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S.I. EXPERIMENTAL SET-UP AND PROTOCOL

Our experimental set-up is based on a commercial inverted microscope (Nikon, Eclipse
Ti-U), with some customization. Incoherent broadband illumination for micro-spectroscopy
is provided by a tungsten-halogen lamp (Nikon, 17005M28). Incoherent illumination with a
narrow spectral range for widefield imaging is provided by a multiple light-emitting diode
(LED) source (Thorlabs, LED4D067, 405 nm, 455 nm, 530 nm, 660 nm LEDs) coupled to
the microscope using a liquid light guide (Thorlabs LLG0538-6). The average emission
wavelength 〈λ〉 of the LEDs reported in Fig. 5 of the paper depends slightly on the intensity
and has been characterized in house. The illumination is focused on the sample by a 1.34
numerical aperture (NA) oil-immersion condenser lens (Nikon MEL41410, T-C-HNAO). An
engineered diffuser (Thorlabs, ED1-C20) inserted in the illumination path in front of the field
iris yields a flat angular scattering pattern up to a ±10◦ divergence, and provides thereby a
quasi-homogeneous illumination intensity in the back focal plane (BFP) of the condenser as
assumed by our analytical model of the illumination, see the characterization in Sec. S.VI. A
wire-grid polarizing film (MeCan, WGFTM) can be inserted in front of the condenser and
rotated to produce a linear polarization of adjustable orientation in the BFP of the condenser.
The sample holder is mounted on an xyz piezoelectric stage (Mad City Labs Nano-LP200),
which is used for fine positioning and focusing of the nano-object (NanO). Light is collected
by a 40x, 0.95 NA dry objective (Nikon MRD00405, CFI plan apochromat λ series).

The angular range of illumination is defined by suitable light stops placed in the BFP of the
condenser as depicted in Fig. 1 of the paper. In order to achieve darkfield (DF) illumination
of NAdf

i = 1.1 we cut an anodized aluminum disc of diameter 2fcNAdf
i = 23.1mm, calculated

based on the condenser focal length fc = 10.5mm. The disc is mounted on a slider, to
permit rapid switching between brightfield (BF) and DF modalities with no need to move
the condenser. The aperture diaphragm of the condenser is closed down to NAbf

i = 0.95
in BF, matching the objective NA; and to NAdf

i between 1.2 and 1.3 in DF, excluding the
highest NA range of the condenser to reduce deviations from the aplanatic behavior.

Micro-spectroscopy is performed by optically coupling the microscope output to an imaging
spectrometer (Horiba Jobin-Yvon, iHR550) equipped with a ruled plane diffraction grating
(Horiba, 510 48) of 78mm side length and 100 lines/mm blazed at 450 nm. The spectrometer
output is recorded by a Peltier-cooled back-illuminated charge-coupled device (CCD) sensor
(Andor, Newton DU-971N). A magnification of 79± 2 from the sample to the sensor was
measured shifting the sample by a known amount via the nanometric stage. Since the
cross-sections are proportional to the inverse square of the magnification via A in Eq. (7)
of the paper, determining its precise value is important for quantitative analysis. The
spectrometer is operated first in imaging mode (i. e. with the grating oriented at the zero
order of diffraction acting as a mirror) to individuate the NanO and center it with respect to
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the input slit of the spectrometer. The four detected signals appearing in Eq. (7) of the paper
are then acquired in spectroscopic mode (i. e. with the grating oriented at the first order of
diffraction). A square detection region Ano = 1.0 µm2 is defined on the scaled sample image,
delimited by the input slit and the detected size along the slit on the CCD: This is chosen
large enough to accommodate the diffraction-limited image of the NanO, leaving additionally
some room for spatial drift over the measurement time (∼ 10 s). Abg corresponds to another
similar-sized region of the sensor, displaced along the input slit, so that Sdf

no and Sdf
bg are

acquired simultaneously. This is not problematic because DF can offer a large contrast
with respect to the background. In BF, conversely, the pixel-to-pixel variations of quantum
efficiency (∼ 1%) are comparable to the difference between Sbf

no and Sbf
bg for the NanOs we

studied. Therefore the signals must be acquired sequentially using the same region of the
sensor and shifting the sample instead, so that an empty area nearby the NanO is imaged. In
addition, adjacent regions of the sensor are used in BF to monitor the illumination intensity
– which fluctuates ∼ 1%/min – and scale the Sbf

bg accordingly.
Widefield imaging is performed using a monochrome low noise scientific complementary

metal-oxide-semiconductor (sCMOS) camera (PCO Edge 5.5) attached to the Ti-U eyepiece
side port. For automated image analysis we rely on the ImageJ Plug-in Extinction Suite [S1]
developed within our group. We briefly discuss here the scattering measurements presented
in the paper; we refer the reader to previous works [S2, S3] for a detailed description of the
technique, also presenting its application to absorbing NanOs. We acquire one BF and one
DF image. 2560 frames of exposure time 1ms were averaged in BF. 4 frames of exposure
time 1 s were averaged in DF. Between the acquisition of the two images the sample was
laterally displaced by 2.2 µm – just above the characteristic point spread function (PSF) size
3λ/NA for the longest measured wavelength – with the nanometric stage. The BF image
serves as reference to create a quantitative scattering image. Extinction Suite individuates
in this image all the intensity maxima, which correspond to the PSFs of individual NanOs or
unresolved aggregates. The user sets by hand a tolerance level to avoid including small debris
or background fluctuations in the analysis. Afterward the image is integrated over a disc
(Ano) of radius rpsf and an annulus (Abg) of inner radius rpsf and outer radius approximately√

2rpsf, both centered at each intensity maximum. The integrated values over Ano and Abg

are the scattering signal and the local background, corresponding respectively to Sdf
no/S

bf
bg

and Sdf
bg/S

bf
bg appearing in Eq. (7s) of the paper.

For each exciting wavelength λ we used rpsf = 3λ/2NAobj. In the ideal case of an Airy
PSF, rpsf corresponds approximately to the radius of the second dark ring, and Ano contains
91% of the collected power. However, for real microscopes objectives the PSF is modified by
the vectorial nature of light and aberrations. We therefore measured σsca as a function of
rpsf on a few well-isolated scatterers and found that, with respect to large rpsf values, (79,
90, 83)% of power is collected at λ = (414, 530, 652) nm. These factors were used to correct
the measured σsca of Fig. 5 of the paper.
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S.II. NUMERICAL MODELING

We simulate optical scattering and absorption by an individual NanO using the commercial
software comsol Multiphysics R©, which implements the finite element method within a
convenient user interface. The simulation volume is a sphere centered at the origin of radius
λ/[2 min(n1, n2)], enough to put the boundaries outside the reactive near-field region of the
NanO. The sphere is halved into two media: Illumination comes from medium 1 (substrate)
and the NanO is placed in medium 2 in contact with the interface. This arrangement
reproduces the experimental set-up depicted in Fig. 1 of the paper. The sphere is surrounded
by a perfectly matched layer (PML) shell of thickness λ/(n1 +n2), which absorbs the scattered
radiation and thereby mimics an infinitely extended simulation volume. After refining the
mesh so that the simulated cross-sections have converged within a few percent tolerance,
our model has about 105 degrees of freedom and solves in approximately 15 s on a modern
workstation (Intel Core i7-8700K CPU, 64GB RAM).

We solve the electromagnetic problem in its frequency-domain formulation

∇×
(
∇×E

)
− ω2εµE = iωµJ . (S1)

We adopt the so-called scattered field formalism, and decompose the total electric field into
the scattered and the exciting field: Etot = Esca +Eexc. Eexc is given by a plane wave incident
on the n1 to n2 interface and the resulting transmitted and reflected waves, and is input
via its analytical expression derived in Sec. S.III. Such analytical approach improves the
model performance by a factor 5 to 10 with respect to the widespread practice of computing
Eexc numerically with a preliminary solving step. Linearly polarized illumination in the BFP
of the condenser is obtained as a superposition of the p and s polarized components with
appropriate coefficients depending the azimuth ϕi. Unpolarized illumination is reproduced
instead by averaging results obtained with p and s polarization, since the two components
are mutually incoherent. Esca is solved for by the software, and can be used to compute the
power scattered Psca and absorbed Pabs by the NanO. Psca is the flux of the time-averaged
Poynting vector of the scattered field across the surface Σno of the NanO

Psca = 1
2

∫
Σno

Re (Esca ×H∗sca) · n̂ dΣ (S2)

where n̂ is the outside normal of Σno. Pabs is computed by integrating the power dissipated
via resistive (Joule) heating over the volume Vno of the NanO

Pabs = 1
2

∫
Vno

Re (Jc ·E∗tot) dV (S3)

where Jc = ω Im(ε)E is the conduction current density in the metal. Eventually, σsca and
σabs can be computed using their definition σ ≡ P/Ii and Eq. (S.II).

Now, note that σsca and σabs depend on the incidence direction (θi, ϕi) of the plane wave
Eexc, as well as on its polarization state. We reproduce the illumination provided by a high-
NA condenser in experiments by averaging σ(θi, ϕi) over the angular range of illumination
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with the formulae derived in Sec. S.IVB. The weights used in the formulae originate from
the analytical description of the microscope illumination reported in Sec. S.IVA, and account
as well for the experimental referencing of σ to the measured intensity, that is, the incident
intensity projected onto the sample plane. This approach – whereby Eexc with different
(θi, ϕi) do not interfere – is consistent with the description of the microscope illumination as
an incoherent superposition of plane waves adopted by our analytical model of scattering
described in Sec. S.V below.

S.III. ELECTRIC FIELD ABOVE AND BELOW A DIELECTRIC INTERFACE

An analytical expression of the exciting electric field Eexc is required both for simulating
numerically the optical cross-sections of a NanO with the scattered field formalism discussed
in Sec. S.II, and for the analytical calculation of the angular distribution of the scattered
power, which will be presented in Sec. S.VB.

A. Illumination geometry and plane wave illumination

In this section Eexc is derived for the general case discussed in this work, that is, two
homogeneous dielectric media separated by an infinite planar interface. The experimental
geometry and the notation adopted are presented in Fig. S1. Since in this work we treat the
microscope illumination as an incoherent superposition of plane waves, we need to compute
Eexc above and below the interface for a plane wave impinging from the condenser side, i. e.
medium 1. At the interface, the incident (subscript i) wavefront is split into a reflected (r)
and a transmitted (t) one. The plane represented in Fig. S1a contains the wavevectors k of
the three waves and is called plane of incidence. The directions parallel (p) and perpendicular
(s) to the plane of incidence constitute the natural basis to decompose E, because the p and
s components do not mix upon transmission and reflection. It is convenient to introduce the
notation p̂ ≡ Êp and ŝ ≡ Ês.

