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Abstract

Continuum modeling of dissipative processes in materials often relies on strong phenomenological assump-
tions, as their derivation from underlying atomistic/particle models remains a major long-standing challenge.
Here we show that the continuum evolution equations of a wide class of dissipative phenomena can be numer-
ically obtained (in a discretized form) from fluctuations via an infinite-dimensional fluctuation-dissipation
relation. A salient feature of the method is that these continuum equations can be fully pre-computed,
enabling macroscopic simulations of arbitrary admissible initial conditions, without the need of any further
microscopic simulations. We test this coarse-graining procedure on a one-dimensional non-linear diffusive
process with known analytical solution, and obtain an excellent agreement for the density evolution. This
illustrative example serves as a blueprint for a new multiscale paradigm, where full dissipative evolution
equations — and not only parameters — can be numerically computed from lower scale data.

Keywords: Multiscale, Non-equilibrium thermodynamics, Fluctuation-dissipation, Coarse-graining

1. Introduction

Dissipative processes abound in material behavior and include, for instance, vacancy diffusion, dislo-
cation mediated plasticity or phase transformations. Yet, their modeling and simulation face a deep gulf
between macroscopic continuum models that are efficiently computable, although typically riddled with
phenomenology, and lower scale atomistic/particle simulations, which are of higher physical fidelity, yet
often exceedingly costly for real-life applications. Bridging this gulf has been a major research endeavor,
which has spanned many disciplines, e.g., mechanics, mathematics or physics, and has lead to numerous
coarse-graining strategies. Some prominent examples to determine the macroscopic evolution include con-
current and sequential multiscale techniques (Tadmor and Miller, 2011; Abdulle et al., 2012; Kevrekidis and
Samaey, 2009), methods based on projection operators (Öttinger, 2005), and information-theoretic strate-
gies (Machta et al., 2013); see also (Givon et al., 2004) for a review of mathematical approaches. However,
few rigorous results are available, notably from hydrodynamic limit theory (Kipnis and Landim, 1999) or
strategies as in Bodineau et al. (2016). This topic belongs to the vast field of macroscopic evolution discov-
ery, for example via dimension reduction (Stephens et al., 2011; Daniels and Nemenman, 2015) and machine
learning techniques (Rudy et al., 2017; Raissi, 2018), just to mention a few recent approaches.

Despite the numerous efforts, obtaining standalone continuum models (i.e., without concurrent lower
scale simulations) that encode atomistic fidelity remains a major challenge. We present here a first step
in this direction, by providing a coarse-graining methodology that numerically computes the macroscopic
evolution operator of dissipative processes from the underlying field fluctuations. The methodology, which
is sketched in Fig. 1 for a mass diffusion problem, presents three main attractive features. Firstly, the
evolution operator can be completely pre-computed, enabling continuum simulations that do not require
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concurrent atomistic calculations. Secondly, the method presented here computes the operator fully—not
only parameters—and does not require a library of pre-existing operators. Thirdly, the computation of the
operator only requires the fluctuations of the macroscopic fields (e.g., density fluctuations for the case of
mass diffusion), which could in principle be determined experimentally. The first feature distinguishes this
approach from existing multiscale techniques, while the second one differentiates it from machine learning
approaches.

We further emphasize that the proposed strategy does not prescribe a priori (phenomenologically) the
closed-form equation for the macroscopic evolution; yet, it is not an equation-free method. More specifi-
cally, the goal of equation-free calculations is to circumvent the difficulties underlying continuum modeling,
and directly evolve the macroscopic fields by computing their time derivatives from concurrent microscopic
simulations over small spatio-temporal domains. The macroscopic simulations are then carried over larger
spatio-temporal intervals leading to large efficiency savings as compared to fully resolved microscopic sim-
ulations: for 108 random walkers (independent particles) on a one-dimensional domain, simulations using
equation-free techniques are by a factor of 1000 faster than direct Kinetic Monte Carlo simulations (Erban
et al., 2006). In contrast, the multiscale methodology we propose in this paper seeks to numerically ex-
tract the macroscopic equations from atomistic data, and to do so at a pre-calculation stage. This allows
to perform macroscopic simulations without the need of further atomistic calculations, thus avoiding the
biggest computational cost factor in equation-free methods or other concurrent multiscale strategies: the
bursts of microscopic simulations during run time. For example, the one-dimensional particle simulations
described below (approximately 35 000 particles undergoing a diffusive process) for the full time interval
of interest would take several days, while the computational cost of the macroscopic simulations with the
model obtained by the method presented here — based on a finite element discretization — gets reduced to
essentially no computation time (after the pre-calculation stage), while maintaining physical fidelity of the
underlying particle model.

In its current form, the proposed coarse-graining strategy applies to purely dissipative processes, that
is, those not coupled to reversible phenomena, such as elastic deformations. We further require that the
underlying atomistic/particle system is in local equilibrium with Gaussian fluctuations (this will be made
precise later). A prototypical example of a purely dissipative process is particle diffusion, which is ubiquitous
in solids at high temperatures and central to microstructure evolution and material properties (Mehrer,
2007). The extension of the present approach to account for reversible phenomena is a natural next step

Microscopic picture:
Particles

ρǫ(x, t)

Macroscopic picture:
PDE

∂tρ = Kρ
δS(ρ)
δρ

=: KρF (ρ)

Evolution of ρ = E[ρǫ]?

