institute); MCMV infection, 30/2969 (Cardiff University); L.
monocytogenes infection, 70/7643 (MRC NIRM) and were approved by the insti-
tutions’ Ethical Review Panels unless otherwise stated. C57BL/6 mice mice for T.
gondii infection used for module derivation and further analysis (Figs. 1–4 and
Supplementary Figs. 1, 4–7) were maintained and infected at an American Asso-
ciation for the Accreditation of Laboratory Animal Care-accredited animal facility
at National Institute of Allergy and Infectious Diseases (NIAID) and housed in
accordance with the procedures outlined in the Guide for the Care and Use of
Laboratory Animals under an animal study proposal approved by the NIAID
Animal Care and Use Committee.

Disease models. For T. gondii infection, type II avirulent T. gondii strain ME-49
cysts were obtained from brains of chronically infected C57BL/6 mice (Taconic
Biosciences, USA). Cyst preparations were pepsin treated to eliminate potential
contamination with host cells and female C57BL/6 mice were inoculated intra-
peritoneally (i.p.) with an average of 15 cysts in phosphate buffered (PBS) as
described69. On day 7 post infection, blood and lung samples were collected from
individual mice using uninfected C57BL/6 mice as controls. T. gondii infection was
similarly carried out of (1) C57BL/6 wild type mice at the NIAID, NIH, (for
Figs. 1–4 and Supplementary Figs. 1, 4–7) and (2) C57BL/6 wild type control mice,
Ifnar, Ifngr−/− and double Ifnar−/− × Ifngr−/− mice (Figs. 5–8 and Supplementary
Figs. 10–19) at The Francis Crick Institute, with blood, spleen, liver, and lung
samples harvested at days 6/7 from infected mice. Whole blood was mixed with

Tempus reagent (Life Technologies) at 1:2 ratio prior to freezing, lung samples
were stored in RNA-later (Ambion) at −80 °C until RNA isolation.

For Influenza A virus infection, Influenza A/X-31 (H3N2) strain (a kind gift
from Dr. J. Skehel, MRC NIMR) was grown in the allantoic cavity of 10-day-
embryonated hen’s eggs, stored at −80 °C and titrated on Madin-Darby Canine
Kidney (MDCK) cells prior to infection. Female C57BL/6J mice (MRC NIMR)
were infected intranasally (i.n.) with 8 × 103 TCID50 in 30 μl of PBS. Control
uninfected mice received PBS only. Whole blood and lung samples were collected
from individual infected and control treated mice on day 6 post infection.

For RSV infection, plaque-purified human RSV A2 strain originally obtained
from the American Type Culture Collection (ATCC) was grown to high
titer (≥107 focus-forming units (FFU) per ml) in Hep-2 cells, snap frozen, and
assayed for infectivity prior to use. All virus preparations were free of mycoplasma
(Gen-Probe, San Diego, CA). Female C57BL/6J mice (MRC NIMR) were infected i.
n. with 1 × 106 FFU of RSV diluted in 100 μl PBS. Control uninfected mice received
PBS only. Whole blood and lung samples were collected from individual mice on
day 2 post infection.

For B. pseudomallei infection, B. pseudomallei strain 576 originally isolated
from a melioidosis patient was provided by Dr. T. Pitt (Health Protection Agency,
London, UK) and cryopreserved as described7. All procedures using live bacteria
were performed under Advisory Committee on Dangerous Pathogens containment
level 3 conditions. Female C57BL/6 mice (Harlan Laboratories, UK) were infected
intranasally with 50 μl containing 2500 colony forming units (CFU) (acute model)
or 100 CFU (chronic model)70 of B. pseudomallei derived from cryopreserved
stocks diluted in pyrogen-free saline. Control uninfected mice received 50 μl
pyrogen-free saline only. Whole blood and lung samples were collected from
individual infected and control treated mice on day 3 post infection (acute model)
and on days 27, 39, 49, 65, and 90 (chronic model).

