
Journal of Information Security and Applications 48 (2019) 102365

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Getting to the root of the problem: A detailed comparison of kernel

and user level data for dynamic malware analysis

Matthew Nunes ∗, Pete Burnap , Omer Rana , Philipp Reinecke , Kaelon Lloyd

School of Computer Science & Informatics, Cardiff University, Queen’s Buildings, 5 The Parade, Cardiff, CF24 3AA, UK

a r t i c l e i n f o

Article history:

Keywords:

Dynamic malware analysis

Behavioural malware analysis

API-calls

Machine learning

a b s t r a c t

Dynamic malware analysis is fast gaining popularity over static analysis since it is not easily defeated

by evasion tactics such as obfuscation and polymorphism. During dynamic analysis it is common prac-

tice to capture the system calls that are made to better understand the behaviour of malware. There

are several techniques to capture system calls, the most popular of which is a user-level hook. To study

the effects of collecting system calls at different privilege levels and viewpoints, we collected data at a

process-specific user-level using a virtualised sandbox environment and a system-wide kernel-level using

a custom-built kernel driver. We then tested the performance of several state-of-the-art machine learning

classifiers on the data. Random Forest was the best performing classifier with an accuracy of 95.2% for

the kernel driver and 94.0% at a user-level. The combination of user and kernel level data gave the best

classification results with an accuracy of 96.0% for Random Forest. This may seem intuitive but was hith-

erto not empirically demonstrated. Additionally, we observed that machine learning algorithms trained

on data from the user-level tended to use the anti-debug/anti-vm features in malware to distinguish it

from benignware. Whereas, when trained on data from our kernel driver, machine learning algorithms

seemed to use the differences in the general behaviour of the system to make their prediction, which

explains why they complement each other so well. Our results show that capturing data at different priv-

ilege levels will affect the classifier’s ability to detect malware, with kernel-level providing more utility

than user-level for malware classification. Despite this, there exist more established user-level tools than

kernel-level tools, suggesting more research effort should be directed at kernel-level. In short, this paper

provides the first objective, evidence-based comparison of user and kernel level data for the purposes of

malware classification.

© 2019 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

t

T

s

f

i

i

h

fi

t

n

B

c

t

(

c

y

t

m

l

m

y

s

c

h

2

. Introduction

Malware , short for Malicious Software, is the all-encompassing

erm for unwanted software such as Viruses, Worms, and Trojans.

he threat of malware is highlighted by the fact that 350,0 0 0 new

amples of malware are identified every day [1] — far too many

or human analysts to manually analyse, thus motivating research

nto the automated detection of malware. Malware can be analysed

n one of two ways; through static code analysis or dynamic be-

avioural analysis. Static code analysis involves studying the binary

le and looking for patterns in its structure that might be indica-

ive of malicious behaviour without ever actually running the bi-

ary. Dynamic behavioural analysis involves running the binary in a
∗ Corresponding author.

E-mail addresses: nunesma@cardiff.ac.uk (M. Nunes), burnapp@cardiff.ac.uk (P.

urnap), ranaof@cardiff.ac.uk (O. Rana), reineckep@cardiff.ac.uk (P. Reinecke).

i

p

b

t

ttps://doi.org/10.1016/j.jisa.2019.102365

214-2126/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article u
ontrolled environment, such as an emulated environment, or Vir-

ual Machine (VM), and searching for patterns of Operating System

OS) calls or general system behaviour that are indicative of mali-

ious behaviour. Static analysis has become less effective in recent

ears due to the fact that malware writers can circumvent detec-

ion methods using techniques such as code obfuscation and poly-

orphism [2,3] . As a result, behavioural analysis has gained popu-

arity since it actually runs malware in its preferred environment

aking it harder to evade detection completely.

In order to conduct behavioural analysis, the sample being anal-

sed must be executed in such a way that data relating to the

ample’s behaviour can be captured while it is running. That data

an subsequently be used to train an automated machine learn-

ng classifier to distinguish malicious from benign software. One

opular mechanism in the literature for understanding malware’s

ehaviour during execution is through capturing the calls made

o the OS i.e., system calls. In order to capture this information,
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jisa.2019.102365
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2019.102365&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nunesma@cardiff.ac.uk
mailto:burnapp@cardiff.ac.uk
mailto:ranaof@cardiff.ac.uk
mailto:reineckep@cardiff.ac.uk
https://doi.org/10.1016/j.jisa.2019.102365
http://creativecommons.org/licenses/by/4.0/

2 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

d

t

m

t

a

l

v

f

T

t

c

t

t

w

w

n

m

fi

w

m

e

h

m

i

w

t

l

d

C

o

T

p

u

d

c

i

t

p

o

i

r

d

f

f
a tool must create a hook into the OS or monitored process. A

hook modifies the standard execution pathway by inserting an ad-

ditional piece of code into the pathway [4] . This is done in order

to interrupt the normal flow of execution that occurs when a pro-

cess makes a system call and subsequently document the event.

There are a number of methods to hook system calls in Windows

and these fall into two general categories: those that run in user

mode and those that run in kernel mode [4] . Kernel mode is one

of the highest privilege levels that can be reached in the computer,

whereas user mode is the privilege level that most applications

and users operate at. The argument for hooking in user mode is

that the code analysing the sample is “closer” to the application

being analysed. Whereas, the argument for hooking at kernel mode

is that the analysis program resides at a more elevated privilege

making it harder for malware to hide from an analysis tool at this

level.

The terms user ’ and kernel mode are labels assigned to specific

Intel x86 privilege rings built into their microchips. Privilege rings

relate to hardware enforced access control. There are four privilege

rings and they range from ring 0 to ring 3 [5] . Windows only uses

two of these rings, ring 0 and ring 3. Ring 0 has the highest privi-

leges and is referred to as kernel mode (this is the privilege most

drivers run at) by the Windows OS. Ring 3 has the least privileges

and is referred to as user mode (and is the level of privileges that

most applications run at) [6] . We focus on Windows here because

it is still the most targeted OS by malware as reported in [1,7,8] .

User-mode hooks tend to only record system/API calls made by

a single process since they usually hook one process at a time,

whilst kernel-mode hooks are capable of recording calls made by

all the running processes at a global, system level. This is an im-

portant difference as malware may choose to inject its code into a

legitimate process and carry out its activities from there (where it

is less likely to be blocked by the firewall). Alternatively, malware

could divide its code into a number of independent processes as

proposed by Ramilli et al. [9] so that no single process in itself is

malicious, but collectively, they succeed in achieving a malicious

outcome. Therefore the choice of hooking methodology could af-

fect the quality of the data gained. Another difference between

kernel and user level hooks is that each one hooks into a differ-

ent API. For example, one type of kernel level hook is to hook

the System Service Descriptor Table (SSDT) whose calls are similar

to those found in the native API, which is mostly undocumented,

whilst user mode hooks typically hook the Win32 API which is

documented [10] . Although methods in the Win32 API essentially

call methods in the native API, there may be some methods in the

native API that are unique to it (since it is only supposed to be

used by Windows developers) [11] . Likewise, there are some user

level methods that do not make calls into the kernel. Therefore,

it is of paramount importance that the difference in utility be-

tween data collected at each level is objectively studied so that

analysts can make an informed choice on which type of data col-

lection method to use. Another factor that could affect the data

collected is that due to the differences between the various types

of hooking methodologies, malware has to use different techniques

to evade each hooking methodology as mentioned by Shaid and

Maarof [12] . Consequently, if a piece of malware is focused on

avoiding a particular type of hooking methodology, it is likely that

any analysts using the same methodology to monitor malware will

see a very different picture to those using another methodology.

Evasive methods are not uncommon; in fact, one study found eva-

sive behaviour in over 40% of samples [13] . It should also be noted

that currently the majority of the existing literature captures user

level calls as shown in Table A1 in the appendix. This suggests that

the literature either believes that user level data has more utility

than kernel level data or does not believe there to be a significant

difference between user and kernel level data for the purposes of
etecting malware (although there are kernel level tools available,

hey are not as popular as user level tools).

Thus, given the aforementioned evasion concerns and funda-

ental differences in each class of hooking methodology, the mo-

ivation of this paper is to study the differences in data collection

t kernel and user level, and consider whether it effects a machine

earning method’s ability to classify the data. In addition, we pro-

ide insights into the utility of the different forms of data collected

rom a machine when observing potentially malicious behaviour.

his is particularly important in the cyber-security domain where

he focus tends to be on the data analysis method over the data

apturing method. We hypothesise that the features of malware

hat are used to differentiate it from benignware differ based on

he data capturing method used. In order to test our hypothesis,

e have created our own Kernel Driver that hooks the entire SSDT

ith the exception of one call. We chose to create our own ker-

el driver as many of the existing tools that hook the SSDT only

onitor calls in a specific category (such as calls relating to the

le system or registry) and provide no objective justification as to

hy they chose the calls they did (if they even make that infor-

ation available). Therefore, we hook all the calls in the SSDT to

nsure we do not miss any subtle details regarding malware be-

aviour and in order to make an objective recommendation on the

ost important calls to hook when detecting malware. Our driver

s also unique in that it collects the SSDT data at a global system-

ide level as opposed to a local process-specific level. In doing

his, we expect to determine whether collecting data at a global

evel assists in detecting malware or is simply adding noise. In or-

er to gather user level data to compare with our driver, we use

uckoo Sandbox, since it is the most popular malware analysis tool

perating at a user level (as shown in Table A1 in the appendix).

he data gathered from our driver and Cuckoo is then used to ex-

eriment with state of art machine learning techniques to better

nderstand the implications of monitoring machine activity from

ifferent perspectives. Alongside the general insights gained from

lassifying the data, we use feature ranking methods to provide

nsights concerning the behaviour of malware that is utilised by

he classifiers in order to distinguish it. In the interests of trans-

arency and reproduce-ability, we have also made the source code

f our kernel driver available at [14] and the data from our exper-

ments available at [15] . The driver can be installed on any system

unning Windows XP 32-bit and easily be extended to run on Win-

ows 7. In summary, the novel contributions of this paper are the

ollowing:

1. We perform the first objective comparison on the effective-

ness of kernel and user level calls for the purposes of de-

tecting malware;

2. We compare the usefulness of collecting data for malware

detection at a global, system-wide level as opposed to a

local, individual process level, providing novel insights into

data science methods used within malware analysis

3. We assess the benefits or otherwise of combining kernel and

user level data for the purposes of detecting malware;

4. We identify the features contributing to the detection of

malware at kernel and user level and the number of features

necessary to get similar classification results, providing valu-

able knowledge on the forms of system behaviour that are

indicative of malicious activity;

5. We conduct an extensive survey of dynamic malware analy-

sis tools used or proposed in the literature;

6. We create a driver that hooks all but one call in the SSDT

and gathers calls at a global level, which can be used to ex-

tend and enhance our work.

The remainder of this paper is structured as follows: Section 2 ’

urther describes the various hooking methodologies and the mo-

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 3

Fig. 1. System call visualisation.

t

o

S

e

t

s

2

2

p

p

s

a

a

a

(

s

N

a

a

t

m

i

d

s

2

s

c

i

i

fi

d

i

m

p

l

m

t

c

t

b

t

a

n

S

S

t

i

d

c

w

h

i

p

q

t

t

i

b

u

i

d

t

i

b

n

m

(

o

r

a

s

w

o

a

3

t

c

w

t

t

t

i

m

w

i

t

w

o
ivation for this paper. Section 3 ’ describes the various method-

logies already employed in the literature to gather kernel calls.

ection 4 discusses the experiments that were performed and the

nvironment they were performed in. Section 5 presents and in-

erprets the output from these experiments, and in Section 6 , we

ummarise our work and outline the next steps.

. Problem definition

.1. System call structure

In order to understanding how system calls are hooked, it is im-

ortant to first understand how system calls are structured. Fig. 1

rovides an example of the structure of a call tree for a Windows

ystem call. From user mode, a process may call createFileA, cre-

teFileW, NtCreateFile, or ZwCreateFile, however, ultimately, they

ll lead to the NtCreateFile method in the SSDT. In response to

 system call being made, the processor must move from Ring 3

user level) to Ring 0 (kernel level). It does this by issuing the

ysenter instruction. Although createFileA has been shown to call

tCreateFile/ZwCreateFile in Fig. 1 , strictly speaking, it calls cre-

teFileW. However, as they are provided by the same library, they

re shown at the same level. From Fig. 1 it can be seen that to get

he same information within user mode that is available in kernel

ode, more methods need to be hooked. The benefit of hooking

n user-mode, however, is that the analysis tool can observe finer

etails in system calls made. Our aim in this research is to under-

tand if these details are helpful or irrelevant.

.2. System call hooking

Fig. 2 shows the hooking methods that can be used to intercept

ystem calls organised according to the privilege they hook at.

Fig. 2 shows that there are a number of ways to intercept API-

alls using hooks — both at user level and kernel level. Each works

n a slightly different way. An Import Address Table (IAT) hook mod-

fies a particular structure in a Portable Executable (PE) file. The PE

le format refers to the structure of executables and DLLs in Win-

ows [16] . IAT hooks exploit a feature of the PE file format, the

mports that are listed in a PE file after compilation. An IAT hook

odifies the imports so that the import points to an alternative

iece of code as opposed to the legitimate function [11,17] . An in-

ine hook refers to when the prologue of a function is replaced in

emory with a jump to another piece of code [18] . In Windows,

he first five bytes of most functions are the same, therefore, this

an be replaced with a jump to an alternative piece of code where

he system call can be logged, and then control can be returned

ack to the original function (after executing the functionality in

he first five bytes).

Instrumentation refers to the insertion of additional code into

 binary or system for the purpose of monitoring behaviour. Dy-
amic instrumentation implies that this occurs at runtime [19] .

SDT hooks modify a structure in kernel memory known as the

ystem Service Descriptor Table (SSDT). The SSDT is a table of sys-

em call addresses that the OS consults to locate a call when it is

nvoked by a process. An SSDT hook replaces the system call ad-

resses with addresses to alternative code [4,11] . In a Model Spe-

ific Register (MSR) hook, the value of a specific register is over-

ritten so that it holds the address of the code performing the

ooking. This register is significant as after a system call is made,

ts value is loaded into the EIP register (which is the register that

oints to the next instruction to be executed). MSR hooks are fre-

uently employed by Virtual Machine Introspection (VMI) solu-

ions. VMI refers to solutions where the analysis engine resides at

he same privilege level as the hypervisor or Virtual Machine Mon-

tor (VMM) [20] . The last method is IRP hooking (a similar goal can

e achieved with filter drivers). I/O request packets or IRPs, are

sed to communicate requests to use I/O to drivers. In IRP hook-

ng , a driver intercepts another driver’s IRPs [4,11] . Filter drivers are

rivers that essentially sit on top of a driver for a device meaning

hat they receive all the IRPs intended for that driver [21] .

