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Abstract: Glioblastoma is the most lethal brain cancer in adults, with no known cure. This cancer is
characterized by a pronounced genetic heterogeneity, but aberrant activation of receptor tyrosine
kinase signaling is among the most frequent molecular alterations in glioblastoma. Somatic mutations
of fibroblast growth factor receptors (FGFRs) are rare in these cancers, but many studies have
documented that signaling through FGFRs impacts glioblastoma progression and patient survival.
Small-molecule inhibitors of FGFR tyrosine kinases are currently being trialed, underlining the
therapeutic potential of blocking this signaling pathway. Nevertheless, a comprehensive overview of
the state of the art of the literature on FGFRs in glioblastoma is lacking. Here, we review the evidence
for the biological functions of FGFRs in glioblastoma, as well as pharmacological approaches to
targeting these receptors.
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1. Introduction

Fibroblast growth factors (FGFs) were first isolated from bovine brain extracts in 1939 and
characterized by their ability to induce proliferation of fibroblasts [1]. It took another 50 years to
discover and clone the first of their cognate receptors [2]. FGFRs control many biological functions,
including cell proliferation, survival, and cytoskeletal regulation (for review, see [3]). FGFR signaling
is important during embryonal development of the CNS, and as a survival mechanism for adult
neurons and astrocytes [4–6]. Furthermore, FGFR signaling was found to promote self-renewal and
fate specification of neural stem cells [7].

In many cancers, FGFR aberrations have been implicated in tumor development and progression [8,9],
and include FGFR overexpression, amplification, mutations, splicing isoform variations, and FGFR
translocations [10,11]. While FGFR genomic alterations have been identified in many solid tissue
cancers, such events remain rare in glioblastoma (GBM) (Table 1) [12]. Nonetheless, FGFR expression
changes in astrocytes can lead to malignant transformation and GBM progression due to the activation
of mitogenic, migratory, and antiapoptotic responses [13–15]. Of note, fusions between FGFR and TACC
(transforming acidic coiled-coil containing proteins) genes were shown to be oncogenic in GBM [16],
and occur in about 3% of GBM patients [12]. Whole-genome analyses of patient samples have revealed
that the number of FGFR mutations and amplifications are generally very low in GBM (FGFR1: 51/3068
samples, FGFR2: 12/2662; FGFR3: 16/2887; FGFR4: 9/2456; cancer.sanger.ac.uk; [17]). Not only are
oncogenic mutations in FGFRs rare in GBM, the lack of FGFR passenger mutations (i.e., mutations
not providing a survival benefit) suggests that these are selected against, and that the maintenance of
dynamic FGFR signaling is important for the development and/or progression of GBM.
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Table 1. Common FGFR genomic aberration in solid tumors. FGF signaling deregulation is involved in
the development of many different human cancers. Four FGFR genomic alterations are represented
in this table: gene amplification, point mutations, chromosomal translocations, and FGFR splicing
isoforms. Each FGFR alteration is linked with the most significant cancers that contain those alterations.
The role of the majority of the discovered point mutations in FGFR is unknown in cancer. Adapted
from [10,18].

Gene Gene
Amplifications Point Mutations Chromosomal

Translocations Splice Variants

FGFR1
Breast, ovarian,

bladder, and lung
cancer

Majority of cancers.
Example: Melanoma

Stem cell
leukemia/lymphoma

(SCLL), GBM

IIIc: small cell lung
carcinoma

Iβ: breast cancer and GBM

FGFR2 Breast, gastric, lung
cancer

Majority of cancers.
Example: Endometrial

carcinoma

IIIb: breast, endometrial,
cervical, lung, pancreatic

and colorectal cancer
IIIc: prostate cancers

FGFR3 Bladder cancer Majority of cancers.
Example: bladder cancer

GBM, T-cell lymphoma
and bladder IIIc: bladder cancer

FGFR4 Colorectal cancer

Majority of cancers.
Example: metastatic

breast cancer and
rhabdomyosarcoma

We hypothesize that the neurodevelopmental and cell survival functions of this signaling pathway
are at least partly conserved in GBM. Thus, dynamic FGFR signaling needs to be maintained for
the survival of GBM cells, and therefore evolutionary pressure selects against both activating and
inactivating mutations. Here, we review the current literature on FGFRs in GBM, and the evidence for
differential functions of individual FGFRs in brain tumor progression.

