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Abstract. This work presents a novel hand pose estimation framework
via intermediate dense guidance map supervision. By leveraging the ad-
vantage of predicting heat maps of hand joints in detection-based meth-
ods, we propose to use dense feature maps through intermediate supervi-
sion in a regression-based framework that is not limited to the resolution
of the heat map. Our dense feature maps are delicately designed to en-
code the hand geometry and the spatial relation between local joint and
global hand. The proposed framework significantly improves the state-
of-the-art in both 2D and 3D on the recent benchmark datasets.
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1 Introduction

Robust hand pose estimation is essential for emerging applications in human-
computer interaction, such as virtual and mixed reality, computer games, and
freehand user interfaces. In this work, we focus robust hand pose estimation
from a single depth image, a challenging task due to the wide possibility of poses,
missing geometric information caused by self-occlusions, and extreme viewpoints.

The recent development of 3D sensing and machine learning techniques have
resulted in large datasets with labeled hand pose frames [1–3], along with so-
phisticated network structures that can cope with challenging learning tasks [4].
The state-of-the-art learning-based hand pose estimation methods [1, 5–14] take
the above advantages and have demonstrated promising performances over tra-
ditional methods using random forests and their variants [15–17, 2, 18].

With respect to the learning outcome, recent work can be classified into
regression-based and detection-based methods [19]. Regression-based methods
directly regress 3D coordinates of hand joints. While the method is straightfor-
ward, the mapping from input data to joint locations is highly non-linear and
poses challenges for the learning procedure. Detection-based methods learn the
probability distribution of individual hand joints. The output from the learned
model is a heat map that consists of discrete probability values of joint locations.
As a result, the accuracy of hand joint estimation is restricted to the resolution
of the heat map.
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Fig. 1: The pipeline of our algorithm starts from a single depth image. Our base-
line method (shown in solid line) stacks R repetitions of a residual module on
lower dimensional feature space, then directly regresses 3D coordinates of each
joint. In comparison, our proposed method (shown in dashed line) densely sam-
ples geometrically meaningful constraints from the input image, which provides
coherent guidance to the feature representation of residual module.

In this paper, we present a novel hand pose estimation framework that
leverages the advantages of regression-based and detection-based methods. Our
framework incorporates feature space constraints on the joint predictions, which
act as an ‘intermediate’ supervision module to a regression-based learning pipeline.
This helps to regularize the learning problem, resulting in more robust estima-
tions. Our method is inspired by [20], where intermediate supervision was tested
for 2D human pose estimation. We demonstrate our approach accurately esti-
mates hand poses regardless of the dimension of hand data representation (e.g.,
2D or 3D). To resolve the ambiguity and occlusion between hand joints, we use
dense guidance maps for the supervision instead of sparse heat maps, giving
better estimation results.

We summarize our contributions as follows:

1. We apply feature space supervision via dense guidance maps, which are
consistent within the entire feature domain, and robust to occlusions.

2. The design of our network structure combines detection based method and
regression based method, and benefits from the added accuracy of interme-
diate predictions.

3. We systematically evaluate different types of guidance maps to prove their
effectiveness, achieving improved results by combining with state-of-the-art
approaches.
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2 Related work

Methods for estimating hand poses from a single view using depth information
are generally classified into three categories: discriminative methods, generative
methods, and hybrid methods. We review related methods from each category,
in particular discriminative methods, the category into which our method falls.

Generative methods fit a pre-defined hand model to each frame of the depth
data to temporally track hand poses. At the beginning, they require a model-
data calibration step by aligning the hand model to a standard pose to start
the tracking, where user input is often required to guarantee a good start. Dur-
ing tracking, the estimated hand pose in the current frame is used to initialize
the fitting of the next frame, which means the error can be easily accumulated
due to self-occlusion, quick movement of the hand, etc. In the worst case, a re-
calibration step is needed to restart the tracking. Hand models with different
representations are used to balance the efficiency and accuracy of the temporal
tracking: examples include the Linear Blend Skinning model which uses a skele-
ton to drive the deformation of the hand skin [21, 22], the primitive-based hand
model which uses cylinder and cones to represent hand segments [23], the Gaus-
sian mixture model that represents hand as a mixture of Gaussian kernels [24,
25], the mesh model that indicates the envelop of the hand [26], and the sphere
mesh that defines the hand using blending surfaces between spheres at key lo-
cations with different radii [27]. Various optimization techniques are employed
to fit the pre-defined hand model to the depth data according to a carefully
designed matching function, such as particle swarm optimization [28], Iterative
Closest Point registration [27], and a combination of the two [29].