Consider now the spherical unit vectors shown in Fig. S1b, whose expressions in Cartesian
coordinates read

r̂ =


sin θ cosϕ
sin θ sinϕ
cos θ

, θ̂ =


cos θ cosϕ
cos θ sinϕ
− sin θ

, ϕ̂ =


− sinϕ

cosϕ
0

. (S4)

Comparing these to the wavevectors and fields of the three waves in Fig. S1a, one finds that
the two vector triads have always the same directions: (k̂, p̂, ŝ) = (−r̂, θ̂, ϕ̂). Therefore, the
wavevector of the incident wave is ki = −ki r̂(θi, ϕi), and equivalent expressions hold for the
reflected (i→ r) and transmitted (i→ t) waves; the respective wavenumbers are ki = kr = n1k0
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and kt = n2k0. As for the field orientations, one has p̂i = θ̂(θi, ϕi) and ŝi = ϕ̂(ϕi) for the
incident wave, and equivalent expressions hold for the reflected and transmitted ones.

The propagation direction k̂ of these waves is thus identified by a polar angle θ and an
azimuth ϕ. The polar angles are related through the law of specular reflection θr = π − θi

and Snell’s law n1 sin θi = n2 sin θt. The planar character of the problem implies ϕi = ϕr = ϕt

for the azimuths. Note that the alternative formulation θr = θi and ϕr = ϕi + π of the law of
specular reflection—albeit more common in literature—would not allow the identification
(k̂, p̂, ŝ) = (−r̂, θ̂, ϕ̂) for the reflected wave. The transmission and reflection amplitudes are
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Figure S1. (a) Two homogeneous dielectric media with refractive indices n1 and n2 are separated
by the plane z = 0. A plane wave Ei incident on the interface splits into a reflected wave Er and a
transmitted wave Et. The plane of incidence ϕ = ϕi is represented, so that the p and s component
of the fields are, respectively, parallel and perpendicular to the drawing plane. The field orientation
depicted corresponds to n1 > n2 and θb < θi < θc, where θb and θc indicate Brewster’s and critical
angle, respectively. The exciting field induces an electric dipole moment p in a NanO placed near
the interface, which forms an angle Θ with respect to the normal to the interface. (b) The angular
ranges of illumination θi ∈ [θi, θi] and collection θ ∈ [θobj, π] are determined by circular light stops
placed in the back focal plane of the condenser and objective lens. Cylindrical (ρ, z, ϕ) and spherical
(r, θ, ϕ) coordinates (green unit vectors) are employed respectively in the back and front spaces of
the two lenses. (a) is a close-up on the interface in (b), as indicated by the dashed frames.
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expressed by the Fresnel coefficients for p and s polarization. Under the assumptions of
non-magnetic (µ1 = µ2 = 1), non-absorbing (ε1,2 = n2

1,2) media they are

tp = 2n1 cos θi

n2 cos θi + n1 cos θt
, rp = n2

n1
tp − 1, (S5p)

ts = 2n1 cos θi

n1 cos θi + n2 cos θt
, rs = ts − 1. (S5s)

We have now established a formalism which permits to write a compact expression of the
field components

Ei,p = Ei p̂i e
iki·r, Er,p = rpEi p̂r e

ikr·r, Et,p = tpEi p̂t e
ikt·r, (S6p)

Ei,s = Ei ŝi e
iki·r, Er,s = rs Ei ŝr e

ikr·r, Et,s = ts Ei ŝt e
ikt·r, (S6s)

where the time dependence, given by a common factor e−iωt, with ω = k0c and the vacuum
light velocity c, has been omitted. Note that Ei ∈ R when the phase of Ei is taken as
reference. We then use Eq. (S6) to obtain the expression of Eexc(x, y, z) we were after. Eexc

in medium 1 is the coherent superposition of the incident and reflected fields

E1,p(θi, ϕi) = Ei,p +Er,p = Ei


cos θi cosϕi (eiki,zz − rp e

−iki,zz)
cos θi sinϕi (eiki,zz − rp e

−iki,zz)
− sin θi (eiki,zz + rp e

−iki,zz)

 ei(ki,xx+ki,yy), (S7p)

E1,s(θi, ϕi) = Ei,s +Er,s = Ei


− sinϕi

cosϕi

0


(
eiki,zz + rs e

−iki,zz
)
ei(ki,xx+ki,yy) (S7s)

whereas Eexc in medium 2 coincides with the transmitted field

E2,p(θi, ϕi) = Et,p = tpEi


cos θt cosϕi

cos θt sinϕi

− sin θt

 eikt·r, (S8p)

E2,s(θi, ϕi) = Et,s = tsEi


− sinϕi

cosϕi

0

 eikt·r. (S8s)

We have highlighted that the fields (S7) and (S8) depend on the direction of incidence solely,
as all other variables can be expressed as a function of (θi, ϕi) via the relations between
angles reported above. Eq. (S8) holds as well for total internal reflection (TIR), which occurs
for n1 > n2 and θi > θc = arcsin (n2/n1). In this case θt = n2/n1 is a complex number
and kt,z = −kt cos θt becomes purely imaginary: The resulting real exponential in Eq. (S8)
describes an evanescent decay of the field moving away from the interface.
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Figure S2. The BFP of the condenser
is represented. (x̂, ŷ) and (ρ̂, ϕ̂) are the
basis versors of Cartesian and cylindrical
coordinates respectively. The linearly
polarized electric field Ebfp forms an
angle ψ ∈ [0, π) with x̂.

B. Unpolarized and linearly polarized illumination

For unpolarized light, the p and s components of Eexc, Ep and Es, have the same amplitude
and no phase relation. Accordingly, the expression of Eexc given by Eq. (S7) and Eq. (S8) was
used for simulating the optical cross-sections under unpolarized illumination of the gold and
polystyrene spheres investigated in the paper. However, using polarized light is often useful,
e. g. to study the optical properties of anisotropic NanOs such as the gold rods investigated
in the paper. Under polarized illumination, Eexc is a coherent superposition of Ep and Es,
with coefficients depending on the direction of incidence. Let us derive the analytical form of
the coefficients for linearly polarized illumination.

In our experiments, a linear polarization state can be created in the back focal plane
(BFP) of the condenser lens; the azimuth ψ identifies the illumination direction as in Fig. S2.
In terms of the Cartesian unit vectors, the electric field in the BFP is

Ebfp = [x̂ cosψ + ŷ sinψ]Ei e
−ik0z. (S9)

The illumination intensity is assumed to be homogeneous over the BFP, so that Ebfp is
independent of the position (ρ, ϕ) in the plane. As shown in Fig. S2, the basis unit vectors
of Cartesian and cylindrical coordinates are related by a rotation around ẑ by the angle ϕ
represented by the rotation matrix Rẑ(ϕ)x̂

ŷ

 = Rẑ(−ϕ)

ρ̂
ϕ̂

 =

ρ̂ cosϕ− ϕ̂ sinϕ
ρ̂ sinϕ+ ϕ̂ cosϕ

. (S10)

Ebfp can be thereby expressed in terms of the cylindrical versors

Ebfp(ϕ) =
[
ρ̂ cos (ψ − ϕ) + ϕ̂ sin (ψ − ϕ)

]
Ei e

−ik0z . (S11)

Let us now calculateEi corresponding to the direction of incidence (θi, ϕi) in the front space
of the condenser, where the spherical coordinates (r, θ, ϕ) are used. As illustrated by Fig. S1b,

S8



the condenser focuses the collimated illumination onto the sample plane by converting the
propagation direction −ẑ into −r̂, so that the resulting wavevector is ki = −ki r̂(θi, ϕi).
Concurrently, the radial component ρ̂(ϕi) of the field is rotated into a polar one θ̂(θi, ϕi) = p̂i,
while the tangential component ϕ̂(ϕi) = ŝi is left unchanged. Thus

Ei(θi, ϕi) =
[

cos (ψ − ϕi) p̂i + sin (ψ − ϕi) ŝi
]
Ei e

iki·r

= cos (ψ − ϕi)Ei,p+ sin (ψ − ϕi)Ei,s ,
(S12)

namely, a coherent superposition of the p and s fields defined by Eq. (S6). Moreover, since the
p and s components are not mixed upon reflection or transmission, an analogous expression
holds for the reflected (i→r) and transmitted (i→t) waves.

We can eventually write via Eq. (S12) Eexc above and below the interface, namely
E1 = Ei +Er and E2 = Et

E1(θi, ϕi) = cos (ψ − ϕi)E1,p + sin (ψ − ϕi)E1,s (S13-1)

E2(θi, ϕi) = cos (ψ − ϕi)E2,p + sin (ψ − ϕi)E2,s (S13-2)

with E1,p, E1,s given by Eq. (S7) and and E2,p, E2,s given by Eq. (S8). This expression for
Eexc was used for simulating the optical cross-sections under linearly polarized illumination
of the gold rods investigated in the paper.

S.IV. ANALYTICAL DESCRIPTION OF THE MICROSCOPE ILLUMINATION

In many micro-spectroscopy experiments, such as those presented in this work, the sample
is illuminated by a high NA condenser lens. The illumination NA range in BF modality is
typically chosen to match the NA range of the microscope objective used, to provide the best
diffraction-limited spatial resolution, while in DF modality the NA range of condenser and
objective are chosen to have no overlap. Describing such excitation as a plane wave impinging
perpendicularly onto the sample plane—a common approach to numerical modeling in the
nanoplasmonics field—can provide insight as to the position and linewidth of the resonant
modes of the investigated system, but is not suited to accurately calculate the measured
cross-section magnitude. For example, the axial polarization component introduced by
illumination at non-zero angles of incidence is not accounted for.

We will therefore develop in the following section S.IVA a mathematical description of the
high NA, incoherent microscope illumination employed in our experiments. This description
is an essential part of the method described in Sec. S.IVB to compute the cross-sections
under microscope illumination, which are directly modeling the measurements. It is also used
in the analytical model of scattering presented in Sec. S.VB, which we can use to calculate
the scattering parameters of our quantitative method.
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A. Angular dependence of the exciting power and intensity

Generally speaking, lens systems transform positions (ρi, ϕi in cylindrical coordinates)
in the back focal plane (BFP) to directions (θi, ϕi in spherical coordinates) impinging onto
the front focal plane (FFP) as depicted in Fig. S1b—and vice versa. Consistently with
the rest of this work, the subscript i stands for “incidence” and denotes coordinates and
quantities related to the illumination. We consider axially-symmetric optical elements only,
so that ϕi is conserved in the transformation. Aplanatic lens systems (aplanats) are of
paramount importance for microscopy, because they are free of both off-axis coma and
spherical aberration. An aplanat is defined by a specific relation between position in the
BFP and angle of incidence in the FFP

ρi = fNAi = fn sin θi (S14)

where f is the effective focal length and n is the refractive index of the medium filling the
FFP. In literature Eq. (S14) is referred to as Abbe’s sine condition. In this work we assume
that the condenser is an aplanat focusing the illumination onto the sample placed at the
FFP: This is indeed an adequate description for a scientific-grade condenser lens such as that
used in our experiments.