There are a number of resources that describe each of the hook-

ng methodologies in much more detail such as [4,11,22] . As can

e seen, the way each mechanism intercepts API-calls differs sig-

ificantly, and each is therefore detected and evaded in a different

anner. Furthermore, each mechanism hooks into different APIs

as mentioned previously), depending on whether it is a user-mode

r kernel-mode hook. Given all these differences, there is a very

eal possibility that a tool hooking in user-mode and monitoring

 specific process will get different data to a tool monitoring the

ame process in kernel-mode. This therefore raises the question of

hich privilege level gathers more beneficial data for the purposes

f detecting malware? This is the question this paper attempts to

nswer.

. Literature survey

In order to gain a better understanding of the tools used in

he literature and the methods that the tools use to gather API-

alls, we conducted an extensive review of the literature and noted

hich tool was used. The results of this are shown in Table A1 in

he appendix. Table A1 contains five columns; “Name” which is

he name of the tool, “Description” which describes the tool and

he hooking methodology it uses, “Kernel Hook” which is marked

f the tool employs a hook at kernel level, “User Hook” which is

arked if the tool employs a hook at user level, and “Used By”

hich lists the papers that used that tool. For each tool mentioned

n Table A1 , if the tool was available online, we tested it in order

o understand how it was intercepting API-calls. Where the tool

as not available, we used documentation to determine the type

f hook being used. To limit the length of the table, Table A1 only

4 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

Fig. 2. Hooking methodologies.

t

c

a

j

(

h

s

s

e

t

t

v

w

h

T

m

t

a

l

b

v

o

s

S

i

c

i

(

t

fi

m

u

t

T

t

d

fi

l

l

a
contains tools that had been used at least once in the literature

(i.e., at least one entry in their “Used By” column).

As can be seen in Table A1 , the majority of tools used to gather

API calls for the purposes of malware analysis use user level hooks

(72%). Currently, the literature suggests that Cuckoo Sandbox is by

far the most used tool. However, that does not mean that all pa-

pers using Cuckoo collected the same data, as it should be noted

that Cuckoo can be enhanced to log additional API calls. Ultimately,

all user level tools suffer from the same problem, in that they run

at the same privilege levels as the file they are monitoring and are

therefore much easier to evade than kernel level tools. In terms of

kernel data, there are a number of methods used in the literature

to gather data at this level. These can roughly be grouped by the

specific hooking method they employ to intercept calls. The four

main categories of kernel-mode methods in the literature are: fil-

ter drivers, MSR hooks & Virtual Machine Introspection, Dynamic

Binary Instrumentation (DBI), and System Service Descriptor Table

(SSDT) hooks.

3.1. Filter drivers

Filter drivers do not directly communicate with the hardware

but sit on top of lower-level drivers and intercept any data that

comes their way. The most well-known tools using filter drivers

are Procmon [23] and CaptureBAT [24] . H ̆ajm ̆a ̧s an et al. [25] take

a similar approach to that taken by Procmon and develop a fil-

ter driver that registers with Windows callback functions [26] so

that it is notified when any changes are made to the registry, file

system, or processes. Zhang and Ma [27] take a novel approach by

intercepting IRPs in their solution, MBMAS. They then use machine

learning to classify sequences of IRPs as malicious or benign. How-

ever, the limitation with using filter drivers is that they cannot in-

tercept the same breadth of API-calls that other hooking method-

ologies can. They focus on the major operations in particular cate-

gories (such as file system and registry).

3.2. Model specific register hook

A Model Specific Register (MSR) hook essentially hooks the

sysenter instruction. More specifically, it involves changing the

value of a processor-specific register referred to as the SYSEN-

TER_EIP_MSR register. This register normally holds the address of
he next instruction to execute when sysenter is called (which is

alled every time a system call is made). Therefore if this value is

ltered, when the sysenter instruction is called, the processor will

ump to the address pointed to by the new value in the register

which in this case can point to the analysis engine). Since an MSR

ook modifies a processor specific register, developers need to en-

ure that they modify the registers on each processor (since most

ystems nowadays contain multiple processors) [6] . There are few

xamples of an MSR hook being used as a standalone method in

he literature. Usually, it is employed in the context of VMI solu-

ions.

VMI refers to tool that operate at the same level as the Hyper-

isor. This provides benefits such as the ability to monitor a VM

ithout having a large presence on the VM (and thereby making it

arder for malware to detect the presence of the analysis engine).

he difficulty with monitoring at this level is that a “semantic gap”

ust be bridged in some way. The semantic gap refers to the fact

hat when monitoring at the VMM layer, much of the data avail-

ble is very low level (such as register values). This data is not at a

evel of granularity that is easy to interpret. Therefore, in order to

ridge that, solutions use a number of techniques to convert these

alues to more abstract values. For example, as mentioned previ-

usly, VMI solutions use a variation of the MSR hook whereby in-

tead of placing the address of the analysis solution into the SY-

ENTER_EIP_MSR register, an invalid value is placed into that reg-

ster. As a result, every time a system call is made and sysenter is

alled, a page fault will occur. This will in turn lead to the VMEXIT

nstruction being called which will pass control to the VMI tool

since it operates at the same level as the hypervisor). The VMI

ool must then examine the value of the EAX register in order to

nd out the system call made. Since monitoring system calls in this

anner can have a significant impact on performance, VMI tools

sually limit their monitoring to a particular process. To achieve

his, the tool must monitor for any changes in the CR3 register.

he CR3 register contains the base address of the page directory of

he currently running process, therefore, if the page directory ad-

ress of the process of interest is known, then system calls can be

ltered to only those emanating from the process of interest.

There are a number of VMI solutions in the literature. TTAna-

yze [28] is one of the best known tools employing VMI. TTAna-

yze executes malware in an emulated environment (QEMU [29])

s opposed to a virtual one. Unlike virtual environments (where

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 5

m

v

e

i

f

p

t

[

p

fi

e

t

o

I

a

p

s

s

c

p

w

f

o

s

m

d

I

B

c

o

s

a

b

t

V

m

i

t

o

a

a

f

o

3

e

o

J

a

i

o

T

m

M

b

S

u

S

o

t

t

p

a

b

A

k

w

o

m

a

l

3

a

M

t

t

D

i

m

t

s

t

i

t

m

d

t

a

b

i

a

h

[

g

G

t

T

n

t

i

i

c

t

a

m

t

B

w

a

r

c

v

l

s

e

o

v

c

p

i

f
ost instructions are executed on the processor), in emulated en-

ironments all instructions are emulated in software. This, they

xplain, makes it harder for malware to detect that they are not

n a real environment since a real system can be mimicked per-

ectly. However, this comes at the expense of performance, as sam-

les are executed significantly slower. Another well known tool in

his domain is Panorama [30] . Panorama is built on top of TEMU

31] (the dynamic analysis component of BitBlaze [31] that can

erform whole-system instruction-level monitoring), and performs

ne-grained taint analysis by monitoring any data touched by the

xecutable being analysed. Its contribution lies in the fine-grained

aint tracking it performs, even recording keystrokes among many

ther things. Ether [32] is a tool in VMI that differs by exploiting

ntel VT [33] which enables hardware virtualisation and provides

 significant performance boost when running a VM. Ether is also

articularly focused on not being detectable by malware and, as

uch, has very little presence on the guest machine. Osiris [34] is

imilar to Ether, however, it manages to perform an even more

omplete analysis by also monitoring any processes the original

rocess injects its code into. Lengyel et al. [35] propose DRAKVUF

hich focuses more on reducing the presence of an analysis engine

rom the guest machine as normally there is some code present

n the guest to run the process being monitored or help the VMI

olution with the analysis. However, DRAKVUF employs a novel

ethod to execute malware using process injection and therefore

oesn’t require any additional software to be present on the guest.

n addition, it monitors calls at both user and kernel level. Pék and

uttyán [36] take a different approach by using invalid opcode ex-

eptions instead of breakpoints to intercept system calls. Invalid

pcode exceptions are raised if system calls are disabled when a

ystem call is called. This, they argue, has better performance. In

ddition, their monitoring solution is not paired with a hypervisor

ut exploits a vulnerability [37] to virtualise a live system, forgoing

he need for a reboot to install the monitoring solution.

While it’s clear that significant progress has been made with

MM solutions, there is still a delay overhead incurred from the

echanism (breakpoints/page faults) that is typically used to mon-

tor API-calls. Ether, a well-known tool in this genre, was shown

o have approximately a 30 0 0 times slowdown [38] . This, among

ther things, makes it easier for malware to detect the presence of

 monitoring tool. Furthermore, while some solutions have man-

ged to remove much of the presence of the analysis component

rom the machine being monitored, this has the unfortunate effect

f making it even more challenging to bridge the semantic gap.

.3. Dynamic binary instrumentation (DBI)

Dynamic Binary Instrumentation refers to the analysis of an ex-

cutable through the injection of additional code into the source

r compiled code at runtime. This is usually implemented using a

ust-in-Time (JIT) compiler. In DBI, code is executed in basic blocks,

nd the code at the end of each block is modified so that control

s passed to the analysis engine where it can perform a number

f checks, such as whether a system call is being executed [39,40] .

wo of the most popular frameworks for achieving dynamic instru-

entation in Windows are DynamoRIO [39] and Intel Pin [41] .

The main limitation in solutions using JIT compilation is Self-

odifying and Self-Checking code (SM-SC) since DBI solutions can

e detected by the modifications they make to the code. Therefore,

PiKE [42] was proposed as an improvement to such tools since it

niquely did not use a JIT compiler, but breakpoints in memory.

pecifically, it employs “stealth breakpoints” [43] , that retain many

f the properties of hardware breakpoints, but don’t suffer from

he limitation that pure hardware breakpoints do of only allowing

he user to set between two and four. Through using such break-

oints, it is harder to detect the presence of the monitoring tool
nd the tool is more immune to SM-SC code. Reportedly, this even

rought a performance gain. Polino et al. [40] built their solution,

rancino, on top of Intel Pin which is focused on countering all

nown anti-instrumentation techniques that are employed by mal-

are to evade detection. They achieve through the use of a number

f heuristics.

The problems that solutions in this space suffer from is perfor-

ance and remaining undetectable by malware. Though [40] make

 considerable effort towards improving this, they admit their so-

ution is unlikely to be undetectable.

.4. SSDT Hooks

This is the method chosen in this paper to monitor API calls at

 kernel level. We chose to use an SSDT hook over a filter driver,

SR hook, or DBI tool for a number of reasons. A filter driver

ends to obtain the results from calling a system call as opposed

o the exact system calls called. While a VMM-layer monitor and

BI tool can suffer from a significant delay due to the manner

n which it intercepts system calls, allowing malware to detect a

onitor through measuring the delay from performing specific ac-

ions. In addition, it can be difficult to deal with SM-SC code with

uch tools. Furthermore, bridging the semantic gap whilst keeping

ransparency can be extremely challenging. Ultimately no method

s without its limitations (including the SSDT hook), but we chose

o use an SSDT hook since it has the most similarities in imple-

entation to a user-level hook (except that it hooks into the un-

ocumented kernel) and the data returned from it is analogous to

hat returned from a user level hook. Therefore it seems most suit-

ble for the purposes of a comparison. An SSDT hook also has the

enefit of not modifying anything on disk (since the SSDT is mod-

fied in memory) and therefore leaves a smaller footprint on the

nalysis machine.

While SSDT hooks have been used previously, they have not

ad as comprehensive a coverage of calls as ours has. Li et al.

44] employed an SSDT hook to automatically build infection

raphs and construct signatures for their system, AGIS (Automatic

eneration of Infection Signatures). AGIS then monitors a program

o see if it contravenes a security policy and matches a signature.

herefore, it only focuses on calls from a specific process and ig-

ores all other calls. Kirat et al. [45] propose BareBox to counter

he problems associated with malware capable of detecting that

t is being run in a virtual environment. Barebox runs malware

n a real system and is capable of restoring the state of a ma-

hine to a previous snapshot within four seconds. Barebox moni-

ors what the authors perceive to be important system calls using

n SSDT hook. However, as the number of devices attached to the

achine increase, the time it takes Barebox to restore the system

o a clean state increases considerably. Grégio et al. [46] propose

ehEMOT (Behaviour Evaluation from Malware Observation Tool)

hich analyses malware in an emulated environment first, then in

 real environment if it does not run within the emulated envi-

onment. They use an SSDT hook to monitor API calls relating to

ertain operations. However, by performing analysis on a real en-

ironment, BehEMOT suffers a similar problem to Barebox in re-

ation to restoration time. Furthermore, the focus with BehEMOT

eems to be producing human-readable and concise reports after

ach analysis and therefore, only small-scale tests were conducted

n a handful of samples.

As mentioned previously, where our solution differs is that pre-

ious solutions using SSDT hooks only log calls made to certain API

alls by certain processes. Our tool logs all calls (except one) by all

rocesses in order to determine their utility in classification. TEMU

s the only tool to offer similar functionality, however, where it dif-

ers is that it runs in an emulated environment (which is easier for

6 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

Fig. 3. How the AUC responds as sample size is increased .

Table 1

Quantity of each category of malware in

our dataset.

Category Quantity

Trojan 1846

Virus 458

Worm 86

Rootkit 34

Ransomware 23

Adware 22

Keylogger 2

Spyware 2

c

t

l

t

(

f

W

i

o

s

b

t

n

t

p

f

r

t

t

u

p
malware to detect [47]) and is focused on providing instruction-

level details as opposed to high-level system calls.

4. Method & implementation

In order to conduct the experiments required for our study,

2500 malicious samples were obtained from VirusShare [48] and

2500 clean samples were obtained from SourceForge [49] and File-

Hippo [50] . In order to select an appropriate sample size, we con-

ducted a series of classification experiments (described later) on

different sam ple sizes and monitored the trend in the Receiver

Operating Characteristic (ROC) Area Under the Curve (AUC) results

(ROC AUC is described later). In these experiments, we varied the

sample size from 100 samples up to over 20 0 0 (in increments of

100) and for each sample size, we trained the leading classifiers

(using 10-fold-cross-validation) and noted the ROC AUC returned

by the classifier. We then plotted the ROC AUC against the sample

size and observed when the curve plateaued for each classifier. The

results are shown in Fig. 3 .