Discriminative methods directly learn a hand pose estimator from pre-labelled
data. The mapping between depth data and hand pose is established using differ-
ent discriminative models. Early work such as [15–17, 2, 18] apply random forests
and their variants which rely on hand-crafted features for learning, restricting
their performance compared to methods which use deep neural networks, ben-
efiting from learned features. Recent works utilize CNNs and the maturity of
massively labelled data to further improve the performance [1, 5–14]. The state-
of-the-art methods have been classified and discussed in a recent survey based
on the ‘HANDS 2017’ challenge [19] with respect to different aspects, such as
learning outcome (regression vs. detection), dimension of CNN (2D vs. 3D),
learning model structure (hierarchical vs. non-hierarchical), etc. A detailed re-
view of previous work from all aspects is beyond the scope of this paper. In
the rest of this paper we limit our discussion to regression or detection-based
approaches to highlight our motivation and contribution. Interested readers are
directed to [19] for a comprehensive study.

Regression-based methods take a depth image and directly regresses the 3D
coordinates of hand joints. Guo et al. [9, 10] present a region ensemble network
for hand joint regression. Based on this network, Chen et al. [12] propose to
apply iterative refinement of the estimated pose for better results. Oberweger
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et al. [13] estimate hand poses based on enhanced network architecture, data
augmentation, and better initial hand localization. Madadi et al. [11] exploit a
hierarchical tree-like structured CNN to estimate hand joints from local poses.
Unlike the above methods which treat depth data as 2D images, Ge et al. [14]
train a 3D CNN based on projective distance fields from three canonical views to
regress hand joint locations. In contrast to regression, detection-based methods
predict a probability density map for each joint. Tompson et al. [1] predict the
probability distribution of joint locations as a heat map using CNNs. Ge et al. [5]
extend the method by using depth information from multiple views. Moon et
al. [30] use a 3D CNN to estimate per-voxel likelihood for each joint, resulting
in the best overall performance in the ‘HANDS 2017’ challenge compared with
previous methods based on 2D CNNs and hand joint regression.

According to the estimation error statistics in [19], detection-based methods
seem to be superior to regression-based methods given the top three estimation
results are all detection-based. This reflects the difficulty of the highly non-
linear mapping between the depth map and 3D hand joint coordinates. Simply
relying on neural networks to do a joint regression is not good enough. On the
other hand, in our hand pose estimation practice, we realize that detection-based
methods also have their own restrictions due to the limited resolution of the
predicted heat map for joint distribution, making it hard to identify accurate
hand location within a single map element (i.e., pixel in 2D or voxel in 3D).
Recent work in the human body pose estimation proposes a combined framework
in a multi-task setup [31, 32], but the performance of adopting a similar idea in
hand pose estimation is still unknown. In this work, we leverage the advantages
of a multi-stage multi-target framework to attack domain-specific challenges,
which leads to increased accuracy and robustness.

Zeiler et al. [33] posited that intermediate outputs of neural networks can be
used to represent extracted features from the networks’ overall input. From this,
we posit that adequately well designed features could serve as good constraints
to the intermediate layers of a neural network. Newell et al. [20] adopt the idea of
intermediate supervision and test 2D human pose estimation in their work, but
their results are limited to 2D which cannot easily resolve depth ambiguity. We
propose to combine both detection and regression based approaches by adding
the regression stage after the dense guidance map supervision module to robustly
output 3D joint locations. Our 3D pose estimation system takes the benefits of
added accuracy from detection-based methods as reported in [19], but we impose
intermediate constraints on the feature space instead of the output space.