From a geometric point of view, an aplanat maps the flat wavefront of a collimated beam
in the BFP into a hemispherical surface Σ (often called the front principal “plane”) of radius
fn converging at the front focal point F as depicted in Fig. S3a. In our case, the illumination

n 

BFP 

FFP 

Σ 

fn 

F 

F′ 

𝜃i 

𝐴FFP 

cos 𝜃i 𝐴FFP 

𝜃i 

cos 𝜃i dΣ 
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BFP 

(b) 
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dΣ 

Figure S3. Sectional view of a typical Köhler illumination set-up for micro-spectroscopy experiments.
The sketch depicts the main geometrical features associated with an aplanatic condenser lens
(double arrow) discussed in the text. The angle of incidence θi in the magnified insets (b) and (c) is
chosen larger that the illumination range in (a) for clarity.
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originates from an incoherent source and therefore does not form a coherent wavefront in the
BFP. Its coherence length in the BFP is given by the diffraction limit of the illuminated
region in the FFP, which is an image of the field diaphragm in Köhler illumination. We use
illuminated regions with sizes of about 300µm, three orders of magnitude larger than the
diffraction limited point spread function (PSF) size for the full condenser NA. Accordingly,
the coherence length in the BFP is about three orders of magnitude smaller than the size of
the BFP. We can therefore treat the coherence areas in the BFP as small elements of area
dΣ = (fn)2 dΩi corresponding to a well-defined direction of incidence (θi, ϕi), of a plane wave
propagating towards F . Note that the effective condenser focal length fn, in our apparatus
10.5mm, is much larger than the illuminated region, so that the illumination in the BFP
of the condenser is still collimated to a small angular range, in our case about 0.03 radians.
The illumination impinging on the sample is then the incoherent superposition of these plane
waves. Now, the small element of area dAbfp corresponding to dΣ shrinks towards the edges
of the BFP, as illustrated by the geometrical construction in Fig. S3b. Equivalently, this
result can be obtained as a consequence of the sine condition (S14)

dAbfp = ρi dρi dϕi = (fn)2 cos θi sin θi dθi dϕi = (fn)2 cos θi dΩi = cos θi dΣ . (S15)

The factor thereby introduced is sometimes referred to as the aplanatic apodization cosine.
We want now to investigate the dependence on θi of the power dPpw and intensity dIpw

carried by the plane waves (PW) in our description. With dΣ and dAbfp related via Eq. (S15),
the same power crosses them by geometrical construction in a ray picture

dPpw = dPbfp = Ibfp dAbfp = Ibfp cos θi dΣ (S16)

where Ibfp is the illumination intensity over the BFP, which is assumed to be constant.
Eq. (S16) shows that dPpw decreases as θi increases, ruled by the aplanatic apodization
cosine.

Let us call Affp the illuminated region of the FFP. As discussed before, under the Köhler
illumination scheme employed in our set-up, Affp is defined by the field aperture and is
the same for all directions of incidence. This implies that the plane wave elements have
a wavefront of size Apw, which according to the geometry given in Fig. S3c is given by
Apw = cos θiAffp, reduced compared to Affp by the beam squeezing cosine. This expression
of Apw can be used to calculate the intensity of the plane wave

dIpw ≡
dPpw

Apw
= Ibfp

dΣ
Affp

(S17)

where the expression (S16) of dPpw has been substituted in the last equality. Eq. (S17) shows
that dIpw is independent of the illumination direction: This is a non-trivial consequence of
an exact compensation between the aplanatic apodization cosine and the beam squeezing
cosine under the Köhler illumination scheme.
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B. Angular averaging of the simulated cross-sections

In our numerical simulations, we compute the cross-section σpw under plane wave illumin-
ation (in this work we use superscripts consistently to indicate the illumination condition),
obtained using the plane wave expressions of Eexc derived in Sec. S.III. On the other hand,
what is measured in micro-spectroscopy experiments is the cross-section under microscope (m)
illumination σm. In this section, we will use the mathematical description of the microscope
illumination developed in Sec. S.IVA to express σm in terms of σpw, to relate the simulated
to the measured cross-sections.

Let us begin with the definition of the cross-section as the power removed from the exciting
electromagnetic mode(s) by a given optical process divided by the incident intensity

σm ≡ Pm

Iffp
=
∫

ill σ
pw(θi, ϕi) dIpw∫

ill cos θi dIpw
. (S18)

Importantly, referencing occurs with respect to the intensity Iffp traversing the FFP, to
reproduce the way Sbf

bg is measured in experiments, where the microscope objective images
the sample plane onto the sensor. In the second equality of Eq. (S18), power and intensity are
expressed as the sum over the contributions of the plane waves within the illumination cone.
Note that while the removed power is proportional to the plane wave intensity dIpw, the
corresponding reference intensity is proportional to the power dPpw traversing Affp, so that
a cos θi factor appears at the denominator, see also Fig. S3c. Effectively, the way referencing
is performed in experiments results in σm > σpw, as if the NanO shadow projected onto the
FFP was measured (dashed orange line in Fig. S3c). By virtue of this analogy, we call the
cos θi factor in Eq. (S18) the long shadow cosine.

dIpw given by Eq. (S17) can be rewritten using Eq. (S15) as

dIpw = Ibfp

Affp

dAbfp

cos θi
= Ibfp

Affp
(fn)2 dΩi (S19)

By substituting the first expression into Eq. (S18)

σm =
∫
Ai

[
σpw(θi, ϕi)/ cos θi

]
dAbfp∫

Ai
dAbfp

=
〈
σpw

cos θi

〉
Ai

(S20)

we obtain a formula of simple interpretation: σm is the average of σpwover the illuminated
region Ai of the BFP, weighted by the inverse long shadow cosine to account for the
experimental referencing to Iffp. Now, since we compute σpw as a function of the direction
of incidence, the integration must be recast over the angular variables using the last form of
Eq. (S19)

σm =
∫

Ωi
σpw(θi, ϕi) dΩi∫
Ωi

cos θi dΩi
=
∫ θi
θi

∫ 2π
0 σpw(θi, ϕi) sin θi dθi dϕi∫ θi
θi

∫ 2π
0 cos θi sin θi dθi dϕi

. (S21)
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σpw(θi, ϕi) is a discrete set of data, interpolated with constant steps ∆θi and ∆ϕi from the
sparse simulated values. The integral (S21) is therefore approximated by the discrete sum

σm(ψ) '
∑
m,n σ

pw(θi,m, ϕi,n, ψ) sin θi,m

N
∑
m cos θi,m sin θi,m

with m ∈ 1 . . .M, n ∈ 1 . . . N (S22)

where we have highlighted that, under linearly polarized illumination, the cross-sections
depend on the polarization direction ψ in the BFP of the condenser defined as in Fig. S2.
Under unpolarized illumination (ψ\), two incoherent plane waves having equal intensity and
orthogonal polarization—say, p and s—correspond to each direction of incidence, so that
σpw = (σp + σs)/2 and we have

σm(ψ\) '
∑
m,n

[
σp(θi,m, ϕi,n) + σs(θi,m, ϕi,n)

]
sin θi,m

2N ∑
m cos θi,m sin θi,m

. (S23)

Often one can use the symmetries of the investigated system (excitation + NanO) to
reduce the integration/summation domain in the formulae above. This is useful as it cuts
the number of simulations required for averaging with a given accuracy, and hence the total
computation time. In particular, symmetry with respect to the optical axis ẑ allows to reduce
the domain of ϕi; let us illustrate this through a few, experimentally relevant examples. We
assume the NanO has at least one mirror plane containing ẑ, and orient the axes so that x̂
lies on such plane. If the NanO admits

• one mirror plane (x = 0), then the domain can be reduced to ϕi ∈ [0, π) for excitation
polarized along x̂ or ŷ, or unpolarized. The whole ϕi ∈ [0, 2π) domain must still be
simulated for a generic exciting polarization. This is for instance the case of tetrahedra
or sphere heterodimers.

• two orthogonal mirror planes (x = 0 and y = 0), then the domain can be reduced
to ϕi ∈ [0, π) under a generic linearly polarized illumination, and to ϕi ∈ [0, π/2) for
excitation polarized along x̂ or ŷ, or else unpolarized. This is for instance the case of
rods, cubes, and sphere homodimers.

• ẑ as a continuous axis of rotation, then σm(ψ) = σm(ψ\), and any single value of ϕi

(N = 1) can be used to compute Eq. (S23). This is for instance the case of spheres, disks
lying flat on a substrate, and cones or pillars standing on a substrate.

Note that the presence of optical interfaces ⊥ ẑ is irrelevant for these symmetry considerations.
Carrying out the directional averaging just described at every simulated wavelength

would be rather burdensome; therefore, in this work, we simulated the angular dependence
σpw(θi, ϕi) for a single wavelength (at resonance, when present) and computed the factor
σm/σpw|θi=0. Then the full spectrum was simulated at normal incidence (θi = 0) only, and
multiplied by this factor. This approach, whereby the directional response of the system is
assumed to be independent of λ is applied throughout this work. Specifically, the scattering
parameters ηl and ζ also are computed for a given form of α. In fact, if multiple modes of
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different geometry were present in the same spectrum, the quantitative method would have
to be applied separately to them (different angular scaling factor, and different scattering
parameters).

Somewhat surprisingly, due to the long shadow effect described above, σm is larger than
σpw even in the most symmetric case of a sphere surrounded by a homogeneous medium.
Indeed, this system is isotropic so that σpw does not depend on (θi, ϕi) and can be taken out
of the integral (S21), yielding

σm =
2πσpw ∫ θi

θi
sin θi dθi

2π
∫ θi
θi

cos θi sin θi dθi
= 2σpw

cos θi + cos θi
. (S24)

This formula was used for the gold spheres investigated in the paper. With the illumination
ranges used (NAbf

i from 0 to 0.95 corresponding to θbf
i from 0 to 38.7◦; and NAdf

i from 1.10
to 1.28 corresponding to θdf

i from 46.4 to 57.4◦) one has σbf
abs = 1.12σpw

abs and σdf
sca = 1.63σpw

sca

respectively. In a recent work [S4] we verified experimentally on absorption-dominated gold
spheres the dependence of σm

ext on the angular range of illumination predicted by Eq. (S24).