Fluctuations library for
discretized space
(e.g., ρ and ∇ρ)

γa

Fluctuation-
dissipation
relation〈ρǫ − ρ, γa〉

Discretized PDE

ρ(x, t) ≈
∑

a ρa(t)γa(x)

F (x, t) ≈
∑

a Fa(t)γa(x)
∑

a〈γa, γb〉∂tρa ≈
∑
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Figure 1: Sketch of the proposed computational strategy to determine the dissipative operator K in discretized form, using
basis functions {γ(x)}, for the specific case of a density field ρ.
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and will be pursued in future investigations. In this regard, we refer the reader to Mielke (2011) for the
thermodynamic structure of a wide range of material models with reversible and irreversible components
(e.g., thermoelasticity or viscoelasticity) as well as purely dissipative ones (e.g., phase field models).

A central element of the strategy is a novel infinite-dimensional fluctuation-dissipation statement, which
generalizes existing finite-dimensional results. The latter have been widely used to determine transport
coefficients (i.e., parameters in otherwise fully specified operators, such as diffusivity) (Green, 1954; Kubo,
1966; Marconi et al., 2008; Embacher et al., 2018). In contrast, the new approach allows us to infer the
evolution operator (including parameters therein) by probing fluctuations systematically.

We here exemplify the coarse-graining procedure for one of the few particle processes for which the
macroscopic evolution may be computed analytically, namely a one-dimensional zero-range process whose
continuum limit obeys a non-linear diffusion equation. The results indicate an excellent agreement for the
density evolution of various initial profiles, and the errors between the numerical and analytical operators
are quantified.

The paper is organized as follows. In Section 2, we introduce the class of systems to which the method-
ology applies as well as the infinite-dimensional fluctuation-dissipation relation which underpins the coarse-
graining strategy. Section 3 describes the numerical procedure, and Section 4 exemplifies the approach for
a diffusive particle system. Finally, conclusions are provided in Section 5.

2. Outline of the approach

Underlying the proposed strategy is the assumption that macroscopic dissipative evolutions in ‘thermo-
dynamic’ form can be written as

∂tz = K(z)
δS(z)

δz
=: Kz

δS(z)

δz
, (1)

where z = z(x, t) is the field of interest, S is the entropy of the system, δS(z)
δz its variational derivative and

Kz is a symmetric positive semi-definite linear operator; we write Kz to emphasize that K depends on z. On
the level of nonequilibrium thermodynamics/mechanics, (1) describes a wide range of evolution equations.

The specific question addressed in this paper is the following: given a particle model that leads, in a
suitable scaling limit of infinitely many particles, to an equation of the form (1), how can we determine the
operator Kz purely from the observation of finitely many particles? We focus on Kz since the computation
of δS(z)

δz can, in many situations, be accomplished by free energy computations (Lelièvre et al., 2010).
The key observation is that the evolution of a large, yet finite number of particles, can often be formally

described by a stochastic partial differential equation of the form

∂tzǫ = Kzǫ

δS(zǫ)

δzǫ
+

√
ǫ
√

2KzǫẆx,t, (2)

where Ẇx,t is a space-time white noise, E
[

Ẇx,tẆy,s

]

= δ(x−y)δ(s−t), and the equation is to be interpreted

in a weak formulation. This is the fluctuating hydrodynamics equation associated with (1), for diffusive
systems (Eyink, 1990, Section 6), (Eyink et al., 1996, Section 4), or those described by an additive noise. It
encodes an infinite-dimensional fluctuation-dissipation relation σzσ

∗
z = 2ǫKz, with the fluctuation operator

σz =
√
ǫ
√

2Kzǫ acting on the noise. Its finite dimensional counterpart has long being used to extract
transport coefficients. See, for example, the monographs (Stratonovich, 1992; Zwanzig, 2001; Klages et al.,
2013), and the articles (Eyink et al., 1996, Section 3), (Maes, 1999) for fluctuation-dissipation relations.

As a simple example of (2), the evolution of N random walkers Xi on a lattice described by ρǫ :=
1
N

∑N
i=1 δXi

is given by an equation of Dean type (Dean, 1996) (N = C/ǫ, ǫ being the individual lattice site
volume and C a constant)

∂tρǫ = div(D∇ρǫ) +
√
ǫ div(

√

2DρǫẆx,t). (3)

This equation is of the form (2), with S(ρ) = −
´

ρ log(ρ) dx being the Boltzmann entropy in dimensionless
units and Kρ the operator K(ρ)ξ = − div(Dρ∇ξ); see Reina and Zimmer (2015) for the calculation of

√

Kρ
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Figure 2: Sketch of a profile ρa +∇ρ|a(x− xa) simulated to measure density fluctuations, and a basis function γa. The jump
rate for each lattice site increases with the number of particles, as indicated by the thickness of the arrows.

in this case (note that Dean derives an equation for
∑N

i=1 δXi
= Nρǫ(x), which is why the noise in Dean

(1996) differs from the one in (3) by a factor of
√
N ; this difference in scaling is crucial, see (Eyink, 1990,

Section 6)). There is a wide range of applications of (2) and its extension to account for reversible phenomena,
for example, phase field models Castro (2003), nonequilibrium bacterial dynamics (Thompson et al., 2011,
Eq. (71)), nucleation theory (Lutsko, 2012, Eqs. (8) and (20)) and liquid film theory (Grün et al., 2006,
Eq. (19)); see (Durán-Olivencia et al., 2017) for connections to dynamic density functional theory.

