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Abstract

In this paper, we report on the development of an analytical model and a decision support tool for meeting the complex
challenge of scheduling dialysis patients. The tool has twooptimization objectives: First, waiting times for the start
of the dialysis after the patients’ arrivals must be minimized. Second, the minimization of lateness after the scheduled
finish time, which is relevant for transport services, are pursued. We model the problem as a mathematical program
considering clinical pathways, a limited number of nurses managing the patients, and dialysis stations. Furthermore,
information about patients’ drop-off and pick-up time windows at/from the dialysis unit are considered. We develop
a platform in Microsoft Excel and implement the analytical model using an Open Source optimization solver. A case
study from a dialysis unit in the UK shows that a user can compute a schedule efficiently and the results provide useful
information for patients, caregivers, clinicians and transport services.

Introduction

Recent research has reported an increasing prevalence of chronic kidney disease worldwide1. Patients who are in
the end stage of chronic kidney disease (ESRD) rely on dialysis treatments to survive. Hemodialysis is a common
approach to manage the condition. It is typically performedin a clinical setting three times a week for several hours,
where the patient is connected to a machine via a vascular access. Patients seeking treatment in dialysis units have
individual characteristics which can be distinguished on avariety of metrics such as blood flow rate, dialysate flow
rate and composition, volume of fluid to be removed and size ofdialyzer. Regular laboratory tests of the patient’s
blood help the physicians to determine a suitable treatmentplan. Patients may have many preferences, including the
desire for short treatment times and preferred starting times during the day. Dialysis facilities, on the contrary, pursue
planning the treatment efficiently by optimizing resource utilization for the best patient outcomes. Patient scheduling
which is done in dialysis units world-wide, can be defined as assigning patients to scarce resources and time slots to
maximize some objective2.

In this paper, we develop an analytical approach to deliver apatient-centric scheduling platform for dialysis patients.
Individual patients’ characteristics are taken into account, such as the patient’s clinical pathway, alongside the consid-
eration of the availability of scarce resources that are required. We formulate the scheduling problem as a mathematical
program which includes the scheduling decisions around thepatients’ availability time windows. Using Microsoft Ex-
cel, a manager of a dialysis unit can specify parameters in our tool. The manager selects the waiting time objective
and obtains feasible solutions based on the objective function and constraints which are implemented using the Open
Source solver back-end of our tool. In doing so, patient schedules can be obtained effectively and efficiently such that
waiting-times for patients can be minimized. Finally, the optimal schedules can be shared with patients, caregivers,
clinicians and transport services.

The remainder of this paper is structured as follows. In the next section, we provide an overview of related patient
scheduling work followed by the presentation of the analytical model, demonstration of the platform and discussion,
and conclusions.



Related Work

Patient scheduling is the process of assigning individual patients and/or patients’ activities to time and/or health-
care resources2 on the operational decision level. In contrast, appointment scheduling defines a blueprint of patients’
appointments on a tactical level. While some reviews focus exclusively on patient scheduling2,3, appointment schedul-
ing problems have been reviewed by several authors4–7. In this section, we position our paper in the relevant patient
scheduling literature and focus on patient-related objectives as shown in Table 1.

Minimize
penalties 8–14

waiting time of (prioritized) patients 9–11,15–30

welfare loss 31

number of night treatments 32

quality of life proxies 33

Maximize
# patients to be scheduled 19,34–38

patients’ satisfaction / preferences 17,18,22,32,39

Table 1: Patient-related objectives

The table reveals that most of the research focus has been on one single patient-related objective which is the mini-
mization of patient waiting times which is similar to the objective of the collaborating dialysis unit. The difference of
our work is, however, that we consider patient waiting timeswhich occur before the start of the treatment and after the
end of the treatment.