S.V. CALCULATION OF THE SCATTERING PARAMETERS

Eq. (7) of the paper express the cross-section amplitudes as functions of the experimental
signals, and contain the scattering parameters

ηl ≡
P l

obj

P l
sca

= P l
det(θobj, π)
P l

det(0, π) and ζ ≡ P bf
sca
P df

sca
= P bf

det(0, π)
P df

det(0, π) (S25)

where l ∈ [BF,DF] denotes the illumination modality. In Eq. (S25) the scattering parameters
are expressed in terms of

P l
det(θd, θd) ≡

∫
Ωd
P lno(θ, ϕ) dΩ (S26)

which is the power scattered within the solid angle of detection Ωd defined in spherical
coordinates by the angular ranges θ ∈ [θd, θd] and ϕ ∈ [0, 2π) owing to the axial symmetry of
our detection geometry. In Eq. (S26) P lno is the angular distribution of the power scattered
by the NanO to the far-field. Note that in this work we reserve the calligraphic font P to
angular power distributions (units W/sr), whereas integrated powers (units W) are indicated
by the usual italic font P .

In general, P lno depends both on the electromagnetic excitation and on the optical response
of the NanO. Writing an explicit form of excitation and response requires some assumptions,
which are listed right before Eq. (10) of the paper. Nonetheless, the expressions of P l

det, and
hence of ηl and ζ, we derive in this section, still apply to many experimentally relevant cases.
One assumption we make in our treatment is the dipole approximation, which is accurate in
the electrostatic regime, where the NanO is much smaller than the excitation wavelength.
Within this approximation, higher-order multipolar terms of the charge distribution induced
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in the NanO are neglected, and only an electric dipole moment is considered. Schematically,
our description of the scattering process consists of two steps: (i) a set of dipoles are excited
at the NanO; (ii) these dipoles radiate. Now, (i) precedes (ii) and is independent from
it, meaning that all interactions of the dipole with the field it radiates are neglected in
this description. Firstly, this restricts the validity of these calculations to weak scatterers,
consistent with the small-NanO limitation imposed by the dipole approximation. Secondly, in
presence of an interface near the NanO, scattering of the reflected radiation is not taken into
account. This is expected to be a suitable approximation for the measurements presented in
this work, where the NanO is placed either in a homogeneous medium or at a moderately
mismatched glass/air interface, creating only weak reflections of the scattered field.

Let us first present in Sec. S.VA some results on the radiation emitted by oscillating
dipoles, which we will need in the following. In Sec. S.VB we will then carry out calculations
for common types of NanOs.

A. Dipole radiation near a dielectric interface

Lukosz and Kunz have derived in a series of papers [S5–S8] the angular distribution
P(θ, ϕ) of the power radiated by an oscillating electric dipole p placed at a distance zno

from a planar dielectric interface. We report here for convenience their results recast into
the notation used throughout this work. The expressions have been simplified by assuming
zno = 0, since in our experiments the NanO always lies on the substrate and is described as
point-like in the electrostatic regime.

The geometry of the problem is the one shown in Fig. S1a, where p is placed in medium
2 and has an arbitrary direction described by the spherical angles (Θ,Φ). Following Ref. [S8]
we define the emission angles θ1 and θ2 in media 1 and 2 relative to the z axis analogously to
θi and θt, so that θ1,2 ∈ [0, π/2] and n1 sin θ1 = n2 sin θ2. The corresponding angle θ ∈ [0, π]
in standard spherical coordinates is thus θ = θ1 in medium 1 and θ ≡ π − θ2 in medium 2.
In medium 1, the angular distribution of the power radiated with p and s polarization is

P1,p(θ1, ϕ) = 3
2πn

3 cos2 θ1

[
cos Θ sin θ2 + sin Θ cos θ2 cos(ϕ− Φ)

cos θ1 + n cos θ2

]2

(S27p)

P1,s(θ1, ϕ) = 3
2πn

3 cos2 θ1

[
sin Θ sin(ϕ− Φ)
n cos θ1 + cos θ2

]2

(S27s)

where n ≡ n1/n2 is the refractive index ratio of the interface. Eq. (S27) are replaced by

P1,p(θ1, ϕ) = 3
2π

n3

n2 − 1 cos2 θ1
n2 cos2 Θ sin2 θ1 + sin2 Θ cos2(ϕ− Φ)(n2 sin2 θ1 − 1)

(n2 + 1) sin2 θ1 − 1 (S28p)

P1,s(θ1, ϕ) = 3
2π

n3

n2 − 1 cos2 θ1 sin2 Θ sin2(ϕ− Φ) (S28s)
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in the regime where evanescent plane waves in the dipole’s near field are transmitted as plane
waves into medium 1—namely, for n > 1 and θ1 > θ1,c = arcsin 1/n.

In medium 2 the angular distribution of the radiated power is

P2,p(θ2, ϕ) = 3
2π cos2 θ2

[
n cos Θ sin θ2 − sin Θ cos θ1 cos(ϕ− Φ)

cos θ1 + n cos θ2

]2

(S29p)

P2,s(θ2, ϕ) = 3
2π cos2 θ2

[
sin Θ sin(ϕ− Φ)
n cos θ1 + cos θ2

]2

(S29s)

which are replaced by

P2,p(θ2, ϕ) = 3
2π

1
1− n2 cos2 θ2

n4 cos2 Θ sin2 θ2 + sin2 Θ cos2(ϕ− Φ)(sin2 θ2 − n2)
(n2 + 1) sin2 θ2 − n2 (S30p)

P2,s(θ2, ϕ) = 3
2π

1
1− n2 cos2 θ2 sin2 Θ sin2(ϕ− Φ) (S30s)

in the regime where the dipole radiation is totally internally reflected at the interface—
namely, for n < 1 and θ2 > θ2,c = arcsinn. If the dipole is placed in medium 1 instead, the
subscripts 1 and 2 must be exchanged in Eq. (S27)–(S30) as well as in the definition of n.

The overall power distribution P(θ, ϕ) = Pp + Ps described by Eq. (S27)–(S30) is rep-
resented in Fig. S4 for an interface of glass with air, water, and index-matching immersion
oil, and for dipoles having different orientations. Discontinuities of the distribution occur
in the denser medium at the critical angle (θ1,c = 41.1◦ in air and θ1,c = 61.0◦ in water)
as well as along the interface, where propagation is impeded. These plots highlight how
significantly the directionality of the emission is affected by the presence of an interface, even
at a moderate refractive index mismatch. Simple phenomenological methods used sometimes
in literature such as the effective medium approximation are therefore inadequate for the
quantitative analysis presented in this work.

Normalization of the radiated power distributions P(θ, ϕ) is normalized to the total
power radiated Ptot expressed in units of Piso ≡ limzno→∞ Ptot(zno), i. e. the power radiated
into an isotropic medium of refractive index n2∫

4π
P(θ, ϕ) dΩ = Ptot

Piso
. (S31)

Piso is related to the total power Pvac radiated in vacuum (n2 = 1) through

Piso(n2) = n2
p2ω4

12πε0c3
0

= n2Pvac. (S32)

The quartic frequency dependence of Eq. (S32) is characteristic of dipole emission and
rules the scattering spectrum of small dielectric particles, which display no material (e. g.
plasmonic) resonances. Interestingly, Ref. [S6] demonstrates that the two dipoles with
orientation ⊥ and ‖ to the interface radiate two orthogonal electromagnetic modes in the
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Figure S4. Normalized angular distribution P(θ, 0) × (Piso/Pvac) of the power radiated by an
oscillating electric dipole placed at a planar θ = 90◦ dielectric interface. Medium 1 (above) and
medium 2 (below) have refractive indices n1 = 1.52 and n2 as indicated in the legend of (b). The
dipole is placed in medium 2 at a distance zno = 0 from the interface. Note that the radial scale
changes between panels. The orange arrows/dot indicate the dipole orientation:
(a) Θ = π/2, Φ = 0; (b) Θ = 0;
(c) Θ = π/2, Φ = π/2; (d) Θ = π/4, Φ = 0.

far-field, so that the power emitted by an arbitrarily-oriented dipole can be decomposed into
their independent contributions

Ptot

Piso
(n,Θ) = pe,⊥(n) cos2 Θ + pe,‖(n) sin2 Θ . (S33)

The coefficients in Eq. (S33) can be expanded into a Taylor series in powers of 4πzno/λ2. In
the limit zno = 0 adopted in this work, we retain only the zero-order terms of the expansion,
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whose coefficients are reported in Ref. [S5]

pm,⊥= 2
5
n5 − 1
n2 − 1 , (S34a)

pm,‖ = 1
5
n5 − 1
n2 − 1 −

1
2

n2

n+ 1

(
1− 3n

n2 + 1

)
− 3

2
n4 ln

[
(
√
n2 + 1− n)(

√
n2 + 1 + 1)/n

]
(n2 − 1)(n2 + 1)3/2 ,

(S34b)

pe,⊥ = 2n2

n2 + 1pm,‖ −
n2 − 5
n2 + 1pm,⊥ − 2, (S34c)

pe,‖ = 3 pm,⊥ − pm,‖

n2 + 1 , (S34d)

where the m and e subscripts refer to a magnetic and an electric dipole respectively.

B. Parameters of some experimentally relevant nano-objects

In order to compute the integral (S26) we need first to break down Pno into dipolar
contributions. To begin with a simple description, one could represent the NanO as a single
dipole p induced by the exciting field Eexc

p = ε0εmαEexc (S35)

where α is the polarizability tensor of the NanO and εm the permittivity of the embedding
medium. Then, in terms of the dipolar power distribution introduced in the previous section

Pno(θ, ϕ) ∼ PisoP(Θ,Φ, θ, ϕ) (S36)

where P is the normalized angular distribution of the power scattered by p. However, the
microscope illumination cannot be accurately represented by a single analytical expression
of Eexc due to its incoherent character— that is why the sign ∼ was used in Eq. (S36). As
discussed in Sec. S.IVA, the microscope illumination is an incoherent superposition of plane
waves, whose analytical form we derived in Sec. S.III. Consequently, the NanO is not just a
single dipole, but rather a collection of dipoles oscillating with unrelated phases, and Pno is
the sum of the powers radiated by all the dipoles. The individual dipolar contributions have
the form (S36) and their amplitude is proportional to Piso ∝ p2 ∝ |Eexc|2, that is, to the
intensity of the exciting plane wave. Now, we found in S11 that the illumination intensity
does not depend on θi, and therefore all the dipolar contributions have the same weight in
the sum. In the dipole model we outlined, Eq. (S26) reads

P l
det(θli, θ

l

i, θd, θd) ∝
∫ θ

l
i

θl
i

dθi sin θi

∫ 2π

0
dϕi

∫ θd

θd

dθ sin θ
∫ 2π

0
dϕ p2(θi, ϕi)P(θi, ϕi, θ, ϕ) . (S37)

where a constant factor n2ω
4/(12πε0c

3
0) in front of the integral has been omitted. In fact,

the scattering parameters Eq. (S25) are defined as power ratios, which also renders them
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independent of NanO size (within the dipole approximation) and composition (assuming
an isotropic material response) – these properties affect only the absolute value of Pdet. In
Eq. (S37) we highlighted that both the amplitude p and the orientation (Θ,Φ) of p depend
on the direction of incidence of Eexc given by θi ∈ [θli, θ

l

i] and ϕi ∈ [0, 2π) owing to the axial
symmetry of our illumination geometry.