2. FGFR Structure

There are four known FGFRs, FGFR1–4, which are membrane-bound receptor tyrosine kinases
(RTKs). A fifth member of the FGFR family, FGFRL1, is lacking a transmembrane domain and is
therefore soluble. FGFRL1 acts as an antagonist to FGFR signaling [19,20]. Structurally, FGFR1–4 consist
of three different domains: an extracellular ligand binding domain, a transmembrane domain, and an
intracellular domain that interacts with cytoplasmic molecules and transduces FGFR signaling [8,21,22]
(Figure 1).

The extracellular domain can bind FGF ligands, heparan sulfate (HS), and extracellular matrix
molecules, which can act as a scaffold to enable receptor binding of specific FGFs. It is divided into three
immunoglobulin-like (Ig) loops: Ig-I, Ig-II, and Ig-III (also called D1, D2, and D3) [23]. Ig-I is linked to
Ig-II by a stretch of 30 acidic residues called the acid box, a unique region of FGFRs [10,24]. Ig-I and
the acid box have receptor auto-inhibitory functions [25–27] while the Ig-II and Ig-III subdomains form
the ligand binding site of the receptor [3,15,18,28,29]. Ig-II contains the heparin/HS binding region
and FGF binding activity site, while the junction between Ig-II and Ig-III controls heparin and FGF
affinity [21,30–33] (Figure 1).

Multiple FGFR isoforms are generated by alternative splicing of the region encoding for the
extracellular domain. This modifies the affinity and sensitivity of the receptors for different FGF
ligands [34,35]. Thus, an array of FGFR isoforms is created that can fine-tune the response of cells to
the large number of potential FGF ligands available in their specific environment. FGF sensitivity is
further modified by co-receptors, such as Klotho family members, which are required for binding of
endocrine FGFs [36–38].
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Figure 1. Domain structure of FGFRs: an extracellular domain containing ligand binding site is 
followed by a single transmembrane domain, and an intracellular domain containing split tyrosine 
kinases. Left panel: organization of the FGF–FGFR complex at the cell surface. The FGF–FGFR 
complex is stabilized by a heparin/HS chain of the HS proteoglycan (HSPG). Right panel: The 
extracellular domain of the receptor is composed of three Ig-like domains: Ig-I, Ig-II, and Ig-III. Ig-I 
has autoinhibitory capacity while Ig-II and Ig-III form the ligand binding domain. Ig-II contains the 
heparin/HS binding site (HBS) and is separated from Ig-I by an acid box (AB). The cytoplasmic 
domain is formed by two tyrosine kinases: tyrosine kinase 1 (TK1) and tyrosine kinase 2 (TK2). Image 
created with biorender.com. 

Multiple FGFR isoforms are generated by alternative splicing of the region encoding for the 
extracellular domain. This modifies the affinity and sensitivity of the receptors for different FGF 
ligands [34,35]. Thus, an array of FGFR isoforms is created that can fine-tune the response of cells to 
the large number of potential FGF ligands available in their specific environment. FGF sensitivity is 
further modified by co-receptors, such as Klotho family members, which are required for binding of 
endocrine FGFs [36–38].  

Alternatively-spliced β isoforms of FGFR1 or FGFR2 are produced by the exclusion of the Ig-I 
domain, which is encoded by exon 3. Due to the auto-inhibitory function of the Ig-I domain, the β 
isoform has considerably higher affinity for FGFs, and is oncogenic [39,40]. Retention of the Ig-I 
domain creates FGFR α isoforms [28]. 

Additionally, alternative splicing generates two isoforms of the Ig-III domain, known as Ig-IIIb 
and Ig-IIIc, in FGFR1–3, but not FGFR4 [10,41–43]. Ig-IIIb and Ig-IIIc are generated by exon skipping, 
and are encoded by exons 8 and 9, respectively (Figure 2). By contrast, exon 7, encoding Ig-IIIa, is 
present in all splice variants. Different splice-regulatory proteins have been identified that control the 
splicing of Ig-IIIb, such as regulatory RNA-binding protein (RBP), and the epithelial splicing 
regulatory proteins (ESRP1/2) [32,40,44].  