Fig. 3 shows that after 10 0 0 samples, the AUC values almost

completely plateau. This suggests that after this point, adding more

samples will have an insignificant effect on the classification re-

sults. Therefore, we concluded that 2500 samples would be more

than enough. In addition, this sample size correlated with the data-

set sizes used in the literature [51–54] . The categories of malware

in our dataset are shown in Table 1 . This information was obtained

from VirusTotal [55] . With regards to the clean samples, each was

run through VirusTotal to ensure that it was not malicious.

To gather calls made to the SSDT, we wrote a Windows Kernel

Driver to hook all but one kernel call in the SSDT since none of

the tools available currently provide this. The only call we did not

hook, NtContinue, was not hooked due to the fact that hooking it

produced critical system errors. Our Kernel driver gathers global

data from a system perspective as opposed to simply monitoring

calls from a single process introduced into the system. Therefore,

the data from the tool can be used to predict whether the ma-
hine’s state is malicious or not. To gather user level data we chose

o use a tool readily available since there are already well estab-

ished solutions providing this. Specifically, we chose to use the

ool most frequently mentioned in the existing literature – Cuckoo

specifically, Cuckoo 2.0.3). Cuckoo is a sandbox capable of per-

orming automated malware analysis.

The experiments were carried out on a virtual machine with

indows XP SP3 installed. We chose to use Windows XP as writ-

ng a Kernel driver, particularly one delving in undocumented parts

f Windows, is frustratingly challenging. This, however, is made

lightly easier in Windows XP due to the fact that it has slowly

ecome more documented through reverse engineering. In addi-

ion, all 64 bit systems are backwards compatible with 32 bit bi-

aries [56] and the most commonly prevailing malware samples in

he wild are also 32 bit [57] (with not a single 64-bit sample ap-

earing in the top ten most common samples). As of 2016, AVTEST

ound that 99.69% of malware for Windows was 32 bit [58] . The

eason for the popularity of 32 bit malware samples over 64 bit is

hat its scope is not limited to one architecture. Therefore, given

he current prevalence of 32 bit malware, we did not consider that

sing Windows XP would make our results any less relevant es-

ecially since our method could be repeated on other versions of

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 7

Fig. 4. Workflow diagram of our proposed system’s pipeline.

W

i

w

n

a

l

F

t

n

c

u

o

t

a

e

i

f

d

4

t

p

c

t

l

r

c

T

a

e

r

a

a

p

c

d

o

c

t

i

fi

i

i

u

p

c

i

t

e

c

H

R

s

t

v

p

o

R

c

p

p

o

d

f

p

P

b

r

p

a

T

f

r

A

o

s

p

p

d

t

p

p

s

i

p

c

i

i

w

s

d

g

s

o

w

t

w

s

i

[

a

c

i

c
indows and it would simplify the already challenging engineer-

ng task. The host OS was Ubuntu 16.04 and the Hypervisor used

as VirtualBox [59] . Both the host and guest machine had a con-

ection to the Internet. In order to ensure fairness and to provide

utomation, identical sandbox features to Cuckoo (such as simu-

ated human interaction) were implemented for our kernel driver.

ig. 4 shows our system diagram describing the entire experimen-

al process in order to obtain the results.

Our kernel driver creates one CSV file for each system call. A

ew line is written to each file every time the system call asso-

iated with the file is called. After the analysis, a shared folder is

sed to transfer over the CSV files to the analysis machine. Cuckoo

perates in a similar manner however it uses network connections

o transfer over analysis files from the VM to the host machine,

fter which we transfer the JSON file to the analysis machine. We

ncode the output produced from each of the monitoring tools us-

ng a frequency histogram of calls within a two minute period. This

eature representation is used to fit a classification model for virus

etection.

.1. Initial experiments’ parameters

The transformed data from Cuckoo and the Kernel driver was

hen classified using a selection of machine learning algorithms

rovided by scikit-learn [60] . The machine learning algorithms

hosen were drawn from the existing literature, as the focus of

his research is on the utility of the different views of machine-

evel actions (user vs kernel) rather than new classification algo-

ithms. The classification algorithms we used were AdaBoost, De-

ision Tree, Linear SVM, Nearest Neighbours, and Random Forest.

he reason we chose these algorithms is that both Decision Trees

nd SVMs are used widely in the literature [61–66] . Random For-

st, while not used as frequently, when used, achieved impressive

esults [61,65,67,68] as has AdaBoost [61] . In addition, though Ad-

Boost is an ensemble method like Random Forest, it comes under

 different class of ensemble algorithms that use boosting as op-

osed to bagging (like Random Forest) and therefore may also be

apable of strong results. Finally, Nearest Neighbours was chosen

ue to its simplicity in order to set a baseline. Each of these meth-

ds are very well documented, however, briefly, AdaBoost [69] is a

ollection of weak classifiers (frequently Decision Trees) on which

he data is repeatedly fitted with adjusted weights (usually weight-

ng misclassified samples more heavily) until, together, the classi-

ers produce a suitable classification score or a certain number of

terations are complete. Decision Trees [70] create if-then rules us-

ng the training data which they then use to make decisions on

nseen data. The K-Nearest Neighbor method picks representative

oints in each class and when presented with a new observation

alculates its proximity to the points and assigns it to whichever

s closest. SVMs [71] separate the data by finding the hyperplanes

hat maximize the distance between the nearest training points in

ach class. Random Forest [72] , like AdaBoost, is a collection of

lassifiers, and, like AdaBoost, the classifiers are all decision trees.

owever, AdaBoost tends to employ shallow decision trees while

andom Forest tends to use deep decision trees. Random Forest
plits the dataset between all the decision trees and then averages

he result.

For each classifier, the data was split using 10-fold cross-

alidation as it is also the standard in this field [54,61,63,73] . It is

ossible to obtain a number of metrics relating to the performance

f the classifiers of which we have chosen to use Area Under the

eceiver Operating Characteristic (ROC) Curve (AUC), Accuracy, Pre-

ision, and F-Measure since these are the metrics commonly re-

orted in the literature [51,63,64,68,74] and they provide a com-

lete view of the performance of the algorithm without missing

ut on subtle details (such as the number of false positives). To un-

erstand these measures in this context, it is important to define a

ew basic terms. We interpret True Positives (TP) as malicious sam-

les that are correctly labelled by the classifier as malicious. False

ositives (FP) are benign samples that are incorrectly predicted to

e malicious. True Negatives (TN) are benign samples that are cor-

ectly classified as benign. False Negatives (FN) are malicious sam-

les that are incorrectly classified as benign. With regards to the

ctual measures used, AUC relates to ROC curves. ROC curves plot

rue Positive Rate (TPR) against False Positive Rate (FPR). FPR is the

raction of benign samples misclassified as malicious, while TPR

epresents the proportion of malicious samples correctly classified.

 ROC curve shows how these values vary as the classifier’s thresh-

ld is altered and therefore the AUC is a good measure of a clas-

ifier’s performance. Accuracy can be described as all the correct

redictions (malicious and benign) divided by the total number of

redictions. Precision is the number of correctly labelled malware

ivided by the sum of the correctly labelled malicious samples and

he incorrectly labelled clean samples (TP
TP + FP

). This gives us the

roportion of correctly labelled malware in comparison to all sam-

les labelled as malware. Recall is the correctly labelled malicious

amples divided by the correctly labelled malicious samples and

ncorrectly labelled malicious samples (TP
TP + FN

). This tells us the

roportion of malicious samples that are correctly identified. We

hose to include precision since false positives are a common issue

n malware detection. Recall was not included for brevity and since

t can be quickly calculated from F-Measure (which is included)

hich is the harmonious mean of precision and recall.

In order to confirm whether the differences in classification re-

ults were statistically significant or due to randomness, we con-

ucted 10-fold cross-validation 100 times for each classifier. This

ave us 10 0 0 AUC values for each classifier. We then checked to

ee if the 10 0 0 values were normally distributed using Q-Q Plots

f the AUC values against a normal distribution. Provided the data

as normal, we then performed Welch’s t -test [75] in order to de-

ermine whether the differences between the classification results

ere statistically significant or not (with our significance level, α,

et to 5% as is commonly used). We used Welch’s t -test due to

ts robustness and widespread recommendation in the literature

76,77] .

In addition, in order to gain insight into whether collecting data

t a global level is more beneficial for classifying malware, the API

alls logged by the kernel driver were reduced to just those com-

ng from the process that was being monitored (and any child pro-

esses that it created). Finally, the same data from Cuckoo and our

8 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

Fig. 5. Example graph of feature ranking mechanism.

a

a

m

o

c

c

a

b

x

w

r

w

t

t

m

m

5

t

f

i

c

5

l

u

d

t

s

d

t

5

D

i

d

t

i
Kernel Driver was combined. This was done to see if the combina-

tion of user and kernel level data can improve classification results.

4.2. Individual feature ranking

To further understand the data recorded from the kernel and

user level, and confirm whether the features being used differ de-

pending on the data collection method used, we ranked features by

importance using two metrics for the classifier that had the best

results. For the first metric, we put the data from one feature (or

API-call) at a time through each classifier and noted the classifier’s

AUC score in differentiating malicious from clean using only the

data from that feature. We refer to this as the independent fea-

ture ranking method. This method can give an indication on the

strength of individual features. Where it lacks, however, is in its

ability to account for the relationship between features. For exam-

ple, a feature on its own may not be that strong, but when paired

with another, may be very strong. Therefore, to account for that,

we also rank features using each classifier’s in-built feature rank-

ing mechanism (which we refer to as the in-built feature ranking

method). This ranking mechanism works in different ways depend-

ing on the classifier used. For Decision Trees scikit-learn uses the

Gini importance as described here [70] . The same is true for Ran-

dom Forests and AdaBoost since they are composed of a multitude

of Decision Trees. The only difference being that as they are com-

posed of multiple Decision Trees, the importance is averaged over

each one. Finally, with Linear SVMs, the coefficients assigned to

each feature is used to rank them. In the case of K-Nearest Neigh-

bour, there is no in-built feature ranking mechanism, therefore, we

do not include it in this measure.

In order to verify that both of the feature ranking methods were

selecting features that are optimal, and that the results they pro-

duced could be relied on, we created a plot by calculating the AUC

using only the top ‘x’ features where ‘x’ was gradually increased

from 10 by increments of 10 up to the total number of features. In

addition, this would show the minimum amount of features nec-

essary to obtain similar classification results

4.3. Complete feature ranking

In order to gain a more consistent but concise view of which

features seemed to be assigned a high importance, we created an
ggregate measure to rank features across all the classifiers. We

pplied it to both the in-built and independent feature ranking

ethods. This will show which features are robust since the previ-

us measure only shows the top ten for the best classifier — which

ould arguably be skewed in its favour. The aggregate measure was

alculated as follows. For each classifier, the features were ranked

ccording to the score they were given by the independent or in-

uilt feature ranking method. Then, the rank was plotted on the

 -axis from 0 (the best rank) to the total number of API-calls (the

orst rank). On the y -axis was a score from 0 to 1 and at each

ank 1
number of classifiers

was added to the score. Once this was done,

e found the area under the curve and that represented the to-

al strength of the features across all classifiers. This global fea-

ure ranking method can be used with any local feature ranking

ethod. Fig. 5 shows an example of this global feature ranking

ethod. In Fig. 5 , the feature in question has got the ranks 0, 20,

0, and 200 in the four classifiers it was used with. At each rank,

he value has gone up by 1/4 (since there are four classifiers). If a

eature was ranked as the most useful feature across all classifiers,

ts ranks would be 0, 0, 0, and 0, and therefore the area under the

urve for it is 1.

. Results

In this section, we show the results from classifying data col-

ected at a kernel and user level. In addition, in order to further

nderstand the contributing factor to the results for the kernel

ata, we conduct additional experiments with modified forms of

he data. Finally, in order to gain a better understanding of the re-

ults, we look at the ten most significant features in order to un-

erstand what the machine learning algorithms are using to iden-

ify malware

.1. Initial experiments

The results from classifying data collected using the Kernel

river at a global level and data collected from Cuckoo are shown

n Table 2 .

On the whole, the results show that the data from the kernel

river is marginally better for the purposes of differentiating be-

ween clean and malicious states regardless of the machine learn-

ng algorithm used. The algorithm with the best performance for

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 9

Table 2

Comparison of classification results of data from Cuckoo and Kernel driver.

Machine learning

algorithm

Kernel driver Cuckoo

AUC Accuracy Precision F -measure AUC Accuracy Precision F -measure

AdaBoost 0.983 94.1 0.934 0.941 0.973 91.8 0.911 0.920

Decision Tree 0.944 92.3 0.906 0.925 0.943 87.8 0.918 0.913

Linear SVM 0.945 90.3 0.873 0.906 0.932 86.9 0.835 0.870

Nearest Neighbour 0.964 90.3 0.896 0.903 0.942 86.2 0.877 0.863

Random Forest 0.986 95.2 0.960 0.944 0.984 94.0 0.958 0.942

Table 3

p -values returned from Welch’s T -Test using

AUC values.

Machine learning algorithm p -value

AdaBoost 1 . 80 × e −208

Decision Tree 1 . 41 × e −6

Linear SVM 8 . 41 × e −78

Nearest Neighbour 9 . 29 × e −290

Random Forest 2 . 29 × e −10

b

a

s

t

l

w

s

f

a

j

a

t

p

h

t

b

t

t

G

w

e

s

t

e

i

p

t

t

t

s

t

c

d

s

w

a

w

u

i

Table 4

Classification results of data from the Kernel driver focusing on the process under

investigation.

Machine learning

algorithm

Localised kernel driver

AUC Accuracy (%) Precision F -measure

AdaBoost 0.962 89.6 0.902 0.891

Decision Tree 0.901 83.8 0.855 0.825

Linear SVM 0.884 82.0 0.893 0.788

Nearest Neighbour 0.934 86.6 0.875 0.858

Random Forest 0.978 92.3 0.944 0.921

Table 5

Classification results from combining Cuckoo and kernel data.

Machine learning

algorithm

Cuckoo and kernel driver

AUC Accuracy (%) Precision F -measure

AdaBoost 0.990 94.9 0.956 0.960

Decision Tree 0.954 92.4 0.924 0.936

Linear SVM 0.952 91.5 0.916 0.915

Nearest Neighbour 0.960 90.3 0.873 0.888

Random Forest 0.990 96.0 0.962 0.942

t

t

p

d

p

h

t

n

i

c

l

t

a

c

C

l

v

t

s

t

b

t

a

g

t

r

f

t

i

t

oth Cuckoo and the Kernel driver was Random Forest, obtaining

n AUC of 0.986 and 0.984, and an accuracy of 95.2 and 94.0 re-

pectively. We also found that, on average (of 10 0 0 runs), 93% of

he samples were given the same label by Random Forest regard-

ess of whether kernel or cuckoo data was used. This shows that

hile there is agreement on a large number of samples, there are

till some samples where data from one was better than the other

or classifying malware.