Hybrid methods perform temporal hand tracking using generative approach
while re-initializing tracking via discriminative approach if error accumulates.
Various re-initialization strategies have been used, including particle swarm op-
timization [29], Deep Neural Networks [1], random ferns and forests [34], and
retrieval forests [26].
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3 Hand pose estimation via intermediate dense guidance

map supervision

Due to constrained viewing direction, and intra-occlusion among different hand
parts (e.g., finger-finger occlusion, finger-palm occlusion), the depth camera can
only see partial hand surface S in one frame. Also due to limited scanning res-
olution, we can only rely on a discretely sampled 2D depth map D as the raw
input to our problem. Hand pose is conventionally represented by a constellation
of 3D key points, which correspond to a fixed number of anatomic hand joints.
Our goal is to estimate the 3D coordinates of all hand joints, which altogether
form a vector Y ∈ R

J×3, where J is the number of joints. These joints provide
crucial spatial information for hand tracking based applications.

Next we describe the details of our hand pose estimation framework present-
ing the mathematical foundations based on direct regression, and elaborate on
our novel learning framework introducing its key module: intermediate guidance
map supervision.

Hand pose estimation via direct regression Suppose a partial hand surface S
could be described from D through inverse depth sampling function ι : D 7→ S̄,
where S̄ is sufficiently smooth and can approximate S up to any required order,
we aim to estimate the hand pose prediction function Ψ : D 7→ Ȳ .

Since directly estimating the highly non-linear function Ψ in high dimen-
sional space is very hard, we adopt a learning-based approach to first establish
the feature extraction mapping Φ : D 7→ χ through Convolutional Neural Net-
works (CNNs). The hidden feature mapping Φ is subsequently linked to Ȳ as
a regression function Π : χ 7→ Ȳ , which is optimized together with Φ in the
training procedure:

Lregre(Ψ) = Lregre(Π(Φ)) =
1

2
‖Ȳ − Y ‖2

2
. (1)

We call this approach direct regression, which reflects the raw approximation
capability of its underlying network. However, näıve application of simple learn-
ing systems can hardly achieve necessary representing power to produce high
accuracy results, as our target function Ψ is highly non-linear. Also, resorting
to complicated deep network design is overwhelming, and can easily cause over-
fitting problem. Therefore, we treat this approach as the baseline to demonstrate
the effectiveness of our proposed approach as follows.

3.1 Overview of our approach

Figure 1 illustrates the overall structure of our pipeline, which has a repeated
residual module integrated into a conventional CNN-based framework as the
stem (solid line). Note that we do not limit the dimension of input data: our
pipeline can cope with both 2D and 3D hand representation, and here we denote
m as the input resolution (i.e., number of pixels in 2D, or voxels in 3D). The
input data is passed through multiple convolution and max-pooling layers (in
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orange), until it reaches the desired resolution k. This stage can be seen as
preliminary feature extraction and down-sampling, which reduces computational
cost by working on lower resolution features. Then the preliminary features are
fed into our core Guidance Map Supervision (GMS) module (shown in grey),
where features are refined R times. At last the refined features are served as the
input of the final pose regression stage. We first employ convolution and max-
pooling layers (in orange) to adapt the feature dimension to the final output [35],
then utilize a fully-connected layer (in green) for the final regression.

We use residual module [36] as the foundation of our GMS module, which
has the ability to learn feature differences. We calculate geometrically meaningful
constraints from the input, then incorporate them as guidance maps through a
similar design as the residual module. As shown in the dark grey region, a side
branch is spread out (in dashed line) from the output of the residual module
(in blue), which can be seen as higher level feature abstraction (in yellow). The
extracted higher-level features are compared to guidance maps (which provides
an error function), then these supervised features are added back to the main
branch. Guidance map supervision and residual link together leverage the feature
extraction effectiveness of the residual module through error feedbacks, which
further enhance the entire system’s learning strength.

