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a b s t r a c t 

Dynamic malware analysis is fast gaining popularity over static analysis since it is not easily defeated 

by evasion tactics such as obfuscation and polymorphism. During dynamic analysis it is common prac- 

tice to capture the system calls that are made to better understand the behaviour of malware. There 

are several techniques to capture system calls, the most popular of which is a user-level hook. To study 

the effects of collecting system calls at different privilege levels and viewpoints, we collected data at a 

process-specific user-level using a virtualised sandbox environment and a system-wide kernel-level using 

a custom-built kernel driver. We then tested the performance of several state-of-the-art machine learning 

classifiers on the data. Random Forest was the best performing classifier with an accuracy of 95.2% for 

the kernel driver and 94.0% at a user-level. The combination of user and kernel level data gave the best 

classification results with an accuracy of 96.0% for Random Forest. This may seem intuitive but was hith- 

erto not empirically demonstrated. Additionally, we observed that machine learning algorithms trained 

on data from the user-level tended to use the anti-debug/anti-vm features in malware to distinguish it 

from benignware. Whereas, when trained on data from our kernel driver, machine learning algorithms 

seemed to use the differences in the general behaviour of the system to make their prediction, which 

explains why they complement each other so well. Our results show that capturing data at different priv- 

ilege levels will affect the classifier’s ability to detect malware, with kernel-level providing more utility 

than user-level for malware classification. Despite this, there exist more established user-level tools than 

kernel-level tools, suggesting more research effort should be directed at kernel-level. In short, this paper 

provides the first objective, evidence-based comparison of user and kernel level data for the purposes of 

malware classification. 

© 2019 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Malware , short for Malicious Software, is the all-encompassing

erm for unwanted software such as Viruses, Worms, and Trojans.

he threat of malware is highlighted by the fact that 350,0 0 0 new

amples of malware are identified every day [1] — far too many

or human analysts to manually analyse, thus motivating research

nto the automated detection of malware. Malware can be analysed

n one of two ways; through static code analysis or dynamic be-

avioural analysis. Static code analysis involves studying the binary

le and looking for patterns in its structure that might be indica-

ive of malicious behaviour without ever actually running the bi-

ary. Dynamic behavioural analysis involves running the binary in a
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ontrolled environment, such as an emulated environment, or Vir-

ual Machine (VM), and searching for patterns of Operating System

OS) calls or general system behaviour that are indicative of mali-

ious behaviour. Static analysis has become less effective in recent

ears due to the fact that malware writers can circumvent detec-

ion methods using techniques such as code obfuscation and poly-

orphism [2,3] . As a result, behavioural analysis has gained popu-

arity since it actually runs malware in its preferred environment

aking it harder to evade detection completely. 

In order to conduct behavioural analysis, the sample being anal-

sed must be executed in such a way that data relating to the

ample’s behaviour can be captured while it is running. That data

an subsequently be used to train an automated machine learn-

ng classifier to distinguish malicious from benign software. One

opular mechanism in the literature for understanding malware’s

ehaviour during execution is through capturing the calls made

o the OS i.e., system calls. In order to capture this information,
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a tool must create a hook into the OS or monitored process. A

hook modifies the standard execution pathway by inserting an ad-

ditional piece of code into the pathway [4] . This is done in order

to interrupt the normal flow of execution that occurs when a pro-

cess makes a system call and subsequently document the event.

There are a number of methods to hook system calls in Windows

and these fall into two general categories: those that run in user

mode and those that run in kernel mode [4] . Kernel mode is one

of the highest privilege levels that can be reached in the computer,

whereas user mode is the privilege level that most applications

and users operate at. The argument for hooking in user mode is

that the code analysing the sample is “closer” to the application

being analysed. Whereas, the argument for hooking at kernel mode

is that the analysis program resides at a more elevated privilege

making it harder for malware to hide from an analysis tool at this

level. 

The terms user ’ and kernel mode are labels assigned to specific

Intel x86 privilege rings built into their microchips. Privilege rings

relate to hardware enforced access control. There are four privilege

rings and they range from ring 0 to ring 3 [5] . Windows only uses

two of these rings, ring 0 and ring 3. Ring 0 has the highest privi-

leges and is referred to as kernel mode (this is the privilege most

drivers run at) by the Windows OS. Ring 3 has the least privileges

and is referred to as user mode (and is the level of privileges that

most applications run at) [6] . We focus on Windows here because

it is still the most targeted OS by malware as reported in [1,7,8] . 

User-mode hooks tend to only record system/API calls made by

a single process since they usually hook one process at a time,

whilst kernel-mode hooks are capable of recording calls made by

all the running processes at a global, system level. This is an im-

portant difference as malware may choose to inject its code into a

legitimate process and carry out its activities from there (where it

is less likely to be blocked by the firewall). Alternatively, malware

could divide its code into a number of independent processes as

proposed by Ramilli et al. [9] so that no single process in itself is

malicious, but collectively, they succeed in achieving a malicious

outcome. Therefore the choice of hooking methodology could af-

fect the quality of the data gained. Another difference between

kernel and user level hooks is that each one hooks into a differ-

ent API. For example, one type of kernel level hook is to hook

the System Service Descriptor Table (SSDT) whose calls are similar

to those found in the native API, which is mostly undocumented,

whilst user mode hooks typically hook the Win32 API which is

documented [10] . Although methods in the Win32 API essentially

call methods in the native API, there may be some methods in the

native API that are unique to it (since it is only supposed to be

used by Windows developers) [11] . Likewise, there are some user

level methods that do not make calls into the kernel. Therefore,

it is of paramount importance that the difference in utility be-

tween data collected at each level is objectively studied so that

analysts can make an informed choice on which type of data col-

lection method to use. Another factor that could affect the data

collected is that due to the differences between the various types

of hooking methodologies, malware has to use different techniques

to evade each hooking methodology as mentioned by Shaid and

Maarof [12] . Consequently, if a piece of malware is focused on

avoiding a particular type of hooking methodology, it is likely that

any analysts using the same methodology to monitor malware will

see a very different picture to those using another methodology.

Evasive methods are not uncommon; in fact, one study found eva-

sive behaviour in over 40% of samples [13] . It should also be noted

that currently the majority of the existing literature captures user

level calls as shown in Table A1 in the appendix. This suggests that

the literature either believes that user level data has more utility

than kernel level data or does not believe there to be a significant

difference between user and kernel level data for the purposes of
etecting malware (although there are kernel level tools available,

hey are not as popular as user level tools). 

Thus, given the aforementioned evasion concerns and funda-

ental differences in each class of hooking methodology, the mo-

ivation of this paper is to study the differences in data collection

t kernel and user level, and consider whether it effects a machine

earning method’s ability to classify the data. In addition, we pro-

ide insights into the utility of the different forms of data collected

rom a machine when observing potentially malicious behaviour.

his is particularly important in the cyber-security domain where

he focus tends to be on the data analysis method over the data

apturing method. We hypothesise that the features of malware

hat are used to differentiate it from benignware differ based on

he data capturing method used. In order to test our hypothesis,

e have created our own Kernel Driver that hooks the entire SSDT

ith the exception of one call. We chose to create our own ker-

el driver as many of the existing tools that hook the SSDT only

onitor calls in a specific category (such as calls relating to the

le system or registry) and provide no objective justification as to

hy they chose the calls they did (if they even make that infor-

ation available). Therefore, we hook all the calls in the SSDT to

nsure we do not miss any subtle details regarding malware be-

aviour and in order to make an objective recommendation on the

ost important calls to hook when detecting malware. Our driver

s also unique in that it collects the SSDT data at a global system-

ide level as opposed to a local process-specific level. In doing

his, we expect to determine whether collecting data at a global

evel assists in detecting malware or is simply adding noise. In or-

er to gather user level data to compare with our driver, we use

uckoo Sandbox, since it is the most popular malware analysis tool

perating at a user level (as shown in Table A1 in the appendix).

