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Abstract

In this paper, we report on the development of an analyticadehand a decision support tool for meeting the complex
challenge of scheduling dialysis patients. The tool hasaptimization objectives: First, waiting times for the dtar
of the dialysis after the patients’ arrivals must be minietizSecond, the minimization of lateness after the scheédule
finish time, which is relevant for transport services, arequed. We model the problem as a mathematical program
considering clinical pathways, a limited number of nursesaging the patients, and dialysis stations. Furthermore,
information about patients’ drop-off and pick-up time wamgs at/from the dialysis unit are considered. We develop
a platform in Microsoft Excel and implement the analyticaldal using an Open Source optimization solver. A case
study from a dialysis unit in the UK shows that a user can campschedule efficiently and the results provide useful
information for patients, caregivers, clinicians and tsgort services.

Introduction

Recent research has reported an increasing prevalenceasfictkidney disease worldwide Patients who are in
the end stage of chronic kidney disease (ESRD) rely on dgatysatments to survive. Hemodialysis is a common
approach to manage the condition. It is typically perforrired clinical setting three times a week for several hours,
where the patient is connected to a machine via a vasculassc®atients seeking treatment in dialysis units have
individual characteristics which can be distinguished omaigety of metrics such as blood flow rate, dialysate flow
rate and composition, volume of fluid to be removed and sizéiaf/zer. Regular laboratory tests of the patient’s
blood help the physicians to determine a suitable treatplant Patients may have many preferences, including the
desire for short treatment times and preferred startinggiduring the day. Dialysis facilities, on the contrary,quer
planning the treatment efficiently by optimizing resourtiéaation for the best patient outcomes. Patient scheduli
which is done in dialysis units world-wide, can be defined ssgning patients to scarce resources and time slots to
maximize some objective

In this paper, we develop an analytical approach to deliyeatgent-centric scheduling platform for dialysis patgent
Individual patients’ characteristics are taken into actpsuch as the patient’s clinical pathway, alongside thesich
eration of the availability of scarce resources that araired. We formulate the scheduling problem as a mathematica
program which includes the scheduling decisions aroungdtients’ availability time windows. Using Microsoft Ex-
cel, a manager of a dialysis unit can specify parametersiirtaml. The manager selects the waiting time objective
and obtains feasible solutions based on the objectiveifmend constraints which are implemented using the Open
Source solver back-end of our tool. In doing so, patientdales can be obtained effectively and efficiently such that
waiting-times for patients can be minimized. Finally, th@imal schedules can be shared with patients, caregivers,
clinicians and transport services.

The remainder of this paper is structured as follows. In tle section, we provide an overview of related patient
scheduling work followed by the presentation of the aneiitmodel, demonstration of the platform and discussion,
and conclusions.



Related Work

Patient scheduling is the process of assigning individadiepts and/or patients’ activities to time and/or health-
care resourcéon the operational decision level. In contrast, appointrseheduling defines a blueprint of patients’
appointments on a tactical level. While some reviews focetusively on patient schedulidg, appointment schedul-
ing problems have been reviewed by several authbrén this section, we position our paper in the relevant péatie
scheduling literature and focus on patient-related objesias shown in Table 1.

Minimize
penalties 8-14
waiting time of (prioritized) patients 9-11,15-30
welfare loss 1
number of night treatments 32
quality of life proxies 33
Maximize
# patients to be scheduled 19,34-38

patients’ satisfaction / preferences 17:1822,32,39

Table 1: Patient-related objectives

The table reveals that most of the research focus has beeneosirmle patient-related objective which is the mini-
mization of patient waiting times which is similar to the ebjive of the collaborating dialysis unit. The differende o
our work is, however, that we consider patient waiting tiegch occur before the start of the treatment and after the
end of the treatment.

The analytical approach proposed in this paper can be agétedanto and differentiated from the literature on patien
scheduling as follows. One relevant paper focuses on hexysi scheduling but on a tactical decision I€%eThe
authors schedule patients’ treatments across severakgaysot within a day as we do. Furthermore, we provide a
decision support tool that allows managers to accommoagsten availability and schedule patients more efficiently
In another relevant paper, therapy jobs are scheduledtabspde'®. The difference to our work is, again, that we
provide a decision support tool that is based on an Open 8amlver as compared to a commercial solver. Using
Microsoft Excel and Open Source software increases thellitgab the National Health Service because most of
the computers have Microsoft Excel pre-installed, useesfamiliar with it and the Open Source package can be
downloaded free and installed as a plugin. Another diffeeeis that dialysis stations are considered as a scarce
resource and patients’ clinical pathways consist of a seliafysis and a finish activity as our next section will rdvea

An Analytical M odel

In what follows, we will introduce the parameters for our lgtiaal model, the decision variables, objective function
and constraints. Finally, an example schedule is given.