For C. albicans infection, C. albicans (clinical isolate SC5314, a kind gift from
A. Zychlinsky, Max Planck Institute for Infection Biology, Berlin Germany) was
cultured in yeast extract peptone dextrose medium at 37 °C overnight, subcultured
for a further 4 h and resuspended in PBS immediately prior to infection. Female
C57BL/6J mice (MRC NIMR) were infected intratracheally (i.t.) with 1 × 105 C.
albicans diluted in 50 μl PBS. Whole blood and lung samples were collected from
individual mice on day 1 post infection, using uninfected C57BL/6J mice as
controls.

For HDM allergy induction, female C57BL/6J mice (MRC NIMR) were
sensitized with 10 mg HDM (Greer) and 2 mg Imject Alum (Thermo Scientific) in
200 μl PBS or Alum alone as control by i.p. injections on days 0 and 14, followed by
i.t. challenge with 10 mg HDM in 20 μl of PBS or PBS on days 21 and 24 as
described71. Whole blood and lung samples were collected from individual HDM
and PBS control treated mice on day 25. For fluorescence-activated cell sorting
(FACS) of T cells, pooled blood from four or five individual HDM or PBS-treated
mice was collected into heparin sodium (Wockhardt) at 10–30 international units
per ml of blood. PBMCs were isolated by density separation with Lympholyte®-
Mammal (Cedarlane). Lung CD4+ T cells were enriched by positive selection
(Miltenyi Biotech) from a corresponding pool of lungs. Blood and lung cells were
stained with CD3 (145-2C11) APC, CD4 (RM4-5) eFluor450 and CD44 (IM7) PE
(all from eBioscience) and CD3+CD4+, CD3+CD4+CD44low and CD44high cells
were sorted on MoFlo XDP (Beckman Coulter) and BD FACSAria™ Fusion
(Beckton Dickinson) flow cytometers and 15,000 per population collected into
TRI-Reagent LS (Sigma-Aldrich). Alternatively, for HDM allergy induction via
mucosal exposure (test HDM allergy dataset), female C57BL/6J mice (Charles River
Laboratories) were administered 25 μg HDM (Greer) in 25 μl PBS or 25 μl PBS
control i.n. under isoflurane anesthesia 5 days per week for 3 weeks. Whole blood
and BAL samples were collected from individual HDM and PBS control treated
mice 24 h after final allergen challenge. For BAL, airways were flushed 3 times with
1 ml of chilled 5 mM EDTA (Invitrogen, Thermo Fisher) in PBS via a tracheal
cannula, before resting mice with 1 ml EDTA/PBS in the lungs for 5 min and
lavaging a further 3 times with 1 ml EDTA/PBS.

For P. chabaudi AS infection, the cloned P. chabaudi AS line was originally
obtained from David Walliker, University of Edinburgh, UK and subsequently
cryopreserved as described72. Female C57BL/6J (MRC NIMR) mice housed under
reverse light conditions (light 19.00–07.00, dark 07.00–19.00 GMT) were infected
by i.p. injection of 105 infected red blood cells derived from cryopreserved stocks.
Whole blood samples were collected from individual mice on day 6 post infection,
using uninfected C57BL/6J mice as controls.

For mCMV infection, Smith strain mCMV originally obtained from the ATCC
was prepared in salivary glands from BALB/c mice (Harlan, UK) and purified over
a sorbitol gradient. Female C57BL/6 mice (Harlan, UK) were infected i.p. with 3 ×
104 plaque forming units (PFU) of mCMV73. Whole blood samples were collected
from individual mice on day 2 post infection, using uninfected C57BL/6 mice as
controls.