he data gathered from our driver and Cuckoo is then used to ex-

eriment with state of art machine learning techniques to better

nderstand the implications of monitoring machine activity from

ifferent perspectives. Alongside the general insights gained from

lassifying the data, we use feature ranking methods to provide

nsights concerning the behaviour of malware that is utilised by

he classifiers in order to distinguish it. In the interests of trans-

arency and reproduce-ability, we have also made the source code

f our kernel driver available at [14] and the data from our exper-

ments available at [15] . The driver can be installed on any system

unning Windows XP 32-bit and easily be extended to run on Win-

ows 7. In summary, the novel contributions of this paper are the

ollowing: 

1. We perform the first objective comparison on the effective-

ness of kernel and user level calls for the purposes of de-

tecting malware; 

2. We compare the usefulness of collecting data for malware

detection at a global, system-wide level as opposed to a

local, individual process level, providing novel insights into

data science methods used within malware analysis 

3. We assess the benefits or otherwise of combining kernel and

user level data for the purposes of detecting malware; 

4. We identify the features contributing to the detection of

malware at kernel and user level and the number of features

necessary to get similar classification results, providing valu-

able knowledge on the forms of system behaviour that are

indicative of malicious activity; 

5. We conduct an extensive survey of dynamic malware analy-

sis tools used or proposed in the literature; 

6. We create a driver that hooks all but one call in the SSDT

and gathers calls at a global level, which can be used to ex-

tend and enhance our work. 

The remainder of this paper is structured as follows: Section 2 ’

urther describes the various hooking methodologies and the mo-
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Fig. 1. System call visualisation. 
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ivation for this paper. Section 3 ’ describes the various method-

logies already employed in the literature to gather kernel calls.

ection 4 discusses the experiments that were performed and the

nvironment they were performed in. Section 5 presents and in-

erprets the output from these experiments, and in Section 6 , we

ummarise our work and outline the next steps. 

. Problem definition 

.1. System call structure 

In order to understanding how system calls are hooked, it is im-

ortant to first understand how system calls are structured. Fig. 1

rovides an example of the structure of a call tree for a Windows

ystem call. From user mode, a process may call createFileA, cre-

teFileW, NtCreateFile, or ZwCreateFile, however, ultimately, they

ll lead to the NtCreateFile method in the SSDT. In response to

 system call being made, the processor must move from Ring 3

user level) to Ring 0 (kernel level). It does this by issuing the

ysenter instruction. Although createFileA has been shown to call

tCreateFile/ZwCreateFile in Fig. 1 , strictly speaking, it calls cre-

teFileW. However, as they are provided by the same library, they

re shown at the same level. From Fig. 1 it can be seen that to get

he same information within user mode that is available in kernel

ode, more methods need to be hooked. The benefit of hooking

n user-mode, however, is that the analysis tool can observe finer

etails in system calls made. Our aim in this research is to under-

tand if these details are helpful or irrelevant. 

.2. System call hooking 

Fig. 2 shows the hooking methods that can be used to intercept

ystem calls organised according to the privilege they hook at. 

Fig. 2 shows that there are a number of ways to intercept API-

alls using hooks — both at user level and kernel level. Each works

n a slightly different way. An Import Address Table (IAT) hook mod-

fies a particular structure in a Portable Executable (PE) file. The PE

le format refers to the structure of executables and DLLs in Win-

ows [16] . IAT hooks exploit a feature of the PE file format, the

mports that are listed in a PE file after compilation. An IAT hook

odifies the imports so that the import points to an alternative

iece of code as opposed to the legitimate function [11,17] . An in-

ine hook refers to when the prologue of a function is replaced in

emory with a jump to another piece of code [18] . In Windows,

he first five bytes of most functions are the same, therefore, this

an be replaced with a jump to an alternative piece of code where

he system call can be logged, and then control can be returned

ack to the original function (after executing the functionality in

he first five bytes). 

Instrumentation refers to the insertion of additional code into

 binary or system for the purpose of monitoring behaviour. Dy-
amic instrumentation implies that this occurs at runtime [19] .

SDT hooks modify a structure in kernel memory known as the

ystem Service Descriptor Table (SSDT). The SSDT is a table of sys-

em call addresses that the OS consults to locate a call when it is

nvoked by a process. An SSDT hook replaces the system call ad-

resses with addresses to alternative code [4,11] . In a Model Spe-

ific Register (MSR) hook, the value of a specific register is over-

ritten so that it holds the address of the code performing the

ooking. This register is significant as after a system call is made,

ts value is loaded into the EIP register (which is the register that

oints to the next instruction to be executed). MSR hooks are fre-

uently employed by Virtual Machine Introspection (VMI) solu-

ions. VMI refers to solutions where the analysis engine resides at

he same privilege level as the hypervisor or Virtual Machine Mon-

tor (VMM) [20] . The last method is IRP hooking (a similar goal can

e achieved with filter drivers). I/O request packets or IRPs, are

sed to communicate requests to use I/O to drivers. In IRP hook-

ng , a driver intercepts another driver’s IRPs [4,11] . Filter drivers are

rivers that essentially sit on top of a driver for a device meaning

hat they receive all the IRPs intended for that driver [21] . 

There are a number of resources that describe each of the hook-

ng methodologies in much more detail such as [4,11,22] . As can

e seen, the way each mechanism intercepts API-calls differs sig-

ificantly, and each is therefore detected and evaded in a different

anner. Furthermore, each mechanism hooks into different APIs

as mentioned previously), depending on whether it is a user-mode

r kernel-mode hook. Given all these differences, there is a very

eal possibility that a tool hooking in user-mode and monitoring

 specific process will get different data to a tool monitoring the

ame process in kernel-mode. This therefore raises the question of

hich privilege level gathers more beneficial data for the purposes

f detecting malware? This is the question this paper attempts to

nswer. 

. Literature survey 

In order to gain a better understanding of the tools used in

he literature and the methods that the tools use to gather API-

alls, we conducted an extensive review of the literature and noted

hich tool was used. The results of this are shown in Table A1 in

he appendix. Table A1 contains five columns; “Name” which is

he name of the tool, “Description” which describes the tool and 

he hooking methodology it uses, “Kernel Hook” which is marked

f the tool employs a hook at kernel level, “User Hook” which is

arked if the tool employs a hook at user level, and “Used By”

hich lists the papers that used that tool. For each tool mentioned

n Table A1 , if the tool was available online, we tested it in order

o understand how it was intercepting API-calls. Where the tool

as not available, we used documentation to determine the type

f hook being used. To limit the length of the table, Table A1 only
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Fig. 2. Hooking methodologies. 
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contains tools that had been used at least once in the literature

(i.e., at least one entry in their “Used By” column). 

As can be seen in Table A1 , the majority of tools used to gather

API calls for the purposes of malware analysis use user level hooks

(72%). Currently, the literature suggests that Cuckoo Sandbox is by

far the most used tool. However, that does not mean that all pa-

pers using Cuckoo collected the same data, as it should be noted

that Cuckoo can be enhanced to log additional API calls. Ultimately,

all user level tools suffer from the same problem, in that they run

at the same privilege levels as the file they are monitoring and are

therefore much easier to evade than kernel level tools. In terms of

kernel data, there are a number of methods used in the literature

to gather data at this level. These can roughly be grouped by the

specific hooking method they employ to intercept calls. The four

main categories of kernel-mode methods in the literature are: fil-

ter drivers, MSR hooks & Virtual Machine Introspection, Dynamic

Binary Instrumentation (DBI), and System Service Descriptor Table

(SSDT) hooks. 