Figure 1. Domain structure of FGFRs: an extracellular domain containing ligand binding site is followed
by a single transmembrane domain, and an intracellular domain containing split tyrosine kinases. Left
panel: organization of the FGF–FGFR complex at the cell surface. The FGF–FGFR complex is stabilized
by a heparin/HS chain of the HS proteoglycan (HSPG). Right panel: The extracellular domain of the
receptor is composed of three Ig-like domains: Ig-I, Ig-II, and Ig-III. Ig-I has autoinhibitory capacity
while Ig-II and Ig-III form the ligand binding domain. Ig-II contains the heparin/HS binding site (HBS)
and is separated from Ig-I by an acid box (AB). The cytoplasmic domain is formed by two tyrosine
kinases: tyrosine kinase 1 (TK1) and tyrosine kinase 2 (TK2). Image created with biorender.com.

Alternatively-spliced β isoforms of FGFR1 or FGFR2 are produced by the exclusion of the Ig-I
domain, which is encoded by exon 3. Due to the auto-inhibitory function of the Ig-I domain, the β

isoform has considerably higher affinity for FGFs, and is oncogenic [39,40]. Retention of the Ig-I
domain creates FGFR α isoforms [28].

Additionally, alternative splicing generates two isoforms of the Ig-III domain, known as Ig-IIIb
and Ig-IIIc, in FGFR1–3, but not FGFR4 [10,41–43]. Ig-IIIb and Ig-IIIc are generated by exon skipping,
and are encoded by exons 8 and 9, respectively (Figure 2). By contrast, exon 7, encoding Ig-IIIa,
is present in all splice variants. Different splice-regulatory proteins have been identified that control the
splicing of Ig-IIIb, such as regulatory RNA-binding protein (RBP), and the epithelial splicing regulatory
proteins (ESRP1/2) [32,40,44].

The expression of FGFR splice variants is tissue-dependent. For example, the Ig-IIIb isoform is more
prevalent in epithelial tissues, while Ig-IIIc is preferentially expressed in mesenchymal ones [22,24,32].
Switching of epithelial and mesenchymal isoforms occurs during epithelial–mesenchymal transition,
which is known as the IIIb/IIIc switch. Hence, FGFR isoform expression is also related to tissue
plasticity, and changes during tissue growth, proliferation, and remodeling [45].

The FGFR transmembrane domain is crucial for transferring the signal from the extracellular to the
intracellular domain, the latter consisting of a juxtamembrane domain, two tyrosine kinase domains,
and the C-terminal tail [10,32,46,47]. FGFR domains are highly conserved among receptors, and the
tyrosine kinase domain shares the highest homology. The Ig-III domain is also highly conserved,
especially between FGFR1 and FGFR2 [48].

The binding of FGF ligands to HSPGs causes FGFR dimerization and activation in the
-COOH receptor tail of the cytoplasmic tyrosine residues by phosphorylation [49,50]. For instance,
autophosphorylation of FGFR1 tyrosine (Y) residues occurs in three steps. Firstly, phosphorylation
of Y653 leads to a 50–100-fold increase of the catalytic core activation of the intracellular domain.
Secondly, Y583, Y463, Y766, and Y585 sites are consequently phosphorylated, and finally, the second
tyrosine kinase domain phosphorylation increases the tyrosine kinase activity 10-fold. This sequence of
autophosphorylation follows a specific and controlled order that, if deregulated, can induce malfunction
of the pathway [49].
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Figure 2. Schematic representation of FGFR splice isoforms. The Ig-III domain of FGFR1–3 is encoded 
by exons 7–9. Exon 7 encodes Ig-IIIa, which consists of the N-terminal half of the Ig-III loop. The C-
terminal half is formed by the IIIb or IIIc sequence, which is generated by the selective inclusion of 
exons 8 or 9, respectively. Truncation of the Ig-I loop creates FGFRβ isoforms (dotted line), while the 
full-length receptor is termed FGFRα. Image created with biorender.com. 
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interaction, FGF ligand interaction, or by HS–HS link (2:2:2 FGFR–HS–FGF). In this model, HS 

Figure 2. Schematic representation of FGFR splice isoforms. The Ig-III domain of FGFR1–3 is encoded
by exons 7–9. Exon 7 encodes Ig-IIIa, which consists of the N-terminal half of the Ig-III loop. The
C-terminal half is formed by the IIIb or IIIc sequence, which is generated by the selective inclusion of
exons 8 or 9, respectively. Truncation of the Ig-I loop creates FGFRβ isoforms (dotted line), while the
full-length receptor is termed FGFRα. Image created with biorender.com.