3. Numerical procedure

We now show that the fluctuation-dissipation relation in (2) can be harnessed to numerically com-
pute a discretized version of the operator Kz from particle data. More specifically, we consider an ap-
proximation of the macroscopic field z and its associated thermodynamic force F := δS/δz of the form
z(x, t) ≈ ∑

a za(t)γa(x) and F (x, t) ≈ ∑

a Fa(t)γa(x), where {γa} is a suitable basis of functions. The weak
form of the evolution equation (1) then reads

∑

a

〈γa, γb〉∂tza =
∑

a

〈Kzγa, γb〉Fa, for all b, (4)

where 〈, 〉 denotes the L2 inner product, and the matrix 〈Kzγa, γb〉 represents a discretization of the unknown
operator. In analogy to the quadratic variation formula for the stochastic ODE dX = f dt +

√
σ dWt in

dimension n, where

σ = lim
hց0

1

hn
E

[

[X(t0 + h)−X(t0)]
2
]

,

the element 〈Kzγa, γb〉 can be related to the covariation of the rescaled local fluctuations as

〈Kzγa, γb〉 = lim
hց0

1

2h
E

[

(Yγa
(t0 + h)− Yγa

(t0)) · (Yγb
(t0 + h)− Yγb

(t0))
]

, (5)

where Yγ is the limit of 〈zǫ − z, γ〉/√ǫ and z = E[zǫ]. The proof of this statement can be found in Appendix
B. It uses mathematical arguments similar to Embacher et al. (2018), but extends the result considerably:
now the entire operator can be characterized, while in Embacher et al. (2018) only one parameter (the
diffusivity) could be extracted for an otherwise fully prescribed operator.

Relation (5) enables the calculation of the discretized operator Kz from particle fluctuations. However,
the result is, in general, profile dependent, as indicated by the subscript z in Kz, and thus the argument z
is still infinite-dimensional. This is another key difference to Embacher et al. (2018), where the diffusivity
depends on a scalar density value. Therefore additional arguments are required to pre-compute the operator.
Namely, we consider functions γ with local support and assume that Kz is a local and regular operator,
such that a Taylor approximation in z can be employed (these assumptions are satisfied for a wide range of
operators and suitable choices of z). Then, a numerical approximation of the left-hand side of (5) is

〈Kzγa, γb〉 ≈ 〈K(za+∇z|a(x−xa)+...)γa, γb〉 (6)

4



for sufficiently high order of the Taylor expansion and suitable basis functions; here za = z(xa), where xa the
mid-point of γa, see Fig 2, and ∇ is the spatial gradient. We remark that the assumption of locality of the
operator can be numerically probed, by evaluating 〈Kzγa, γb〉 for functions γa and γb with non-overlapping
support.

In practice, the calculation of 〈K(za+∇z|a(x−xa)+...)γa, γb〉 in (6) as a function of za,∇z|a, . . . is imple-
mented for a discretized space Vdiscr, i.e., for finitely many values of za,∇z|a, . . . within a prescribed range
(see Fig. 2 for z := ρ, and the space V given by ρ and ∇ρ). This is obtained via (5) from particle data
(finite ǫ), for small but finite h, and expectations are approximated as averages over R realizations. The
resulting discrete operator is then interpolated in V to perform continuum simulations with (4) and (6), for
arbitrary initial conditions and boundary data (here periodic or Dirichlet boundary conditions). Although
the pre-calculation of Kz can be laborious, requiring a considerable number of simulations (of the order of
R × size of the discrete space Vdiscr), these are trivially parallelizable and only executed over a small time
interval. Moreover, once the operator is computed, the macroscopic simulations can be run without any
further particle simulations.

4. Computational results

We now demonstrate the applicability of this coarse-graining strategy with an illustrative example, where
the analytical solution is known, and the errors may thus be quantified. Specifically, we consider a symmetric
zero-range process (ZRP) in a one-dimensional lattice. Here, particles jump with a rate g(k) = k2, where k
is the occupation number of the specific site, see Fig. 2. This particle process can be efficiently simulated
using a Lattice Kinetic Monte Carlo approach, and, in the limit of infinite number of particles (ǫ → 0), the
density profile evolves according to the PDE

∂tρ = − div

(

m(ρ)∇δS(ρ)

δρ

)

, with

δS

δρ
= F (ρ) = − log (2m(ρ)) , and ρ(m) =

√
2m

I1
(

2
√
2m

)

I0
(

2
√
2m

) ,

(7)

where Ii are the modified Bessel functions of the first kind; see (Grosskinsky et al., 2003; Embacher et al.,
2018) for the derivation.