Let us now consider the specific relevant scenario where all dipoles have a fixed orientation
(Θ,Φ) regardless of the exciting polarization. This is relevant for instance at the longitudinal
plasmon mode of an elongated NanO, where the dipoles are mostly excited along the
longitudinal direction. Then P(θ, ϕ) does not depend on (θi, ϕi), and Eq. (S37) can be
factorized into an excitation integral and a detection integral, P l

det = Llexc Ldet, with

Llexc(θli, θ
l

i) =
∫ θ

l
i

θl
i

dθi sin θi

∫ 2π

0
dϕi p

2(θi, ϕi) , (S38)

Ldet(θd, θd) =
∫ θd

θd

dθ sin θ
∫ 2π

0
dϕ P(θ, ϕ) . (S39)

Llexc is proportional to the total radiated power, and Ldet is the power normalized to Piso,
emitted within the detection range Ωd. The excitation and detection parameters, given by
Eq. (S25), can be written as

ζ = Lbf
exc(θbf

i , θ
bf
i )

Ldf
exc(θdf

i , θ
df
i )

and ηbf = ηdf = Ldet(θobj, π)
Ldet(0, π) (S40)

with Ldet(0, π) = Ptot/Piso given by Eq. (S33). In the rest of the section, the integrals (S37) or
(S39)-(S39) are computed for some diagonal forms of α corresponding to relevant symmetries
of the resonant modes of NanOs.

1. Uniaxial polarizability parallel to the interface

Let us begin by considering a uniaxial α parallel to the interface—say along x without
loss of generality: (αxx, αyy, αzz) = (α, 0, 0). This describes well, for instance, the longitudinal
resonant mode of elongated particles like rods lying on the substrate, as well as the bonding
mode of dimers, which is linearly polarized along the particle separation. As a result of the
anisotropy of α, only the x component of Eexc excites dipoles of amplitude

p(θi, ϕi) = ε0εm

∣∣∣αEexc

∣∣∣ = ε0εmα
∣∣∣E2,x(θi, ϕi)

∣∣∣ . (S41)

The orientation of these dipoles is (Θ = π/2,Φ = 0) regardless of (θi, ϕi), and therefore we
can use the separated form (S38)-(S39) of P l

det. Substituting the expression of E2,x given by
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Eq. (S8) and Eq. (S13-2), the excitation integral (S38) reads

Llexc(ψ) ∝
∫ θ

l
i

θl
i

dθi sin θi

∫ 2π

0
dϕi

∣∣∣∣tp cos θt cosϕi cos(ψ − ϕi)− ts sinϕi sin(ψ − ϕi)
∣∣∣∣2

= π

2

∫ θ
l
i

θl
i

dθi sin θi

{∣∣∣tp cos θt

∣∣∣2+
∣∣∣ts∣∣∣2+ cos 2ψ

2
∣∣∣tp cos θt + ts

∣∣∣2} (S42)

with an explicit dependence on the linear polarization ψ of the excitation in the BFP of the
condenser. Note that tp, ts, and θt in the integrand of Eq. (S42) are all functions of θi, given
by Eq. (S5) and Snell’s law respectively. We have omitted the constant factor (ε0εmαEi)2 in
front of the integral since we will take a ratio of this expression: In fact, ζ(ψ) is obtained by
substituting Eq. (S42) into Eq. (S40).

The detection integral (S39) is computed via Eq. (S29) and (S30), as collection occurs
only in medium 2

Ldet(0, αobj) = 4
∫ αobj

0
dθ2 sin θ2

∫ π/2

0
dϕ P2(θ2, ϕ)

∣∣∣∣Θ=π/2
Φ=0

. (S43)

The fourfold symmetry (with respect to the x = 0 and y = 0 planes) of P2 has been exploited
to reduce the azimuth integration range to ϕ ∈ [0, π/2]; these symmetry considerations
are useful in order to reduce the time required for numerical integration. Note that the
integration range of Ldet has changed from [θobj, π] to [0, αobj] because the integration now
runs over θ2 instead of θ—see Fig. S1b for the definition of these angles. ηbf = ηdf is
computed by substituting Eq. (S43) to the numerator of Eq. (S40), while the denominator is
is Ptot/Piso

∣∣∣
Θ=π/2

= pe,⊥, which is given by Eq. (S34).
The expressions of ζ and ηl we just derived were used for the quantitative analysis of the

gold rods investigated in the paper.
Unpolarized illumination While ηl is independent of the excitation for this choice of α,

ζ(ψ) depends on the polarization state in the BFP of the condenser. Let us then compute
ζ(ψ\) under unpolarized illumination. The incoherent p and s components of Eexc excite
two orthogonal sets of dipoles which yield an independent contribution to the total radiated
power, so that the detection integral (S38) reads

Llexc(ψ\) =
∫ θ

l
i

θl
i

dθi sin θi

∫ 2π

0
dϕi

{
p2

p + p2
s

}
. (S44)

The two dipole moments in Eq. (S44) have amplitude pp = ε0εmα|E2,p,x| and ps =
ε0εmα|E2,s,x|. Using the expressions (S8) for the fields (with amplitude Ei/

√
2 instead

of Ei since each component carries half of the total incident intensity) one finds

Llexc(ψ\) = π

2

∫ θ
l
i

θl
i

dθi sin θi

{∣∣∣tp cos θt

∣∣∣2+
∣∣∣ts∣∣∣2} (S45)
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namely Eq. (S42) without the ψ-dependent term, which corresponds to interference between
the p- and s-excited radiation. Since this term disappears for ψ = π/4 one has

Llexc(ψ\) = Llexc(π/4) =⇒ ζ(ψ\) ≡ Lbf
exc(ψ\)

Ldf
exc(ψ\)

= ζ(π/4) . (S46)

Although one has Llexc(π/4) = 1
2

[
Llexc(ψ) + Llexc(ψ + π/2)

]
, we emphasize that in general

ζ(π/4) =
1
2
[
Lbf

exc(ψ) + Lbf
exc(ψ + π/2)

]
1
2
[
Ldf

exc(ψ) + Ldf
exc(ψ + π/2)

] 6= 1
2
[
ζ(ψ) + ζ(ψ + π/2)

]
(S47)

and in particular for unpolarized illumination ζ(ψ\) 6=
[
ζ(0) + ζ(π/2)

]
/2.

Homogeneous environment In the special case n = 1 representing a homogeneous optical
environment, a closed-form expression of the scattering parameters can be derived. This
scenario is of practical interest, as it corresponds to a NanO either covered by a fluid matching
the refractive index of the substrate, or embedded in a solid matrix, or suspended within an
optical trap. For n = 1 one has tp = ts = 1 and θt = θi, so that Eq. (S42) simplifies to

Llexc(ψ) ∝
∫ θ

l
i

θl
i

dθi sin θi

{
cos2 θi + 1+ cos 2ψ

2
(
cos θi + 1

)2
}

=
[

cos3 θi

3 + cos θi + cos 2ψ
6

(
cos θi + 1

)3
]θl

i

θ
l
i

;
(S48)

note that the extrema in the final expression are inverted with respect to the integral. As for
ηl, the denominator is Ptot/Piso

∣∣∣
n=1

= 1 since there is no interface now. The numerator is
the integral of P2 in a homogeneous environment, given by Eq. (S29) for n = 1 and θ1 = θ2

ηl =Ldet(0, αobj)

=
∫ αobj

0
dθ2 sin θ2

∫ 2π

0
dϕ 3

8π

{
cos2 θ2 cos2 ϕ+ sin2 ϕ

}

=1
8
(
4− 3 cosαobj − cos3 αobj

)
.

(S49)

2. Uniaxial polarizability perpendicular to the interface

(αxx, αyy, αzz) = (0, 0, α) describes well, for instance, the longitudinal mode of pillars or
cones standing on a substrate. Reasoning along the same lines as in Sec. S.VB1, one has
p = ε0εmα |E2,z| and the excitation integral reads

Llexc ∝ π
∫ θ

l
i

θl
i

dθi sin θi

∣∣∣tp sin θt

∣∣∣2 (S50)

where we have exploited the axial symmetry with respect to ẑ for the integration over ϕi.
Similarly, the detection integral is

Ldet(0, αobj) = 2π
∫ αobj

0
dθ2 sin θ2 P2,p(θ2, ϕ)

∣∣∣∣
Θ=0

(S51)
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as P2,s ∝ sin2 Θ vanishes for Θ = 0 along with the ϕ dependence of P2,p, see Eq. (S29)
and Eq. (S30). ζ and ηl are computed by substituting the integrals (S50) and (S51) into
Eq. (S40), while the denominator of ηl is Ptot/Piso

∣∣∣
Θ=0

= pe,‖ given by Eq. (S34).
For axially-symmetric modes like the ones considered in this and the next two sections, the

powers in the definition (S25) of the scattering parameters do not depend on ψ. Therefore, ζ
and ηl are the same for every exciting polarization as well as for unpolarized illumination.
Indeed, the latter case is computed by averaging any two orthogonal polarization directions
as done in Eq. (S46).