For L. monocytogenes infection, L. monocytogenes was originally obtained from
Drs. H. Rogers, K. Murphy, and E. Unanue, DNAX Research Institute, USA.
Bacteria were grown in BHI broth (BD BBL) to mid-log phase as determined by
OD560 and cryopreserved in 20% glycerol/PBS at −80 °C. Female C57BL/6 mice
were infected by intravenous (i.v.) injection of 5 × 103 CFU of L. monocytogenes
derived from cryopreserved stocks diluted in 200 μl of PBS8. Control uninfected
mice received PBS only. Whole blood samples were collected from individual mice
on day 3 post infection, using uninfected C57BL/6J mice as controls.
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RNA isolation. Blood was collected in Tempus reagent (Life Technologies) at 1:2
ratio. Total RNA was extracted using the PerfectPure RNA Blood Kit (5 PRIME).
Globin RNA was depleted from total RNA (1.5–2 µg) using the Mouse GLO-
BINclear kit (Thermo Fisher Scientific). Tissues were collected in TRI-Reagent
(Sigma-Aldrich). Total RNA was extracted using the RiboPure™ Kit (Ambion).
FACS sorted blood/lung cells were collected into TRI-Reagent LS (Sigma-Aldrich).
Total RNA was extracted using the Purelink RNA microkit (Thermo Fisher). BAL
cell pellets were obtained from pooled lavage fluid from each mouse, washed once
in PBS and lysed in 350 μl RLT buffer. Lysates were passed through QIAshredder
columns (QIAGEN). RNA was extracted using the RNeasy mini kit as per man-
ufacturer’s instructions, including on-column DNase I digestion (both QIAGEN).
All RNA was stored at −80 °C until use.

Quantity and quality of RNA samples. Quantity was verified using NanoDrop™
1000/8000 spectrophotometers (Thermo Fisher Scientific). Quality and integrity of
the total and the globin-reduced RNA were assessed with the HT RNA Assay
Reagent kit (Perkin Elmer) using a LabChip GX bioanalyser (Caliper Life Sciences/
Perkin Elmer) and assigned an RNA Quality Score (RQS) or RNA 6000 Pico kit
(Agilent) using a BioAnalyzer 2100 (Agilent) and assigned an RNA Integrity (RIN)
score. RNA with an RQS/RIN >6 was used to prepare samples for microarray or
RNA-seq.

Supplementary Data 20 provides details of each sample provided including QC
data such as the RIN, RNA conc, 260/280 ratio, # reads sequenced, # reads aligned
to genome, # reads aligned to genes by HTSeq, etc.

Microarray. cRNA was prepared from 200 ng globin-reduced blood RNA or 200
ng tissue total RNA using the Illumina TotalPrep RNA Amplification Kit
(Ambion). Quality was checked using an RNA 6000 Nano kit (Agilent) using a
BioAnalyzer 2100 (Agilent). Biotinylated cRNA samples were randomized; 1.5 µg
cRNA was then hybridized to Mouse WG-6 v2.0 bead chips (Illumina) according
to the manufacturer’s protocols.

RNA-seq. cDNA library preparation: for blood and tissues, total/globin-reduced
RNA (200 ng) was used to prepare cDNA libraries using the TruSeq Stranded
mRNA HT Library Preparation Kit (Illumina). For cDNA library preparation of
FACS sorted cells, total RNA (30–500 pg) was used to prepare cDNA libraries
using the NEBNext® Single Cell/Low Input RNA Library Prep Kit NEBNext®
Multiplex Oligos for Illumina® #E6609 (New England BioLabs). Quality and
integrity of the tagged libraries were initially assessed with the HT DNA HiSens
Reagent kit (Perkin Elmer) using a LabChip GX bioanalyser (Caliper Life Sciences/
Perkin Elmer). Tagged libraries were then sized and quantitated in duplicate
(Agilent TapeStation system) using D1000 ScreenTape and reagents (Agilent).
Libraries were normalized, pooled and then clustered using the HiSeq® 3000/4000
PE Cluster Kit (Illumina). The libraries were imaged and sequenced on an Illumina
HiSeq 4000 sequencer using the HiSeq® 3000/4000 SBS kit (Illumina) at a mini-
mum of 25 million paired-end reads (75 bp/100 bp) per sample.