In order to verify whether the difference between the Kernel

nd Cuckoo classification results are statistically significant and not

ust occurring by chance, we used Welch’s t -test on the AUC values

s described earlier. A prerequisite for using Welch’s t -test is that

he data must be normally distributed. We verified this using Q-Q

lots as shown in Fig. 6 .

The Q-Q plots show the distribution of the AUC values and

ow closely (or otherwise) they relate to the normal distribu-

ion (shown as a red line). The plots show that the AUC values

arely deviate from the normal distribution. Therefore, Welch’s t -

est would be an appropriate test to observe if the difference be-

ween the Kernel and Cuckoo values are statistically significant.

iven that the Q-Q plots for the Cuckoo data were very similar,

e chose not to show them here for brevity.

In Welch’s t -test, the null hypothesis is that the means are

qual (i.e., H 0 : μ1 = μ2), and therefore the alternative hypothe-

is is that the means are not equal (i.e., H a : μ1 � = μ2). We set the

hreshold α value to be 0.05 as it is an appropriate level for our

xperimentation. Therefore if the p -value returned from perform-

ng Welch’s t -test was less than α, we would reject the null hy-

othesis. Table 3 shows the results of performing Welch’s t -test on

he AUC values from each classifier.

As Table 3 shows, the p -values returned are considerably lower

han the threshold, 0.05. Therefore, we reject the null hypothesis

hat the means of the Kernel and Cuckoo AUC values for each clas-

ifier are the same. This shows that, at a significance level of 0.05,

he difference between the kernel and Cuckoo results are statisti-

ally significant and not just due to chance.

Therefore, from the results in Table 2 , we can conclude that

ata collected at the kernel level produces better classification re-

ults than that collected at a user level, however, it is unclear

hether this is because the data collected at a kernel level was at

 higher privilege and hooking a different API, or because the data

as collected on a global scale of all running processes allowing

s to see everything happening on the machine. In order to clar-

fy whether collecting the data at a global level assisted or harmed
he classification process, we limited the kernel data collected to

hat of the data produced by the process being analysed and any

rocesses it created. The results from this are shown in Table 4 .

From Table 4 , it can be seen that the classification results have

ecreased when collecting data from the kernel driver at a local,

rocess-specific, level. For example, with Random Forest the AUC

as decreased from 0.986 to 0.978 and the accuracy from 95.2%

o 92.3%. In addition, the differences between global and local ker-

el data were also found to be statistically significant. Therefore,

t is evident that collecting data at a kernel level is not the only

ontributing factor to the improved classification results over user

evel, data must also be collected at a global-level in order to ob-

ain better classification results. It is also interesting to note that,

t a significance level of 0.05, the classification results from lo-

alised Kernel data are statistically significantly lower than the

uckoo results as well. This shows that if data is going to be col-

ected at a process-specific level, user-level hooks provide more

alue since they will also observe many of the process’ interac-

ions that did not reach the kernel. In addition, this shows that

imply collecting at a kernel privilege is not enough. The scope of

he collection (local vs global) is also important. It may be possi-

le to improve the localised Kernel results slightly by attempting

o detect when malware injects its payload into benign software

nd runs it from there. However, that data would be captured by a

lobal Kernel capture and therefore we wouldn’t expect the results

o improve beyond the global kernel results.

Since limiting the data from the kernel driver did not improve

esults, and given that Cuckoo and the Kernel Driver seemed to

ail on different samples, we combined the data from Cuckoo and

he Kernel driver in order to see whether classification results are

mproved by a combination of data from both levels. The results of

his are also shown in Table 5 .

10 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

Fig. 6. Q-Q Plots of AUC values from Kernel data.

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 11

Table 6

Top ten features using independent feature ranking with

Random Forest.

Cuckoo Kernel driver

GetSystemMetrics NtQueryDebugFilterState

LoadResource NtEnumerateKey

FindResourceExW NtQueryFullAttributesFile

NtQueryInformationFile NtReleaseSemaphore

SetFileTime NtEnumerateValueKey

NtUnmapViewOfSection NtReadVirtualMemory

NtOpenSection NtSetInformationProcess

NtWriteFile NtSetValueKey

FindResourceA NtOpenEvent

CreateDirectoryW NtNotifyChangeKey

Table 7

Top ten features using in-built feature ranking with Random

Forest.

Cuckoo Kernel driver

GetSystemMetrics NtWriteFile

FindResourceA NtFlushVirtualMemory

LdrGetProcedureAddress NtReadFile

LoadResource NtUnlockFile

NtReadFile NtOpenMutant

NtQueryInformationFile NtLockFile

SetFileTime NtNotifyChangeDirectoryFile

GetFileAttributesW NtOpenEvent

NtOpenSection NtDeleteAtom

NtUnmapViewOfSection NtQueryValueKey

c

m

a

K

b

d

e

t

t

r

5

t

c

o

d

p

f

s

T

h

a

t

d

a

t

i

a

t

b

I

k

i

Table 8

Top ten features using in-built feature ranking with Ran-

dom Forest.

Cuckoo Kernel driver

GetSystemMetrics NtReleaseSemaphore

NtQueryInformationFile NtLockFile

LoadResource NtUnlockFile

RegQueryValueExW NtEnumerateKey

NtUnmapViewOfSection NtWriteFile

NtDuplicateObject NtOpenMutant

RegOpenKeyExW NtReadFile

RegCloseKey NtOpenThreadToken

NtOpenSection NtReplyWaitReceivePortEx

NtWriteFile NtQueryVirtualMemory

c

(

r

F

c

c

u

(

N

d

p

r

i

a

t

R

l

m

n

A

t

a

a

t

t

m

b

T

u

a

i

g

m

i

c

m

r

a

c

h

t

b

s

m

l

t

T

W

e
Table 5 shows that combining data from both tools produces

lassification results that are slightly stronger for the purposes of

alware classification with an AUC of 0.990 for both AdaBoost

nd Random Forest. The only classifier with reduced results was

-Nearest-Neighbours suggesting that it struggles to classify data

eyond a certain number of dimensions. Again, as with all the

ata, the differences shown in this table (improvements or oth-

rwise) are statistically significant. Therefore, this further validates

he claim that there is a difference in the data from Cuckoo and

he Kernel Driver and that they fail on different samples since the

esults would not have improved had this not been the case.

.2. Individual feature ranking

In order to further understand and confirm the differences be-

ween the data gathered by Cuckoo and the Kernel Driver, we

ompare the top ten features using both feature selection meth-

ds (described in Section 4.2 – Individual Feature Ranking)for Ran-

om Forest since it is the best performing algorithm. Table 6 com-

ares the top ten features (in order of score) using the independent

eature ranking method for Cuckoo and the Kernel driver. Table 7

hows the same, but using the in-built feature selection method.

he feature importance is shown only for Random Forest since it

ad the best performance. While it would have been ideal to show

 comparison of all the calls rather than simply the top ten, due to

he limitations of space, we have chosen to restrict it to ten. If the

ata being used by the machine learning algorithms is the same

nd therefore the difference in results is due to some other fac-

or, we would expect the top ten features to be identical or near

dentical.

From Table 6 , we can see that the data collected from Cuckoo

nd the Kernel do not have any features in common in the top

en for the independent feature ranking method. This suggests that

oth views used very different indicators to distinguish malware.

n terms of the actual methods in the top ten for each tool, the

ernel driver contains relatively generic calls relating to the reg-

stry, threading, memory, events, and processes. Whereas Cuckoo
ontains some highly specific calls such as SetFileTime (to set MAC

modify, access, and create) times on a file) and GetSystemMet-

ics (to get information about the system). The presence of Set-

ileTime is not surprising as it is often used by malware to con-

eal conceal its accesses of a file (and thereby conceal its mali-

ious activity) [78] . GetSystemMetrics is used by malware to eval-

ate whether it is running in a virtual environment or a real one

since virtual machines tend to have low memory and storage).

tUnmapViewOfSection (and NtOpenSection) is also used to evade

etection as malware can use it to replace the code of a legitimate

rocess in memory with its code so that the legitimate process

uns its code. This could be the reason why the kernel driver mon-

toring at a global level performed better than Cuckoo monitoring

t a local level as it was able to capture this behaviour better. The

op ten also includes some methods relating to resources (Load-

esource and FindResourceExW), malware tends to hide its pay-

oad inside the resource section of a PE file, and therefore these

ethods would be used to extract it into memory. What is also

oticeable in Cuckoo’s top ten is a mix of calls from the native

PI (usually starting with Nt) and the Win32 API. An example of

hat is NtQueryInformationFile, used to obtain information about

 file. The reason for malware using this method over an equiv-

lent Win32 call is that it provides more information. It’s clear

hat the vast majority of features favoured by classifiers to dis-

inguish malware in the Cuckoo data are the evasive features of

alware, whereas the Kernel Driver uses differences in the general

ehaviour of malware to distinguish it from benignware.

Much of our discussion about the top ten features in Cuckoo for

able 6 also applies to the features of Cuckoo in Table 7 . However,

nlike Table 6 , there is one method in common between the kernel

nd cuckoo features, NtReadFile. This suggests that this feature is

mportant regardless of the perspective from which data is being

athered. Another interesting observation is that there are seven

ethods in common between Cuckoo’s independent (Table 6) and

nbuilt feature ranking (Table 8). This suggests that many of the

ontributing features in Cuckoo’s case can be used alone to detect

alware (which is worth considering when selecting feature rep-

esentation methods). Due to this, many of the observations made

bout Cuckoo’s top ten in Table 6 apply here (such as Cuckoo fo-

using more on malware’s evasive behaviour over its general be-

aviour). Aside from this, Cuckoo’s top ten in Table 7 also con-

ains LdrGetProcedureAddress. This is important as it can be used

y malware to evade static analysis and dynamic heuristic analy-

is by loading all the routines it needs at runtime and therefore

alware can achieve all that it intends to with only that method

inked at compile time.

On the Kernel side, there is one method in common between

he inbuilt and independent feature ranking method, NtOpenEvent.

his is no surprise as this method can be used to interact with

indows Events which malware could use to ensure it is run ev-

ry day, for example. In general, the top tens for the kernel data

12 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

Table 9

Top ten features using in-built feature selection considering all classifiers.

Cuckoo Kernel driver

NtOpenSection NtFlushVirtualMemory

InternetCloseHandle NtOpenMutant

LoadResource NtFilterToken

SetUnhandledExceptionFilter NtUnlockFile

SetFileTime NtAccessCheckByTypeAndAuditAlarm

LdrLoadDll NtQueryVirtualMemory

CreateActCtxW NtDeleteAtom

getaddrinfo NtWriteFile

LdrGetDllHandle NtReadFile

LdrGetProcedureAddress NtCompleteConnectPort

r

b

T

b

p

t

C

e

N

s

(

m

m

p

t

t

p

T

e

t

G

a

o

b

d

d

f

n

i

n

d

c

t

w

c

t

s

b

r

e

C

t

w

w

t

t

m

b

for both tables are more focused on the differences in general pro-

cess behaviour between malware and benignware. There are fewer

methods directly related to specific behaviour exhibited by mal-

ware, however, there are a few exceptions. In the independent fea-

ture ranking for Kernel data shown in Table 6 , there is the method

NtSetInformationProcess, which has been known to be used by

malware to disable Data Execution Prevention (DEP). DEP is a pro-

tection in memory which prevents malware from running code in

non-executable sections of memory [79] . Another method in the

top ten likely to be related to malware is NtNotifyChangeKey. This

is used by a process to ask Windows to notify it whenever any

changes are made to the registry. This could be used by malware

to monitor what is being done on the system or even prevent any

changes to the keys that it created.

The top ten for the Kernel data using the inbuilt feature ranking

method (shown in Table 7) also reflects this. As with the previous

table, there are some unusual methods in the top ten features for

the Kernel data; for example, NtNotifyChangeDirectoryFile, a com-

pletely undocumented method. This method is used by a process

to ask Windows to notify it when any changes occur in a directory,

therefore, malware may be using it to simply monitor system ac-

tivity and protect itself or to attach itself to any file moves. How-

ever, another likely reason is that this method is responsible for

a publicised vulnerability [80] that could be used to expose parts

of kernel memory and defeat Address Space Layout Randomisation

(ASLR). NtNotifyChangeDirectoryFile is not the only undocumented

method in the top ten; NtDeleteAtom and NtOpenMutant are also

completely undocumented by Windows. This could explain why

the Kernel data was able to better distinguish malware from be-

nignware as it is able to capture behaviour that cannot be captured

at user level. Aside from that, the differences in general process

behaviour are being used to detect malware.

Tables 6 and 7 demonstrate that Random Forest, when trained

on data from Cuckoo and the Kernel Driver, utilises different be-

havioural aspects when identifying if a file is malicious or not.

While Cuckoo and our kernel driver generally monitor equivalent

calls, the fact that the observed rankings are different suggests that

the scope (local or global) of the calls is an important factor. An-

other contributing factor could be that malware evades or detects

the inline API-hooking technique used by Cuckoo but not the Ker-

nel hooking method employed by our driver (since it requires a

more sophisticated approach to evade).

To confirm the correctness of both of the feature ranking meth-

ods, we performed some simple feature reduction (described in

“Section 4 - Method & Implementation”) using our feature rank-

ing methods. The results of this are shown in the Figs. 7 and 8 .

We created these graphs for both the data from the kernel driver,

and the data from the Cuckoo driver. However, since the graphs

were a very similar shape, for brevity’s sake, we have only shown

the graphs for the data from the Kernel driver.

For most of the plots in Figs. 7 and 8 the AUC is at its lowest

with just ten features, however, as the number of features that the

machine learning algorithms use increases, the AUC increases until

it reaches its peak at around 50 features after which the introduc-

tion of new features simply adds noise, thereby reducing or not

contributing to the difference in the AUC. This highlights that the

feature ranking method seems to be able to decipher which fea-

tures are important. In addition, it shows that, in most cases, no

more than 50 API-calls need to be hooked for similar results.

5.3. Complete feature ranking

Finally, we applied the global feature ranking metric we cre-

ated (described in “Section 4.3 – Complete Feature Ranking”) to

get a concise yet comprehensive view of the features of malware

that were consistently considered important by all classifiers. The
esults from applying the global feature ranking for both the in-

uilt and independent feature selection methods are shown in

ables 8 and 9 .