Different models have been proposed for FGFR dimerization depending on the ligand–heparin–
receptor complex, specificity between the ligand and the receptor, and the heparin length required
for the binding [21,24]. In the first model, HS increases the association between the receptor and the
high affinity binding site of the ligand, forming a ternary complex (1:1:1 FGF–HS–FGFR) that then
interacts with a second receptor, inducing FGFR dimerization through the FGF low affinity binding site
(2:1:1 FGFR–HS–FGF). On the other hand, the symmetrical model suggests that two individual ternary
complexes are formed. The FGFR dimerization will then occur by FGFR–FGFR direct interaction,
FGF ligand interaction, or by HS–HS link (2:2:2 FGFR–HS–FGF). In this model, HS enhances FGFR
dimerization, but it is not crucial. Finally, according to the asymmetric model, HS attaches to two
FGF–FGFR complexes, binding both FGFs but only one of the receptors (2:1:2 FGFR–HS–FGF) [21].
Therefore, although different models have been suggested, more research is needed to clarify the
stoichiometry of FGFR dimerization [21,24,51].

3. FGFR Signaling Cascade

FGF–FGFR stimulates cell signaling pathways related to cell proliferation, survival, cytoskeletal
regulation, and FGFR degradation [10]. Cell proliferation is mainly induced by RAC/JNK and
RAS–MAPK signaling pathways [3]. RAC kinases can be activated by the transient phosphorylation of
CRK, which simultaneously stimulates RAC phosphorylation trough DOCK1 or SOS/RAS [10]. RAC
kinases promote proliferation by the activation of JNK and p38. Alternatively, the RAS/RAF/MEK/ERK
signaling pathway can be activated by the FRS2–GRB2–SOS–SHP2 complex assembly or byPKC
activation through PLC phosphorylation [18,22].

Cell survival is mainly promoted by phosphorylation of PI3K/AKT signaling through the
FRS2–GRB2–GAB1 complex. Finally, FGFRs are also implicated in cytoskeletal regulation, as PLC
phosphorylation leads to the hydrolysis of PIP2 into IP3, inducing calcium release [18] (Figure 3).
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signaling cascade depends on FGFR expression and localization to the cell membrane. Therefore, 
receptor availability depends on the balance between its recycling and degradation rate, which differ 
among receptors. One of these regulatory systems is FGFR internalization or constitutive endocytosis. 
FGFR synthesis occurs at a higher level than its internalization. However, after ligand-binding, FGFR 
internalization from the plasma membrane accelerates [52]. FGFR internalization is primarily 
mediated by clathrin-dependent endocytosis and requires the SRC–FRS2 complex [53]. The 
internalization rate depends on the receptor type—FGFR1 has the highest internalization rate and 
FGFR3 the lowest. Endocytosis of activated FGFRs involves detachment from the SRC complex [54]. 

Figure 3. FGFR signaling pathway. After ligand binding, FGFRs dimerize and activate multiple
signal transduction pathways. Each pathway induces the expression of specific target genes related
to cell proliferation (STATs, RAS/p38/JNKs, and RAS/MAPK/ERK), survival (STATs and PI3K/AKT),
and cytoskeleton regulation (PLC/Ca2+). Kinases are color-coded according to their specific signaling
pathway. Image created with biorender.com.

Because FGFR signaling acts upon many biological functions, a regulatory system that controls
its timing, spread, and balances its activation is required. This is important as the activation of the
signaling cascade depends on FGFR expression and localization to the cell membrane. Therefore,
receptor availability depends on the balance between its recycling and degradation rate, which differ
among receptors. One of these regulatory systems is FGFR internalization or constitutive endocytosis.
FGFR synthesis occurs at a higher level than its internalization. However, after ligand-binding, FGFR
internalization from the plasma membrane accelerates [52]. FGFR internalization is primarily mediated
by clathrin-dependent endocytosis and requires the SRC–FRS2 complex [53]. The internalization rate
depends on the receptor type—FGFR1 has the highest internalization rate and FGFR3 the lowest.
Endocytosis of activated FGFRs involves detachment from the SRC complex [54]. FGFRs can then
re-translocate to the cytosol, mitochondria, nucleus (to directly regulate gene expression), or to the
endosomal compartment for receptor degradation [52]. The latter requires interaction between the
FRS2–GRB complex and CBL, and is receptor-independent [22] (Figure 4). Indeed, FGFR1 has more
ubiquitination sites than FGFR4, so its degradation rate is likely higher [10].