3.2 Guidance map supervision

The guidance map Γ : D 7→ ζ calculates the spatial response ζ across the
entire input domain D, which reflects the probability of a specific hand joint.
It is used to enhance the direct regression method such that the resultant hand
joint locations can be robustly estimated. This is inspired by the multi-stage
supervision approach in [20]. The core problem here is how to design a geometric
meaningful guidance map that is effective for hand joint regression. We first
present the simplest choice of using heat map based on Gaussian distribution,
which we call sparse guidance map. We will then discuss our contribution on
dense guidance map that better represents the geometric and spatial property
of hand joints.

Sparse Guidance Map Supervision The most straightforward guidance map in 2D
could be easily implemented as J heat-map images [37], each of which contains
the sampled pixel-wise probability values for one hand joint (see Figure 2a). In
our implementation, we first assign 1 to the pixel projected from the labelled
joint, then filter the image using Gaussian kernel G : D 7→ ζheat to ensure that
the resultant heat-map ζheat is still a probability distribution. We also choose
very small variance σ for G to reduce inter-joint ambiguity.

In 3D we use more restricted one-shot probability maps ζone [30] where only
a single voxel is positive for each joint in the volume, compromising resolution
but saving on computational cost.

Note that these kind of guidance maps are inherently narrow-band probabil-
ity distributions, necessary for producing high accuracy likelihood output. Hence
we call them sparse guidance maps. Here we indiscriminately denote both 2D
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(a) (b) (c) (d)

Fig. 2: Different guidance maps (here we only show illustrations for the pinky
finger tip). (a) 2D probability map ζheat. (b) Normalized Euclidean distance
Ωdist. (c-d) 2D/3D Euclidean distance Ωdist plus unit offset Ωunit.

and 3D guidance map as K, then the loss of intermediate supervision could be
formulated as the cross-entropy between the predicted probability map ζ̄ and
the ground-truth probability map ζ:

Lsparse(Γ ) =
∑

j∈J

∑

v∈K

−ζvj ∗ log(ζ̄vj ). (2)

The problem with these approaches is that localized joint detection without
a large supporting neighbourhood of pixels/voxels in consensus can easily result
in false positive predictions [38], especially in the case of hand pose estimation
where different joints are ambiguous to each other. Also, as most of the guidance
map entries are zero, this suppresses the activation of the feature maps’ energy
function (Equation 2), consequently leading to unsatisfactory results in the final
regression stage.

Dense guidance map supervision Instead of using sparse guidance maps,
we propose to use densely sampled vector or scalar fields (called dense guidance
maps) as the intermediate feature maps. The dense guidance map is carefully
designed to represent each individual joint while maintaining consistency across
the entire feature domain K. Our design is not limited to a specific form of
dense field, but in practice we have tested several geometric meaningful choices
as listed below.

Offset maps: One simple choice of dense guidance map is to use a vector field
Ωoffset composed of vectors pointing to the joint location from individual pix-
els/voxels. The magnitude of each vector is the Euclidean distance between the
pixel/voxel and the joint. It is easy to see that in 2D we need to calculate J × 2
guidance maps, while in 3D we need to calculate J×3 guidance maps. In practice
such un-normalized offsets in the feature space may cause numerical instability
due to drastic change of scales of learned convolution weights, leading to unsat-
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isfactory regression results. This motivates us to design better dense guidance
maps as follows.

Normalized distance plus unit offset maps: An alternative approach is to divide
Ωoffset into two parts in our experiment: 1) a scalar field Ωdist, with inverse Eu-
clidean distance to the correct joint location, normalized by the feature domain
extend k; and 2) a vector field Ωunit which is calculated as Ωoffset/‖Ωoffset‖2.

Notice that we calculate Ωdist using inverse distance, resulting in maximum
value 1 at the joint location. This can be treated as a natural generalization of
sparse heat-map ζheat, with support extended to the entire feature domain. Here
we also do not truncate Ωdist within any localized support, because joints are
frequently outside of the truncating radius due to occlusion (see Figure 4b).

Normalized distance: The problem with combined Ωdist and Ωunit is that the
computational cost is too high (J × 3 guidance maps for 2D and J × 4 for 3D).
Notice that Ωunit is proportional to the gradients (first order derivatives) of
Ωdist: Ωunit =

∇Ωdist

‖∇Ωdist‖
, so we can actually only use distance map Ωdist as the

guidance feature.