Histology. Lung, liver, and spleen tissues from T. gondii infected C57BL/6/J,
Ifnar−/−, Ifngr−/− and Ifnar−/−Ifngr1−/− mice were fixed in 10% neutral-buffered
formalin followed by 70% ethanol, processed and embedded in paraffin, sectioned
(lung and liver, single lobe; spleen, longitudinal (or in fewer cases) transverse
sections) at 4 µm and stained with hematoxylin and eosin (H&E). A single section
from each tissue was viewed and scored as a consensus by two board-certified
veterinary pathologists (E.W.H. and S.L.P.) blinded to the groups. A semi-
quantitative scoring method was devised to assess the following histological fea-
tures; inflammation (granulocytes and mononuclear cells), necrosis and presence
of thrombosis with coagulative necrosis (for liver only): 0= no lesion present,
1=mild changes, and 2=moderate or marked changes.

Microscopy for neutrophil quantification. Lung sections from T. gondii infected
C57BL/6J, Ifnar−/−, Ifngr−/− and double Ifnar−/− × Ifngr−/− mice were de-waxed,
re-hydrated, and treated with a standard antigen retrieval protocol (Target
Retrieval Solution pH 9.0, Agilent Technologies at 97 °C for 45 min) before
immunofluorescence staining. For neutrophil staining, sections were incubated
with primary antibodies Goat anti-Human/Mouse Myeloperoxidase (AF3667,
R&D), followed by Alexa Fluor 488-conjugated donkey anti‐goat (A11055, Life
Technologies) and DAPI. Stained lung tissues were mounted with ProLong Gold
Antifade Mountant (Life Technologies) and examined by confocal microscopy.
Image analysis was performed using ImageJ. For neutrophil quantitation, 4–5
nonoverlapping fields per section were photographed at 40× magnification by Leica
SP5 microscope and neutrophil numbers per field were counted based on myelo-
peroxidase (MPO) staining and neutrophil morphology (lobulated nuclei).

Power calculation for modular derivation. The rationale for the a priori power
calculation for number of mouse samples required for derivation of modules:
Mead's resource equation74 was used for the a priori estimate of sample sizes for
laboratory animals. An a priori statistical power analysis was not possible without

information on the variability of transcriptomic experiments for all of the datasets,
nor information on what magnitude of effect would be sufficiently significant. In
addition, modular derivation is an exploratory approach that does not test any
hypotheses.

Mead's resource equation: E=N− B− T
N: total number of mice in the study minus 1; B: blocking component, the

number of environmental effects allowed for in the design minus 1; T: treatment
component, the number of groups being used minus 1; E: degrees of freedom of the
error component, and should be between 10 and 20.

For our study, we used two study groups per dataset (T= 1) and no differences
in environment between groups (B= 0). Using those numbers with the above
equation, and setting E to a value between 10 and 20, N is determined to be a value
between 11 and 21. Therefore, we could have used between 12 and 22 animals for
each dataset. A rounded number was chosen at the high end of the range, taking
into consideration the large number of variables being measured. The solved
equation: (10–20)= (11 – 21)− 0− 1.

RNA-seq data analysis. Raw paired-end RNA-seq data was subjected to quality
control using FastQC (Babraham Bioinformatics) and MultiQC75. Trimmomatic76

v0.36 was used to remove the adapters and filter raw reads below 36 bases long, and
leading and trailing bases below quality 25. The filtered reads were aligned to the
Mus musculus genome Ensembl GRCm38 (release 86) using HISAT277 v2.0.4 with
default settings and RF rna-strandedness, including unpaired reads, resulting from
Trimmomatic, using option -U. The mapped and aligned reads were quantified to
obtain the gene-level counts using HtSeq78 v0.6.1 with default settings and reverse
strandedness. Raw counts were processed using the bioconductor package
DESeq279 v1.12.4 in R v3.3.1, and normalized using the DESeq method to remove
the library-specific artefacts. Variance stabilizing transformation was applied to
obtain normalized log2 gene expression values. Further quality control was per-
formed using principal component analysis, boxplots, histograms and density plots.
Differentially expressed genes were calculated using the Wald test in DESeq279.
Genes with log2 fold change >1 or <−1 and false discovery rate (FDR) p-value <
0.05 corrected for multiple testing using the Benjamini–Hochberg (BH) method80

were considered significant. For module generation, and modular fold enrichment,
only protein coding genes were considered Ensembl gene biotypes—protein cod-
ing, immunoglobulin genes IG-C, -D, -J, -LV and -V, and T cell receptor genes TR-
C, -D, -J and -V.