The analytical approach proposed in this paper can be categorized into and differentiated from the literature on patient
scheduling as follows. One relevant paper focuses on hemodialysis scheduling but on a tactical decision level32. The
authors schedule patients’ treatments across several daysand not within a day as we do. Furthermore, we provide a
decision support tool that allows managers to accommodate patient availability and schedule patients more efficiently.
In another relevant paper, therapy jobs are scheduled hospital-wide15. The difference to our work is, again, that we
provide a decision support tool that is based on an Open Source solver as compared to a commercial solver. Using
Microsoft Excel and Open Source software increases the usability in the National Health Service because most of
the computers have Microsoft Excel pre-installed, users are familiar with it and the Open Source package can be
downloaded free and installed as a plugin. Another difference is that dialysis stations are considered as a scarce
resource and patients’ clinical pathways consist of a setup, dialysis and a finish activity as our next section will reveal.

An Analytical Model

In what follows, we will introduce the parameters for our analytical model, the decision variables, objective function
and constraints. Finally, an example schedule is given.

Parameters

Planning horizon, patients and activities

Let T := {1, 2, . . . , T} be the set of 15-minute slots with planning horizonT . In practice, we start the day at
7:00am and finish it at 11:00pm so that the planning horizon comes up toT = 64 periods enumerated using the set
T := {1, 2, . . . , 64}. Dialysis patients are denoted by setP. A denotes the set of all clinical activities to be scheduled
andAp ⊂ A denotes the subset of activities for patientp ∈ P.

Hospital resources, capacity and demand

Nurses and stations have a capacityRnurse
t andRstation

t , respectively, in periodt ∈ T . For example,Rnurse
1 = 1 means

that 1 nurse is available between 7:00am and 7:15am. The demand of activityi ∈ A on nurses and stations is denoted
by rnurse

i andrstation
i , respectively. This parameter will be used in the clinical pathways which are introduced next.



Clinical pathways

In our model, clinical pathways represent standardized, typically evidence-based health care processes as defined by
van De Klundert et al.40. For more definitions and a literature review on clinical pathway modelling, see Aspland et
al.41. We depict the clinical pathway of a patient as an activity-on-node graph in which the set of nodes represents the
clinical activities. Weighted arcs represent minimum timelags between clinical activities3 and we write the activities’
capacity requirements below the nodes, see the legend in Figure 1.

Consider, for example, patients’ set of dialysis activities which are the setup, dialysis and the finish activity, depicted
by σp, δp, andφp, respectively shown in Figure 1.rnurse

σ1
= 1 means that the patients’ setup activity requires 1 nurse

who is busy with the patient setting her up on the dialysis machine.

patient 1

patient 2

Notation:

i j

ri,k

dmin
i,j

σ1 δ1 φ1

σ2 δ2 φ2

0 0

0 0

rnurse
σ1

= 1

rstation
σ1

= 1

rstation
δ1

= 1 rnurse
φ1

= 1

rstation
φ1

= 1

rnurse
σ2

= 1

rstation
σ2

= 1

rstation
δ2

= 1 rnurse
φ2

= 1

rstation
φ2

= 1

Figure 1: Clinical pathways for two dialysis patients

Let E denote the set of all minimum time lags between clinical activities. A minimum time lag(i, j) ∈ E of
weight dmin

i,j ∈ Z≥0 stipulates that activityj has to be scheduled at leastdmin
i,j periods later than activityi. Given

the graph(A, E), the earliest and latest start of activities, denoted byEi andLi, respectively can be calculated using
longest path methods (see, for example,42). Let Wi := {Ei, Ei + 1, . . . , Li} denote the time window of activityi.
Once we have calculated the latest time slotLφp

in which the dialysis activities can be scheduled, the indexof the last
period can be calculated byT = maxLi. Table 2 provides an overview of all parameters and decisionvariables. The
latter will be introduced next.

Table 2: Sets, indices, constants and decision variables

Parameter Description

A Set of activities
Ap Set of activities corresponding to patientp ∈ P
δp Dialysis activity of patientp which excludes the setup and finish. They are modelled as

separate activities.
dmin
i,j Minimum time lag for precedence relation(i, j) ∈ E

E Set of precedence relations
Ei Earliest period to schedule activityi ∈ A
Li Latest period to schedule activityi ∈ A
P Set of patients
φp Dialysis finish activity of patientp ∈ P
pi Duration of activityi
rnurse
i Nurse demand by activityi ∈ A
rstation
i Station demand by activityi ∈ A
Rnurse

t Nurse capacity in periodt ∈ T (e.g. 1 nurse available in period 1)
Rstation

t Station capacity in periodt ∈ T (e.g. 1 station available in period 1)



σp Dialysis setup activity of patientp ∈ P
T Set of periods
Wi Set of consecutive periods to schedule activityi ∈ A

Decision variable Description

xi,t 1, if activity i starts in periodt ∈ Wi, 0 otherwise

Decision variables

We use binary activity-to-period assignment variables, a concept which has been used successfully in other scheduling
literature, see43. Accordingly,

xi,t =

{

1,
0,

if clinical activity i ∈ A starts in periodt ∈ Wi

otherwise.