From these tables we can ascertain which features perform

est across all the classifiers that we used. This gives us a clearer

icture of which features are extremely strong when it comes

o differentiating malware from cleanware. With regards to the

uckoo data, we see in Table 8 some of the features used to

vade detection that we have seen before (GetSystemMetrics,

tUnmapViewOfSection, and NtOpenSection). There are also re-

ource related methods (LoadResource) and the native API method

NtQueryInformationFile) we encountered previously. Of the new

ethods, NtDuplicateObject is interesting because it is used by

alware to evade anti-virus heuristics, as anti-viruses would ex-

ect malware to call the more commonly used DuplicateHandle

o duplicate a process handle to kill or inject into it and would

herefore be less likely to flag a call to NtDuplicateObject as sus-

icious [81] . From this we can conclude that Cuckoo’s top ten in

able 8 contains a mix of evasive, potentially malicious, and gen-

ral methods.

In contrast, Cuckoo’s top ten in Table 9 has more emphasis on

he evasive behaviour of malware. For example, LdrLoadDll, Ldr-

etDllHandle and LdrGetProcedureAddress are in the top ten and

re known to be used by malware to load DLLs dynamically in

rder to import methods from them. This can be used to avoid

eing detected by IAT hooks. In addition, the method SetUnhan-

ledExceptionFilter in the Cuckoo top ten, is also used as an anti-

ebugging trick by malware as this method is used to specify a

unction to be called in the event of an exception occurring that is

ot handled by any exception handler. However, the function spec-

fied will only be called if the process that raised the exception is

ot being debugged. Therefore, malware can register a function to

eliver its payload and then throw an exception, and if the pro-

ess is being debugged, that function will not be called, and hence

he malware will not display its malicious behaviour. SetFileTime,

hich has been described previously, is also used to curb suspi-

ions. Finally, NtOpenSection, as mentioned previously, can be used

o embed malicious code in a benign process. Therefore, as can be

een, much of the top ten for Cuckoo in Table 9 utilise the evasive

ehaviour of malware to detect it.

On the Kernel side, each table contains methods from a wide

ange of categories (such as file-system, threading, networking

tc.), making it more general than the top ten kernel calls in the

uckoo data. While many of the methods in these tables are likely

o be used by malware, they are not used solely by malware (as

ould be expected from a tool monitoring at a global level). On the

hole, it can be seen that with the Cuckoo data, malware is de-

ected through the techniques it uses to detect a monitoring or vir-

ual environment, whereas, with the data from the Kernel Driver,

alware is differentiated from cleanware through how its general

ehaviour differs from the norm.

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 13

Fig. 7. Feature selection using inbuilt feature selection method.

Fig. 8. Feature selection using independent feature selection method.

6

l

c

d

W

l

i

d

l

e

d

g

m

w

D

b

t

t

p

b

d

d

m

p

a

s

v

a

m

d

c

m

w

p

a
. Conclusion

Motivated by a hypothesis that kernel level API calls and user

evel API calls do not produce the same classification results, we

onducted experiments to understand the differences by collecting

ata at different privilege levels within the same Operating System.

e collected data at a user level using Cuckoo, and at the kernel

evel using a custom made Kernel driver since there are no exist-

ng tools that hook all the calls in the SSDT on a global scale. The

ata collected was classified using several state-of-the-art machine

earning algorithms to determine whether collecting data at differ-

nt levels altered classification results. The results showed kernel

ata to be statistically significantly better for all classification al-

orithms despite the fact that user level methods are significantly

ore popular in the literature. Random Forest performed the best

ith an accuracy of 94.0% for Cuckoo and 95.2% for the Kernel

river. In addition, by limiting the kernel data to that produced

y the process under observation (and its subprocesses), we found

hat the classification results reduced suggesting that the collec-
ion of data at a global, system-wide level aided the classification

rocess. Our strongest classification results were observed by com-

ining the data from Cuckoo (user level) with that from our Kernel

river; achieving an AUC of 0.990 and accuracy of 96.0% for Ran-

om Forest.

In order to understand why the differences in data collection

ethods had contributed to the different classification results, we

erformed feature ranking for Random Forest and collectively for

ll classifiers used, and found that the features focused on by clas-

ifiers differed significantly from the data used. The main obser-

ation from this was that monitoring on a process specific level

s Cuckoo does caused the machine learning algorithm to detect

alware using its evasive properties. Whereas, when trained on

ata obtained from monitoring at a global, kernel level, the ma-

hine learning algorithm used the more general behaviour of the

alware (and processes in general) to distinguish it from clean-

are. The differences resulting from collecting data at different

rivilege levels highlighted the benefit gained from collecting data

t a kernel level (or both levels) in order to detect malware and

14 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

F

S

D

t

A

v

A

the importance of the literature carefully detailing the data collec-

tion method that has been used since the results are affected by

it. To assist with this, we have documented many of the dynamic

malware analysis tools in Table A1 in the appendices of this pa-

per. Table A1 shows that while there exists a plethora of well es-

tablished tools for collecting data at a user level, there are only a

handful of established tools to collect data at a kernel level, and

fewer still that are freely available. While the driver we have writ-

ten is specific to Windows XP, the main contributions of this pa-

per (a comparison of user and kernel level calls) will apply to fu-

ture releases of Windows. In conclusion, this paper provides the

first objective, evidence-based comparison of kernel level and user

level data for the purposes of malware classification. In future we

hope to do an in-depth analysis into the implications of the dif-

ferences in the representative features of malware with kernel and

user data.
Table A1

Name Description

API Monitor [82] Capable of hooking every method

in the Windows API

APIMon [86] Uses EasyHook [87] to perform

inline hooking on all user-level

APIs

Buster Sandbox Analyser [89] Not documented how it gathers

API calls. Monitors specific

categories of calls.

CaptureBAT [24] Uses filter drivers

Cuckoo Sandbox [93] Leading open-source dynamic

malware analysis system [93] .

Uses inline hook to hook certain

categories of Windows API calls

[94]

CWSandbox [128] Uses in-line code hooks to record

calls in specific categories [128]

Deviare [135] Hooking engine that hooks entire

Win32 API and is also

integrate-able with many

programming languages

Ether [32] VMI solution focused on being

undetectable by malware (known

for achieving good transparency).

Utilises Xen hypervisor and Intel

VT [33] to provide hardware

virtualization

HookMe Uses Microsoft’s Detours [18] to

perform in line hooking

Malpimp [139] Based on pydbg (pure Python

debugger)

Micro analysis System (MicS)

[141]

Executes in a real (not virtual)

environment and uses IAT hooking

NtTrace [143] Tool that uses inline hooking to

hook ntdll.dll

Osiris [34] VMI solution using a modified

version of QEMU [29] . Also

provides a simulated network

environment. Monitors specific set

of user and kernel level calls

StraceNT [145] Inspired by strace on Linux. Uses

IAT hooking to hook all user-level

APIs

Sysinternals Process Monitor [23] Gathers data using a kernel driver

(file system filter driver) [6]

TEMU [154] Extensible complete-system,

fine-grained analysis platform

capable of monitoring any call

TTAnalyze (used in Anubis

(Analysis of unknown binaries)

Sandbox [157] [158])

Uses QEMU [29] to perform

software emulation. Monitors

specific categories of API calls

through JIT compilation [28]

WinAPIOverride [164] Free tool to monitor all user-level

Windows API calls made by

processes
unding

This work has been supported by the Engineering and Physical

ciences Research Council [project no. 1657416].

eclaration of Competing Interest

We would like to reiterate that we have no conflicts of interest

o disclose.

cknowledgments

We would also like to thank VirusShare and VirusTotal for pro-

iding us with samples and information regarding malware.

ppendix A. Tools used in the literature to gather API-calls
Kernel hook User hook Used by

x [63,83–85]

x [88]

x [53,90]

x [91,92]

x [51,52,54,67,68,73,95–127]

x [129–134]

x [65]

x [53,64,136,137]

x [61,138]

x [140]

x [142]

x [144]

x x [64]

x [146–148]

x [51,91,149–153]

x x [30,155,156]

x x [62,159–163]

x [165,166]

https://doi.org/10.13039/501100000266

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 15

R

eferences

[1] AVTEST. The AV-TEST Security Report 2016/17. Tech. Rep.; 2017 .

https://www.av- test.org/fileadmin/pdf/security _ report/AV- TEST _ Security _

Report _ 2015-2016.pdf .
[2] Liu J, Wang Y, Wang Y. The similarity analysis of malicious software. In: 2016

IEEE first international conference on data science in cyberspace (DSC); 2016.
p. 161–8. doi: 10.1109/DSC.2016.12 .

[3] Moser A, Kruegel C, Kirda E. Limits of static analysis for malware detection.
In: Twenty-third annual computer security applications conference (ACSAC

20 07); 20 07. p. 421–30. doi: 10.1109/ACSAC.2007.21 .

[4] Rudd EM, Rozsa A, Günther M, Boult TE. A survey of stealth malware at-
tacks, mitigation measures, and steps toward autonomous open world solu-

tions. IEEE Commun Surv Tutor 2017;19(2):1145–72. doi: 10.1109/COMST.2016.
2636078 .

[5] Schroeder MD, Saltzer JH. A hardware architecture for implementing protec-
tion rings. Commun ACM 1972;15(3):157–70. doi: 10.1145/361268.361275 .

[6] Russinovich ME , Solomon DA , Ionescu A . Windows internals part 1. 6th ed;
2012. ISBN 978-0-7356-4873-9 .

[7] Garnaeva M, Sinitsyn F, Namestnikov Y, Makrushin D, Liskin A. Overall

statistics for 2016; https://kasperskycontenthub.com/securelist/files/2016/12/
Kaspersky _ Security _ Bulletin _ 2016 _ Statistics _ ENG.pdf .

[8] Symantec. Internet security threat report 21. https://www.symantec.com/
content/dam/symantec/docs/reports/istr- 21- 2016- en.pdf .

[9] Ramilli M, Bishop M, Sun S. Multiprocess malware. In: Proceedings of the
2011 6th international conference on malicious and unwanted software. MAL-

WARE ’11. Washington, DC, USA: IEEE Computer Society; 2011. p. 8–13. ISBN

978-1-4673-0031-5. doi: 10.1109/MALWARE.2011.6112320 .
[10] Nebbett G . Windows NT/20 0 0 native API reference. Thousand Oaks, CA, USA:

New Riders Publishing; 20 0 0. ISBN 1578701996 .
[11] Blunden B . The rootkit arsenal: escape and evasion in the dark corners of the

system. 2nd ed. USA: Jones and Bartlett Publishers, Inc.; 2012 . 144962636X,
9781449626365

[12] Shaid SZM, Maarof MA. In memory detection of windows api call hooking

technique. In: 2015 International conference on computer, communications,
and control technology (I4CT); 2015. p. 294–8. doi: 10.1109/I4CT.2015.7219584 .

[13] Chen X, Andersen J, Mao ZM, Bailey M, Nazario J. Towards an understand-
ing of anti-virtualization and anti-debugging behavior in modern malware.

In: 2008 IEEE international conference on dependable systems and networks
with FTCS and DCC (DSN); 2008. p. 177–86. doi: 10.1109/DSN.2008.4630086 .

[14] Nunes M. Matthewnunes/kernelssdtdriver: kernel driver (with localisation);

2018. doi: 10.5281/zenodo.1169136 .
[15] Nunes M. Dynamic malware analysis kernel and user-level calls; 2018. doi: 10.

17035/d.2019.0082395337 .
[16] Pietrek M . Inside windows-an in-depth look into the win32 portable exe-

cutable file format. MSDN Mag 2002;17(2) .
[17] Leitch J . Iat Hooking Revisited; 2011 .

[18] Hunt G, Brubacher D. Detours: binary interception of win32 functions. In: 3rd

usenix windows nt symposium. 1999.
[19] skape . Dynamic binary instrumentation. Uninformedorg 2007;7 .

[20] Garfinkel T , Rosenblum M . A virtual machine introspection based architec-
ture for intrusion detection. In: Proc. network and distributed systems secu-

rity symposium, 3; 2003. p. 191–206 .
[21] Viscarola P , Mason WA . Windows NT device driver development. 1st ed.

Thousand Oaks, CA, USA: New Riders Publishing; 1998. ISBN 1578700582 .

[22] Hoglund G , Butler J . Rootkits: subverting the windows kernel. Addison-Wesley
Professional; 2005. ISBN 0321294319 .

[23] Russinovich ME. Process monitor — windows sysinternals | microsoft
docs. https://docs.microsoft.com/en-gb/sysinternals/downloads/procmon ; Vis-

ited on 2017-07-27.
[24] The Honeynet Project. http://old.honeynet.org/index.html Visited on 2017-07-

26;
[25] H ̆ajm ̆a ̧s an G, Mondoc A, Cre ̧t O. Dynamic behavior evaluation for malware de-

tection. In: 2017 5th International symposium on digital forensic and security

(ISDFS); 2017. p. 1–6. doi: 10.1109/ISDFS.2017.7916495 .
[26] Callback Objects | Microsoft Docs. https://docs.microsoft.com/en-us/

windows-hardware/drivers/kernel/callback-objects Visited on 2017-07-26;
[27] Zhang F, Ma Y. Using irp with a novel artificial immune algorithm for win-

dows malicious executables detection. In: 2016 International conference on
progress in informatics and computing (PIC); 2016. p. 610–16. doi: 10.1109/

PIC.2016.7949573 .

[28] Bayer U. TTAnalyze: a tool for analyzing malware; 2005 . http://old.iseclab.org/
people/ulli/TTAnalyze _ A _ Tool _ for _ Analyzing _ Malware.pdf

[29] Bellard F. Qemu, a fast and portable dynamic translator. In: Proceedings of the
annual conference on USENIX annual technical conference. ATEC ’05; Berke-

ley, CA, USA: USENIX Association; 2005, p. 41–41 http://dl.acm.org/citation.
cfm?id=1247360.1247401 .

[30] Yin H, Song D, Egele M, Kruegel C, Kirda E. Panorama: Capturing system-

wide information flow for malware detection and analysis. In: Proceedings
of the 14th ACM conference on computer and communications security. CCS

’07. New York, NY, USA: ACM; 2007. p. 116–27. ISBN 978-1-59593-703-2.
doi: 10.1145/1315245.1315261 .

[31] Song D, Brumley D, Yin H, Caballero J, Jager I, Kang MG, et al. Bitblaze: a
new approach to computer security via binary analysis. In: Proceedings of

the 4th international conference on information systems security. ICISS ’08.
Berlin, Heidelberg: Springer-Verlag; 2008. p. 1–25. ISBN 978-3-540-89861-0.
doi: 10.1007/978- 3- 540- 89862- 7 _ 1 .