Other regulatory systems of FGFR signaling are the negative regulators SEF, SPRY1/SPRY4, and
MKP1/MKP3. The activation of cell proliferation is counterbalanced by SEF, which negatively regulates
ERK and AKT activation [18]. Similarly, SPRY1/SPRY4 reduce proliferation by directly interacting
with RAS/RAF kinases or by blocking the FRS2–GRB2–SOS–SHP2 complex. MKP1 and MKP3 also
attenuate FGFR signaling by dephosphorylating MAPK and ERK [10] (Figure 4).

FGF signaling is also negatively regulated by the autoinhibitory (Ig-I) domain of the receptors. This
is controlled by the electrostatic interactions between the negatively charged acid box with the highly
basic heparin binding site in Ig-II [25]. This complex blocks the heparin–FGF binding, minimizing
FGFR activation. The auto-inhibitory capacity is crucial for the modulation of the pathway, as the
high amount of HSPGs from the cell surface and the extracellular matrix increases the probabilities of
FGF–heparin binding and activation of the RTK cascade [24].
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Other factors involved in FGFR pathway regulation are the ligand affinity for the receptor and
the ligand amount and availability. Extracellular FGFs are protected and stored by HS proteoglycans.
Heparanases are directly involved in FGF signaling regulation, as they cleave the HS chain, thus releasing
FGFs in the vicinity of cells. Depending on the cell type and the growth factor released, heparanases
are therefore involved in cell growth, differentiation, or stemness maintenance [55]. Likewise, sufficient
amounts of ligand and heparin/HSPGs are necessary for stabilizing FGFR dimerization. The necessary
ligand concentration is dependent on the ligand-binding affinity of the FGFRs, which depends on the
FGFR splice isoforms [3,8,42]. For example, FGF2 activates both FGFR1 IIIb and IIIc isoforms, while it
has a higher affinity for the isoform IIIc in FGFR2 and FGFR3 [42].

4. Crosstalk between FGFRs and Other Cell Surface Molecules

FGFRs can be modulated independently of their ligands by integral cell membrane proteins,
such as G-protein-coupled receptors (GPCRs), cell adhesion molecules (CAMs), and other RTKs,
which play a crucial role in the induction of specific cell responses and fate during development and
cancer [56]. GPCRs can transactivate FGFRs by promoting the activation of matrix metalloproteinases,
resulting in cleavage of FGFs, or by directly interacting with FGFRs [57]. GPCR-mediated FGFR1
transactivation is associated with neuronal differentiation, neurite growth, and synaptic plasticity [56].
FGFR1 modulation by GPCRs (e.g., CB1A, 5-HT1A, and mAChR) involves the activation of the
SRC-ERK1/2 pathway [57–59]. In C6 glioma cells, crosstalk between the mu-Opioid receptor and



Cells 2019, 8, 715 7 of 15

FGFR1 was shown to activate this signaling cascade, but the specific mechanism is not yet completely
understood [60].