Objective function

Having introduced all necessary parameters and decision variables, the objective functions are given by Equations (1)
and (2).

Minimize z = max
p∈P

∑

t∈Wσp

t · xσp,t (1)

Minimize z = max
p∈P

∑

t∈Wφp

t · xφp,t (2)

Objective function (1) minimizes the maximum waiting time for patients to start the dialysis session as follows: Each
patientp has a time window to start the session which is defined for the individual’s dialysis start activityσp (see the
patients’ clinical pathways shown in Figure 1). Now, one decision variablexσp,t is equal to 1, we multiply the time
point t which leads to the scheduled start times across all patients. Now, the maximum value of this start time vector is
minimized. Similarly, for objective function (2), we minimize the maximum scheduled finish time of the treatments.

Constraints

In what follows, we add constraints to our model which we break down by clinical pathways, nurse and machine
constraints.

Clinical pathways, nurse and machine constraints

Constraints (3) use the information from the clinical pathways defined earlier and ensure that minimum time lags
between all consecutive activities are guaranteed.

∑

t∈Wj

t · xj,t ≥
∑

t∈Wi

t · xi,t + dmin
i,j ∀p ∈ P, (i, j) ∈ Ep (3)

Nurse constraints (4) ensure that the demand for nurses doesnot exceed the nurse capacity.



∑

i∈A:t∈Wi

rnurse
i

min(Li,t)
∑

τ=max(Ei,t−pi+1)

xi,τ ≤ Rnurse
t ∀t ∈ T (4)

Constraints (5) ensure that the demand for the stations doesnot exceed the station capacity.

∑

i∈A:t∈Wi

rstation
i

min(Li,t)
∑

τ=max(Ei,t−pi+1)

xi,τ ≤ Rstation
t ∀t ∈ T (5)

Constraints (6) ensure that each activity is scheduled exactly once.

∑

t∈Wi

xi,t = 1 ∀i ∈ A (6)

Variable definitions and their domains are given by (7).

xi,t ∈ {0, 1} ∀i ∈ A, t ∈ Wi (7)

Example

Table 3 shows a station and nurse allocation example based onthe clinical pathways defined in Figure 1. “–” means
that the variables are not defined in these periods because they are outside the activities’ time windows. We assume
that the processing times of the patients’ start activitiesare 1, the finish activities require two time periods and the
durations of the dialysis (δp) take 4 and 1 period for patients 1 and 2 respectively. Naturally, the durations are longer
in reality as the next section will reveal.

Table 3: A station and nurse allocation example

t ∈ T 1 2 3 4 5 6 7
xσ1,t 1 0 0 – – – –
xδ1,t – 1 0 0 – – –

xφ1,t – – – – – 1 0
xσ2,t 0 1 0 – – – –

xδ2,t – 0 1 0 – – –

xφ2,t – – – 1 0 0 –

∑
i∈A:t∈Wi

rnurse
i

∑min(Li,t)
τ=max(Ei,t−pi+1)

xi,τ 1 1 0 1 1 1 1
∑

i∈A:t∈Wi
rstation
i

∑min(Li,t)
τ=max(Ei,t−pi+1)

xi,τ 1 2 2 2 2 2 1

The example reveals that the first activity is scheduled in period t = 1 which means that the nurse is allocated in
the same period. In the next period (t = 2) the second patient’s first activity (σ2, see Figure 1) is scheduled which
allocates the nurse in the second period (t = 2) as can be seen in the second to last row. In periodt = 3, the nurse is
not assigned to tasks that involve the connection and disconnection of patients to/from machines.