We choose linear finite element shape functions satisfying γa(xb) = δab (see Fig. 2), which lead to a tri-
diagonal matrix for 〈Kργa, γb〉, and a linear approximation for ρ in Kρ. The discretized evolution equation
for the density then reads (for all b)

∑

a

〈γa, γb〉∂tρa ≈
∑

a∈{b−1,b,b+1}
〈K(ρa+∇ρ|a(x−xa))γa, γb〉Fa; (8)

we remark that this choice is an assumption made a priori on Kρ and that it can in principle be generalized
to higher-order elements and Taylor approximations. With these approximations, the discretized operator
can be tabulated by means of three components (a ∈ {b− 1, b, b+ 1}) which depend on ρ and ∇ρ, and which
can be computed for a discrete space Vdiscr from particle simulations. The probed space Vdiscr and the three
non-zero entries (main, super- and sub-diagonals) of 〈K(ρa+∇ρ|a(x−xa))γa, γb〉 are plotted in Fig. 3, together
with a polynomial fit that ensures mass conservation (i.e., the sum of the three entries being equal to zero);
see Appendix A for further details on these calculations.

The resulting fitted operator in V can then be utilized to compute the continuum evolution for arbitrary
initial profiles, via (8). We here use the analytical thermodynamic force, cf. (7), to probe the accuracy of
the operator. Figure 4 shows two of such evolutions: the left figure depicts the time progression of a cosine
initial profile with periodic boundary conditions, whose density and gradient lie within the bounds of the
probed region in V , while the right figure considers a non-symmetric initial density with fixed Dirichlet
data extrapolating beyond this region. The full temporal evolution in movie format can be displayed by
clicking on the corresponding images (online version only – Movie1.mp4 and Movie2.mp4). The results

5
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Figure 3: Top left: Discrete set Vdiscr of pairs (ρa,∇ρ|a) used to evaluate the discretized operator Kρ. Remaining plots: Shown
are the matrix entries (b, a) of 〈K(ρa+∇ρ|a(x−xa))γa, γb〉 as function of ρa and ∇ρ|a for a symmetric zero-range process. The
plots are for a = b (top right), a = b− 1 (bottom left) and a = b+1 (bottom right). For x, xa and the profiles γa see Fig. 2 in
the main text.
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Figure 4: Comparisons between the particle-based solution (blue) and the solution to the PDE from (7) (orange) for different
initial and boundary conditions. Left: Periodic boundary conditions. Right: Inhomogeneous Dirichlet data.

show an outstanding agreement between the particle-informed evolution and the solution of the PDE given
explicitly by (7), with an identical spatio-temporal discretization scheme. A similar study without the mass
conservation constraint is for comparison given in Appendix A. As it is there observed, results of good
accuracy require an increase of the size of Vdiscr by more than an order of magnitude.

We further remark that the tabulated discrete operator can provide insight in its differential form, at
least for simple cases. In particular, for the zero-range process studied, whose infinite particle limit satisfies
the PDE ∂tρ = − div (m(ρ)∇F ) = −m∆F −∇m∇F , see (7), the discrete operator reveals a structure of
the form

〈K(ρa+∇ρ|a(x−xa))γa, γb〉 =: Kba(ρa,∇ρ|a)
= K

(1)
ba (ρa) +K

(2)
ba (ρa,∇ρ|a),

(9)

where the ratio of the coefficients result in a stencil of K(1)
ba equal to −1, 1.999936,−0.999936 (i.e., these are

the proportionality factors for the entries a = {b− 1, b, b+ 1} with b fixed), which may be identified with the
Laplacian; and a stencil of K(2) equal to −1, 0.003763, 0.996237, which corresponds to the gradient. These
stencils are obtained from the constrained fitting method, noting that the discretized operator is symmetric
up to higher order terms. The structure of the right-hand side of the evolution equation is thus recovered.

The errors between the discrete operator obtained numerically from fluctuations and its continuum
version arise from three sources: (i) the finite element discretization of the operator, (ii) the Taylor expansion
in (8), and (iii) and its evaluation from particle fluctuations, including the interpolation scheme. The second
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error source is examined in detail in Appendix C for the case of diffusion, while the first one can be analyzed
in a standard way, and the third one has been numerically examined in (Embacher et al., 2018).

5. Conclusions and outlook

This is, to the best of our knowledge, the first time that a dissipative continuum equation has been
numerically recovered from particles using a physics-based approach, in this case, an infinite-dimensional
fluctuation-dissipation relation. We note that the required assumptions are only threefold: a particle process
which, for finitely many particles, is described by (2), and is in local equilibrium with Gaussian fluctuations
(see for example Landim (2002) and (Dirr et al., 2016, Section IV.B) for a precise mathematical formulation).
The result is a sequential multiscale scheme that leads to (discretized) continuum evolution equations which
are both efficiently computable and free of phenomenology, thus escaping the usual compromise between
these two features in current computational multiscale techniques.