(a) (b) (c)

Fig. 3: Geometrically more meaningful guidance maps. (a) EDT map used for
propagating distance from a single point. (b-c) Our implementation of approxi-
mate geodesic distance map Ωedt and Ωedt2 for the pinky finger tip.

Approximated geodesic distance: From the last discussion we know that the
design of distance map is the key to the performance of intermediate supervision.
Also, given that ι(D) is a smooth surface embedded in R

3, we propose to use
a geodesic distance map Ωgeo as our ultimate choice of guidance map. Note
that geodesics are computationally expensive and only well defined on complete
surfaces. However, the assumption of R3 is problematic, considering our input
depth image D is only “2.5D” by definition, as we can only capture partial
surface that is visible from one view point.
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To solve this problem, we propose a computationally efficient approxima-
tion to Ωgeo by first calculating (signed) Euclidean Distance Transform (EDT)
map [39] on the projected depth image D in a preprocessing step (see Figure 3a).
Here we need to be careful to compute distances outside of the hand region as
well, since it is very common that some joint annotations are isolated due to
missing hand data in the surrounding space caused by occlusions (see Fig. 4b).
Then we can propagate distances from each joint location using Fast Marching
Method (FMM) [40], resulting in our approximate surface distance map Ωedt

(see Figure 3b). Notice that the distance between pinky finger tip and ring fin-
ger tip is not short any more, in contrast to using simple Euclidean distance as
shown in Figure 2b.

Weighted geodesics approximation: Our design of a surface distance map Ωedt is
not from geometrically accurate measurement, as all calculations are performed
on the 2D image space due to missing data and computational cost in 3D.
However, since we use normalized distances, Ωedt can be interpreted as weights
providing local support. Therefore, we also present another weighted distance
map Ωedt2 = Ωedt ⊙ Ωdist, which is more meaningful in terms of measurement,
and also proportional to geometric distances.

For each network prediction output Ω̄, we use the same loss function for all
dense guidance maps:

Ldense(Ω) = ‖Ω̄ −Ω‖sl1 , (3)

where ‖x‖sl1 is the smoothed l1-norm that evaluated as x − 0.5 for |x| > 1; or
0.5 ∗ x2 otherwise [41].

3.3 Final regression stage

The final regression stage estimates all the hand joint locations by training a
CNN based network while minimizing the following loss function L:

L = Lregre + λ1 ∗ Lsuper + λ2 ∗ Lregu, (4)

where Lsuper can be the loss of either sparse (Equation 2) or dense (Equa-
tion 3) guidance map supervision, and Lregu is the l2-regularization term ap-
plied to the weights of convolutional operators. λ1,2 are balancing weights: we
set λ1 = 1

k
, and λ2 = 0.01.

Network structure: The core part of our network is the guidance map supervision,
repeated R times, for maximizing supervision effectiveness as in [20]. We didn’t
use the “Hourglass” module which recursively applies a residual module [36] in
different scales: while this leads to a computationally inefficient pipeline, the
accuracy in our baseline tests was low.

As a result, we use the Inception-ResNet-v2 module [42] as our main building
block, which is able to extract features at different scales. We empirically found
R = 2 performs well for most cases, but the core idea of our algorithm is general
enough without being confined to network specifications.
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(a) 2D front view (b) 2D side view (c) 3D voxels (d) 3D propagated

Fig. 4: Input hand data representations with ground-truth markers shown in
color. Most algorithms in our discussion use single frontal view (a), while side
views (b) are used in multi-view approaches. We use voxelized representation (c)
and its variance (d) in 3D cases.

4 Experimental evaluations

‘HANDS 2017’ challenge dataset [4]: This dataset contains 957K depth images
sampled from BigHand2.2M [3] and First-Person Hand Action [43] dataset, to-
gether with high accuracy annotations from 6D magnetic sensors. We follow the
8 : 1 : 1 rule to split the data into training/validation/test set without further
augmentation, as our main focus is comparing each method’s learning perfor-
mance. Evaluations are performed on all 21 joints of this dataset.