3.1. Filter drivers 

Filter drivers do not directly communicate with the hardware

but sit on top of lower-level drivers and intercept any data that

comes their way. The most well-known tools using filter drivers

are Procmon [23] and CaptureBAT [24] . H ̆ajm ̆a ̧s an et al. [25] take

a similar approach to that taken by Procmon and develop a fil-

ter driver that registers with Windows callback functions [26] so

that it is notified when any changes are made to the registry, file

system, or processes. Zhang and Ma [27] take a novel approach by

intercepting IRPs in their solution, MBMAS. They then use machine

learning to classify sequences of IRPs as malicious or benign. How-

ever, the limitation with using filter drivers is that they cannot in-

tercept the same breadth of API-calls that other hooking method-

ologies can. They focus on the major operations in particular cate-

gories (such as file system and registry). 

3.2. Model specific register hook 

A Model Specific Register (MSR) hook essentially hooks the

sysenter instruction. More specifically, it involves changing the

value of a processor-specific register referred to as the SYSEN-

TER_EIP_MSR register. This register normally holds the address of
he next instruction to execute when sysenter is called (which is

alled every time a system call is made). Therefore if this value is

ltered, when the sysenter instruction is called, the processor will

ump to the address pointed to by the new value in the register

which in this case can point to the analysis engine). Since an MSR

ook modifies a processor specific register, developers need to en-

ure that they modify the registers on each processor (since most

ystems nowadays contain multiple processors) [6] . There are few

xamples of an MSR hook being used as a standalone method in

he literature. Usually, it is employed in the context of VMI solu-

ions. 

VMI refers to tool that operate at the same level as the Hyper-

isor. This provides benefits such as the ability to monitor a VM

ithout having a large presence on the VM (and thereby making it

arder for malware to detect the presence of the analysis engine).

he difficulty with monitoring at this level is that a “semantic gap”

ust be bridged in some way. The semantic gap refers to the fact

hat when monitoring at the VMM layer, much of the data avail-

ble is very low level (such as register values). This data is not at a

evel of granularity that is easy to interpret. Therefore, in order to

ridge that, solutions use a number of techniques to convert these

alues to more abstract values. For example, as mentioned previ-

usly, VMI solutions use a variation of the MSR hook whereby in-

tead of placing the address of the analysis solution into the SY-

ENTER_EIP_MSR register, an invalid value is placed into that reg-

ster. As a result, every time a system call is made and sysenter is

alled, a page fault will occur. This will in turn lead to the VMEXIT

nstruction being called which will pass control to the VMI tool

since it operates at the same level as the hypervisor). The VMI

ool must then examine the value of the EAX register in order to

nd out the system call made. Since monitoring system calls in this

anner can have a significant impact on performance, VMI tools

sually limit their monitoring to a particular process. To achieve

his, the tool must monitor for any changes in the CR3 register.

he CR3 register contains the base address of the page directory of

he currently running process, therefore, if the page directory ad-

ress of the process of interest is known, then system calls can be

ltered to only those emanating from the process of interest. 

There are a number of VMI solutions in the literature. TTAna-

yze [28] is one of the best known tools employing VMI. TTAna-

yze executes malware in an emulated environment (QEMU [29] )

s opposed to a virtual one. Unlike virtual environments (where
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ost instructions are executed on the processor), in emulated en-

ironments all instructions are emulated in software. This, they

xplain, makes it harder for malware to detect that they are not

n a real environment since a real system can be mimicked per-

ectly. However, this comes at the expense of performance, as sam-

les are executed significantly slower. Another well known tool in

his domain is Panorama [30] . Panorama is built on top of TEMU

31] (the dynamic analysis component of BitBlaze [31] that can

erform whole-system instruction-level monitoring), and performs

ne-grained taint analysis by monitoring any data touched by the

xecutable being analysed. Its contribution lies in the fine-grained

aint tracking it performs, even recording keystrokes among many

ther things. Ether [32] is a tool in VMI that differs by exploiting

ntel VT [33] which enables hardware virtualisation and provides

 significant performance boost when running a VM. Ether is also

articularly focused on not being detectable by malware and, as

uch, has very little presence on the guest machine. Osiris [34] is

imilar to Ether, however, it manages to perform an even more

omplete analysis by also monitoring any processes the original

rocess injects its code into. Lengyel et al. [35] propose DRAKVUF

hich focuses more on reducing the presence of an analysis engine

rom the guest machine as normally there is some code present

n the guest to run the process being monitored or help the VMI

olution with the analysis. However, DRAKVUF employs a novel

ethod to execute malware using process injection and therefore

oesn’t require any additional software to be present on the guest.

n addition, it monitors calls at both user and kernel level. Pék and

uttyán [36] take a different approach by using invalid opcode ex-

eptions instead of breakpoints to intercept system calls. Invalid

pcode exceptions are raised if system calls are disabled when a

ystem call is called. This, they argue, has better performance. In

ddition, their monitoring solution is not paired with a hypervisor

ut exploits a vulnerability [37] to virtualise a live system, forgoing

he need for a reboot to install the monitoring solution. 

While it’s clear that significant progress has been made with

MM solutions, there is still a delay overhead incurred from the

echanism (breakpoints/page faults) that is typically used to mon-

tor API-calls. Ether, a well-known tool in this genre, was shown

o have approximately a 30 0 0 times slowdown [38] . This, among

ther things, makes it easier for malware to detect the presence of

 monitoring tool. Furthermore, while some solutions have man-

ged to remove much of the presence of the analysis component

rom the machine being monitored, this has the unfortunate effect

f making it even more challenging to bridge the semantic gap. 

.3. Dynamic binary instrumentation (DBI) 

Dynamic Binary Instrumentation refers to the analysis of an ex-

cutable through the injection of additional code into the source

r compiled code at runtime. This is usually implemented using a

ust-in-Time (JIT) compiler. In DBI, code is executed in basic blocks,

nd the code at the end of each block is modified so that control

s passed to the analysis engine where it can perform a number

f checks, such as whether a system call is being executed [39,40] .

wo of the most popular frameworks for achieving dynamic instru-

entation in Windows are DynamoRIO [39] and Intel Pin [41] . 

The main limitation in solutions using JIT compilation is Self-

odifying and Self-Checking code (SM-SC) since DBI solutions can

e detected by the modifications they make to the code. Therefore,

PiKE [42] was proposed as an improvement to such tools since it

niquely did not use a JIT compiler, but breakpoints in memory.

pecifically, it employs “stealth breakpoints” [43] , that retain many

f the properties of hardware breakpoints, but don’t suffer from

he limitation that pure hardware breakpoints do of only allowing

he user to set between two and four. Through using such break-

oints, it is harder to detect the presence of the monitoring tool
nd the tool is more immune to SM-SC code. Reportedly, this even

rought a performance gain. Polino et al. [40] built their solution,

rancino, on top of Intel Pin which is focused on countering all

nown anti-instrumentation techniques that are employed by mal-

are to evade detection. They achieve through the use of a number

f heuristics. 

The problems that solutions in this space suffer from is perfor-

ance and remaining undetectable by malware. Though [40] make

 considerable effort towards improving this, they admit their so-

ution is unlikely to be undetectable. 