FGFR activity is also modulated by CAMs, cell surface proteins that regulate cell–cell interactions
and motility. Importantly, the FGFR acid box region is required for the CAM/FGFR interaction [61],
hence the FGFR β isoforms cannot be transactivated by CAMs. CAMs of the integrin, cadherin,
and immunoglobulin (e.g., NCAM and L1-CAM) superfamilies signal through FGFRs to induce
neurite outgrowth, cell survival, and oncogenesis [61–66]. Integrins signaling can activate cell
proliferation, survival, and invasion [67], and integrin α6 [68] and α7 [69] have been linked to
GBM cancer stem cells (GSCs). A recent study suggested that integrin α6 regulates the expression
of FGFR1 through ZEB1 and YAP transcription factors [70]. N-cadherin stabilizes FGFR1 and
decreases its internalization, thus promoting invasion in breast cancer cells, and N-Cadherin/FGFR
crosstalk promotes neurite outgrowth [71]. Of note, the stem cell transcription factor ZEB1 regulates
N-Cadherin expression, which is associated with EMT and invasion. It is tempting to speculate that
N-Cadherin/FGFR1 interactions could constitute a positive feedback loop in GSCs through the activation
of ZEB1 and subsequent induction of N-Cadherin and FGFR1 expression [70,72] (see also Section 5.1).
NCAMs physically associate with FGFRs and inhibit the high-affinity binding between these receptors
and their canonical ligands [56,73]. Furthermore, polysialic acid-NCAM (PSA-NCAM) has been
described as a marker of GBM patient prognosis [74]. This study showed that a targeted expression of
PSA-NCAM in C6 glioma cells resulted in increased levels of Olig2, a transcription factor associated
with GSCs [75]. While it remains unclear whether this was the result of FGFR transactivation by
PSA-NCAM, we have recently shown that OLIG2 can be induced by FGFR1 signaling [72]. Furthermore,
the L1-CAM/FGFR1/Anosmin-1 complex regulates neurite branching [76–78] and L1-CAM-mediated
FGFR1 transactivation induces glioma cell proliferation and motility [79].

Crosstalk between FGFRs and other RTKs, such as EPHs and PDGFRs, has been identified in Y2H
screens and endothelial cells [80,81]. FGFR/RTKs form a heterocomplex in which the tyrosine kinase
domain of the FGFR is phosphorylated by the other receptor [56]. EPHA4 transactivated FGFR1 in
the U251 glioma cell line, promoting cell growth and migration, and EPHA4 expression is increased
in glioma [82]. Less is known about potential crosstalk between other RTKs and FGFRs in GBM.
In summary, FGFR activity can be modulated non-canonically by other cell surface proteins, resulting
in the activation of intracellular signaling pathways and cell responses associated with FGFR signaling.

5. Expression and Functions of FGFRs in Glioblastoma

Gene expression analysis of TCGA data (GBM 540) revealed profound heterogeneity of FGFR1–4
expression across GBM patients [72]. Below, we discuss the evidence for the functions of individual
FGFRs in glioma.

5.1. FGFR1

Yamaguchi et al. found that expression of FGFR1 increases with WHO grade in astrocytomas [39],
and increased FGFR1 levels in GBM are not due to amplification of the FGFR1 gene [83].

In addition to the increased expression of FGFR1 in malignant gliomas, the ratio of alternatively
spliced FGFR1 α/β isoforms changes with progression to more aggressive brain cancers. While FGFR1
α is the predominant isoform in normal brain and low-grade gliomas, high-grade gliomas show a shift
towards the expression of FGFR1 β [13,39]. Loss of the FGFR1 α exon increases the receptor–ligand
affinity [28], thus, changes in alternative splicing may contribute to GBM malignancy by increasing the
sensitivity of tumor cells to FGFs present in their environment.

Functionally, FGFR1 expression in malignant glioma has been associated with increased migration
of cancer cells [82]. In this study, a high expression of EPHA4 in glioma cells was found to potentiate
FGF2–FGFR1 signaling and promoted cell growth and migration through the AKT/MAPK and
RAC1/CDC42 pathways, respectively. Data from our lab support that FGFR1 loss results in reduced
tumor invasion in vivo (Jimenez-Pascual and Siebzehnrubl, unpublished observation).
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Loilome and colleagues identified FGFR1 as a potential transducer of FGF2 effects on glioma
cell proliferation [84], but whether other FGFRs also contribute was not directly tested. Nevertheless,
the pharmacological inhibition of FGFR signaling significantly reduced tumor cell growth in a range of
established and patient-derived glioma lines.

The malignancy-promoting effects of FGFR1 were further demonstrated in a study that found
FGFR1 signaling promoting radioresistance in glioma cell lines through PLC1γ and HIF1α [85]. FGFR1
expression is regulated by the stem-cell associated transcription factor ZEB1 [70], suggesting that
FGFR1 may be associated with GBM cancer stem cells. We recently performed a comprehensive
analysis of the functions of FGFR1-3 in GBM and found that FGFR1 indeed is preferentially expressed
on GSCs, where it regulates the expression of the critical stem cell transcription factors SOX2, OLIG2,
and ZEB1, thereby promoting tumorigenicity in vivo [72]. In summary, FGFR1 is a key regulator of
tumor growth, invasion, therapy resistance, and cancer stemness in malignant glioma.