In this paper, we confined ourselves to problems where the macroscopic evolution is known analytically,
which enables us to quantify the error of the numerically computed operator. Future work will address
the application of the computational strategy developed here to systems with different evolution operators.
A classical gradient flow dynamics different to the Wasserstein evolution studied here (i.e., weighted H−1

operator) is the one characterized by an L2 operator. We note that H−1 and L2 are the two most common
evolution operators for microstructure evolution, see Carter et al. (1997); both are also standard in the
modeling of a wide variety of physical phenomena. Their associated stochastic equations are often denoted
as Model A and B, respectively (Hohenberg and Halperin, 1977), and have a structure analogous to (2), which
is the cornerstone of the methodology here presented. Other evolution operators arise for instance in the
Derrida-Lebowitz-Speer-Spohn (DLSS) equation, introduced by Derrida et al. (1991) to describe interface
fluctuations in a spin system. It is also, in multidimensional form, a model for a quantum drift-diffusion in
semiconductors. In d dimensions, it can be written as

∂tρ = −
d

∑

i,j=1

∂2
ij

(

ρ∂2
ij log(ρ)

)

, (10)

which suggests that the operator associated with the entropy S(ρ) = −ρ log(ρ) is Kξ =
∑d

i,j=1 ∂
2
ij

(

ρ∂2
ijξ

)

.
The examples above are situations where it is not sufficient to assume that the operator is of the form
Kρξ = − div (m(ρ)∇ξ) and use mean square displacement or the approach of Embacher et al. (2018) to
compute diffusion / mobility coefficients.

There are also many other systems for which the evolution operator is not known. Some of these
examples include the diffusion of interacting particles (Vlachos and Katsoulakis, 2000), with short-range
interactions, or processes with volume exclusion, where the operator is only presently known for certain
parameter regimes (Bruna and Chapman, 2012). The analysis of these systems and related ones via the
coarse-graining strategy described in this article is an area of future research.

In summary, the example studied here can serve as a blueprint for the study of a wider spectrum of
dissipative phenomena, with applications ranging from multiparticle diffusion and phase transformations in
solids, over chemotaxis in heterogeneous environment to protein diffusion in membranes. Such investigations
should be complemented by a rigorous numerical analysis of convergence and rates. These questions are
beyond the scope of the present study and will be the subject of future investigations.

Appendix A. Computational details for the zero-range process

In this section, we provide more information on the particle and continuum simulations for the zero-range
process and compare the coarse-grained results where mass conservation is incorporated with results where
this constraint is not imposed.

For the process considered, we evaluate the discretized operator 〈K(ρa+∇ρ|a(x−xa))γa, γb〉 using simula-
tions with flat profiles with ρa ∈ [4 : 0.1 : 10], and affine profiles with ∇ρ|a ∈ ±[5, 11, 15, 19], see Fig. 2 For
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Figure A.5: Comparisons between the particle-based solution (blue) and the solution of the PDE from (7) (orange) for dif-
ferent initial and boundary conditions, not imposing mass conservation on the discretized operator. Left: Periodic boundary
conditions. Right: Inhomogeneous Dirichlet data.

each of these profiles, R = 800 000 realizations are performed over the unit interval as computational domain,
with 5000 lattice sites (ǫ = 1/5000). The system is first evolved over a time interval t0−tini = 4.004×10−6 to
reach local equilibrium, and subsequently over a time interval h = 4×10−11, which is used for the calculation
of the expectations. In practice, the equilibration time interval is much larger than h, yet macroscopically
small, leading to negligible changes of the macroscopic profile. To save computational time, a method de-
scribed in Embacher et al. (2018) is used to generate the multiple realizations (see also the pseudo-code in
Algorithm 1 below). In addition, 40 equally spaced shape functions γa are considered. This results in 125
lattice sites within the support of each function γa that is fully contained in the computational domain.
The resulting values of the matrix entries 〈K(ρa+∇ρ|a(x−xa))γa, γb〉 evaluated at specific points (ρa,∇ρ|a) in
Vdiscr are then extended to V , via a suitable interpolation scheme. A naïve approach with an independent
interpolation of the individual matrix components will in general, however, not lead to a mass preserving
scheme, in contrast to what the particle process implies. Therefore, for the results of the main text, we
imposed mass conservation in the fitting process by ensuring that the entries in each column sum up to 0.
This is achieved using a least square fit with second order polynomials in (ρa,∇ρ|a) for each of the three
matrix entries, the sum of which we enforce to vanish identically. Figure 3 shows the chosen discrete set
Vdiscr and resulting entries for the operator, together with the polynomial fit. These were used to obtain
Fig. 4, where all simulations employed an explicit time discretization scheme.

We remark that in the absence of the mass conservation constraint, good results can still be achieved
as shown in Fig. A.5 (see also the corresponding movies by clicking on the images – online version only,
Movie3.mp4 and Movie4.mp4), although small deviations may be observed at large times (see left panel).
The discrete set Vdiscr used in these simulations is shown in Fig. A.6, together with the entries for the
operator and their (independent) quadratic fit. To achieve the observed accuracy, a relatively large size of
the set Vdiscr is required. Specifically, Vdiscr consists of 6111 points, in contrast to 228 points when mass
conservation is imposed.
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Algorithm 1 Pseudo-code describing the method in algorithmic form.