.4. SSDT Hooks 

This is the method chosen in this paper to monitor API calls at

 kernel level. We chose to use an SSDT hook over a filter driver,

SR hook, or DBI tool for a number of reasons. A filter driver

ends to obtain the results from calling a system call as opposed

o the exact system calls called. While a VMM-layer monitor and

BI tool can suffer from a significant delay due to the manner

n which it intercepts system calls, allowing malware to detect a

onitor through measuring the delay from performing specific ac-

ions. In addition, it can be difficult to deal with SM-SC code with

uch tools. Furthermore, bridging the semantic gap whilst keeping

ransparency can be extremely challenging. Ultimately no method

s without its limitations (including the SSDT hook), but we chose

o use an SSDT hook since it has the most similarities in imple-

entation to a user-level hook (except that it hooks into the un-

ocumented kernel) and the data returned from it is analogous to

hat returned from a user level hook. Therefore it seems most suit-

ble for the purposes of a comparison. An SSDT hook also has the

enefit of not modifying anything on disk (since the SSDT is mod-

fied in memory) and therefore leaves a smaller footprint on the

nalysis machine. 

While SSDT hooks have been used previously, they have not

ad as comprehensive a coverage of calls as ours has. Li et al.

44] employed an SSDT hook to automatically build infection

raphs and construct signatures for their system, AGIS (Automatic

eneration of Infection Signatures). AGIS then monitors a program

o see if it contravenes a security policy and matches a signature.

herefore, it only focuses on calls from a specific process and ig-

ores all other calls. Kirat et al. [45] propose BareBox to counter

he problems associated with malware capable of detecting that

t is being run in a virtual environment. Barebox runs malware

n a real system and is capable of restoring the state of a ma-

hine to a previous snapshot within four seconds. Barebox moni-

ors what the authors perceive to be important system calls using

n SSDT hook. However, as the number of devices attached to the

achine increase, the time it takes Barebox to restore the system

o a clean state increases considerably. Grégio et al. [46] propose

ehEMOT (Behaviour Evaluation from Malware Observation Tool)

hich analyses malware in an emulated environment first, then in

 real environment if it does not run within the emulated envi-

onment. They use an SSDT hook to monitor API calls relating to

ertain operations. However, by performing analysis on a real en-

ironment, BehEMOT suffers a similar problem to Barebox in re-

ation to restoration time. Furthermore, the focus with BehEMOT

eems to be producing human-readable and concise reports after

ach analysis and therefore, only small-scale tests were conducted

n a handful of samples. 

As mentioned previously, where our solution differs is that pre-

ious solutions using SSDT hooks only log calls made to certain API

alls by certain processes. Our tool logs all calls (except one) by all

rocesses in order to determine their utility in classification. TEMU

s the only tool to offer similar functionality, however, where it dif-

ers is that it runs in an emulated environment (which is easier for
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Fig. 3. How the AUC responds as sample size is increased . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Quantity of each category of malware in 

our dataset. 

Category Quantity 

Trojan 1846 

Virus 458 

Worm 86 

Rootkit 34 

Ransomware 23 

Adware 22 

Keylogger 2 

Spyware 2 
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malware to detect [47] ) and is focused on providing instruction-

level details as opposed to high-level system calls. 

4. Method & implementation 

In order to conduct the experiments required for our study,

2500 malicious samples were obtained from VirusShare [48] and

2500 clean samples were obtained from SourceForge [49] and File-

Hippo [50] . In order to select an appropriate sample size, we con-

ducted a series of classification experiments (described later) on

different sam ple sizes and monitored the trend in the Receiver

Operating Characteristic (ROC) Area Under the Curve (AUC) results

(ROC AUC is described later). In these experiments, we varied the

sample size from 100 samples up to over 20 0 0 (in increments of

100) and for each sample size, we trained the leading classifiers

(using 10-fold-cross-validation) and noted the ROC AUC returned

by the classifier. We then plotted the ROC AUC against the sample

size and observed when the curve plateaued for each classifier. The

results are shown in Fig. 3 . 

Fig. 3 shows that after 10 0 0 samples, the AUC values almost

completely plateau. This suggests that after this point, adding more

samples will have an insignificant effect on the classification re-

sults. Therefore, we concluded that 2500 samples would be more

than enough. In addition, this sample size correlated with the data-

set sizes used in the literature [51–54] . The categories of malware

in our dataset are shown in Table 1 . This information was obtained

from VirusTotal [55] . With regards to the clean samples, each was

run through VirusTotal to ensure that it was not malicious. 

To gather calls made to the SSDT, we wrote a Windows Kernel

Driver to hook all but one kernel call in the SSDT since none of

the tools available currently provide this. The only call we did not

hook, NtContinue, was not hooked due to the fact that hooking it

produced critical system errors. Our Kernel driver gathers global

data from a system perspective as opposed to simply monitoring

calls from a single process introduced into the system. Therefore,

the data from the tool can be used to predict whether the ma-
hine’s state is malicious or not. To gather user level data we chose

o use a tool readily available since there are already well estab-

ished solutions providing this. Specifically, we chose to use the

ool most frequently mentioned in the existing literature – Cuckoo

specifically, Cuckoo 2.0.3). Cuckoo is a sandbox capable of per-

orming automated malware analysis. 

The experiments were carried out on a virtual machine with

indows XP SP3 installed. We chose to use Windows XP as writ-

ng a Kernel driver, particularly one delving in undocumented parts

f Windows, is frustratingly challenging. This, however, is made

lightly easier in Windows XP due to the fact that it has slowly

ecome more documented through reverse engineering. In addi-

ion, all 64 bit systems are backwards compatible with 32 bit bi-

aries [56] and the most commonly prevailing malware samples in

he wild are also 32 bit [57] (with not a single 64-bit sample ap-

earing in the top ten most common samples). As of 2016, AVTEST

ound that 99.69% of malware for Windows was 32 bit [58] . The

eason for the popularity of 32 bit malware samples over 64 bit is

hat its scope is not limited to one architecture. Therefore, given

he current prevalence of 32 bit malware, we did not consider that

sing Windows XP would make our results any less relevant es-

ecially since our method could be repeated on other versions of
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Fig. 4. Workflow diagram of our proposed system’s pipeline. 
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indows and it would simplify the already challenging engineer-

ng task. The host OS was Ubuntu 16.04 and the Hypervisor used

as VirtualBox [59] . Both the host and guest machine had a con-

ection to the Internet. In order to ensure fairness and to provide

utomation, identical sandbox features to Cuckoo (such as simu-

ated human interaction) were implemented for our kernel driver.

ig. 4 shows our system diagram describing the entire experimen-

al process in order to obtain the results. 

Our kernel driver creates one CSV file for each system call. A

ew line is written to each file every time the system call asso-

iated with the file is called. After the analysis, a shared folder is

sed to transfer over the CSV files to the analysis machine. Cuckoo

perates in a similar manner however it uses network connections

o transfer over analysis files from the VM to the host machine,

fter which we transfer the JSON file to the analysis machine. We

ncode the output produced from each of the monitoring tools us-

ng a frequency histogram of calls within a two minute period. This

eature representation is used to fit a classification model for virus

etection. 