5.2. FGFR2

While FGFR1 is mainly expressed on neurons [6], FGFR2 is the primary FGFR on astrocytes [5]. In
contrast to FGFR1, FGFR2 expression decreases with glioma grade [43]. Reduced expression of FGFR2,
as well as its IIIb and IIIc isoforms, is associated with a higher tumor grade and poorer survival in
glioma patients [43]. Tumors with a higher expression of FGFR2 showed significantly less proliferation,
as identified by Ki-67 staining, but whether there is a direct link between FGFR2 signaling and slowing
or exiting the cell cycle remains unclear. By contrast, experimental tumors derived from in vivo
implantation of C6 glioma cells exhibited decreased tumor growth after inhibition of FGFR2 signaling
by a dominant negative construct [86].

Our recent analysis of cell-surface FGFR expression patterns in GBM stem cell lines indicates that
FGFR2 is nevertheless highly prevalent on GBM cells in vitro [72], but it remains to be tested whether
FGFR2 loss results in increased proliferation and/or tumorigenicity. Loss of FGFR2 is associated with a
loss of Chr. 10q, which in and of itself carries an unfavorable prognosis [87]. It is therefore conceivable
that FGFR2 loss is not causally linked to reduced patient survival, and further work is needed to clarify
the functional relevance of FGFR2 signaling in GBM.

5.3. FGFR3

In a small subset of GBM patients, fusion of the FGFR3 and TACC3 genes generates an
oncogenic FGFR3 form [16]. In rare cases, fusion between FGFR1 and TACC1 can occur as well [88].
In FGFR3–TACC3, the FGFR tyrosine kinase domain is fused to the TACC coiled-coil domain, resulting
in constitutive activation of the fused receptor. Small-molecule FGFR inhibitors were effective at
blocking tumor growth where FGFR–TACC fusion occurred, indicating that the fused receptor is
causally linked to tumor development. Overall, FGFR–TACC fusions are found in ~3% of gliomas and
are mutually exclusive with EGFR amplifications. Recently, it has been shown that FGFR–TACC fusions
affect cell metabolism, activating oxidative phosphorylation and mitochondrial activity [89]. Of note,
we have recently found that GSCs preferentially utilize oxidative phosphorylation and mitochondrial
respiration [90], and therefore it would be interesting to investigate whether FGFR–TACC fusions also
affect stemness pathways in GBM.

Whether FGFR3 has specific functions that differ from FGFR1 or -2 in GBM, and/or whether
signaling through FGFR3 activates specific downstream signaling pathways remains unclear. Of note,
global transcriptomic analysis of TCGA and CGGA datasets found increased expression of FGFR3
in the classical and neural subtypes of GBM [91]. Gene ontology analysis showed an association of
FGFR3 expression with biological processes of cell differentiation in this study.

A recent study investigating gene expression using single-cell RNA-Seq in GBM patients found
that FGFR3 expression is five-fold higher in invasive GBM cells compared to the tumor core [92].
Indeed, FGFR3 was the second highest differentially expressed gene between invasive and tumor
core GBM cells. While this suggests that FGFR3 may be functionally associated with tumor invasion,
whether FGFR3 signaling is driving GBM invasion remains to be shown.
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5.4. FGFR4

Very little evidence exists of the expression of FGFR4 in GBM. An early study found increased
expression of the FGFR4 protein, but not mRNA, with increasing grade in astrocytoma [93]. Another
study demonstrated the expression of FGFR4 across different GBM cell lines [84]. We recently
investigated FGFR protein expression in GBM cells [72]. In our study, FGFR4 was not detectable by
western blot in primary patient-derived GBM cells, and analysis of GBM patient data in the TCGA
dataset showed heterogeneous, but overall low expression of FGFR4. Moreover, we could not find
differences in survival when stratifying patients for FGFR4 high or low expression. More research is
needed to fully characterize whether FGFR4 is expressed on subsets of GBM cells, and whether it is
functional in these cancers.