Data preprocessing: A 3D volume V containing only the hand part segmented
out of raw input depth image is a prerequisite, especially for 3D volumetric
approaches. We empirically find that an axis-aligned cube of 240mm each side is
a good range for cropping out hand part, and we align the cube centre with the
centre of all joints. It is also possible to train a separate localizer for detecting
hand region [13]. We also attempted a localizer based on “Faster RCNN” [44].
But the extra complexity does not help for fair evaluation of our primary task, so
we leave the hand region detection for future work. As input, our method requires
the hand region segmented from the raw image frame. We provide this to our
system as we are not concerned with automatic segmentation and detection of
the hand region.

We re-project points within V onto the image space, and rescale it to size
of 128 × 128 which we take as input D to our pipeline (see Figure 4a). Unless
specified, the size of the guidance feature maps is fixed to 32 × 32 throughout
the rest of the paper.

In the case of 3D, we voxelize V into 64× 64× 64 grid, where the value C at
each voxel is the number of data points within that voxel (see Figure 4c, where
darker colour means bigger value). We do not adopt the popular approach [30]
that just use binary occupancy as the input, as the intentional extra overhead
introduced in our approach works better in capturing local geometry.
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(a) 2D cases (b) 3D cases

(c) Compare to STAR (d) Improvement to STAR

Fig. 5: Comparisons of per-joint mean errors.

Other than using raw voxel-wise point number C as input, we also found that
propagating those statistics along surface normals within certain distance can
act as a better input form P (see Figure 4d). The propagated version produces
extended details into the occluded volume, and results in better predictions.

In our experiments, we set the size of 3D guidance feature maps to be 32 for
most of our tests, and reduce it to 16 in case of exceeding hardware limitations.

Training: We use Tensorflow [45] to develop learning framework, and our frame-
work is trained using the Adam optimizer [46] with default parameters. The
initial learning rate is 0.001, and we use exponential decay with decay rate of
0.94. We use a single GeForce GTX 1080 Ti as the main computing hardware,
and choose 50 as the default batch size. We train all models with maximum 10
epochs, stopping the training early when validation loss has grown 10% higher
than the last epoch on the validation set. We typically choose the repetition num-
ber R = 2 for the guidance map supervision module for balancing performance
and computational cost, and each epoch takes about 2 hours for approximate
geodesics based method. Evaluations are performed on a separate test set.

4.1 Evaluation metrics

The primary metric we use is the mean errors across all test frames for each joint,
and we also take their average as a summary of each method’s performance. Fig-
ure 5 compares methods across all hand joints, using colour to distinguish be-
tween methods. The detailed descriptions on tested methods and corresponding
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(a) 2D cases (b) 3D cases

(c) Compare to STAR (d) Improvement to STAR

Fig. 6: Comparisons of the percentage curves of maximal per-joint errors.

error statistics can be found in Table 1. We also evaluate the maximal per-joint
error within each single frame. Figure 6 shows the percentage curve of each
method by visualizing the ratio of correct prediction versus maximal allowed er-
ror to ground-truth annotations. The detailed error statistics can also be found
in Table 1. We also provide more results in the supplementary material.

4.2 Effectiveness of dense guidance map supervision

The direct Coordinate Regression (CR) method is our baseline, and we also show
the improved performance after using Inception-ResNet [42].

2D cases: All of the CR methods with guidance map supervision achieve clear
improvements over the baseline methods. Intermediate supervision using weighted
approximate geodesic distance (Figure 3c) gives best performance in terms of
mean error (6.68mm) and maximal per-joint error (8.73mm). The difference be-
tween mean and maximal error is only 2.05mm, indicating the robustness of our
framework. Intermediate supervision based on sparse guidance map (Figure 2a)
and dense guidance map with approximate geodesic distance (Figure 3b) are less
effective, and their performances are roughly at the same level. Dense supervision
with normalized offset (Figure 2c) performs better than dense supervision with
plain Euclidean distance map (Figure 2b) in our tests; however, we dismiss this
approach given it requires 3 times computing power (as explained in Section 3.2)
for a relatively small improvement in performance.
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Table 1: A summary of hand joint estimation methods and the corresponding
estimation errors on ‘HANDS 2017’ challenge dataset. CR: direct Coordinate
Regression. MV: Multi-View method [5]. Inception-resnet: Inception-ResNet-v2
module [42]. Euclidean distance: calculated in 3D world coordinates. Truncated
Euclidean distance: propagate voxel-wise point count along surface normal. Sur-
face distance: approximate geodesic distance. Offset: normalized Euclidean dis-
tance plus unit offset. Offset regression: directly compute 3D joint locations using
weighted average of the offset map, without final coordinate regression.