Parameters
Planning horizon, patients and activities

Let 7 := {1,2,...,T} be the set of 15-minute slots with planning horizdn In practice, we start the day at
7:00am and finish it at 11:00pm so that the planning horizaneup tdl’ = 64 periods enumerated using the set
T :={1,2,...,64}. Dialysis patients are denoted by #&t.4 denotes the set of all clinical activities to be scheduled
and A, C A denotes the subset of activities for patigre P.

Hospital resources, capacity and demand

Nurses and stations have a capadify"s®and R$a%" respectively, in period € 7. For exampleR]U"s® = 1 means
that 1 nurse is available between 7:00am and 7:15am. Thergkafactivity: € .A on nurses and stations is denoted
by rMUrseandrs$tation respectively. This parameter will be used in the clinicathpvays which are introduced next.



Clinical pathways

In our model, clinical pathways represent standardizguicajly evidence-based health care processes as defined by
van De Klundert et &°. For more definitions and a literature review on clinicalhwety modelling, see Aspland et

al 1. We depict the clinical pathway of a patient as an activityamde graph in which the set of nodes represents the
clinical activities. Weighted arcs represent minimum tiiags between clinical activitiésand we write the activities’
capacity requirements below the nodes, see the legend ime-ig

Consider, for example, patients’ set of dialysis actigitrehich are the setup, dialysis and the finish activity, deplic
by o,,6,, and¢,, respectively shown in Figure I4"° = 1 means that the patients’ setup activity requires 1 nurse
who is busy with the patient setting her up on the dialysishiree

e Notation:
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Figure 1: Clinical pathways for two dialysis patients

Let £ denote the set of all minimum time lags between clinicalvétas. A minimum time lag(i,j) € & of
weight dg‘}“ € Z> stipulates that activity has to be scheduled at Ieaﬁ?}“ periods later than activity. Given
the graph( A4, £), the earliest and latest start of activities, denotedzbynd L;, respectively can be calculated using
longest path methods (see, for exanfifle,Let W; := {E;, E; + 1,..., L;} denote the time window of activity.
Once we have calculated the latest time #lgt in which the dialysis activities can be scheduled, the inafetke last
period can be calculated iy = max L;. Table 2 provides an overview of all parameters and decigwoiables. The
latter will be introduced next.

Table 2: Sets, indices, constants and decision variables

Parameter Description

A Set of activities

A, Set of activities corresponding to patignt P

Op Dialysis activity of patientp which excludes the setup and finish. They are modelled as
separate activities.

d;{‘]@“ Minimum time lag for precedence relati¢n j) € £
Set of precedence relations

E; Earliest period to schedule activitye A

L; Latest period to schedule activitye A

P Set of patients

op Dialysis finish activity of patienp € P

Di Duration of activity:

rpurse Nurse demand by activitye A

ptation Station demand by activityc A

Rpurse Nurse capacity in periotle T (e.g. 1 nurse available in period 1)

Rtation Station capacity in periotic T (e.g. 1 station available in period 1)



op Dialysis setup activity of patient € P
T Set of periods
W, Set of consecutive periods to schedule activity A

Decision variable Description

Tit 1, if activity 7 starts in period € W;, 0 otherwise

Decision variables

We use binary activity-to-period assignment variablegracept which has been used successfully in other scheduling
literature, se®. Accordingly,

o 1, if clinical activity i € A starts in period € W;
Tit = 0, otherwise.

Objective function

Having introduced all necessary parameters and decisital@s, the objective functions are given by Equations (1)
and (2).

Minimize z = max Z U T, @)
teEWo,
Minimize z = max t-x 2
g 3t @
teEWe,

Obijective function (1) minimizes the maximum waiting tinte patients to start the dialysis session as follows: Each
patientp has a time window to start the session which is defined forrtiwidual’s dialysis start activity, (see the
patients’ clinical pathways shown in Figure 1). Now, oneisiea variablez,, ; is equal to 1, we multiply the time
pointt which leads to the scheduled start times across all patibots, the maximum value of this start time vector is
minimized. Similarly, for objective function (2), we minige the maximum scheduled finish time of the treatments.

Constraints

In what follows, we add constraints to our model which we krdawn by clinical pathways, nurse and machine
constraints.

Clinical pathways, nurse and machine constraints

Constraints (3) use the information from the clinical padlye/ defined earlier and ensure that minimum time lags
between all consecutive activities are guaranteed.

Sotewia= > towg +dly Vp € P,(i,j) €& 3)
tew; teW;

Nurse constraints (4) ensure that the demand for nursesndbesceed the nurse capacity.



min(L;,t)

Z r?urse Z Tir < R?urse Vie T (4)

i€ AiteW; T=max(E;,t—p;+1)

Constraints (5) ensure that the demand for the stationsrduiesxceed the station capacity.

min(L;,t)
Z rlstatlon Z Tir < R?tanon Vie T (5)
i€ AiteW; T=max(E;,t—p;+1)

Constraints (6) ensure that each activity is scheduledtiyxaace.