The last row shows the demand profile for the capacity requirement from the dialysis stations. As can be seen, one
station is allocated in periodt = 1, followed by an allocation of two stations in periodst = 2, 3, . . . , 6. As only one
patient is on the station at periodt = 7, the demand profile goes down to 1.

Decision Support Tool

We created a decision support tool in Microsoft Excel. The tool is broken down into a parameters tab which is shown
in Figure 2, the solver tab shown in Figure 3, and a solution tab shown in Figure 4.

Figure 2 shows the user interface where the manager can inputeach patient, along with their treatment duration
and arrival time on the left-hand side. Sometimes, a stationmay be unavailable because of maintenance operations
going on for the dialysis machine. Accordingly, the user canparametrize the station availability by using the “station
availability table” on the right-hand side. The nurses’ availability and the cleaning time for the machines can also be
inputted.

Figure 2: Parameters for scheduling the patients in the Dialysis Unit. All patients’ names are synthetic.

In Figure 3, the user can choose which objective function they wish to optimize when solving the scheduling problem.
As mentioned in the modelling section, we have two patient lateness objectives, the first being the time they wait after
arrival before starting their treatment, and the latter being the time a relative, Welsh ambulance or a private taxi service
has to wait for the treatment to finish. Once the user selects the objective function, OpenSolver44 will use the inputted
values and constraints to create a schedule which is then displayed to the clinician using metrics such as activity start
times and lateness.



Figure 3: Solving the problem of scheduling the patients in the Dialysis Unit

Figure 4 shows the output of the tool in a Gantt chart. For eachstation, we can see which patients have been scheduled
at timet. The black bars relate to the patients’ start activityσp and finish activityφp (introduced in Figure 1). Recall
that these activities require nurses in addition to the stations. The coloured bars relate to activityδp, where only the
station is required for the actual dialysis activityδp.

Figure 4: Solution of scheduling the patients in the Dialysis Unit

Discussion

In several workshops we discussed the usability and acceptability of the platform with managers from the National
Health Service. One major feedback to improve the usabilityof the platform was that we have to link our tool with the
clinical information system which operates on a separate database. However, using an ODBC connection, we will be
able to link Microsoft Excel with the patient data in the collaborating dialysis unit.

The usage of our platform will have several implications andbenefits for different stakeholders: Using our tool,
patients can be communicated an expected dialysis start time which may reduce perceived waiting time45. Nurses will
be able to plan their breaks during the day which is very difficult at the moment because of the workload imposed by
the unfavorable schedules: Currently, nurses struggle to take breaks during midday because patients who started the
treatments in the morning finish at midday and need to be takencare of. In parallel, new patients who arrive at midday
have to be setup on the machines and delays may impose overtime at the end of the nurses’ shifts. Another benefit of
our structured approach is that transport services and patients’ caregivers can be informed about the scheduled dialysis



finish times. Using information about the patients’ home addresses, transport services may aggregate trips for patients
and provide more efficient services.

The mathematical model has been formulated as a deterministic problem which means that uncertainty is not taken
into account at this stage. Uncertainty may happen in patients’ no shows, late arrivals and uncertain dialysis durations.
Using information from the past, however, machine learningalgorithms may be used to accurately predict no-shows46

which then can be incorporated into our tool. Alternatively, a rolling-horizon procedure may be used to take into
account variation during the execution of the schedule.3,47,48

Conclusions

In this paper we have presented an analytical model and a decision support tool for the problem of scheduling dialysis
patients in a dialysis unit in the UK. One objective is to minimize the maximum waiting time for patients to start the
dialysis session. The second objective minimizes the maximum scheduled finish time of all treatments. In doing so,
the model avoids nurses’ overtime at the end of the day. Usingdata from a hospital we demonstrated the effectiveness
of our approach and showed the solution output using a Gantt chart. This helps the dialysis unit to find out the optimal
sequence of patients on the different dialysis stations.

Future work will include further patient related objectivefunctions including patient preferences, clinician guidelines
and targets, and also taking into account resource-relatedmeasures such as utilization maximization. Furthermore,
we will evaluate the importance of each of the different objectives and incorporate the result into a multi-criteria
optimization approach. Also, our aim is to quantify the effectiveness of the approach in practice.
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