Microarray data analysis. Microarray data was processed in GeneSpring GX
v14.8 (Agilent Technologies). Flags were used to filter out the probe sets that did
not result in a “present” call in at least 10% of the samples, with the “present” lower
cut-off of 0.99. Signal values were then set to a threshold level of 10, log2 trans-
formed, and per-chip normalized using 75th percentile shift algorithm. Next, per-
gene normalization was applied by dividing each messenger RNA transcript by the
median intensity of all the samples. Next, transcripts were filtered to select the most
variable probes: those that had a minimum of 1.5-fold expression change compared
with the median intensity across all samples, in greater than 10% of all samples. For
modular fold enrichment analysis, Illumina IDs were converted to Ensembl IDs
using the annotation file available from Illumina, retaining IDs with one to one
mapping.

Cellular deconvolution. Deconvolution analysis for quantification of relative levels
of distinct cell types on a per sample basis was carried out on normalized counts
using CIBERSORT39. CIBERSORT estimates the relative subsets of RNA tran-
scripts using linear support vector regression. Mouse cell signatures for 25 cell
types were obtained using ImmuCC40 and grouped into 9 representative cell types
based on the application of ImmuCC cellular deconvolution analysis to the sorted
cell RNA-seq samples from the ImmGen ULI RNA-seq dataset (Supplementary
Fig. 1).

Module generation. Weighted gene co-expression network analysis was per-
formed to identify lung and blood modules using the package WGCNA42 in R.
Modules were constructed independently in lung and blood samples, across all
control and disease samples from the 7 mouse models of infectious and inflam-
matory diseases, using log2 RNA-seq expression values. The lung modules were
constructed using the 10,000 genes with the highest covariance across all lung
samples, and the blood modules were constructed using 10,000 genes with the
highest covariance across all blood samples. For subsequent analysis to generate
modules, same parameters were used to construct the lung and blood modules in
independent analyses. A signed weighted correlation matrix containing pairwise
Pearson correlations between all the genes across all the samples was computed
using a soft threshold of β= 22 to reach a scale-free topology. Using this adjacency
matrix, the topological overlap measure (TOM) was calculated, which measures the
network interconnectedness81 and is used as input to group highly correlated genes
together using average linkage hierarchical clustering. The WGCNA dynamic
hybrid tree-cut algorithm82 was used to detect the network modules of co-
expressed genes with a minimum module size of 20, and deep split= 2. Lung
modules were numbered L1–L38, and blood modules were numbered B1–B41, an
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additional “grey” module was identified in both lung modules (Supplementary
Data 2, module titled NA), and blood modules (Supplementary Data 3, module
titled NA) consisting of genes that were not co-expressed with any other genes.
These grey modules were not considered in any further analysis. To create gene
interaction networks, hub genes with high intramodular connectivity and a
minimum correlation of 0.75 were calculated, with a cut-off of 50 hub genes, and
exported into Cytoscape v3.4.0 for visualization.

Modular annotation. Lung and blood modules were enriched for biological
pathways and processed using IPA (QIAGEN Bioinformatics), Metacore (Thom-
son Reuters), and the GO database. Significantly enriched canonical pathways, and
upstream regulators were obtained from IPA (top 5). GO analysis was performed
for the biological processes ontology domain, using the bioconductor package
clusterProfiler83 v3.0.5 in R. Over-representation analysis was performed using the
BH method, with pvalueCutoff= 0.01 and qvalueCutoff= 0.05. Redundant GO
terms were removed using the simplify function in the clusterProfiler package,
using the Wang similarity measure and a similarity cut-off of 0.7, and the top 10
terms were considered. Modules were assigned names based on representative
biological processes from pathways and processes from all three tools (Supple-
mentary Data 4 and 5).