Z zig =1 Vie A (6)

teWw;

Variable definitions and their domains are given by (7).

z;y € {0,1} Vie At e W, @)

Example

Table 3 shows a station and nurse allocation example bastteatinical pathways defined in Figure 1. “—" means
that the variables are not defined in these periods becaegeath outside the activities’ time windows. We assume
that the processing times of the patients’ start activiéies 1, the finish activities require two time periods and the
durations of the dialysisif) take 4 and 1 period for patients 1 and 2 respectively. Niyuthe durations are longer

in reality as the next section will reveal.

Table 3: A station and nurse allocation example

teT 1 2 3 4 5 6 7
Tor it 1 0 0 - - - =
- 1.0 0 - - -
I¢'11t - - - - - 1 0
Tog,t o 1 0 - — - -
5yt -0 1 0 - - -
Tyt - - - 1 0 0 -

=
o
=

nursex~min (L ,t) )
ZiEAZtEWi T Z:-r=n1mc(E,i,t—p,;-‘rl) Ti,r

i min(L;,t)
ZiGA:tEWiT?tatlonz‘r:max(ElA,tfprl*l)xivT 12 2 2 2 2 1

The example reveals that the first activity is scheduled niodee = 1 which means that the nurse is allocated in
the same period. In the next periad=€ 2) the second patient’s first activity 4, see Figure 1) is scheduled which
allocates the nurse in the second peribe-(2) as can be seen in the second to last row. In pefrieds3, the nurse is
not assigned to tasks that involve the connection and disgiion of patients to/from machines.



The last row shows the demand profile for the capacity remerd from the dialysis stations. As can be seen, one
station is allocated in period= 1, followed by an allocation of two stations in periotds- 2,3, ...,6. As only one
patient is on the station at period= 7, the demand profile goes down to 1.

Decision Support Tool

We created a decision support tool in Microsoft Excel. T i®broken down into a parameters tab which is shown
in Figure 2, the solver tab shown in Figure 3, and a solutibrsteown in Figure 4.

Figure 2 shows the user interface where the manager can éguit patient, along with their treatment duration
and arrival time on the left-hand side. Sometimes, a statiag be unavailable because of maintenance operations
going on for the dialysis machine. Accordingly, the user parametrize the station availability by using the “station
availability table” on the right-hand side. The nurses’ialality and the cleaning time for the machines can also be
inputted.

Treatment Ready Time Station
|Patient Name: Patient ID: | Duration{hours): |{in hours after 7am): Availability: Start: End:
|Omar Scruggs 1 2 0 1 07:00 23:00
Fiona Swingle 2 3 0 2 07:00 23:00
Sharee Bax 3 3 0 3 07:00 23:00
Debrah Walford 4 3.5 0 4 07:00 23:00
Valentine Manor 5 3.5 0.25 5 07:00 23:00
Carly Ploss 6 3.5 0.25 6 07:00 23:00
Michale Wertz 7 3.5 0.25 7 07:00 23:00
|Shantay Wasser 8 3.5 0.25 8 07:00 23:00
Ariane Grauer &) 3.5 0.5 2] 07:00 23:00
Kristian Hankerson 10 3.5 0.5 10 07:00 23:00
Kerstin Niver 11 4 0.5 11 07:00 23:00 |
Rayna Penland 12 4 0.5 12 07:00 23:00
Winston Topper 13 4 0.75
Emilio Porcelli 14 4 0.75 Cleaning time of machine: 0.5
Dorine Aman 15 4 0.75
Arden Aiken 16 4 0.75
Dong Eakins 17 4 1 Nurses Availability: Shift Start: Shift End: Break start Break end
|Gloria Ptacek 18 4 1 B 07:00 15:00 12:00 12:30
Tami Pompa 19 4 1 2 07:00 15:00 12:30 13:00
|Zofia Newby 20 4 1 3 07:00 15:00 13:00 13:30
Audrea Whited 21 4 1.25 4 15:00 23:00 19:00 19:30
Rosaria Bacher 22 4 125 5 15:00 23:00 19:30 20:00
Chere Eye 23 4 1.25 6 15:00 23:00 18:30 19:00

Figure 2: Parameters for scheduling the patients in the Dialysis.Ulitpatients’ names are synthetic.

In Figure 3, the user can choose which objective functiog thish to optimize when solving the scheduling problem.
As mentioned in the modelling section, we have two patiegehiass objectives, the first being the time they wait after
arrival before starting their treatment, and the lattenbéhe time a relative, Welsh ambulance or a private taxiserv
has to wait for the treatment to finish. Once the user selbetshjective function, OpenSolémwill use the inputted
values and constraints to create a schedule which is thplaged to the clinician using metrics such as activity start
times and lateness.