Begin

// Step 1: Zero range process simulation

// Set lattice domain and scaling:

1 ǫ = 1
L , xi =

Xi

L ; // Spatial discretization with L lattice sites; Xi is the lattice

coordinate

// Generate particle data from linear initial profile ρ
(

tiniL
2, Xi

)

2 : for all R1 realizations starting from tini do

3 ρr
(

tprepL
2, Xi

)

= stochastic-evolution
(

[tini, tprep] , ρ
(

tiniL
2, Xi

))

;
4 for all R2 realizations starting from tprep do

5 ρr
(

t0L
2, Xi

)

= stochastic-evolution
(

[tprep, t0] , ρr
(

tprepL
2, Xi

))

;
6 ρr

(

(t0 + h)L2, Xi

)

= stochastic-evolution
(

[t0, t0 + h] , ρr
(

t0L
2, Xi

))

;

7 R = R1 ·R2 ; // Total number of realizations in [t0, t0 + h]

8 ρ (t0, xi) =
1
R ·

∑

r

(

ρr
(

t0L
2, Xi

))

; // Approx. deterministic state

9 ρ (t0 + h, xi) =
1
R ·∑r

(

ρr
(

(t0 + h)L2, Xi

))

;

// Step 2: Compute discrete operator using equation (5)
// Basis function γa with a ∈ [1, Nγ ]:

10 xbasis,a = a
Nγ

// Center of ath basis function, γa

11 Function γa (xi)
12 γa (xi) = max (0, 1−Nγ |xi − xbasis,a|) ;
13 return γa (xi) ;

14 for all R realizations r do

15 for all microscopic positions Xi do

16 Yγa,r (t0) =
√
ǫ
∑

i

[

γa(xi)
(

ρr
(

t0L
2, Xi

)

− ρ (t0, xi)
)]

;
17 Yγa,r (t0 + h) =

√
ǫ
∑

i

[

γa(xi)
(

ρr
(

(t0 + h)L2, Xi

)

− ρ (t0 + h, xi)
)]

;

18 ρa,r =
∑

i γa(xi)ρr((t0+h)L2,Xi)
∑

i γa(xi)
;

19 Kba = 1
2h

1
R−1

∑

r (Yγa,r (t0 + h)− Yγa,r (t0)) (Yγb,r (t0 + h)− Yγb,r (t0)) ;

// 〈Kργa, γb〉 = 1
2hE

[

(Yγa
(t0 + h)− Yγa

(t0)) · (Yγb
(t0 + h)− Yγb

(t0))
]

20 ρa = 1
R

∑

r ρa,r;

// Step 3: Fit Kba as a function of ρa and slope of initial profile ∇ρa with/without

mass conservation constraint

// Step 4: Compute macroscopic evolution of initial profile ρ0(x)
// Initialize 〈γa, γb〉 on the left hand side of Equation (4)

21 if periodic boundary condition then

22 Mab = 〈γa, γb〉, with periodic γ;

23 if Dirichlet boundary condition then

24 Mab = 〈γa, γb〉, with nonperiodic γ;
25 Muu = M(2 : Nγ − 1, 2 : Nγ − 1) ; // partitioning of matrix M

26 t = 0;
27 ∆t = time step;
28 T = total simulation time;
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29 while t<T do

30 Compute analytic driving force Fa (xi);
31 Build matrix 〈Kzγa, γb〉 by Kba = Kba(ρa(t),∇ρa(t));
32 if periodic boundary condition then

// explicit solver

33 ρt+∆t = ρt +∆tM−1KF ; ; // ρt = ρ(t)

34 if Dirichlet boundary condition then

35 Kuu = K(2 : N − 1, 2 : N − 1) ; // partitioning of matrix K

36 Kuk = [(K(2 : N − 1, 1))T ; (K(2 : N − 1, N))T ];
37 Fu = F (2 : N − 1, 1) ; // partitioning of vector F
38 Fk = [F (1, 1);F (N, 1)];
39 ρt+∆t(2 : Nγ − 1, 1) = ρt(2 : Nγ − 1, 1) + ∆t(M−1

uu (KukFk +KuuFu));
40 ρt+∆t(1) = ρt(1) ; // Boundary values are fixed

41 ρt+∆t(Nγ) = ρt(Nγ);

42 ρt = ρt+∆t ; // Iteration

43 t = t+∆t;
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Figure A.6: Data set used in the unconstrained setting. Top left: Discrete set Vdiscr of pairs (ρa,∇ρ|a) used to evaluate the
discretized operator Kρ. Remaining plots: Shown are the matrix entries (b, a) of 〈K(ρa+∇ρ|a(x−xa))γa, γb〉 as function of ρa
and ∇ρ|a for the symmetric zero-range process. The plots are for a = b (top right), a = b − 1 (bottom left) and a = b + 1
(bottom right). For x, xa and the profiles γa see Fig. 2.