Module preservation analysis. Modular preservation of lung modules in blood,
and of blood modules in lung was performed using modulePreservation function in
the WGCNA package in R, to assess whether the density (how tight inter-
connections among genes in a module are), overlap in module membership, and
connectivity patterns of individual modules defined in a reference data set are
preserved in a test data set84. The modulePreservation function performs a per-
mutation test (n= 30 permutations) to generate a composite Zsummary preservation
statistic, which summarizes the evidence that the network connections of the
module are more significantly preserved than those of random set of genes of equal
size. Modules with a Zsummary score > 10 are considered strongly preserved, a
Zsummary score between 2 and 10 indicates weak to moderate preservation,
and modules with Zsummary scores <2 are considered not preserved84. Chord dia-
grams to visualize module membership of the genes between the lung and the
blood modules were constructed using the package circlize85 v0.4.3 in R, for the
6,999 genes in common between the 10,000 genes used to construct the lung
modules, and 10,000 genes used to construct the blood modules.

Module enrichment analysis. Fold enrichment for the WGCNA modules was
calculated using the quantitative set analysis for gene expression (QuSAGE)43 using
the bioconductor package qusage v2.4.0 in R, to identify the modules of genes over-
or under-abundant in a dataset, compared to the respective control group using
log2 expression values. The qusage function was used with default n.points para-
meter (212), expect when the analysis was performed in groups with smaller sample
sizes (n ≤ 5) (Test HDM allergy dataset, Toxoplasma WT and IFN KO dataset
across all tissues; Supplementary Data 14), where the n.points parameter was set to
216. Only modules with enrichment scores with FDR p-value < 0.05 were con-
sidered significant, and plotted using the ggcorrplot function in R.

Single sample enrichment analysis. Enrichment of modules and subset of genes
within modules on a single sample basis was carried out using gene set variation
analysis (GSVA) using the bioconductor package gsva in R86. The enrichment
scores obtained were similar to those from Gene Set Enrichment Analysis (GSEA),
but based on absolute expression to quantify the degree to which a gene set is over-
represented in a particular sample, rather than differential expression between two
groups.

Cell-type-specific signatures and enrichment. Raw RNA-seq counts for sepa-
rated cells, representing 10 distinct cell type populations, were downloaded from
the ImmGen ULI RNA-seq dataset from the Gene Expression Omnibus (GEO)
database (GEO accession: GSE109125). Raw counts were processed, as described
above, using the bioconductor package DESeq279 v1.12.4 in R, and normalized
using the DESeq method to remove the library-specific artefacts. Variance stabi-
lizing transformation was applied to obtain normalized log2 gene expression values.
Differentially expressed genes were obtained from the 5,000 genes with the
highest variance across all samples by comparing each cell type against all
other cell types, using the bioconductor package limma87 v3.28.21 in R. Only
upregulated genes with log2 foldchange >1 and FDR p-value < 0.05 were considered
cell-type specific. Cell-type enrichment analysis to identify over-represented cell
types in lung and blood modules was performed using a hypergeometric test,
using the phyper function in R. p-Values were corrected for multiple testing
using the p.adjust function in R, using the BH method, to obtain FDR corrected p-
values.

In vitro-derived T helper cell signatures generation. Raw single-end fastq
files were downloaded from GEO database (GEO accession: GSE106464), for

TH1+IL-27, TH2 and TH17 cells at 6 h. Fastq files were processed as described
above, but using unstranded mapping options, to obtain raw counts. Raw counts
were processed, as described above, using the bioconductor package DESeq279

v1.12.4 in R, and normalized using the DESeq method to remove the library-
specific artefacts. Variance stabilizing transformation was applied to obtain nor-
malized log2 gene expression values. Differentially expressed genes were obtained
by comparing each cell type against all other cell types, using the bioconductor
package limma87 v3.28.21 in R. Only upregulated genes with log2 foldchange >1
and FDR p-value < 0.05 were considered T helper cell-type specific.