Methods Mean error (mm) Max-per-joint error (mm)

MV-CR w/ surface distance (weighted) 5.90 8.04
MV-CR w/ Euclidean distance 6.35 9.77
2D CR w/ surface distance (weighted) 6.68 8.73
MV-CR w/ surface distance 6.74 9.51
3D CR w/ offset 6.76 10.16
3D CR w/ detection 7.00 10.25
2D CR w/ heatmap 7.62 11.53
2D CR w/ surface distance 7.89 11.18
3D CR w/ Euclidean distance 7.92 11.04
Ge et al. (CVPR’17) [14] 8.07 12.30
Ge et al. (CVPR’16) [5] 8.15 12.17
3D truncated Euclidean distance 8.98 14.01
2D CR w/ offset 9.34 14.09
Moon et al. (CVPR’18) [30] 9.49 13.60
2D CR w/ Euclidean distance 10.90 16.44
3D CR 11.39 17.92
2D CR w/ inception-resnet 17.94 26.08
2D CR 19.63 32.98
2D offset regression 49.83 70.88
3D offset regression 51.17 73.58

The benefit of combined detection and regression: Given offset predictions as
shown in Figures 2c and 2d, we compute pose estimations: each joint is cal-
culated as weighted average of top 5 Ωdist activations. However, as shown in
Table 1, this “Offset Regression” approach under-performs in both 2D and 3D,
justifying the benefit of combining detection with regression. We suspect this
poor performance is due to: 1) The output space (e.g., 32× 32× 32× 21× 4 for
3D) exceeding the representation capabilities of CNNs implemented with current
hardware standards. 2) Over-fitting in extremely high dimensional space can be
exaggerated and lead to unreliable predictions.

3D cases: We used direct CR with both voxel-wise point number C and its
propagated version P as the baseline, and the proposed framework obtained
significantly improved results as 2D tests. We adopted a lowered feature map
size k = 16 in dense supervision with normalized offset (Figure 2d), due to
exhausting computational resources. We skipped surface distance tests due to
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high computational costs required while still sacrificing local geometric details
due to limited voxel resolution.

4.3 Comparisons with state-of-the-art (STAR) methods

We have compared our best method (2D CR with Ωedt2) to both 2D [5] and
3D [30, 14] STARmethods, and achieved convincing better performance as shown
in Figures 5c and 6c.

Improvement to STAR methods: Another advantage of our dense guidance map
supervision method is that we can easily insert one or multiple of our mod-
ules into existing learning pipelines, using intermediate feature space constraints
to achieve better results. We applied Multi-View Coordinate Regression (MV-
CR) variants on [5] in 2D, using detection output of [30] as supervision feature
maps, as shown in Figures 5d and 6d. Notice that our MV-CR method with
approximate geodesic distance achieved the minimal mean error across all of our
experiments (5.90mm, see Table 1). We see the improvement as an positive ev-
idence that certain hidden inter-joint constraints could be learned through our
multi-stage dense guidance map supervision approach.

5 Conclusion

We present a general hand pose estimation framework via intermediate super-
vision on dense guidance maps. Our method overcomes issues with high non-
linearity of hand joint regression and the resolution restriction of detection-based
methods. The dense guidance maps are designed to better incorporate the geo-
metric and spatial information of hand joints. We demonstrate the effectiveness
of our framework and the choice of guidance maps by extensive comparisons
with baseline methods in both 2D and 3D. Results show that our framework can
robustly produce hand pose estimates with improved accuracy. Future work will
explore temporal hand tracking using our framework, integrating hand detection
to handle data in the wild, and optimizing computational performance.
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