Click on your required Patient 1 2 3 4 5 6 7 g 9
objective function to create | Ready Time ] 0 0 0 0.25 0.25 0.25 0.25 0.5
your schedule: Weight 1 1 1 1 1 1 1 1 1
Session length{hours) 2 3 3 3.5 35 3.5 3.5 3.5 35
Session length + Cleaning Time 25 35 35 4 4 4 4 4 4
Minimise Maximum Patient Pick up time(after time 0) 2 3 5 35 3.75 3.75 3.75 375 4
Lateness (Before Treatment) | Allowance 2 3 3 35 35 35 35 35 35
Slack(t=0) o o 0 ] (1] o o 0 ]
Minimise Maximum Patient | position [S1  (s12  (SY3 (521 (522 (523 (8311 (5312 (S3)3
Lateness (After Treatment) | patient g 20 7 15 13 % 12 2 17
Ready Time 0.5 1 0.25 0.75 L 15 1 135
Session Length 3.5 4 3.5 4 4 4 4 4 4
Session Lemgth +Cleaning Time 4 45 4 45 a5 45 45 45 45
Pick up time (after) 4 5 3.75 475 475 55 5 5.25 5
Allowance 35 4 35 4 4 4 4 4 4
Completion 45 -] 137 535 875 12257 55 10 145
Statien 1 Station 2 Station 3
Flow Time 45 9 13 5325 975 1425 55 10 145
Lateness calculation 1 0.5 4 925 05 5 B.75 05 475 95
Tardiness 0.5 4 925 05 5 B.75 05 475 95
Flow Time 4 8 1275 45 9 1275 45 B.75 135

Figure 3: Solving the problem of scheduling the patients in the Dialynit

Figure 4 shows the output of the tool in a Gantt chart. For sgation, we can see which patients have been scheduled
at timet. The black bars relate to the patients’ start activityand finish activityg, (introduced in Figure 1). Recall
that these activities require nurses in addition to thewstat The coloured bars relate to activity, where only the
station is required for the actual dialysis activity.

Dialysis Schedule

11 2 ——————— 11

Dialysis Station number

1 - 9 ———— 20

Hours after 7am {Fam=0)

WMurse working on Patient  ® Cleaning

Figure 4: Solution of scheduling the patients in the Dialysis Unit

Discussion

In several workshops we discussed the usability and aduiéiptaof the platform with managers from the National
Health Service. One major feedback to improve the usaldifithe platform was that we have to link our tool with the
clinical information system which operates on a separat@bdase. However, using an ODBC connection, we will be
able to link Microsoft Excel with the patient data in the atlbrating dialysis unit.

The usage of our platform will have several implications dahefits for different stakeholders: Using our tool,
patients can be communicated an expected dialysis starttimch may reduce perceived waiting tifReNurses will

be able to plan their breaks during the day which is very diffiat the moment because of the workload imposed by
the unfavorable schedules: Currently, nurses strugglek® breaks during midday because patients who started the
treatments in the morning finish at midday and need to be te&enof. In parallel, new patients who arrive at midday
have to be setup on the machines and delays may impose ovetitine end of the nurses’ shifts. Another benefit of
our structured approach is that transport services andrmiaticaregivers can be informed about the scheduled @alys



finish times. Using information about the patients’ homeradsles, transport services may aggregate trips for patient
and provide more efficient services.

The mathematical model has been formulated as a deterimipistblem which means that uncertainty is not taken
into account at this stage. Uncertainty may happen in piatian shows, late arrivals and uncertain dialysis duration
Using information from the past, however, machine learmilygrithms may be used to accurately predict no-sh®ws
which then can be incorporated into our tool. Alternatiyelyrolling-horizon procedure may be used to take into
account variation during the execution of the schedie?®

Conclusions

In this paper we have presented an analytical model and aidecupport tool for the problem of scheduling dialysis
patients in a dialysis unit in the UK. One objective is to miide the maximum waiting time for patients to start the
dialysis session. The second objective minimizes the maxiracheduled finish time of all treatments. In doing so,
the model avoids nurses’ overtime at the end of the day. Usdtg from a hospital we demonstrated the effectiveness
of our approach and showed the solution output using a Ghatt.cThis helps the dialysis unit to find out the optimal
sequence of patients on the different dialysis stations.

Future work will include further patient related objectiumctions including patient preferences, clinician gliitkes

and targets, and also taking into account resource-retatsbures such as utilization maximization. Furthermore,
we will evaluate the importance of each of the different otijes and incorporate the result into a multi-criteria
optimization approach. Also, our aim is to quantify the effeeness of the approach in practice.
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