6. FGFRs as Therapeutic Targets in GBM

Oncogenic FGFR signaling promotes malignancy in many cancers, including CNS malignancies.
Thus, pharmacological targeting of FGFRs may be therapeutically beneficial. A number of RTK
inhibitors have been developed that show selectivity of FGFRs over other RTKs [18]. While some
small-molecule inhibitors also target non-FGFR RTKs (e.g., dovitinib, levatinib, brivanib), others are
selective for FGFR1–3 (e.g., PD173074, BGJ398, AZ4547, JNJ-493). To date, no small-molecule inhibitors
exist with good selectivity for individual FGFR subtypes or isoforms [18].

Recently, a study identified FGFR signaling as a potential therapeutic target in pediatric glioma
using a large-scale shRNA screen [94]. In this study, FGFR inhibitors (AZ4547, dovatinib, PD173074,
ponatinib) were more effective in reducing the growth of pediatric glioma cells in vitro than the first-line
chemotherapeutic agent Temozolomide.

The selective FGFR inhibitors AZ4547 and BGJ398 have been tested in clinical phase I/II
(NCT028224133) and phase II trials (NCT01975701), respectively. AZ4547 was trialed in patients with
recurrent IDH wild-type gliomas with FGFR1–TACC1 or FGFR3–TACC3 fusions, but this trial was
suspended after analysis of the data from the first 12 patients. A trial of BGJ398 in malignant glioma
patients with FGFR1–TACC1 or FGFR3–TACC3 fusion, and/or activating mutation in FGFR1, -2, or -3,
was completed, but so far, no results have been published.

A phase I/II trial of the irreversible FGFR inhibitor TAS-120 (NCT02052778) is currently recruiting
patients with advanced solid tumors, including brain tumors. As with the AZ4547 and BGJ398 trials,
the focus of this trial is on patients with FGFR gene fusions or activating mutations.

Due to the prevalence of FGFRs on many CNS cells, and the importance of FGFR signaling for CNS
cell survival, as well as the apparent intratumoral and intertumoral heterogeneity of FGFR expression
in GBM, it will be interesting to see whether FGFR inhibitors are successful as monotherapy. Based on
the evidence implicating FGFR1 as a GSC regulator, it is further tempting to speculate whether the
targeted inhibition of FGFR1 in combination with conventional chemo/radiotherapy could prevent or
delay recurrence in GBM.

7. Conclusions

Gene expression profiling and whole-genome sequencing data indicate that all four FGFRs are
expressed to varying degrees in GBM, underlining the heterogeneity of this disease. Several studies
have documented that high-grade gliomas show an increased expression of FGFR1, and decreased
expression of FGFR2 [13,39,43,72,83], but in almost all cases, FGFR expression was detected at a
global level, and limited or no effort was made to further identify FGFR splice isoforms. A recent
report investigating gene expression at the single-cell level [92] found that FGFR3 was expressed the
second-highest in invasive GBM cells. This illustrates that much more research is needed to unravel
the functions of individual FGFRs and their splice isoforms in brain cancers in general, and GBM
in particular.
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To what extent signaling through individual FGFRs contributes to disease progression, and whether
individual FGFRs and/or isoforms activate specific pathways linked to different pathobiological aspects
of these cancers (e.g., invasion, tumor initiation, therapy resistance) remains largely unknown. Yet, the
fact that FGFR subtypes are differentially expressed on cellular subpopulations within the same tumor
suggests that individual FGFRs may have divergent functions in GBM [72,92].

The strongest evidence by far indicates that FGFR1 is an important contributor to poor outcome
in GBM, and FGFR1 signaling is linked to cancer stemness, invasion, and radioresistance [70,72,85].
However, recent evidence from TCGA datasets highlights that FGFR1–4 are expressed to varying
degrees and in different combinations in patient samples [72]. This calls for a more detailed analysis of
FGFR distribution across GBM patients and within individual tumors. It is conceivable that different
combinations of FGFR subtypes and splice isoforms mediate and/or modulate different aspects of FGF
signaling in GBM cells. Only a comprehensive analysis of the cell-surface expression of FGFRs at the
single-cell level will dissect the intratumoral heterogeneity of these receptors, and thus provide the
foundation for new, targeted approaches to blocking FGFR signaling for glioma therapy.
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