Homogeneous environment With considerations analogous to Sec. S.VB1, the integrals
(S50) and (S51) simplify to

Llexc ∝
∫ θ

l
i

θl
i

dθi sin3 θi =
[

cos3 θi

3 − cos θi

]θl
i

θl
i

, (S52)

ηl = Ldet(0, αobj) = 2π
∫ αobj

0
dθ2 sin θ2

3
8π sin2 θ2 = 1

4
(
2− 3 cosαobj + cos3 αobj

)
. (S53)

3. Isotropic planar polarizability parallel to the interface

The plasmonic resonance of a thin disc lying on the substrate, or the transverse mode
of a rod standing on it, is described well by (αxx, αyy, αzz) = (α, α, 0). One then has
p = ε0εmα

√
|E2,x|2 + |E2,y|2 and ζ is computed using

Llexc ∝ 2π
∫ θ

l
i

θl
i

dθi sin θi

{∣∣∣tp cos θt

∣∣∣2 +
∣∣∣ts∣∣∣2} . (S54)

Not surprisingly, this result differs only by a constant factor from Lexc(ψ\) calculated for
(αxx, αyy, αzz) = (α, 0, 0), which is given by Eq. (S42) without the polarization-dependent
term. ηl on the other hand is the same found for (αxx, αyy, αzz) = (α, 0, 0): In fact, for
Θ = π/2 the azimuthal orientation of the dipole is irrelevant for ηl due to the axial symmetry
of the collection.

Homogeneous environment In accordance with the considerations just made for the
general case, ζ is calculated using Eq. (S48) without the polarization-dependent term and ηl

is given by Eq. (S49).

4. Isotropic polarizability

The isotropic optical response of a sphere is described by a scalar polarizability α. This
case is inherently more complicated than the previous ones, inasmuch as the direction of the
dipoles is not fixed: p = ε0εmαE2(θi, ϕi). Therefore P(θ, ϕ) depends on (θi, ϕi) via (Θ,Φ),
and the integral (S37) cannot be separated into excitation and detection parts as in the
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previous cases. As discussed above, when ẑ is an axis of symmetry of the object, ζ and
ηl do not depend on the exciting polarization: Calculations in this case are simplified by
assuming unpolarized illumination. Indeed, once the symmetry breaking introduced by a
linear polarization is removed, the whole problem (excitation + NanO) has axial symmetry,
and therefore we can limit ourselves to consider a single plane of incidence.

Choosing then ϕi = 0 without loss of generality, Eexc = E2 given by Eq. (S8) reduces to

E2,p(θi, 0) = tp
Ei√

2


cos θt

0
− sin θt

 eikt·r, (S55p)

E2,s(θi, 0) = ts
Ei√

2


0
1
0

 eikt·r. (S55s)

We emphasize that for unpolarized illumination E2,p and E2,s are incoherent, and therefore
E2 is not their sum. They excite two incoherent dipoles of amplitude

pp = ε0εmα
∣∣∣E2,p

∣∣∣ ∝ ∣∣∣tp∣∣∣ and ps = ε0εmα
∣∣∣E2,s

∣∣∣ ∝ ∣∣∣ts∣∣∣. (S56)

The integrand in Eq. (S37) is thus the sum of the powers radiated by the p- and s-polarized
dipoles

P l
det ∝ 2

∫ θ
l
i

θl
i

dθi sin θi

∫ θd

θd

dθ sin θ
∫ π

0
dϕ

∣∣∣tp∣∣∣2P(θ, ϕ)
∣∣∣∣Θ=π/2−Re(θt)
Φ=0

+
∣∣∣ts∣∣∣2P(θ, ϕ)

∣∣∣∣Θ=π/2
Φ=π/2


(S57)

where P(θ, ϕ) has only a twofold symmetry with respect to ϕ because pp is not parallel to
the interface. The real part appearing in the definition of Θ for the p dipole (hence Θp)
fixes pp ‖ ẑ for θi ≥ θ1,c, where only the imaginary part of θt varies; we will discuss soon
the reasons and the effects of this approximation. Eventually, ζ and ηl are computed by
substituting Eq. (S57) into Eq. (S25). Note that the explicit expressions (S29)–(S30) of
P have to be evaluated only for the denominator of ηl; all other powers in Eq. (S25) are
integrals over Ωd = 4π and can be simplified using Eq. (S31). These expressions of ζ and ηl

were used for the quantitative analysis of the gold and polystyrene spheres investigated in
the paper.

To summarize, differently from the previous cases, for a sphere Pno depends on the
illumination. This is illustrated by Fig. S5, where the detection parameter is computed using
a 1◦ wide illumination cone. A discontinuity of η1◦(θi) at θi = θ1,c separates two regimes:

• For θi < θ1,c one has Θp = π/2− θt; as the p dipole progressively aligns to −ẑ (where
the objective is placed) less scattering is collected, see Fig. S4.
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Figure S5. Fraction η1◦ of
scattering collected by the
objective (NA = 0.95) for
a polar range of incidence
θi ± 0.5◦. The scatterer is a
small sphere in air (n2 =
1.00) placed onto a glass
substrate (n1 = 1.52), see
sketch. The critical angle
θ1,c = 41.1◦ is indicated.

• For θi ≥ θ1,c one has Θp = 0; having both p and s dipoles a fixed orientation, the trend is
ruled by their relative amplitudes. Specifically, |tp| decreases more rapidly than |ts|, and
therefore the relative contribution to Pobj of the s dipole—which is favorably oriented
with respect Ωobj —increases with θi.

Polarization in the total internal reflection regime A peculiar property of the evanescent
wave is the elliptical polarization of its p component. Indeed, in the plane of incidence,
choosing ϕi = 0 for simplicity, Êt,p according to Eq. (S6p) is written as

Êt,p = θ̂(θt) =


cos θt

0
− sin θt

 =


i
√
ε−2 − 1

0
−ε−1

 with ε−1 = n1

n2
sin θi . (S58)

Therefore, Êt,p describes an ellipse of eccentricity
√

1− (p̂t)2
x/(p̂t)2

z = ε having its major
axis along ẑ. In general 1 ≥ ε ≥ n2/n1 for θ1,c ≤ θi ≤ π/2. At θi = θc the ellipse degenerates
into a line (ε = 1) perpendicular to the interface, while ε decreases for larger values of θi up
to grazing incidence, where the polarization is almost circular (ε� 1) for highly mismatched
interfaces (n1 � n2).

In Eq. (S57) we have set pp ‖ ẑ in the TIR regime, thereby neglecting the elliptic
polarization of the exciting evanescent wave. This approximation cannot be easily avoided
since the analytical expressions of P(θ, ϕ) presented in Sec. S.VA specifically refer to a
dipole oscillating along a given direction. On the other hand, its effect on the calculated
scattering parameters is expected to be only a few %; let us present here a qualitative
argument to estimate the error in ηl. The largest error occurs for a quasi-circular polarization
state, which is generated at near-grazing incidence for a highly-mismatched interface, and
can be decomposed into an x and a z component of almost equal magnitude. If any effect
of coherence between the two components is neglected, they excite two incoherent dipoles.
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Our approximation then consists in replacing the x dipole with a second z one. The effect
of rotating by 90◦ a dipole out of two can be assessed in Fig. S5, by comparing θi = 0
where pp, ps ⊥ ẑ, and a certain θi value in the TIR range where pp ‖ ẑ instead in our
approximation. For a glass/air interface this value must be θi = 51◦, where |tp| = |ts| and
thus pp = ps (as also is for θi = 0). The collected fraction of p-excited scattering is therefore
underestimated by ηl

∣∣∣
θi=0
− ηl

∣∣∣
θi=51◦

= 0.022 as can be observed in Fig. S5; that is, 17% of
ηl
∣∣∣
θi=51◦

.
Now, ηl results from a p contribution underestimated by the amount calculated above, and

an s contribution which is not affected by our approximation. The s polarization contributes
approximately twice as much because |ts| = 1.5 |tp| at near-grazing incidence and due to the
more favorable orientation of the s dipole with respect to the collection. Therefore the overall
underestimate of ηl is slightly above 5%. Furthermore, we emphasize that this argument
refers to a worse-case scenario, whereas a significantly smaller error is expected in typical
experimental conditions where

1. near-grazing incidence angles are hardly accessed ( θdf
i = 59◦ is the maximum value used

in our high-NA measurements);

2. the glass/water and glass/air interfaces commonly used are only moderately mismatched,
resulting in rather large values of ε.

Homogeneous environment For n = 1 and (θd, θd) = (0, π) both terms of the integrand
in Eq. (S57) reduce to Ptot/Piso = 1 and the equation reduces to

P l
sca ∝ 2

∫ θ
l
i

θl
i

sin θi dθi = − cos θi

∣∣∣∣θ
l
i

θl
i

. (S59)

For n = 1 and (θd, θd) = (θobj, π) Eq. (S57) becomes instead

P l
obj ∝

∫ θ
l
i

θl
i

dθi sin θi

∫ αobj

0
dθ2 sin θ2

3
8

{
3 + 3 cos2 θi cos2 θ2 − cos2 θi − cos2 θ2

}
. (S60)

Eq. (S59) and Eq. (S60) are respectively the denominator and the numerator of ηl; after
some algebraic simplifications we find

ηl ≡ Pobj

Psca
= 1

8

[(
8−9 cosαobj+cos3 αobj

)
+
(

cos2 θi+cos θi cos θi+cos2 θi

)(
cosαobj−cos3 αobj

)]
.

(S61)
In the limit of small NAs, θi, θi � 1, Eq. (S61) simplifies to the expression (S49) found for
(αxx, αyy, αzz) = (α, 0, 0), as expected.
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S.VI. CHARACTERIZATION OF THE EXPERIMENTAL ILLUMINATION

The analytical calculations presented in the previous sections assumed that the condenser
lens is a perfect aplanat with a homogeneous illumination in the BFP. In this section we
discuss how to realize these conditions using a commercial microscope, the extent to which
they are verified in our experimental set-up, and how to correct for eventual deviations.

We produced a homogeneous intensity over the BFP by inserting an engineered diffuser
(Thorlabs, ED1-C20) in the illumination path before the field diaphragm. According to the
manufacturer’s specifications, the angular distribution of the transmitted intensity displays
a top-hat pattern, namely approximately flat for |θ| < 11◦ and steeply dropping off to zero
outside this central range.

We measured the illumination power in the BFP, Pbfp, by scanning a photodiode (Thorlabs,
power meter PM100 + Si sensor S120B) along a diameter of the circular region corresponding
to the condenser maximum aperture. To increase the spatial resolution, the sensor was
covered by a dark mask with a circular opening of 2mm diameter, corresponding to 0.07 NA.
The results are reported in Fig. S6a for scans along and across the orientation of the image of
the bulb filament, which is visible without the diffuser. The power is rather flat over most of
the NA range of the condenser, and displays a drop larger than 10% only for NAi > 1.2. The
profile across the filament is less flat, suggesting that the filament image is not completely
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Figure S6. Illumination power in the BFP Pbfp as a function of the numerical aperture of illumination
NAi for (a) a top-hat diffuser and (b) a standard diffuser and 4:3 beam expander. The power was
measured along a straight line through the center, under the same condition as the experiments
presented in the paper. The directions along and across refer to the orientation of the image of
the bulb filament. The vertical lines at NAi = 1.34 indicate the maximum NA of the condenser
aperture.
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erased by the diffuser. This brings about a slight dependence on ϕi of the illumination on
the sample plane, which we have neglected in our analytical description. To obtain an even
flatter illumination in the BFP of the condenser, one can introduce a 4:3 beam expander
(Nikon MEL59500 T-C High NA Common Condenser Lens Unit) in front of the condenser,
at the expense of the total illumination power. In comparison, the standard diffuser from
Nikon along with the 4:3 expander provides the profile shown in Fig. S6b, where Pbfp reduces
to half of the peak power at NAi ' 1.2, and to less than one third at NAi ' 1.34.