Mapping mouse samples to the Toxoplasma gondii genome. The filtered RNA-
seq fastq files from the mouse samples from Toxoplasma WT and IFN receptor KO
dataset across all tissues (obtained as described above), were aligned to the T. gondii
genome ToxoDB 7.1 Ensembl GRCm38 (release 35) using HISAT277 v2.0.4 with
default settings and RF rna-strandedness, including unpaired reads resulting from
Trimmomatic using option -U. The mapped and aligned reads were quantified to
obtain the gene-level counts using HtSeq78 v0.6.1 with default settings and reverse
strandedness. Raw library sizes were calculated for each sample as the sum of read
counts for all genes in that sample. Normalization factors, calculated from the
original normalization analysis of the Toxoplasma WT and IFN receptor KO
dataset across all tissues (using the M. musculus genome), using the estimateSi-
zeFactors function from the DESeq2 package in R, were multiplied to the raw
library sizes to obtain normalized library sizes, to quantify the presence of the T.
gondii pathogen present in the mouse lung, blood, liver, and spleen samples in
wildtype and IFN receptor KO mice.

Interferome database analysis. IFN response genes (type I, type II, and type I
and II) listed in the Interferome database44 (release v2.01; www.interferome.org
accessed December 2019) were identified with the blood and lung modules from
Fig. 2 (Supplementary Datas 2 and 3).

Method for use of online WebApp. An online webapp https://ogarra.shinyapps.
io/MouseModules/ accompanies the manuscript to visualize the findings of the
study. The app is subdivided into 5 distinct pages that can be accessed through the
tabs displayed on the top of the page, with a customized sidebar for user input on
each page.

Tab 1: “Gene expression” allows the user to input a gene of interest (either a
gene symbol or a mouse Ensembl ID) to visualize its expression (either as counts or
log2 expression values) across 5 different datasets consisting of mouse models of
infection and inflammation, as described in the manuscript. Each dot represents an
individual sample, grouped together as controls and disease samples across the
different mouse models.

Tab 2: “Gene lookup in modules” allows the user to input a gene of interest
(either a gene symbol or a mouse Ensembl ID) and find out which lung and blood
module it belongs to. Thirty-eight lung and forty-one blood modules were derived
as part of the study from lung and blood samples obtained from six mouse models
of infection and inflammation.

Tab 3: “Lung modules” allows the user to visualize the expression of each lung
module (L1–L38) across lung samples obtained from six mouse models of infection
and inflammation. The enrichment score between −1 and 1 represents the
combined overall expression of all genes within the module for each sample. A
table below the plot displays all genes present within that module.

Tab 4: “Blood modules” allows the user to visualize the expression of each
blood module (L1–L41) across blood samples obtained from either the six mouse
models used for module derivation, or the four distinct mouse models used for
validation. The enrichment score between −1 and 1 represents the combined
overall expression of all genes within the module for each sample. A table below the
plot displays all genes present within that module.

Tab 5: “Download data” allows the user to download the genes present in all
lung and blood modules, and the biological annotation of these modules.

For all plots in the app, the user can manually set the width and height of the
plot, and download them as png files. Additionally, the user can interact with the
plot by hovering over the data points to obtain detailed information for each
sample point, as well as summary statistics for each group.

Data availability
The materials, data, code, and any associated protocols that support the findings of this
study are available from the corresponding author upon request. The Microarray and
RNA-seq datasets have been deposited in the NCBI Gene Expression Omnibus (GEO)
database with the primary accession number GSE119856. Publically available datasets
used in this study include GSE109125 (sorted cells from Immunological Genome
Project), GSE106464 (in vitro differentiated T helper cells), and GSE61106 (Burkholderia
pseudomallei (acute) microarray).
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