[32] Dinaburg A, Royal P, Sharif M, Lee W. Ether: malware analysis via hardware
virtualization extensions. In: Proceedings of the 15th ACM conference on

computer and communications security. CCS ’08. New York, NY, USA: ACM;
2008. p. 51–62. ISBN 978-1-59593-810-7. doi: 10.1145/1455770.1455779 .

[33] Uhlig R, Neiger G, Rodgers D, Santoni AL, Martins FCM, Anderson AV, et al.
Intel virtualization technology. Computer 2005;38(5):48–56. doi: 10.1109/MC.

2005.163 .

[34] Cao Y, Liu J, Miao Q, Li W. Osiris: a malware behavior capturing system
implemented at virtual machine monitor layer. In: 2012 Eighth interna-

tional conference on computational intelligence and security; 2012. p. 534–8.
doi: 10.1109/CIS.2012.126 .

[35] Lengyel TK, Maresca S, Payne BD, Webster GD, Vogl S, Kiayias A. Scalability,
fidelity and stealth in the drakvuf dynamic malware analysis system. In: Pro-

ceedings of the 30th annual computer security applications conference. AC-

SAC ’14. New York, NY, USA: ACM; 2014. p. 386–95. ISBN 978-1-4503-3005-3.
doi: 10.1145/2664243.2664252 .

[36] Pék G, Buttyán L. Towards the automated detection of unknown malware on
live systems. In: 2014 IEEE international conference on communications (ICC);

2014. p. 847–52. doi: 10.1109/ICC.2014.6883425 .
[37] Rutkowska J , Tereshkin A . Isgameover anyone?. USA: Black Hat; 2007 .

[38] Yan L-K, Jayachandra M, Zhang M, Yin H. V2e: Combining hardware virtual-

ization and softwareemulation for transparent and extensible malware anal-
ysis. SIGPLAN Not 2012;47(7):227–38. doi: 10.1145/2365864.2151053 .

[39] Bruening D , Duesterwald E , Amarasinghe S . Design and implementation of a
dynamic optimization framework for windows. 4th ACM workshop on feed-

back-directed and dynamic optimization (FDDO-4); 2001 .
[40] Polino M , Continella A , Mariani S , D’Alessio S , Fontana L , Gritti F , et al. Mea-

suring and defeating anti-instrumentation-equipped malware. In: Polychron-

akis M, Meier M, editors. Detection of intrusions and malware, and vulner-
ability assessment. Cham: Springer International Publishing; 2017. p. 73–96.

ISBN 978-3-319-60876-1 .
[41] Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, et al. Pin: Building

customized program analysis tools with dynamic instrumentation. In: Pro-
ceedings of the 2005 ACM SIGPLAN conference on programming language

design and implementation. PLDI ’05. New York, NY, USA: ACM; 2005. p. 190–

200. ISBN 1-59593-056-6. doi: 10.1145/1065010.1065034 .
[42] Vasudevan A, Yerraballi R. Spike: Engineering malware analysis tools using

unobtrusive binary-instrumentation. In: Proceedings of the 29th Australasian
computer science conference - volume 48. ACSC ’06. Darlinghurst, Australia,

Australia: Australian Computer Society, Inc.; 2006. p. 311–20. ISBN 1-920682-
30-9 . http://dl.acm.org/citation.cfm?id=1151699.1151734 .

[43] Vasudevan A, Yerraballi R. Stealth breakpoints. In: Proceedings of the 21st an-

nual computer security applications conference. ACSAC ’05. Washington, DC,
USA: IEEE Computer Society; 2005. p. 381–92. ISBN 0-7695-2461-3. doi: 10.

1109/CSAC.2005.52 .
[44] Li Z, Wang X, Liang Z, Reiter MK. Agis: Towards automatic generation of in-

fection signatures. In: 2008 IEEE international conference on dependable sys-
tems and networks with FTCS and DCC (DSN); 2008. p. 237–46. doi: 10.1109/

DSN.20 08.4630 092 .
[45] Kirat D, Vigna G, Kruegel C. Barebox: efficient malware analysis on bare-

metal. In: Proceedings of the 27th annual computer security applications con-

ference. ACSAC ’11. New York, NY, USA: ACM; 2011. p. 403–12. ISBN 978-1-
4503-0672-0. doi: 10.1145/2076732.2076790 .

[46] Grégio ARA, Filho DSF, Afonso VM, Santos RDC, Jino M, de Geus PL. Behavioral
analysis of malicious code through network traffic and system call monitor-

ing, 8059; 2011 . p. 8059–8059–10 doi: 10.1117/12.883457
[47] Bulazel A, Yener B. A survey on automated dynamic malware analysis eva-

sion and counter-evasion: Pc, mobile, and web. In: Proceedings of the 1st

reversing and offensive-oriented trends symposium. ROOTS. New York, NY,
USA: ACM; 2017. ISBN 978-1-4503-5321-2 . 2:1–2:21. doi: 10.1145/3150376.

3150378 .
[48] VirusShare.com. https://virusshare.com/ Visited on 2017-11-28;

[49] SourceForge - download, develop and publish free open source software.
https://sourceforge.net/ Visited on 2019-06-07;

[50] FileHippo.com - download free software. https://filehippo.com/ Visited on

2019-06-07;
[51] Tobiyama S , Yamaguchi Y , Shimada H , Ikuse T , Yagi T . Malware detection with

deep neural network using process behavior. In: Computer software and ap-
plications conference (COMPSAC), 2016 IEEE 40th annual, vol. 2. IEEE; 2016.

p. 577–82 .
[52] Cho IK, Kim TG, Shim YJ, Ryu M, Im EG. Malware analysis and classifica-

tion using sequence alignments. Intell Autom Soft Comput 2016;22(3):371–7.

doi: 10.1080/10798587.2015.1118916 .
[53] Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M. A comparison of

static, dynamic, and hybrid analysis for malware detection. J Comput Virol
Hacking Tech 2017;13(1):1–12. doi: 10.1007/s11416-015- 0261- z .

[54] Gandotra E, Bansal D, Sofat S. Integrated framework for classification of mal-
wares. In: Proceedings of the 7th International conference on security of in-

formation and networks. SIN ’14. New York, NY, USA: ACM; 2014. ISBN 978-

1-4503-3033-6 . 417:417–417:422
[55] Total V . Virustotal-free online virus, malware and url scanner. Online:

https://www virustotal com/en 2012 .

https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2015-2016.pdf
https://doi.org/10.1109/DSC.2016.12
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/COMST.2016.2636078
https://doi.org/10.1145/361268.361275
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0006
https://kasperskycontenthub.com/securelist/files/2016/12/Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://doi.org/10.1109/MALWARE.2011.6112320
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0009
https://doi.org/10.1109/I4CT.2015.7219584
https://doi.org/10.1109/DSN.2008.4630086
https://doi.org/10.5281/zenodo.1169136
https://doi.org/10.17035/d.2019.0082395337
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0018
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0018
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0018
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0019
https://docs.microsoft.com/en-gb/sysinternals/downloads/procmon
http://old.honeynet.org/index.html
https://doi.org/10.1109/ISDFS.2017.7916495
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/callback-objects
https://doi.org/10.1109/PIC.2016.7949573
http://old.iseclab.org/people/ulli/TTAnalyze_A_Tool_for_Analyzing_Malware.pdf
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/1315245.1315261
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1109/MC.2005.163
https://doi.org/10.1109/CIS.2012.126
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1109/ICC.2014.6883425
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0030
https://doi.org/10.1145/2365864.2151053
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0033
https://doi.org/10.1145/1065010.1065034
http://dl.acm.org/citation.cfm?id=1151699.1151734
https://doi.org/10.1109/CSAC.2005.52
https://doi.org/10.1109/DSN.2008.4630092
https://doi.org/10.1145/2076732.2076790
https://doi.org/10.1117/12.883457
http://doi.org/10.1145/3150376.3150378
https://virusshare.com/
https://sourceforge.net/
https://filehippo.com/
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0041
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0041
https://doi.org/10.1080/10798587.2015.1118916
https://doi.org/10.1007/s11416-015-0261-z
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0045

16 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

[

[56] Gu h . mundsson A. 32-bit virus threats on 64-bit windows. Tech. Rep.; Syman-
tec; https://www.symantec.com/content/dam/symantec/docs/security-center/

white- papers/32- bit- virus- threats- 64- bit- windows- 02- en.pdf .
[57] Chebyshev V, Sinitsyn F, Parinov D, Liskin A, Kupreev O. IT threat evolution

Q1 2018. Statistics. Tech. Rep.. Kaspersky Lab; 2018 . https://securelist.com/
it- threat- evolution- q1- 2018- statistics/85541/

[58] AVTEST. The AV-TEST security report 2015/16. Tech. Rep.; 2016 .
https://www.av- test.org/fileadmin/pdf/security _ report/AV- TEST _ Security _

Report _ 2015-2016.pdf

[59] Oracle VM VirtualBox. https://www.virtualbox.org/ Visited on 2017-11-28;
[60] Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al.

API design for machine learning software: experiences from the scikit-learn
project. CoRR 2013;abs/1309.0238 . arXiv: 1309.0238 .

[61] Tian R, Islam R, Batten L, Versteeg S. Differentiating malware from cleanware
using behavioural analysis. In: 2010 5th International conference on mali-

cious and unwanted software; 2010. p. 23–30. doi: 10.1109/MALWARE.2010.

5665796 .
[62] Firdausi I, lim C, Erwin A, Nugroho AS. Analysis of machine learning tech-

niques used in behavior-based malware detection. In: 2010 Second interna-
tional conference on advances in computing, control, and telecommunication

technologies; 2010. p. 201–3. doi: 10.1109/ACT.2010.33 .
[63] Ahmed F, Hameed H, Shafiq MZ, Farooq M. Using spatio-temporal informa-

tion in api calls with machine learning algorithms for malware detection. In:

Proceedings of the 2nd ACM workshop on security and artificial intelligence.
AISec ’09. New York, NY, USA: ACM; 2009. p. 55–62. ISBN 978-1-60558-781-

3. doi: 10.1145/1654988.1655003 .
[64] Miao Q, Liu J, Cao Y, Song J. Malware detection using bilayer behavior ab-

straction and improved one-class support vector machines. Int J Inf Secur
2016;15(4):361–79. doi: 10.1007/s10207-015-0297-6 .

[65] Galal HS, Mahdy YB, Atiea MA. Behavior-based features model for mal-

ware detection. J Comput VirolHacking Tech 2016;12(2):59–67. doi: 10.1007/
s11416- 015- 0244- 0 .

[66] Narayanan BN , Djaneye-Boundjou O , Kebede TM . Performance analysis of ma-
chine learning and pattern recognition algorithms for malware classification.

In: 2016 IEEE national aerospace and electronics conference (NAECON) and
Ohio innovation summit (OIS). IEEE; 2016. p. 338–42 .

[67] Saleh M, Li T, Xu S. Multi-context features for detecting malicious

programs. J Comput Virol Hacking Tech 2018;14(2):181–93. doi: 10.1007/
s11416- 017- 0304- 8 .

[68] Hansen SS, Larsen TMT, Stevanovic M, Pedersen JM. An approach for detec-
tion and family classification of malware based on behavioral analysis. In:

2016 International conference on computing, networking and communica-
tions (ICNC); 2016. p. 1–5. doi: 10.1109/ICCNC.2016.7440587 .

[69] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning

and an application to boosting. J Comput Syst Sci 1997;55(1):119–39. doi: 10.
1006/jcss.1997.1504 .

[70] Breiman L , Friedman J , Stone CJ , Olshen RA . Classification and regression
trees. CRC press; 1984 .

[71] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–97.
doi: 10.1023/A:1022627411411 .

[72] Breiman L. Random forests. Mach Learn 2001;45(1):5–32. doi: 10.1023/A:
1010933404324 .

[73] Berlin K, Slater D, Saxe J. Malicious behavior detection using windows audit

logs. In: Proceedings of the 8th ACM workshop on artificial intelligence and
security. AISec ’15. New York, NY, USA: ACM; 2015. p. 35–44. ISBN 978-1-

4503-3826-4. doi: 10.1145/2808769.2808773 .
[74] Kang B, Yerima S, McLaughlin K, Sezer S. Pagerank in malware categorization.

In: Proceedings of the 2015 conference on research in adaptive and conver-
gent systems. racs. New York, NY, USA: ACM; 2015. p. 291–5. ISBN 978-1-

4503-3738-0. doi: 10.1145/2811411.2811514 .

[75] Welch BL. The generalization of ‘student’s’ problem when several differ-
ent population variances are involved. Biometrika 1947;34(1/2):28–35 . http:

//www.jstor.org/stable/2332510
[76] Delacre M , Lakens D , Leys C . Why psychologists should by default use welch’s

t -test instead of student’s t -test. Int Rev Soc Psychol 2017;30(1) .
[77] Ruxton GD. The unequal variance t -test is an underused alternative to

student’s t -test and the mann-whitney u test. Behav Ecol 2006;17(4):688–

90. doi: 10.1093/beheco/ark016 . http://oup/backfile/content _ public/journal/
beheco/17/4/10.1093 _ beheco _ ark016/2/ark016.pdf .

[78] Sikorski M , Honig A . Practical malware analysis: the hands-on guide to dis-
secting malicious software. No Starch Press; 2012 .

[79] Data Execution Prevention. 2009. https://docs.microsoft.com/en-us/
previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10) .

[80] Microsoft Windows - ’nt!NtNotifyChangeDirectoryFile’ Kernel Pool Memory

Disclosure. https://www.exploit-db.com/exploits/42219/ Visited on 2017-07-
26;

[81] Shevchenko A. Virus bulletin :: advancing malware techniques 2008. Tech.
Rep.. Virus Bulletin; 2009 . https://www.virusbulletin.com/virusbulletin/2009/

01/advancing- malware- techniques- 2008 .
[82] APIMonitor.com. API monitor — spy and display win32 API calls made by ap-

plications. http://www.apimonitor.com/ Visited on 2017-07-28;

[83] Uppal D, Sinha R, Mehra V, Jain V. Malware detection and classification based
on extraction of api sequences. In: 2014 International conference on advances

in computing, communications and informatics (ICACCI); 2014. p. 2337–42.
doi: 10.1109/ICACCI.2014.6968547 .
[84] Ali MAM, Maarof MA. Dynamic innate immune system model for malware
detection. In: 2013 International conference on IT convergence and security

(ICITCS); 2013. p. 1–4. doi: 10.1109/ICITCS.2013.6717828 .
[85] Chen Z-G, Kang H-S, Yin S-N, Kim S-R. Automatic ransomware detection and

analysis based on dynamic api calls flow graph. In: Proceedings of the inter-
national conference on research in adaptive and convergent systems. RACS

’17. New York, NY, USA: ACM; 2017. p. 196–201. ISBN 978-1-4503-5027-3.
doi: 10.1145/3129676.3129704 .