.1. Initial experiments’ parameters 

The transformed data from Cuckoo and the Kernel driver was

hen classified using a selection of machine learning algorithms

rovided by scikit-learn [60] . The machine learning algorithms

hosen were drawn from the existing literature, as the focus of

his research is on the utility of the different views of machine-

evel actions (user vs kernel) rather than new classification algo-

ithms. The classification algorithms we used were AdaBoost, De-

ision Tree, Linear SVM, Nearest Neighbours, and Random Forest.

he reason we chose these algorithms is that both Decision Trees

nd SVMs are used widely in the literature [61–66] . Random For-

st, while not used as frequently, when used, achieved impressive

esults [61,65,67,68] as has AdaBoost [61] . In addition, though Ad-

Boost is an ensemble method like Random Forest, it comes under

 different class of ensemble algorithms that use boosting as op-

osed to bagging (like Random Forest) and therefore may also be

apable of strong results. Finally, Nearest Neighbours was chosen

ue to its simplicity in order to set a baseline. Each of these meth-

ds are very well documented, however, briefly, AdaBoost [69] is a

ollection of weak classifiers (frequently Decision Trees) on which

he data is repeatedly fitted with adjusted weights (usually weight-

ng misclassified samples more heavily) until, together, the classi-

ers produce a suitable classification score or a certain number of

terations are complete. Decision Trees [70] create if-then rules us-

ng the training data which they then use to make decisions on

nseen data. The K-Nearest Neighbor method picks representative

oints in each class and when presented with a new observation

alculates its proximity to the points and assigns it to whichever

s closest. SVMs [71] separate the data by finding the hyperplanes

hat maximize the distance between the nearest training points in

ach class. Random Forest [72] , like AdaBoost, is a collection of

lassifiers, and, like AdaBoost, the classifiers are all decision trees.

owever, AdaBoost tends to employ shallow decision trees while

andom Forest tends to use deep decision trees. Random Forest
plits the dataset between all the decision trees and then averages

he result. 

For each classifier, the data was split using 10-fold cross-

alidation as it is also the standard in this field [54,61,63,73] . It is

ossible to obtain a number of metrics relating to the performance

f the classifiers of which we have chosen to use Area Under the

eceiver Operating Characteristic (ROC) Curve (AUC), Accuracy, Pre-

ision, and F-Measure since these are the metrics commonly re-

orted in the literature [51,63,64,68,74] and they provide a com-

lete view of the performance of the algorithm without missing

ut on subtle details (such as the number of false positives). To un-

erstand these measures in this context, it is important to define a

ew basic terms. We interpret True Positives (TP) as malicious sam-

les that are correctly labelled by the classifier as malicious. False

ositives (FP) are benign samples that are incorrectly predicted to

e malicious. True Negatives (TN) are benign samples that are cor-

ectly classified as benign. False Negatives (FN) are malicious sam-

les that are incorrectly classified as benign. With regards to the

ctual measures used, AUC relates to ROC curves. ROC curves plot

rue Positive Rate (TPR) against False Positive Rate (FPR). FPR is the

raction of benign samples misclassified as malicious, while TPR

epresents the proportion of malicious samples correctly classified.

 ROC curve shows how these values vary as the classifier’s thresh-

ld is altered and therefore the AUC is a good measure of a clas-

ifier’s performance. Accuracy can be described as all the correct

redictions (malicious and benign) divided by the total number of

redictions. Precision is the number of correctly labelled malware

ivided by the sum of the correctly labelled malicious samples and

he incorrectly labelled clean samples ( TP 
TP + FP 

). This gives us the

roportion of correctly labelled malware in comparison to all sam-

les labelled as malware. Recall is the correctly labelled malicious

amples divided by the correctly labelled malicious samples and

ncorrectly labelled malicious samples ( TP 
TP + FN 

). This tells us the

roportion of malicious samples that are correctly identified. We

hose to include precision since false positives are a common issue

n malware detection. Recall was not included for brevity and since

t can be quickly calculated from F-Measure (which is included)

hich is the harmonious mean of precision and recall. 

In order to confirm whether the differences in classification re-

ults were statistically significant or due to randomness, we con-

ucted 10-fold cross-validation 100 times for each classifier. This

ave us 10 0 0 AUC values for each classifier. We then checked to

ee if the 10 0 0 values were normally distributed using Q-Q Plots

f the AUC values against a normal distribution. Provided the data

as normal, we then performed Welch’s t -test [75] in order to de-

ermine whether the differences between the classification results

ere statistically significant or not (with our significance level, α,

et to 5% as is commonly used). We used Welch’s t -test due to

ts robustness and widespread recommendation in the literature

76,77] . 

In addition, in order to gain insight into whether collecting data

t a global level is more beneficial for classifying malware, the API

alls logged by the kernel driver were reduced to just those com-

ng from the process that was being monitored (and any child pro-

esses that it created). Finally, the same data from Cuckoo and our
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Fig. 5. Example graph of feature ranking mechanism. 
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Kernel Driver was combined. This was done to see if the combina-

tion of user and kernel level data can improve classification results.

4.2. Individual feature ranking 

To further understand the data recorded from the kernel and

user level, and confirm whether the features being used differ de-

pending on the data collection method used, we ranked features by

importance using two metrics for the classifier that had the best

results. For the first metric, we put the data from one feature (or

API-call) at a time through each classifier and noted the classifier’s

AUC score in differentiating malicious from clean using only the

data from that feature. We refer to this as the independent fea-

ture ranking method. This method can give an indication on the

strength of individual features. Where it lacks, however, is in its

ability to account for the relationship between features. For exam-

ple, a feature on its own may not be that strong, but when paired

with another, may be very strong. Therefore, to account for that,

we also rank features using each classifier’s in-built feature rank-

ing mechanism (which we refer to as the in-built feature ranking

method). This ranking mechanism works in different ways depend-

ing on the classifier used. For Decision Trees scikit-learn uses the

Gini importance as described here [70] . The same is true for Ran-

dom Forests and AdaBoost since they are composed of a multitude

of Decision Trees. The only difference being that as they are com-

posed of multiple Decision Trees, the importance is averaged over

each one. Finally, with Linear SVMs, the coefficients assigned to

each feature is used to rank them. In the case of K-Nearest Neigh-

bour, there is no in-built feature ranking mechanism, therefore, we

do not include it in this measure. 

In order to verify that both of the feature ranking methods were

selecting features that are optimal, and that the results they pro-

duced could be relied on, we created a plot by calculating the AUC

using only the top ‘x’ features where ‘x’ was gradually increased

from 10 by increments of 10 up to the total number of features. In

addition, this would show the minimum amount of features nec-

essary to obtain similar classification results 

4.3. Complete feature ranking 

In order to gain a more consistent but concise view of which

features seemed to be assigned a high importance, we created an
ggregate measure to rank features across all the classifiers. We

pplied it to both the in-built and independent feature ranking

ethods. This will show which features are robust since the previ-

us measure only shows the top ten for the best classifier — which

ould arguably be skewed in its favour. The aggregate measure was

alculated as follows. For each classifier, the features were ranked

ccording to the score they were given by the independent or in-

uilt feature ranking method. Then, the rank was plotted on the

 -axis from 0 (the best rank) to the total number of API-calls (the

orst rank). On the y -axis was a score from 0 to 1 and at each

ank 1 
number of classifiers 

was added to the score. Once this was done,

e found the area under the curve and that represented the to-

al strength of the features across all classifiers. This global fea-

ure ranking method can be used with any local feature ranking

ethod. Fig. 5 shows an example of this global feature ranking

ethod. In Fig. 5 , the feature in question has got the ranks 0, 20,

0, and 200 in the four classifiers it was used with. At each rank,

he value has gone up by 1/4 (since there are four classifiers). If a

eature was ranked as the most useful feature across all classifiers,

ts ranks would be 0, 0, 0, and 0, and therefore the area under the

urve for it is 1. 

. Results 

In this section, we show the results from classifying data col-

ected at a kernel and user level. In addition, in order to further

nderstand the contributing factor to the results for the kernel

ata, we conduct additional experiments with modified forms of

he data. Finally, in order to gain a better understanding of the re-

ults, we look at the ten most significant features in order to un-

erstand what the machine learning algorithms are using to iden-

ify malware 

.1. Initial experiments 

The results from classifying data collected using the Kernel

river at a global level and data collected from Cuckoo are shown

n Table 2 . 