The NA dependence of the power Pi impinging on the sample is additionally affected
by the dependence of the transmission of the condenser on NAi, which is expected to be
lower at high NA due to stronger reflections from the internal optical interfaces at higher
angles of incidence. We therefore we measured directly Pi(NAi) after the condenser. To do
so, we pierced a circular aperture of 1.8mm diameter in a dark mask placed in the BFP
of the condenser, so that the illumination is a light needle of well defined NAi. The mask
was mounted on a slider to allow a continuous variation of NAi along the direction of the
bulb filament. Absolute NA reading was provided by a ruler (white stripe of paper in the
top left corner of Fig. S7, left) calibrated with an interpolation of the known NAs of four
different microscope objectives and the condenser itself. A half-ball lens attached to the front
lens of the condenser as shown in Fig. S7 (left) transmits the light needle with the same
efficiency for all NAi values, mimicking the n = 1.52 immersion medium. The transmitted Pi

is measured with a photodiode (Thorlabs, power meter PM100 + Si sensor S120B). The data
shown in Fig. S7 (right) refer to the spectral band λ = (600± 20) nm; no relevant differences
were observed across the whole investigated spectral range 400 nm to 750nm. The overall
trend resembles the one in Fig. S6, but the reduction of Pi towards large NAs is somewhat
stronger. For instance, at NAi = 1.20± 0.05, Pi is reduced by 25% with respect to the peak
value, whereas in the BFP only about 10% are seen. Note however the error bars, indicating
that each data point incorporates some contributions from larger values of NAi too.

In order to minimize systematics when adopting our quantitative method, one should avoid
the largest NA range for illumination—NAi > 1.2 for our set-up according to Fig. S7 (right).
Furthermore, the angular dependence of the illumination can be characterized experimentally
as just described, and taken into account in the analysis as we will now discuss. The main
effect of a reduction of Pi at large NAs is to reduce the DF illumination with respect to
the intensity that would be produced by the idealized system. As a result ξ ≡ Ibf

i /Idf
i is

underestimated and so is σdf
sca, which is proportional to ξ. Now, I li appearing in the definition

of ξ is the intensity of the illumination traversing the sample plane, which the experimental
cross-section are referenced to. In these supporting information we have called the same
quantity I lffp, and derived its expression in Eq. (S18)–(S20). We can introduce the angular
dependence of Pi in the integral to calculate a generalized ξ factor, namely

ξ̃ =
∫
Abf

i
Pi(θi) dAbfp∫

Adf
i
Pi(θi) dAbfp

=
∫ θbf

i
θbf

i
Pi(θi) cos θi sin θi dθi∫ θdf

i
θdf

i
Pi(θi) cos θi sin θi dθi

. (S62)
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Figure S7. (Left) The condenser with a half-ball lens attached to the front lens. The lens is held in
place by the surface tension of a thin layer of immersion oil. Note that although the lens casing
reads 1.4, the maximum aperture of the condenser is 1.34 NA. The manufacturer logo on the barrel
has been digitally blurred. (Right) Normalized illumination power Pi transmitted by the condenser
as a function of the numerical aperture of illumination NAi, measured under the same condition
as the experiments presented in the paper. NAi is varied in the direction along the bulb filament
image in the BFP of the condenser. The solid line is the fit to the data given by Eq. (S63). The
vertical lines at NAi = 1.34 indicate the maximum NA of the condenser aperture.

It is easy to see that ξ̃ reduces to Eq. (3) of the paper for Pi(θi) = 1. To compute the integrals
in Eq. (S62) one can use an analytic form of Pi(θi). We used the function

Pi(θi) = Pi(0)−
(
θi

θ̃i

)a
−
(
θi

θ̃i

)b
with Pi(θi) = 0.98, a = 5, b = 10, θ̃i = 1.26 rad (S63)

which provides a good fit to the experimental data as shown in Fig. S7. For the illumination
ranges NAbf

i ∈ [0, 0.95] and NAdf
i ∈ [1.1, 1.3] —which we used for the polystyrene bead

experiment —Eq. (S62) and (S63) yield ξ̃ = 2.54. With respect to the uncorrected value
ξ = 1.88, this brings about a 35% increase in σdf

sca, which is included in the quantitative
measurements in Fig. 5 of the paper. This effect is suppressed when the largest illumination
NAs are not included: For instance reducing the DF range to NAdf

i ∈ [1.1, 1.2]—which we
used for the gold rod experiment —the correction amounts only to 17%.

Another consequence of a reduced DF illumination is the underestimate of ζ ≡ P bf
sca/P

df
sca

calculated for the idealized illumination. A larger ζ results in a smaller σbf
sca according

to Eq. (7a) of the paper; however, this scattering correction is negligible for absorption-
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dominated NanOs, such as the metal nanoparticles we investigated in this work. We have
not included any corrections to ξ and ζ in the analysis of the gold spheres and rods in order
to retain the simplicity of the analytical approach, and considering that the discrepancy with
simulations is governed by other, larger systematics. We will show in future works how to
increase the accuracy of our quantitative method with various improvements both in the
experiment and in the analysis procedure, including corrections as discussed above.

S.VII. ADDITION OF DAMPING TO THE PERMITTIVITY

The lifetime of the localized surface plasmon resonances (LSPRs) sustained by metal
NanOs is limited by both radiative and non-radiative processes, corresponding respectively
to scattering and absorption of light. Non-radiative relaxation mechanisms can be further
distinguished: Let us call intrinsic those mechanisms present in a defect-free infinite crystal,
i.e. collisions of electrons with other electrons and the ionic lattice; all other channels, such as
collisions of electrons with lattice defects and the specimen surface, are lumped together into
the denomination of extrinsic. In numerical modeling, radiative damping is automatically
accounted for by the electromagnetic solver, whereas non-radiative damping is included via
the material properties, specifically via Im ε.

In this work ε(ω) of gold was taken from the experimental data sets by Johnson and
Christy [S9], McPeak et al. [S10], and Olmon et al. [S11]. These were measured via spec-
troscopic ellipsometry on thin films deposited in vacuum, barring the last one, which
characterized (among other samples) a single crystalline optically-thick layer. The measured
ε(ω) are therefore expected to include some amount of extrinsic damping, due to sample
imperfections (especially for Ref. [S9]) and surface contributions (which affect reflection
measurements). Nonetheless, the simulated spectra consistently exhibit sharper LSPRs than
our experiments, indicating the NanOs we measured have a larger extrinsic damping. We
ascribe this to surface contributions (collisions of electrons with the surface become frequent
for a particle of size comparable to the electron mean free path, which is about 40nm in
gold), to chemical interface damping (due to molecules chemically adsorbed onto the NanO
surface, see Ref. [S12]) and, for the gold spheres only, to crystalline defects observed in
transmission electron microscopy (TEM), see Fig. 3a of the paper. Additionally, also the
radiative damping resulting from numerical simulations is inaccurate to some extent, since it
refers to NanOs of idealized shape and homogeneous material.

In order to reproduce the experimental cross-section spectra, and hence perform a more
reliable optical sizing, the material properties used in numerical models must represent
as accurately as possible the measured NanOs. We therefore modified the permittivity
as in a previous work by our group [S13]. First, the aforementioned experimental data
sets were fitted with an analytical expression ε(ω) in the spectral range of interest (350 nm
to 900nm). Second, the expression thereby found was modified to include the additional
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damping exhibited by each individual NanO. To carry out the first step, we split the material
response into the contributions of free and bound electrons (ε = εf + εb) and provide the
analytical expression of the two terms.

Free electrons The Drude model describes the free electron response as

εf = ε∞ −
γ0σ0

ω(ω + iγ0) = ε∞ + iσ0

(
1
ω
− 1
ω + iγ0

)
with σ0 =

ω2
p

γ0
(S64)

where γ0 is the angular rate of electron relaxation, σ0 is the real DC conductivity, ωp is the
plasma frequency, and ε∞ is the high frequency limit of ε(ω). The low energy part of the
permittivity — say for λ > 700 nm— is fitted well by Eq. (S64) for the data sets by Johnson
and Christy and McPeak et al., as will be shown below. On the other hand, a satisfactory
agreement could not be reached with the data set by Olmon et al..

Now, in the standard Drude model, the frequency dependence of the damping and the
charge carrier mass are neglected. In the last equality of Eq. (S64) εf is decomposed into two
poles; to include such dependencies, following Ref. [S14], we can split the pole at ω = −iγ0

into two (or possibly more) distinct poles of the same form

εf = ε∞ + iσ0

(
1
ω
− 1− β
ω + iγ1

+ β

ω + iγ2

)
with σ0 =

ω2
p

(1− β) γ1 + βγ2
. (S65)

Note that this expression preserves causality as well as the asymptotic behavior of Eq. (S64)
(ω−1 at low frequencies and ω−2 at high frequencies), and reduces to the original expression
for β = 0 or β = 1. A good fit to the data set by Olmon et al. was obtained by adding a
small contribution β ∼ 10−4 of a pole corresponding to a much higher scattering rate, see
the fitting parameters reported in Table S1 (top).

Bound electrons The analytical model developed by Rosei [S15] and Guerrisi et al. [S16]
describes the response of bound electrons in gold. Following Eq. (9) of Ref. [S16], the
absorption is the sum of the contributions of the main optical transitions t active in the
spectral range of interest

Im εb = 2
3

(
2π~2e

meω

)2∑
t

AtJt(ω) with t = X, L+
5+6, L

+
4 . (S66)

Specifically, X indicates the interband transition from the d band to the Fermi surface near
the X point of the Brillouin zone, while L+

4 and L+
5+6 indicate the transitions near the L

point from the 4d and 5d+6d bands, respectively. The transition strengths At in Eq. (S66)
are related to the square of the corresponding dipole transition matrix elements Pt via

AX = PX
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Table S1. Parameters for fitting the analytical model of ε(ω) described in this section to various
experimental data set. Top table: Parameters affecting the free electron part of ε; Bottom table:
Parameters affecting the bound electron part of ε.