[86] APIMon - Home. https://apimon.codeplex.com/ Visited on 2017-07-26;

[87] EasyHook. https://easyhook.github.io/ Visited on 2017-07-26;
[88] Dolgikh A, Nykodym T, Skormin V, Antonakos J, Baimukhamedov M. Col-

ored petri nets as the enabling technology in intrusion detection systems. In:
2011 — MILCOM 2011 military communications conference; 2011. p. 1297–

301. doi: 10.1109/MILCOM.2011.6127481 .
[89] Buster. Buster sandbox analyzer. http://bsa.isoftware.nl/ , visited on 2017-07-

26.

[90] Vemparala S, Di Troia F, Corrado VA, Austin TH, Stamo M. Malware detection
using dynamic birthmarks. In: Proceedings of the 2016 ACM on international

workshop on security and privacy analytics. IWSPA ’16. New York, NY, USA:
ACM; 2016. p. 41–6. ISBN 978-1-4503-4077-9. doi: 10.1145/2875475.2875476 .

[91] Sun M, Lin M, Chang M, Laih C, Lin H. Malware virtualization-resistant be-
havior detection. In: 2011 IEEE 17th international conference on parallel and

distributed systems; 2011. p. 912–17. doi: 10.1109/ICPADS.2011.78 .

[92] Shalaginov A, Franke K. Automated intelligent multinomial classification of
malware species using dynamic behavioural analysis. In: 2016 14th annual

conference on privacy, security and trust (PST); 2016. p. 70–7. doi: 10.1109/
PST.2016.7906939 .

[93] Guarnieri C , Tanasi A , Bremer J , Schloesser M . The cuckoo sandbox; 2012 .
[94] Components — Cuckoo Monitor 1.3 documentation. Visited on 2017-07-28.

[95] Cho IK, Im EG. Extracting representative api patterns of malware families us-

ing multiple sequence alignments. In: Proceedings of the 2015 conference on
research in adaptive and convergent systems. RACS. New York, NY, USA: ACM;

2015. p. 308–13. ISBN 978-1-4503-3738-0. doi: 10.1145/2811411.2811543 .
[96] Faruki P, Laxmi V, Gaur MS, Vinod P. Behavioural detection with api call-

grams to identify malicious pe files. In: Proceedings of the first interna-
tional conference on security of internet of things. SecurIT ’12. New York, NY,

USA: ACM; 2012. p. 85–91. ISBN 978-1-4503-1822-8. doi: 10.1145/2490428.

2490440 .
[97] Qiao Y , Yang Y , He J , Tang C , Liu Z . Cbm: free, automatic malware analysis

framework using api call sequences. In: Sun F, Li T, Li H, editors. Knowledge
engineering and management. Berlin, Heidelberg: Springer Berlin Heidelberg;

2014. p. 225–36. ISBN 978-3-642-37832-4 .
[98] Lee T, Choi B, Shin Y, Kwak J. Automatic malware mutant detection and group

classification based on the n-gram and clustering coefficient. J Supercomput

2018;74(8):3489–503. doi: 10.1007/s11227-015-1594-6 .
[99] Lee T, Kwak J. Effective and reliable malware group classification for a

massive malware environment. Int J Distrib Sens Netw 2016;12(5):4601847.
doi: 10.1155/2016/4601847 .

100] Fujino A, Murakami J, Mori T. Discovering similar malware samples using api
call topics. In: 2015 12th annual IEEE consumer communications and net-

working conference (CCNC); 2015. p. 140–7. doi: 10.1109/CCNC.2015.7157960 .
[101] Hachinyan O. Detection of malicious software on based on multiple equations

of api-calls sequences. In: 2017 IEEE conference of Russian young researchers

in electrical and electronic engineering (EIConRus); 2017. p. 415–18. doi: 10.
1109/EIConRus.2017.7910580 .

[102] Cheng JY-C, Tsai T-S, Yang C-S. An information retrieval approach for mal-
ware classification based on windows api calls. In: 2013 International confer-

ence on machine learning and cybernetics, 04; 2013. p. 1678–83. doi: 10.1109/
ICMLC.2013.6 89086 8 .

[103] Pirscoveanu RS, Hansen SS, Larsen TMT, Stevanovic M, Pedersen JM, Czech A.

Analysis of malware behavior: Type classification using machine learning. In:
2015 International conference on cyber situational awareness, data analytics

and assessment (CyberSA); 2015. p. 1–7. doi: 10.1109/CyberSA.2015.7166115 .
[104] Kwon I, Im EG. Extracting the representative api call patterns of malware

families using recurrent neural network. In: Proceedings of the international
conference on research in adaptive and convergent systems. RACS ’17. New

York, NY, USA: ACM; 2017. p. 202–7. ISBN 978-1-4503-5027-3. doi: 10.1145/

3129676.3129712 .
[105] Sun B, Fujino A, Mori T. Poster: Toward automating the generation of mal-

ware analysis reports using the sandbox logs. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. CCS

’16. New York, NY, USA: ACM; 2016. p. 1814–16. ISBN 978-1-4503-4139-4.
doi: 10.1145/2976749.2989064 .

[106] Gandotra E, Bansal D, Sofat S. Zero-day malware detection. In: 2016 sixth in-

ternational symposium on embedded computing and system design (ISED);
2016. p. 171–5. doi: 10.1109/ISED.2016.7977076 .

[107] Dhammi A , Singh M . Behavior analysis of malware using machine learning.
In: Contemporary computing (IC3), 2015 eighth international conference on.

IEEE; 2015. p. 481–6 .
[108] Fraley JB, Figueroa M. Polymorphic malware detection using topological fea-

ture extraction with data mining. In: SoutheastCon 2016; 2016. p. 1–7. doi: 10.

1109/SECON.2016.7506685 .
[109] Pekta ̧s A, Acarman T, Falcone Y, Fernandez J. Runtime-behavior based mal-

ware classification using online machine learning. In: 2015 World congress
on internet security (WorldCIS); 2015. p. 166–71. doi: 10.1109/WorldCIS.2015.

7359437 .

https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/32-bit-virus-threats-64-bit-windows-02-en.pdf
https://securelist.com/it-threat-evolution-q1-2018-statistics/85541/
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2015-2016.pdf
https://www.virtualbox.org/
http://arxiv.org/abs/1309.0238
https://doi.org/10.1109/MALWARE.2010.5665796
https://doi.org/10.1109/ACT.2010.33
https://doi.org/10.1145/1654988.1655003
https://doi.org/10.1007/s10207-015-0297-6
https://doi.org/10.1007/s11416-015-0244-0
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0054
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0054
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0054
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0054
https://doi.org/10.1007/s11416-017-0304-8
https://doi.org/10.1109/ICCNC.2016.7440587
https://doi.org/10.1006/jcss.1997.1504
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0058
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0058
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0058
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0058
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0058
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2808769.2808773
https://doi.org/10.1145/2811411.2811514
http://www.jstor.org/stable/2332510
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0064
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0064
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0064
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0064
https://doi.org/10.1093/beheco/ark016
http://oup/backfile/content_public/journal/beheco/17/4/10.1093_beheco_ark016/2/ark016.pdf
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0066
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0066
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0066
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10)
https://www.exploit-db.com/exploits/42219/
https://www.virusbulletin.com/virusbulletin/2009/01/advancing-malware-techniques-2008
http://www.apimonitor.com/
https://doi.org/10.1109/ICACCI.2014.6968547
https://doi.org/10.1109/ICITCS.2013.6717828
https://doi.org/10.1145/3129676.3129704
https://apimon.codeplex.com/
https://easyhook.github.io/
https://doi.org/10.1109/MILCOM.2011.6127481
http://bsa.isoftware.nl/
https://doi.org/10.1145/2875475.2875476
https://doi.org/10.1109/ICPADS.2011.78
https://doi.org/10.1109/PST.2016.7906939
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0075
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0075
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0075
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0075
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0075
https://doi.org/10.1145/2811411.2811543
https://doi.org/10.1145/2490428.2490440
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0078
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0078
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0078
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0078
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0078
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0078
https://doi.org/10.1007/s11227-015-1594-6
https://doi.org/10.1155/2016/4601847
https://doi.org/10.1109/CCNC.2015.7157960
https://doi.org/10.1109/EIConRus.2017.7910580
https://doi.org/10.1109/ICMLC.2013.6890868
https://doi.org/10.1109/CyberSA.2015.7166115
https://doi.org/10.1145/3129676.3129712
https://doi.org/10.1145/2976749.2989064
https://doi.org/10.1109/ISED.2016.7977076
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0088
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0088
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0088
https://doi.org/10.1109/SECON.2016.7506685
https://doi.org/10.1109/WorldCIS.2015.7359437

M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365 17

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[110] Zhang Y, Rong C, Huang Q, Wu Y, Yang Z, Jiang J. Based on multi-features
and clustering ensemble method for automatic malware categorization. In:

2017 IEEE trustcom/BigDataSE/ICESS; 2017. p. 73–82. doi: 10.1109/Trustcom/
BigDataSE/ICESS.2017.222 .

[111] Lim C, Ramli K. Mal-one: A unified framework for fast and efficient malware
detection. In: 2014 2nd International conference on technology, informat-

ics, management, engineering environment; 2014. p. 1–6. doi: 10.1109/TIME-E.
2014.7011581 .

[112] Wüchner T, Ochoa M, Lovat E, Pretschner A. Generating behavior-based mal-

ware detection models with genetic programming. In: 2016 14th ANNUAL
CONFERENCE ON PRIVACY, SECURITY AND TRUSt (PST); 2016. p. 506–11.

doi: 10.1109/PST.2016.7907008 .
[113] Bazzi A , Onozato Y . Ids for detecting malicious non-executable files using dy-

namic analysis. In: 2013 15th Asia-Pacific network operations and manage-
ment symposium (APNOMS); 2013. p. 1–3 .

[114] Kim D , Majlesi-Kupaei A , Roy J , Anand K , ElWazeer K , Buettner D , et al. Dyn-

odet: Detecting dynamic obfuscation in malware. In: Polychronakis M,
Meier M, editors. Detection of intrusions and malware, and vulnerability

assessment. Cham: Springer International Publishing; 2017. p. 97–118. ISBN
978-3-319-60876-1 .

[115] Baychev Y , Bilge L . Spearphishing malware: Do we really know the un-
known?. In: Giuffrida C, Bardin S, Blanc G, editors. Detection of intrusions and

malware, and vulnerability assessment. Cham: Springer International Publish-

ing; 2018. p. 46–66. ISBN 978-3-319-93411-2 .
[116] Kolosnjaji B, Zarras A, Lengyel T, Webster G, Eckert C. Adaptive semantics-

aware malware classification. In: Proceedings of the 13th international confer-
ence on detection of intrusions and malware, and vulnerability assessment -

volume 9721. DIMVA 2016. Berlin, Heidelberg: Springer-Verlag; 2016. p. 419–
39. ISBN 978-3-319-40666-4. doi: 10.1007/978- 3- 319- 40667-1 _ 21 .

[117] Wüchner T, Ochoa M, Pretschner A. Robust and effective malware de-

tection through quantitative data flow graph metrics. In: Proceedings of
the 12th international conference on detection of intrusions and malware,

and vulnerability assessment - volume 9148. DIMVA 2015. Berlin, Heidel-
berg: Springer-Verlag; 2015. p. 98–118. ISBN 978-3-319-20549-6. doi: 10.1007/

978- 3- 319- 20550- 2 _ 6 .
[118] Sharma A, Gandotra E, Bansal D, Gupta D. Malware capability assessment us-

ing fuzzy logic. Cybern Syst 2019;50(4):323–38. doi: 10.1080/01969722.2018.

1552906 .
[119] Ijaz M, Durad MH, Ismail M. Static and dynamic malware analysis using ma-

chine learning. In: 2019 16th International bhurban conference on applied
sciences and technology (IBCAST); 2019. p. 687–91. doi: 10.1109/IBCAST.2019.

8667136 .
120] Thebeyanthan K , Achsuthan M , Ashok S , Vaikunthan P , Senaratne AN , Abey-

wardena KY . E-secure: An automated behavior based malware detection sys-

tem for corporate e-mail traffic. In: Arai K, Kapoor S, Bhatia R, editors. Intel-
ligent computing. Cham: Springer International Publishing; 2019. p. 1056–71.

ISBN 978-3-030-01177-2 .
[121] Kakisim AG , Nar M , Carkaci N , Sogukpinar I . Analysis and evaluation of dy-

namic feature-based malware detection methods. In: Lanet J-L, Toma C, ed-
itors. Innovative security solutions for information technology and commu-

nications. Cham: Springer International Publishing; 2019. p. 247–58. ISBN
978-3-030-12942-2 .

122] Shiva Darshan SL , Jaidhar CD . Empirical study on features recommended by

lsvc in classifying unknown windows malware. In: Bansal JC, Das KN, Na-
gar A, Deep K, Ojha AK, editors. Soft computing for problem solving. Singa-

pore: Springer Singapore; 2019. p. 577–90. ISBN 978-981-13-1595-4 .
123] Hsiao S, Yu F. Malware family characterization with recurrent neural net-

work and ghsom using system calls. In: 2018 IEEE International conference
on cloud computing technology and science (CloudCom); 2018. p. 226–9.

doi: 10.1109/CloudCom2018.2018.0 0 051 .

[124] Jamalpur S, Navya YS, Raja P, Tagore G, Rao GRK. Dynamic malware analysis
using cuckoo sandbox. In: 2018 Second international conference on inventive

communication and computational technologies (ICICCT); 2018. p. 1056–60.
doi: 10.1109/ICICCT.2018.8473346 .