On the whole, the results show that the data from the kernel

river is marginally better for the purposes of differentiating be-

ween clean and malicious states regardless of the machine learn-

ng algorithm used. The algorithm with the best performance for
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Table 2 

Comparison of classification results of data from Cuckoo and Kernel driver. 

Machine learning 

algorithm 

Kernel driver Cuckoo 

AUC Accuracy Precision F -measure AUC Accuracy Precision F -measure 

AdaBoost 0.983 94.1 0.934 0.941 0.973 91.8 0.911 0.920 

Decision Tree 0.944 92.3 0.906 0.925 0.943 87.8 0.918 0.913 

Linear SVM 0.945 90.3 0.873 0.906 0.932 86.9 0.835 0.870 

Nearest Neighbour 0.964 90.3 0.896 0.903 0.942 86.2 0.877 0.863 

Random Forest 0.986 95.2 0.960 0.944 0.984 94.0 0.958 0.942 

Table 3 

p -values returned from Welch’s T -Test using 

AUC values. 

Machine learning algorithm p -value 

AdaBoost 1 . 80 × e −208 

Decision Tree 1 . 41 × e −6 

Linear SVM 8 . 41 × e −78 

Nearest Neighbour 9 . 29 × e −290 

Random Forest 2 . 29 × e −10 
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Table 4 

Classification results of data from the Kernel driver focusing on the process under 

investigation. 

Machine learning 

algorithm 

Localised kernel driver 

AUC Accuracy (%) Precision F -measure 

AdaBoost 0.962 89.6 0.902 0.891 

Decision Tree 0.901 83.8 0.855 0.825 

Linear SVM 0.884 82.0 0.893 0.788 

Nearest Neighbour 0.934 86.6 0.875 0.858 

Random Forest 0.978 92.3 0.944 0.921 

Table 5 

Classification results from combining Cuckoo and kernel data. 

Machine learning 

algorithm 

Cuckoo and kernel driver 

AUC Accuracy (%) Precision F -measure 

AdaBoost 0.990 94.9 0.956 0.960 

Decision Tree 0.954 92.4 0.924 0.936 

Linear SVM 0.952 91.5 0.916 0.915 

Nearest Neighbour 0.960 90.3 0.873 0.888 

Random Forest 0.990 96.0 0.962 0.942 
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oth Cuckoo and the Kernel driver was Random Forest, obtaining

n AUC of 0.986 and 0.984, and an accuracy of 95.2 and 94.0 re-

pectively. We also found that, on average (of 10 0 0 runs), 93% of

he samples were given the same label by Random Forest regard-

ess of whether kernel or cuckoo data was used. This shows that

hile there is agreement on a large number of samples, there are

till some samples where data from one was better than the other

or classifying malware. 

In order to verify whether the difference between the Kernel

nd Cuckoo classification results are statistically significant and not

ust occurring by chance, we used Welch’s t -test on the AUC values

s described earlier. A prerequisite for using Welch’s t -test is that

he data must be normally distributed. We verified this using Q-Q

lots as shown in Fig. 6 . 

The Q-Q plots show the distribution of the AUC values and

ow closely (or otherwise) they relate to the normal distribu-

ion (shown as a red line). The plots show that the AUC values

arely deviate from the normal distribution. Therefore, Welch’s t -

est would be an appropriate test to observe if the difference be-

ween the Kernel and Cuckoo values are statistically significant.

iven that the Q-Q plots for the Cuckoo data were very similar,

e chose not to show them here for brevity. 

In Welch’s t -test, the null hypothesis is that the means are

qual (i.e., H 0 : μ1 = μ2 ), and therefore the alternative hypothe-

is is that the means are not equal (i.e., H a : μ1 � = μ2 ). We set the

hreshold α value to be 0.05 as it is an appropriate level for our

xperimentation. Therefore if the p -value returned from perform-

ng Welch’s t -test was less than α, we would reject the null hy-

othesis. Table 3 shows the results of performing Welch’s t -test on

he AUC values from each classifier. 

As Table 3 shows, the p -values returned are considerably lower

han the threshold, 0.05. Therefore, we reject the null hypothesis

hat the means of the Kernel and Cuckoo AUC values for each clas-

ifier are the same. This shows that, at a significance level of 0.05,

he difference between the kernel and Cuckoo results are statisti-

ally significant and not just due to chance. 

Therefore, from the results in Table 2 , we can conclude that

ata collected at the kernel level produces better classification re-

ults than that collected at a user level, however, it is unclear

hether this is because the data collected at a kernel level was at

 higher privilege and hooking a different API, or because the data

as collected on a global scale of all running processes allowing

s to see everything happening on the machine. In order to clar-

fy whether collecting the data at a global level assisted or harmed
he classification process, we limited the kernel data collected to

hat of the data produced by the process being analysed and any

rocesses it created. The results from this are shown in Table 4 . 

From Table 4 , it can be seen that the classification results have

ecreased when collecting data from the kernel driver at a local,

rocess-specific, level. For example, with Random Forest the AUC

as decreased from 0.986 to 0.978 and the accuracy from 95.2%

o 92.3%. In addition, the differences between global and local ker-

el data were also found to be statistically significant. Therefore,

t is evident that collecting data at a kernel level is not the only

ontributing factor to the improved classification results over user

evel, data must also be collected at a global-level in order to ob-

ain better classification results. It is also interesting to note that,

t a significance level of 0.05, the classification results from lo-

alised Kernel data are statistically significantly lower than the

uckoo results as well. This shows that if data is going to be col-

ected at a process-specific level, user-level hooks provide more

alue since they will also observe many of the process’ interac-

ions that did not reach the kernel. In addition, this shows that

imply collecting at a kernel privilege is not enough. The scope of

he collection (local vs global) is also important. It may be possi-

le to improve the localised Kernel results slightly by attempting

o detect when malware injects its payload into benign software

nd runs it from there. However, that data would be captured by a

lobal Kernel capture and therefore we wouldn’t expect the results

o improve beyond the global kernel results. 

Since limiting the data from the kernel driver did not improve

esults, and given that Cuckoo and the Kernel Driver seemed to

ail on different samples, we combined the data from Cuckoo and

he Kernel driver in order to see whether classification results are

mproved by a combination of data from both levels. The results of

his are also shown in Table 5 . 
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Fig. 6. Q-Q Plots of AUC values from Kernel data. 
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Table 6 

Top ten features using independent feature ranking with 

Random Forest. 

Cuckoo Kernel driver 

GetSystemMetrics NtQueryDebugFilterState 

LoadResource NtEnumerateKey 

FindResourceExW NtQueryFullAttributesFile 

NtQueryInformationFile NtReleaseSemaphore 

SetFileTime NtEnumerateValueKey 

NtUnmapViewOfSection NtReadVirtualMemory 

NtOpenSection NtSetInformationProcess 

NtWriteFile NtSetValueKey 

FindResourceA NtOpenEvent 

CreateDirectoryW NtNotifyChangeKey 

Table 7 

Top ten features using in-built feature ranking with Random 

Forest. 

Cuckoo Kernel driver 

GetSystemMetrics NtWriteFile 

FindResourceA NtFlushVirtualMemory 

LdrGetProcedureAddress NtReadFile 

LoadResource NtUnlockFile 

NtReadFile NtOpenMutant 

NtQueryInformationFile NtLockFile 

SetFileTime NtNotifyChangeDirectoryFile 

GetFileAttributesW NtOpenEvent 

NtOpenSection NtDeleteAtom 

NtUnmapViewOfSection NtQueryValueKey 
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Table 8 

Top ten features using in-built feature ranking with Ran- 

dom Forest. 