Experimental data set ε∞ ~ωp ~γ1 ~γ2 β

(eV) (meV) (eV) (10−4)

Johnson and Christy 1.9 8.78 63.8 – 0

McPeak et al. 2.1 9.23 39.5 – 0

Olmon et al. 2.0 8.65 36.2 3.29 3.9

Experimental data set ~ωX7 ~ωX6 ~ωL+
5+6 ~ωL+

4 ~ωL−4 PX PL+
5+6

PL+
4

b

(eV) (eV) (eV) (eV) (eV) ( 1
e2m3 ) ( 1

e2m3 ) ( 1
e2m3 )

Johnson and Christy 0.9 1.47 1.42 2.60 0.72 1.28 5.64 3.60 2.5

McPeak et al. 1.1 1.48 1.45 2.44 0.72 0.80 7.49 3.20 3.0

Olmon et al. 1.0 1.48 1.49 2.44 0.72 0.96 6.20 2.20 4.0

where i = 4 or 5 + 6. We fixed the values of the effective electron masses to the ones reported
in Ref. [S13], and used PX , PL+

5+6
, and PL+

4
as fitting parameters. The joint density Jt of

each transition appearing in Eq. (S66) can be expressed as

Jt(ω) =
∫ ωt

ωt

fd(ω′)− fp(ω, ω′)
kt(ω, ω′)

~ dω′ , (S68)

where the occupation probabilities of the p and d bands are given by the Fermi–Dirac
distributions

fp =
(

1 + exp ~ω′

kbT

)−1

(S69p)

fd =
(

1 + exp ~ω′ − ~ω
kbT

)−1

(S69d)

using the electron temperature T = 300K and defining the origin of the energy scale at the
Fermi level. The functions kt are modeling the inverse density of states close to the respective
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points in the Brillouin zone,

kX =
√
~

√√√√ω − ω′ − ωX7 +
mX
p‖

mX
d‖

(
ω′ − ωX6

)
(S70-X)
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(S70-L)

and the transition energies ~ωX7 , ~ωX6 , ~ωL+
5+6, ~ωL

+
4 , and ~ωL−4 are left as free fitting para-

meters. The integration limits in Eq. (S68) near the X point are ωX = −20kbT/~ and

ωX =


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for ω ≤ ωX7 + ωX6

ωX6 + (ω − ωX7 − ωX6 ) mX
d⊥

mX
p⊥+mX

d⊥
for ω > ωX7 + ωX6

. (S71)

Near the L point the minimum of the integration interval is

ωL+
i

= −ωL−4 − π2e~2

32a2
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where the lattice parameter of gold is a = 4.08Å. Note that some typos have been corrected
with respect to the corresponding Eq. (A22) in Ref. [S13]. The maximum of the integration
interval is

ωL+
i

=


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i )
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i
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i
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i ) m

L+
i

d⊥

m
L+

i
d⊥ +mL

p⊥

for ω > ωL
+

i

. (S73)

In order to reproduce in the model the broadening of the transition energies, we convolute
Im εb obtained via (S66) with a Lorentzian function

B(ω) = ~bγ0

2π~2
(
ω2 − b2γ2

0/4
)
,

(S74)

where b is an fitting parameter scaling the broadening relative to the Drude broadening. For
fitting the data set by McPeak et al., this broadening was modeled with the function

B(ω) = 1.76
2~bγ0

cosh−2
(

1.76ω
bγ0

)
(S75)

having the same full width at half maximum (FWHM) as the Lorentzian, but exponential
tails which are a better approximation of the physical lineshape when the scattering energies
of the interacting bath are limited, creating a non-Markovian dephasing with finite memory
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Figure S8. Symbols: Relative permittivity ε of a thin gold film measured by Johnson and Christy
(left) and McPeak et al. (right). Lines: Fit with the analytical model described in this section; a
variable damping was added as per Eq. (S76) with g/R = 0 to 100µm−1 in steps of 20µm−1.

time. When the modified Drude model (S64) including an additional pole is used, γ0 in
Eq. (S74) and Eq. (S75) is substituted with (1− β)γ1 + βγ2.

After determining Im εb with this model, Re εb is determined via the Kramers–Krönig
transform using the causality of the material response.

The analytical model just outlined with the parameters reported in Table S1 provides a
good fit to all the considered data sets. This is shown in Fig. S8 for the data set by Johnson
and Christy and McPeak et al., which we have used in this work for the optical sizing of the
gold spheres and the gold rods, respectively. The two experimental permittivities feature
a few noteworthy differences. Re εb for McPeak et al. displays a clearer signature of the
interband transitions below 400 nm and follows more closely the theoretical spectrum. It
exhibits as well a stronger free electron contribution, Re εf being about 10% larger in absolute
terms than Johnson and Christy, which entails a blue shift of the LSPR by about 5nm for
the gold spheres and 20nm for the gold rods, see Fig. 3d and Fig. 4e of the paper. Lastly,
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Im ε by McPeak et al. is lower for wavelengths longer than 500nm, resulting to sharper
LSPRs, as will be shown in the following. All these observations point towards a better
crystalline quality of the film measured by McPeak et al., and indeed their work focuses
mainly on optimizing deposition procedures.

As discussed at the beginning of this section, metal NanOs often exhibit experimentally
a larger damping than numerical simulations using bulk data sets. To better reproduce
experiments, one can modify the analytical ε(ω) found by fitting. Specifically, we have
increased the damping of the free electrons (to account for their additional collisions with
the NanO surface and crystal defects) by replacing γ0 in Eq. (S64) with

γ = γ0 + g

R
vf (S76)

where vf = 1.4× 106 m/s is the Fermi velocity and g an adimensional factor which paramet-
rizes the magnitude of the extrinsic damping of the NanO. When the modified Drude model
(S65) is used, both γ1 and γ2 are increased in this manner. It is customary in literature
to factor out a R−1 size dependence in Eq. (S76), because surface scattering is assumed
to be dominant extrinsic damping mechanism in small NanOs, and for small spheres it is
expected to scale as R−1, both in a classical billiard-type picture and in the quantum box
model proposed first by Kawabata and Kubo [S17]. In the spectral range of interest Eq. (S64)
reduces to

εf = ε∞ −
ω2

p

ω2 + γ2

(
1− i γ

ω

)
ω�γ−−−→ ε∞ −

ω2
p

ω2

(
1− i γ

ω

)
(S77)

so that Re εf is unaffected whereas Im εf increases linearly with g/R, as observed in Fig. S8.
We are now able to assess the effect of the additional damping on our numerical simulations.

In Fig. S9 the full width at half maximum (FWHM) of the main dipolar LSPR is plotted
for the gold spheres and rods (longitudinal mode) investigated in this work as a function of
g/R. For a fixed particle geometry (average deduced from electron microscopy), the FWHM
increases linearly with the damping to a good approximation, except for Olmon et al., where
the modified Drude model (S65) was used. The simulated FWHM can be compared to the
experimental linewidth represented by the horizontal dashed lines, so that the intersection of
these lines with the fit of the simulated data point individuates graphically the estimated
value of g/R for each particle.

For spheres (Fig. S9a) we compared the three data sets considered in this work. The
linewidth at g = 0 reflects the bulk damping γ0 of each data set, and is smaller for McPeak
et al. because of its smaller Im ε at λlspr. Consequently, a larger value of g is required to
reproduce the experimental linewidth when McPeak et al. is used. Values of g around unity
are in line with previous experimental reports in literature [S13, S18, S19].

For rods (Fig. S9b), we considered only the data set by McPeak et al., which provides
the best agreement with the experimental spectroscopy, see Fig. 4e of the paper. On the
other hand, different environments are compared, with the interesting finding that g/R
is systematically larger in air than in oil for the same rod. In fact, a dependence on the
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particle surroundings cannot be explained appealing to surface damping alone, and suggests
that other mechanisms such as chemical interface damping play as well a role in gold rods,
as recently reported by other groups, see Ref. [S12]. Notably, the average g/R in oil is
significantly smaller for rods than for spheres: 30µm−1 versus 140µm−1 (it seems more
meaningful to refer to g/R rather than g when comparing different particle shapes). When
correlated to the TEM images reported in the paper, which display a high crystalline quality
of rods (Fig. 4a) but not of spheres (Fig. 3a), this suggests that— in contrast to what is
typically assumed in literature— for spheres of the investigated size a major portion of the
extrinsic damping is due to crystal defects rather than surface scattering. In fact, the values
of g we have found are larger than the theoretical estimate gs = 0.73 for surface damping
alone calculated via the quantum-box model in Ref. [S17].
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Figure S9. Hollow circles: Simulated FWHM of the main dipolar LSPR as a function of the extrinsic
damping factor g. Bulk ε(λ) experimental data sets by Johnson and Christy (JC), Olmon et al.
(Ol), and McPeak et al. (Mc). Lines: Linear (JC, Mc) or parabolic (Ol) fits. Horizontal dashed
lines: FWHM of the experimental single-particle spectra. Each particle is identified by a symbol at
the end of the line (at an arbitrary horizontal position), which correlates to Fig. 3d–e of the paper
for the spheres and to Fig. 4e–f for the rods. (a) Sphere of radius R = 29nm (average from TEM
characterization) in a n = 1.52 environment. (b) Rod of width W = 28nm (average from TEM
characterization) and aspect ratio AR = 2.43 in air (n = 1.00) and AR = 2.45 in oil (n = 1.52)
(AR adjusted to have the longitudinal LSPR at the average experimental λlspr = 605 nm in air,
and λlspr = 695nm in oil), placed on a n = 1.52 glass substrate.
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S.VIII. OPEN DATA

The following materials are available free of charge in the open data repository of Cardiff
University at the DOI: 10.17035/d.2018.0064868399.

1. The raw data of all the figures presented in the paper and the supporting information.

2. Structural characterization of the investigated colloids, including a larger set of electron
microscopy images than what shown in the paper for the metallic particles.

3. The comsol models we used to simulate the scattering and the absorption of the
investigated NanOs, along with an extensive data set of gold permittivity modified with
additional damping.

4. A Matlab code to compute the scattering parameters implementing the analytical
model presented above.

5. Experimental characterization of the microscope illumination, to back up the assumptions
of the analytical description of it we have put forward.

6. The raw detected spectra and the quantitative cross-section spectra for all the 5 spheres
and 7 rods we have measured; these worksheets (produced by the Origin software) can
be used as templates for the quantitative analysis.

Generally speaking, we provide as open data all the materials that can help other users to
implement our analysis technique using their own microscope. The data set includes an
HTML index page which describes in detail the materials therein contained, and points to
the specific data corresponding to each figure panel.
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