125] Tungjitviboonkun T, Suttichaya V. Complexity reduction on api call sequence
alignment using unique api word sequence. In: 2017 21st international com-

puter science and engineering conference (ICSEC); 2017. p. 1–5. doi: 10.1109/

ICSEC.2017.8443930 .
126] Takeuchi Y, Sakai K, Fukumoto S. Detecting ransomware using support vec-

tor machines. In: Proceedings of the 47th international conference on parallel
processing companion. ICPP ’18. New York, NY, USA: ACM; 2018. ISBN 978-1-

4503-6523-9 . 1:1–:1.6. doi: 10.1145/3229710.3229726 .
[127] Babenko L, Kirillov A. Development of method for malware classification

based on statistical methods and an extended set of system calls data. In:

proceedings of the 11th international conference on security of information
and networks. SIN ’18. New York, NY, USA: ACM; 2018. ISBN 978-1-4503-

6608-3 . 8:1–:8.6. doi: 10.1145/3264437.3264478 .
128] Willems C, Holz T, Freiling F. Toward automated dynamic malware analysis

using cwsandbox. IEEE Secur Priv 2007;5(2):32–9. doi: 10.1109/MSP.2007.45 .
129] Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior

using machine learning. J Comput Secur 2011;19(4):639–68 . http://dl.acm.org/

citation.cfm?id=2011216.2011217 .
[130] Qiao Y, Yang Y, Ji L, He J. Analyzing malware by abstracting the frequent

itemsets in api call sequences. In: 2013 12th IEEE international conference on
trust, security and privacy in computing and communications; 2013. p. 265–

70. doi: 10.1109/TrustCom.2013.36 .
[131] Qiao Y , He J , Yang Y , Ji L , Tang C . A lightweight design of malware behavior
representation. In: Trust, security and privacy in computing and communi-

cations (TrustCom), 2013 12th IEEE international conference on. IEEE; 2013.
p. 1607–12 .

132] Li HJ, Tien C, Tien C, Lin C, Lee H, Jeng AB. Aos: an optimized sandbox method
used in behavior-based malware detection. In: 2011 International conference

on machine learning and cybernetics, 1; 2011. p. 404–9. doi: 10.1109/ICMLC.
2011.6016683 .

[133] Goebel J, Holz T, Willems C. Measurement and analysis of autonomous

spreading malware in a university environment. In: Proceedings of the 4th
international conference on detection of intrusions and malware, and vul-

nerability assessment. DIMVA ’07. Berlin, Heidelberg: Springer-Verlag; 2007.
p. 109–28. ISBN 978-3-540-73613-4. doi: 10.1007/978- 3- 540- 73614- 1 _ 7 .

134] Rieck K, Holz T, Willems C, Düssel P, Laskov P. Learning and classification of
malware behavior. In: Proceedings of the 5th international conference on de-

tection of intrusions and malware, and vulnerability assessment. DIMVA ’08.

Berlin, Heidelberg: Springer-Verlag; 2008. p. 108–25. ISBN 978-3-540-70541-
3. doi: 10.1007/978- 3- 540- 70542- 0 _ 6 .

[135] Deviare API | Hook Nektra - fast custom software development company. (vis-
ited on 2017-09-30).

136] Park Y, Reeves D, Mulukutla V, Sundaravel B. Fast malware classification
by automated behavioral graph matching. In: proceedings of the sixth an-

nual workshop on cyber security and information intelligence research. CSI-

IRW ’10; New York, NY, USA: ACM. 2010, p. 978-1-4503-0017-9,45:1–45:4.
10.1145/1852666.1852716

[137] Naval S, Laxmi V, Rajarajan M, Gaur MS, Conti M. Employing program seman-
tics for malware detection. IEEE Trans Inf ForensSecur 2015;10(12):2591–604.

doi: 10.1109/TIFS.2015.2469253 .
138] Gupta S , Sharma H , Kaur S . Malware characterization using windows api call

sequences. In: Carlet C, Hasan MA, Saraswat V, editors. Security, privacy, and

applied cryptography engineering. Cham: Springer International Publishing;
2016. p. 271–80. ISBN 978-3-319-49445-6 .

139] Malpimp: Advanced API Tracing Tool. http://securityxploded.com/malpimp.
php Visited on 2017-07-26;

[140] Fan C, Hsiao H, Chou C, Tseng Y. Malware detection systems based on api log
data mining. In: 2015 IEEE 39th annual computer software and applications

conference, 3; 2015. p. 255–60. doi: 10.1109/COMPSAC.2015.241 .

[141] Inoue D, Yoshioka K, Eto M, Hoshizawa Y, Nakao K. Automated malware anal-
ysis system and its sandbox for revealing malware’s internal and external ac-

tivities. IEICE Trans Inf Syst 2009;E92.D(5):945–54. doi: 10.1587/transinf.E92.
D.945 .

[142] Kasama T, Yoshioka K, Inoue D, Matsumoto T. Malware detection method
by catching their random behavior in multiple executions. In: 2012 IEEE/IPSJ

12th international symposium on applications and the internet; 2012. p. 262–

6. doi: 10.1109/SAINT.2012.49 .
[143] NtTrace. http://www.howzatt.demon.co.uk/NtTrace/ Visited on 2017-07-26;

144] Jang J, Woo J, Mohaisen A, Yun J, Kim HK. Mal-netminer: malware classifi-
cation approach based on social network analysis of system call graph. CoRR

2016;abs/1606.01971 . arXiv: 1606.01971 .
[145] IntellectualHeaven StraceNT - strace for windows. http://intellectualheaven.

com/default.asp?BH=StraceNT Visited on 2017-07-26;
[146] Nair VP, Jain H, Golecha YK, Gaur MS, Laxmi V. Medusa: Metamorphic mal-

ware dynamic analysis usingsignature from api. In: Proceedings of the 3rd in-

ternational conference on security of information and networks. SIN ’10. New
York, NY, USA: ACM; 2010. p. 263–9. ISBN 978-1-4503-0234-0. doi: 10.1145/

1854099.1854152 .
[147] Patanaik CK, Barbhuiya FA, Nandi S. Obfuscated malware detection using api

call dependency. In: Proceedings of the first international conference on secu-
rity of internet of things. SecurIT ’12. New York, NY, USA: ACM; 2012. p. 185–

93. ISBN 978-1-4503-1822-8. doi: 10.1145/2490428.2490454 .

148] Wang X, Yu W, Champion A, Fu X, Xuan D. Detecting worms via mining dy-
namic program execution. In: 2007 Third international conference on security

and privacy in communications networks and the workshops - SecureComm
20 07; 20 07. p. 412–21. doi: 10.1109/SECCOM.2007.4550362 .

149] Fukushima Y, Sakai A, Hori Y, Sakurai K. A behavior based malware detection
scheme for avoiding false positive. In: 2010 6th IEEE workshop on secure net-

work protocols; 2010. p. 79–84. doi: 10.1109/NPSEC.2010.5634 4 4 4 .

[150] Blokhin K, Saxe J, Mentis D. Malware similarity identification using call graph
based system call subsequence features. In: Proceedings of the 2013 IEEE 33rd

international conference on distributed computing systems workshops. ICD-
CSW ’13. Washington, DC, USA: IEEE Computer Society; 2013. p. 6–10. ISBN

978-1-4799-3248-1. doi: 10.1109/ICDCSW.2013.55 .
[151] Liu S, Huang H, Chen Y. A system call analysis method with mapreduce for

malware detection. In: 2011 IEEE 17th international conference on parallel

and distributed systems; 2011. p. 631–7. doi: 10.1109/ICPADS.2011.17 .
[152] Yang Y, Cai Z, Mao W, Yang Z. Identifying intrusion infections via probabilis-

tic inference on bayesian network. In: Proceedings of the 12th international
conference on detection of intrusions and malware, and vulnerability assess-

ment - volume 9148. DIMVA 2015. Berlin, Heidelberg: Springer-Verlag; 2015.
p. 307–26. ISBN 978-3-319-20549-6. doi: 10.1007/978- 3- 319- 20550- 2 _ 16 .

[153] Snihurov A, Shulhin O, Balashov V. Experimental studies of ransomware for

developing cybersecurity measures. In: 2018 International scientific-practical
conference problems of infocommunications. science and technology (PIC S

T); 2018. p. 691–5. doi: 10.1109/INFOCOMMST.2018.8632153 .

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.222
https://doi.org/10.1109/TIME-E.2014.7011581
https://doi.org/10.1109/PST.2016.7907008
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0094
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0094
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0094
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0095
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0096
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0096
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0096
https://doi.org/10.1007/978-3-319-40667-1_21
https://doi.org/10.1007/978-3-319-20550-2_6
https://doi.org/10.1080/01969722.2018.1552906
https://doi.org/10.1109/IBCAST.2019.8667136
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0101
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0102
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0102
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0102
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0102
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0102
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0103
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0103
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0103
https://doi.org/10.1109/CloudCom2018.2018.00051
https://doi.org/10.1109/ICICCT.2018.8473346
https://doi.org/10.1109/ICSEC.2017.8443930
http://doi.org/10.1145/3229710.3229726
http://doi.org/10.1145/3264437.3264478
https://doi.org/10.1109/MSP.2007.45
http://dl.acm.org/citation.cfm?id=2011216.2011217
https://doi.org/10.1109/TrustCom.2013.36
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0112
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0112
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0112
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0112
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0112
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0112
https://doi.org/10.1109/ICMLC.2011.6016683
https://doi.org/10.1007/978-3-540-73614-1_7
https://doi.org/10.1007/978-3-540-70542-0_6
https://doi.org/10.1109/TIFS.2015.2469253
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0117
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0117
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0117
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0117
http://securityxploded.com/malpimp.php
https://doi.org/10.1109/COMPSAC.2015.241
https://doi.org/10.1587/transinf.E92.D.945
https://doi.org/10.1109/SAINT.2012.49
http://www.howzatt.demon.co.uk/NtTrace/
http://arxiv.org/abs/1606.01971
http://intellectualheaven.com/default.asp?BH=StraceNT
https://doi.org/10.1145/1854099.1854152
https://doi.org/10.1145/2490428.2490454
https://doi.org/10.1109/SECCOM.2007.4550362
https://doi.org/10.1109/NPSEC.2010.5634444
https://doi.org/10.1109/ICDCSW.2013.55
https://doi.org/10.1109/ICPADS.2011.17
https://doi.org/10.1007/978-3-319-20550-2_16
https://doi.org/10.1109/INFOCOMMST.2018.8632153

18 M. Nunes, P. Burnap and O. Rana et al. / Journal of Information Security and Applications 48 (2019) 102365

[154] Yin H, Song D. Temu: Binary code analysis via whole-system layered anno-
tative execution. Tech. Rep. UCB/EECS-2010-3. EECS Department, University

of California, Berkeley; 2010 . http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2010/EECS-2010-3.html .

[155] Xu Z, Chen L, Gu G, Kruegel C. Peerpress: utilizing enemies’ p2p strength
against them. In: Proceedings of the 2012 ACM conference on computer and

communications security. CCS ’12. New York, NY, USA: ACM; 2012. p. 581–92.
ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.2382257 .

[156] Ugarte-Pedrero X , Balzarotti D , Santos I , Bringas PG . Rambo: Run-time packer

analysis with multiple branch observation. In: Caballero J, Zurutuza U, Ro-
dríguez RJ, editors. Detection of intrusions and malware, and vulnerability

assessment. Cham: Springer International Publishing; 2016. p. 186–206. ISBN
978-3-319-40667-1 .

[157] Bayer U , Kruegel C , Kirda E . Anubis: analyzing unknown binaries; 2009 .
[158] Egele M, Scholte T, Kirda E, Kruegel C. A survey on automated dynamic

malware-analysis techniques and tools. ACM Comput Surv (CSUR) 2008;44(2) .

6:1–6:42 doi: 10.1145/2089125.2089126 .
[159] Lindorfer M, Di Federico A, Maggi F, Comparetti PM, Zanero S. Lines of

malicious code: insights into the malicious software industry. In: Proceed-
ings of the 28th annual computer security applications conference. ACSAC

’12. New York, NY, USA: ACM; 2012. p. 349–58. ISBN 978-1-4503-1312-4.
doi: 10.1145/2420950.2421001 .

[160] Kolbitsch C, Kirda E, Kruegel C. The power of procrastination: detection and

mitigation of execution-stalling malicious code. In: Proceedings of the 18th
ACM conference on computer and communications security. CCS ’11. New

York, NY, USA: ACM; 2011. p. 285–96. ISBN 978-1-4503-0948-6. doi: 10.1145/
2046707.2046740 .
[161] Kirat D, Vigna G. Malgene: Automatic extraction of malware analysis eva-
sion signature. In: Proceedings of the 22Nd ACM SIGSAC conference on com-

puter and communications security. CCS ’15. New York, NY, USA: ACM; 2015.
p. 769–80. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.2813642 .

[162] Graziano M, Canali D, Bilge L, Lanzi A, Balzarotti D. Needles in a haystack:
mining information from public dynamic analysis sandboxes for malware in-

telligence. In: 24th USENIX security symposium (USENIX Security 15). Wash-
ington, D.C.: USENIX Association; 2015. p. 1057–72. ISBN 978-1-931971-

232 . https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/graziano .
[163] Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang X. Effec-

tive and efficient malware detection at the end host. In: Proceedings of
the 18th conference on usenix security symposium. SSYM’09. Berkeley, CA,

USA: USENIX Association; 2009. p. 351–66 . http://dl.acm.org/citation.cfm?id=
1855768.1855790 .

[164] WinAPIOverride: free advanced API monitor, spy or override API or exe inter-

nal functions. http://jacquelin.potier.free.fr/winapioverride32/index.php Vis-
ited on 2017-10-23;

[165] Salehi Z, Sami A, Ghiasi M. Using feature generation from api calls for
malware detection. Comput Fraud Secur 2014;2014(9):9–18. doi: 10.1016/

S1361-3723(14)70531-7 .
[166] Salehi Z, Ghiasi M, Sami A. A miner for malware detection based on api func-

tion calls and their arguments. In: The 16th CSI international symposium

on artificial intelligence and signal processing (AISP 2012); 2012. p. 563–8.
doi: 10.1109/AISP.2012.6313810 .

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html
https://doi.org/10.1145/2382196.2382257
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0132
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0132
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0132
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0132
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0132
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0133
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0133
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0133
http://refhub.elsevier.com/S2214-2126(19)30010-9/sbref0133
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2420950.2421001
https://doi.org/10.1145/2046707.2046740
https://doi.org/10.1145/2810103.2813642
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/graziano
http://dl.acm.org/citation.cfm?id=1855768.1855790
http://jacquelin.potier.free.fr/winapioverride32/index.php
https://doi.org/10.1016/S1361-3723(14)70531-7
https://doi.org/10.1109/AISP.2012.6313810

	Getting to the root of the problem: A detailed comparison of kernel and user level data for dynamic malware analysis
	1 Introduction
	2 Problem definition
	2.1 System call structure
	2.2 System call hooking

	3 Literature survey
	3.1 Filter drivers
	3.2 Model specific register hook
	3.3 Dynamic binary instrumentation (DBI)
	3.4 SSDT Hooks

	4 Method & implementation
	4.1 Initial experiments’ parameters
	4.2 Individual feature ranking
	4.3 Complete feature ranking

	5 Results
	5.1 Initial experiments
	5.2 Individual feature ranking
	5.3 Complete feature ranking

	6 Conclusion
	Funding
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Tools used in the literature to gather API-calls
	References