Cuckoo Kernel driver 

GetSystemMetrics NtReleaseSemaphore 

NtQueryInformationFile NtLockFile 

LoadResource NtUnlockFile 

RegQueryValueExW NtEnumerateKey 

NtUnmapViewOfSection NtWriteFile 

NtDuplicateObject NtOpenMutant 

RegOpenKeyExW NtReadFile 

RegCloseKey NtOpenThreadToken 

NtOpenSection NtReplyWaitReceivePortEx 

NtWriteFile NtQueryVirtualMemory 
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Table 5 shows that combining data from both tools produces

lassification results that are slightly stronger for the purposes of

alware classification with an AUC of 0.990 for both AdaBoost

nd Random Forest. The only classifier with reduced results was

-Nearest-Neighbours suggesting that it struggles to classify data

eyond a certain number of dimensions. Again, as with all the

ata, the differences shown in this table (improvements or oth-

rwise) are statistically significant. Therefore, this further validates

he claim that there is a difference in the data from Cuckoo and

he Kernel Driver and that they fail on different samples since the

esults would not have improved had this not been the case. 

.2. Individual feature ranking 

In order to further understand and confirm the differences be-

ween the data gathered by Cuckoo and the Kernel Driver, we

ompare the top ten features using both feature selection meth-

ds (described in Section 4.2 – Individual Feature Ranking)for Ran-

om Forest since it is the best performing algorithm. Table 6 com-

ares the top ten features (in order of score) using the independent

eature ranking method for Cuckoo and the Kernel driver. Table 7

hows the same, but using the in-built feature selection method.

he feature importance is shown only for Random Forest since it

ad the best performance. While it would have been ideal to show

 comparison of all the calls rather than simply the top ten, due to

he limitations of space, we have chosen to restrict it to ten. If the

ata being used by the machine learning algorithms is the same

nd therefore the difference in results is due to some other fac-

or, we would expect the top ten features to be identical or near

dentical. 

From Table 6 , we can see that the data collected from Cuckoo

nd the Kernel do not have any features in common in the top

en for the independent feature ranking method. This suggests that

oth views used very different indicators to distinguish malware.

n terms of the actual methods in the top ten for each tool, the

ernel driver contains relatively generic calls relating to the reg-

stry, threading, memory, events, and processes. Whereas Cuckoo
ontains some highly specific calls such as SetFileTime (to set MAC

modify, access, and create) times on a file) and GetSystemMet-

ics (to get information about the system). The presence of Set-

ileTime is not surprising as it is often used by malware to con-

eal conceal its accesses of a file (and thereby conceal its mali-

ious activity) [78] . GetSystemMetrics is used by malware to eval-

ate whether it is running in a virtual environment or a real one

since virtual machines tend to have low memory and storage).

tUnmapViewOfSection (and NtOpenSection) is also used to evade

etection as malware can use it to replace the code of a legitimate

rocess in memory with its code so that the legitimate process

uns its code. This could be the reason why the kernel driver mon-

toring at a global level performed better than Cuckoo monitoring

t a local level as it was able to capture this behaviour better. The

op ten also includes some methods relating to resources (Load-

esource and FindResourceExW), malware tends to hide its pay-

oad inside the resource section of a PE file, and therefore these

ethods would be used to extract it into memory. What is also

oticeable in Cuckoo’s top ten is a mix of calls from the native

PI (usually starting with Nt) and the Win32 API. An example of

hat is NtQueryInformationFile, used to obtain information about

 file. The reason for malware using this method over an equiv-

lent Win32 call is that it provides more information. It’s clear

hat the vast majority of features favoured by classifiers to dis-

inguish malware in the Cuckoo data are the evasive features of

alware, whereas the Kernel Driver uses differences in the general

ehaviour of malware to distinguish it from benignware. 

Much of our discussion about the top ten features in Cuckoo for

able 6 also applies to the features of Cuckoo in Table 7 . However,

nlike Table 6 , there is one method in common between the kernel

nd cuckoo features, NtReadFile. This suggests that this feature is

mportant regardless of the perspective from which data is being

athered. Another interesting observation is that there are seven

ethods in common between Cuckoo’s independent ( Table 6 ) and

nbuilt feature ranking ( Table 8 ). This suggests that many of the

ontributing features in Cuckoo’s case can be used alone to detect

alware (which is worth considering when selecting feature rep-

esentation methods). Due to this, many of the observations made

bout Cuckoo’s top ten in Table 6 apply here (such as Cuckoo fo-

using more on malware’s evasive behaviour over its general be-

aviour). Aside from this, Cuckoo’s top ten in Table 7 also con-

ains LdrGetProcedureAddress. This is important as it can be used

y malware to evade static analysis and dynamic heuristic analy-

is by loading all the routines it needs at runtime and therefore

alware can achieve all that it intends to with only that method

inked at compile time. 

On the Kernel side, there is one method in common between

he inbuilt and independent feature ranking method, NtOpenEvent.

his is no surprise as this method can be used to interact with

indows Events which malware could use to ensure it is run ev-

ry day, for example. In general, the top tens for the kernel data
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Table 9 

Top ten features using in-built feature selection considering all classifiers. 

Cuckoo Kernel driver 

NtOpenSection NtFlushVirtualMemory 

InternetCloseHandle NtOpenMutant 

LoadResource NtFilterToken 

SetUnhandledExceptionFilter NtUnlockFile 

SetFileTime NtAccessCheckByTypeAndAuditAlarm 

LdrLoadDll NtQueryVirtualMemory 

CreateActCtxW NtDeleteAtom 

getaddrinfo NtWriteFile 

LdrGetDllHandle NtReadFile 

LdrGetProcedureAddress NtCompleteConnectPort 
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for both tables are more focused on the differences in general pro-

cess behaviour between malware and benignware. There are fewer

methods directly related to specific behaviour exhibited by mal-

ware, however, there are a few exceptions. In the independent fea-

ture ranking for Kernel data shown in Table 6 , there is the method

NtSetInformationProcess, which has been known to be used by

malware to disable Data Execution Prevention (DEP). DEP is a pro-

tection in memory which prevents malware from running code in

non-executable sections of memory [79] . Another method in the

top ten likely to be related to malware is NtNotifyChangeKey. This

is used by a process to ask Windows to notify it whenever any

changes are made to the registry. This could be used by malware

to monitor what is being done on the system or even prevent any

changes to the keys that it created. 

The top ten for the Kernel data using the inbuilt feature ranking

method (shown in Table 7 ) also reflects this. As with the previous

table, there are some unusual methods in the top ten features for

the Kernel data; for example, NtNotifyChangeDirectoryFile, a com-

pletely undocumented method. This method is used by a process

to ask Windows to notify it when any changes occur in a directory,

therefore, malware may be using it to simply monitor system ac-

tivity and protect itself or to attach itself to any file moves. How-

ever, another likely reason is that this method is responsible for

a publicised vulnerability [80] that could be used to expose parts

of kernel memory and defeat Address Space Layout Randomisation

(ASLR). NtNotifyChangeDirectoryFile is not the only undocumented

method in the top ten; NtDeleteAtom and NtOpenMutant are also

completely undocumented by Windows. This could explain why

the Kernel data was able to better distinguish malware from be-

nignware as it is able to capture behaviour that cannot be captured

at user level. Aside from that, the differences in general process

behaviour are being used to detect malware. 

Tables 6 and 7 demonstrate that Random Forest, when trained

on data from Cuckoo and the Kernel Driver, utilises different be-

havioural aspects when identifying if a file is malicious or not.