Appendix B. Covariance of the fluctuations

We now provide a proof of the relation

〈Kzγa, γb〉 = lim
hց0

1

2h
E

[

(Yγa
(t0 + h)− Yγa

(t0)) · (Yγb
(t0 + h)− Yγb

(t0))
]

(B.1)

used to compute the discretized operator from the rescaled local fluctuations Yγ , defined as the stochastic
limit of Y ǫ

γ = 1√
ǫ
〈zǫ−z, γ〉 as ǫ → 0. The proof follows a similar argument to that in Embacher et al. (2018),

where the variation of the fluctuations for a specific operator (the Wasserstein operator) is computed.
From the equations for zǫ and z = E[zǫ], cf. (1) and (2) of the article, the rescaled fluctuations follow

dYγ = 〈MzY, γ〉 dt+ 〈
√

2KzdWx,t, γ〉, (B.2)
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where Y is the limit of (zǫ − z)/
√
ǫ and Mz is a linear operator acting on Y , depending on z, such that

MzY is the limit of (KzǫDS(zǫ)−KzDS(z)) /
√
ǫ. Additionally, by Itô’s formula, the function F (X1, X2) =

(X1 − Yγa
(t0)) (X2 − Yγb

(t0)) satisfies for X1 = Yγa
(t) and X2 = Yγb

(t)

dF = (Yγb
(t)− Yγb

(t0)) dYγa
+ (Yγa

(t)− Yγa
(t0)) dYγb

+ 〈2Kzγa, γb〉 dt. (B.3)

Then, the expectation appearing on the right-hand side of (B.1), can be written as

E [(Yγa
(t0 + h)− Yγa

(t0)) (Yγb
(t0 + h)− Yγb

(t0))]

= E [F (Yγa
(t0 + h), Yγb

(t0 + h))] = E

[

ˆ t0+h

t0

dF

]

= E

[

ˆ t0+h

t0

(Yγb
(t)− Yγb

(t0)) dYγa

]

+ E

[

ˆ t0+h

t0

(Yγa
(t)− Yγa

(t0)) dYγb

]

+ E

[

ˆ t0+h

t0

〈2Kzγa, γb〉 dt
]

.

(B.4)

The sought-after result then immediately follows if

lim
hց0

1

2h
E

[

ˆ t0+h

t0

(Yγb
(t)− Yγb

(t0)) dYγa

]

= 0,

lim
hց0

1

2h
E

[

ˆ t0+h

t0

(Yγa
(t)− Yγa

(t0)) dYγb

]

= 0,

(B.5)

which we proceed to show.
By Hölder’s and Young’s inequality

E

[

ˆ t0+h

t0

(Yγb
(t)− Yγb

(t0)) dYγa

]

= E

[

ˆ t0+h

t0

(Yγb
(t)− Yγb

(t0)) 〈MzY, γa〉 dt
]

≤

√

√

√

√

E

[

ˆ t0+h

t0

(Yγb
(t)− Yγb

(t0))
2
dt

]

·

√

√

√

√

E

[

ˆ t0+h

t0

(〈MzY, γa〉)2 dt
]

≤ 1

2

ˆ t0+h

t0

E

[

(Yγb
(t)− Yγb

(t0))
2
]

dt+
1

2

ˆ t0+h

t0

E

[

(〈MzY, γa〉)2
]

dt,

(B.6)

and analogously for E

[

´ t0+h

t0
(Yγa

(t0 + h)− Yγa
(t0)) dYγb

]

. Next, we define the auxiliary variables

Zj(t) =

ˆ t

t0

E

[

(

Yγj
(s)− Yγj

(t0)
)2
]

ds and

Rj(t) =

ˆ t

t0

E

[

(〈MzY, γj〉)2
]

ds+

ˆ t

t0

〈2Kzγj , γj〉ds
(B.7)

with j = a or b. From (B.4), (B.5) and (B.6) for γa = γb = γj , it follows that Żj(t) ≤ Zj(t) + Rj(t), with
Rj(t) continuous. By Gronwall’s lemma

Zj(t) ≤ e(t−t0)

ˆ t

t0

e−(s−t0)Rj(s)ds, (B.8)
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and, since Rj(h) = O(h), Zj(t0 + h) = O(h2). Then, using the second but last inequality in (B.6),

E

[

ˆ t0+h

t0

(Yγb
(t)− Yγb

(t0)) dYγa

]

= O(h3/2). (B.9)

Similarly,

E

[

ˆ t0+h

t0

(Yγa
(t)− Yγa

(t0)) dYγb

]

= O(h3/2), (B.10)

which leads to (B.5), concluding the proof.

Appendix C. Error in the Taylor expansion of the operator

We now examine the error of the approximation
∑

a

〈Kργa, γb〉Fa ≃
∑

a∈{b−1,b,b+1}
〈K(ρa+∇ρ|a(x−xa))γa, γb〉Fa (C.1)

for a diffusion process, i.e., a process with 〈Kργa, γb〉 = 〈m(ρ)∇γa,∇γb〉, and linear shape functions.
We begin by computing the three elements of the tridiagonal, using a Taylor expansion of the mobility

coefficient m, as in (C.1):

〈m∇γb,∇γb〉 = 〈mb∇γb,∇γb〉+
〈

∂m

∂x

∣

∣

∣

b
(x− xb)∇γb,∇γb

〉

+

〈

1

2

∂2m

∂x2

∣

∣

∣

b
(x− xb)

2∇γb,∇γb

〉

+O(∆x2)

= 2
mb

∆x
+

1

3

∂2m

∂x2

∣

∣

∣

b
∆x+O(∆x2), (C.2)

〈m∇γb−1,∇γb〉 = 〈mb−1∇γb−1,∇γb〉+
〈

∂m

∂x

∣

∣

∣

b−1
(x− xb−1)∇γb−1,∇γb

〉

+

〈

1

2

∂2m

∂x2

∣

∣

∣

b−1
(x− xb−1)

2∇γb−1,∇γb

〉

+O(∆x2)

= −mb−1

∆x
− 1

2

∂m

∂x

∣

∣

∣

b−1
− 1

6

∂2m

∂x2

∣

∣

∣

b−1
∆x+O(∆x2), (C.3)

〈m∇γb+1,∇γb〉 = 〈mb+1∇γb+1,∇γb〉+
〈

∂m

∂x

∣

∣

∣

b+1
(x− xb+1)∇γb+1,∇γb

〉

+

〈

1

2

∂2m

∂x2

∣

∣

∣

b+1
(x− xb+1)

2∇γb+1,∇γb

〉

+O(∆x2)

= −mb+1

∆x
+

1

2

∂m

∂x

∣

∣

∣

b+1
− 1

6

∂2m

∂x2

∣

∣

∣

b+1
∆x+O(∆x2), (C.4)

where ∆x is the spacing of the macroscopic finite element nodes, and mb and ∂m
∂x

∣

∣

∣

b
denote the value of the

mobility coefficient and its gradient at xb. The sum in the right hand side of (C.1) may be most easily
expressed by writing the off-diagonal terms as a function of the mobility and its derivative at xb. Using the
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approximations

mb−1 = mb −
∂m

∂x

∣

∣

∣

b
∆x+

1

2

∂2m

∂x2

∣

∣

∣

b
(∆x)

2
+O(∆x3),

mb+1 = mb +
∂m

∂x

∣

∣

∣

b
∆x+

1

2

∂2m

∂x2

∣

∣

∣

b
(∆x)

2
+O(∆x3),

∂m

∂x

∣

∣

∣

b−1
=

∂m

∂x

∣

∣

∣

b
− ∂2m

∂x2

∣

∣

∣

b
∆x+O(∆x2),

∂m

∂x

∣

∣

∣

b+1
=

∂m

∂x

∣

∣

∣

b
+

∂2m

∂x2

∣

∣

∣

b
∆x+O(∆x2),

∂2m

∂x2

∣

∣

∣

b−1
=

∂2m

∂x2

∣

∣

∣

b
+O(∆x),

∂2m

∂x2

∣

∣

∣

b+1
=

∂2m

∂x2

∣

∣

∣

b
+O(∆x),

the off-diagonal terms (C.3) and (C.4) become

〈m∇γb−1,∇γb〉 = −mb

∆x
+

1

2

∂m

∂x

∣

∣

∣

b
− 1

6

∂2m

∂x2

∣

∣

∣

b
∆x+O(∆x2),

〈m∇γb+1,∇γb〉 = −mb

∆x
− 1

2

∂m

∂x

∣

∣

∣

b
− 1

6

∂2m

∂x2

∣

∣

∣

b
∆x+O(∆x2).

From this and (C.2), the discretization (C.1) becomes

∑

a∈{b−1,b,b+1}
〈Kργa, γb〉Fa =

[

2
mb

∆x
+

1

3

∂2m

∂x2

∣

∣

∣

b
∆x

]

Fb

+

[

−mb

∆x
+

1

2

∂m

∂x

∣

∣

∣

b
− 1

6

∂2m

∂x2

∣

∣

∣

b
∆x

]

Fb−1

+

[

−mb

∆x
− 1

2

∂m

∂x

∣

∣

∣

b
− 1

6

∂2m

∂x2

∣

∣

∣

b
∆x

]

Fb+1 +O(∆x2).

An equivalent expression is obtained by regrouping the terms,
∑

a∈{b−1,b,b+1}
〈Kργa, γb〉Fa = −mb

∆x
(−2Fb + Fb−1 + Fb+1)−

1

2

∂m

∂x

∣

∣

∣

b
(Fb+1 − Fb−1)

− 1

6

∂2m

∂x2

∣

∣

∣

b
∆x (−2Fb + Fb−1 + Fb+1) +O(∆x2)

= ∆x

[

−mb∆F |b −
∂m

∂x

∣

∣

∣

b
∇F |b

]

− 1

6

∂2m

∂x2

∣

∣

∣

b
∆F |b (∆x)

3
+O(∆x2),

where ∆F |b = (−2Fb + Fb−1 + Fb+1) /∆x2 and ∇F |b = (Fb+1 − Fb−1) /(2∆x) denote the discretized Lapla-
cian and gradient at point xb, which differ from the exact values by errors of the order of ∆x2. The expected
right hand side of the discretized PDE is therefore recovered up to errors of the order of ∆x3 (note that the
terms O(∆x2), once combined, actually lead to errors of order ∆x3).

Code

The code used in the simulations for this paper is available as dataset in the University of Bath Research
Data Archive, https://doi.org/10.15125/BATH-00572.
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