While Cuckoo and our kernel driver generally monitor equivalent

calls, the fact that the observed rankings are different suggests that

the scope (local or global) of the calls is an important factor. An-

other contributing factor could be that malware evades or detects

the inline API-hooking technique used by Cuckoo but not the Ker-

nel hooking method employed by our driver (since it requires a

more sophisticated approach to evade). 

To confirm the correctness of both of the feature ranking meth-

ods, we performed some simple feature reduction (described in

“Section 4 - Method & Implementation”) using our feature rank-

ing methods. The results of this are shown in the Figs. 7 and 8 .

We created these graphs for both the data from the kernel driver,

and the data from the Cuckoo driver. However, since the graphs

were a very similar shape, for brevity’s sake, we have only shown

the graphs for the data from the Kernel driver. 

For most of the plots in Figs. 7 and 8 the AUC is at its lowest

with just ten features, however, as the number of features that the

machine learning algorithms use increases, the AUC increases until

it reaches its peak at around 50 features after which the introduc-

tion of new features simply adds noise, thereby reducing or not

contributing to the difference in the AUC. This highlights that the

feature ranking method seems to be able to decipher which fea-

tures are important. In addition, it shows that, in most cases, no

more than 50 API-calls need to be hooked for similar results. 

5.3. Complete feature ranking 

Finally, we applied the global feature ranking metric we cre-

ated (described in “Section 4.3 – Complete Feature Ranking”) to

get a concise yet comprehensive view of the features of malware

that were consistently considered important by all classifiers. The
esults from applying the global feature ranking for both the in-

uilt and independent feature selection methods are shown in

ables 8 and 9 . 

From these tables we can ascertain which features perform

est across all the classifiers that we used. This gives us a clearer

icture of which features are extremely strong when it comes

o differentiating malware from cleanware. With regards to the

uckoo data, we see in Table 8 some of the features used to

vade detection that we have seen before (GetSystemMetrics,

tUnmapViewOfSection, and NtOpenSection). There are also re-

ource related methods (LoadResource) and the native API method

NtQueryInformationFile) we encountered previously. Of the new

ethods, NtDuplicateObject is interesting because it is used by

alware to evade anti-virus heuristics, as anti-viruses would ex-

ect malware to call the more commonly used DuplicateHandle

o duplicate a process handle to kill or inject into it and would

herefore be less likely to flag a call to NtDuplicateObject as sus-

icious [81] . From this we can conclude that Cuckoo’s top ten in

able 8 contains a mix of evasive, potentially malicious, and gen-

ral methods. 

In contrast, Cuckoo’s top ten in Table 9 has more emphasis on

he evasive behaviour of malware. For example, LdrLoadDll, Ldr-

etDllHandle and LdrGetProcedureAddress are in the top ten and

re known to be used by malware to load DLLs dynamically in

rder to import methods from them. This can be used to avoid

eing detected by IAT hooks. In addition, the method SetUnhan-

ledExceptionFilter in the Cuckoo top ten, is also used as an anti-

ebugging trick by malware as this method is used to specify a

unction to be called in the event of an exception occurring that is

ot handled by any exception handler. However, the function spec-

fied will only be called if the process that raised the exception is

ot being debugged. Therefore, malware can register a function to

eliver its payload and then throw an exception, and if the pro-

ess is being debugged, that function will not be called, and hence

he malware will not display its malicious behaviour. SetFileTime,

hich has been described previously, is also used to curb suspi-

ions. Finally, NtOpenSection, as mentioned previously, can be used

o embed malicious code in a benign process. Therefore, as can be

een, much of the top ten for Cuckoo in Table 9 utilise the evasive

ehaviour of malware to detect it. 

On the Kernel side, each table contains methods from a wide

ange of categories (such as file-system, threading, networking

tc.), making it more general than the top ten kernel calls in the

uckoo data. While many of the methods in these tables are likely

o be used by malware, they are not used solely by malware (as

ould be expected from a tool monitoring at a global level). On the

hole, it can be seen that with the Cuckoo data, malware is de-

ected through the techniques it uses to detect a monitoring or vir-

ual environment, whereas, with the data from the Kernel Driver,

alware is differentiated from cleanware through how its general

ehaviour differs from the norm. 
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Fig. 7. Feature selection using inbuilt feature selection method. 

Fig. 8. Feature selection using independent feature selection method. 
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. Conclusion 

Motivated by a hypothesis that kernel level API calls and user

evel API calls do not produce the same classification results, we

onducted experiments to understand the differences by collecting

ata at different privilege levels within the same Operating System.

e collected data at a user level using Cuckoo, and at the kernel

evel using a custom made Kernel driver since there are no exist-

ng tools that hook all the calls in the SSDT on a global scale. The

ata collected was classified using several state-of-the-art machine

earning algorithms to determine whether collecting data at differ-

nt levels altered classification results. The results showed kernel

ata to be statistically significantly better for all classification al-

orithms despite the fact that user level methods are significantly

ore popular in the literature. Random Forest performed the best

ith an accuracy of 94.0% for Cuckoo and 95.2% for the Kernel

river. In addition, by limiting the kernel data to that produced

y the process under observation (and its subprocesses), we found

hat the classification results reduced suggesting that the collec-
ion of data at a global, system-wide level aided the classification

rocess. Our strongest classification results were observed by com-

ining the data from Cuckoo (user level) with that from our Kernel

river; achieving an AUC of 0.990 and accuracy of 96.0% for Ran-

om Forest. 

In order to understand why the differences in data collection

ethods had contributed to the different classification results, we

erformed feature ranking for Random Forest and collectively for

ll classifiers used, and found that the features focused on by clas-

ifiers differed significantly from the data used. The main obser-

ation from this was that monitoring on a process specific level

s Cuckoo does caused the machine learning algorithm to detect

alware using its evasive properties. Whereas, when trained on

ata obtained from monitoring at a global, kernel level, the ma-

hine learning algorithm used the more general behaviour of the

alware (and processes in general) to distinguish it from clean-

are. The differences resulting from collecting data at different

rivilege levels highlighted the benefit gained from collecting data

t a kernel level (or both levels) in order to detect malware and
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the importance of the literature carefully detailing the data collec-

tion method that has been used since the results are affected by

it. To assist with this, we have documented many of the dynamic

malware analysis tools in Table A1 in the appendices of this pa-

per. Table A1 shows that while there exists a plethora of well es-

tablished tools for collecting data at a user level, there are only a

handful of established tools to collect data at a kernel level, and

fewer still that are freely available. While the driver we have writ-

ten is specific to Windows XP, the main contributions of this pa-

per (a comparison of user and kernel level calls) will apply to fu-

ture releases of Windows. In conclusion, this paper provides the

first objective, evidence-based comparison of kernel level and user

level data for the purposes of malware classification. In future we

hope to do an in-depth analysis into the implications of the dif-

ferences in the representative features of malware with kernel and

user data. 
Table A1 

Name Description 

API Monitor [82] Capable of hooking every method 

in the Windows API 

APIMon [86] Uses EasyHook [87] to perform 

inline hooking on all user-level 

APIs 

Buster Sandbox Analyser [89] Not documented how it gathers 

API calls. Monitors specific 

categories of calls. 

CaptureBAT [24] Uses filter drivers 

Cuckoo Sandbox [93] Leading open-source dynamic 

malware analysis system [93] . 

Uses inline hook to hook certain 

categories of Windows API calls 

[94] 

CWSandbox [128] Uses in-line code hooks to record 

calls in specific categories [128] 

Deviare [135] Hooking engine that hooks entire 

Win32 API and is also 

integrate-able with many 

programming languages 

Ether [32] VMI solution focused on being 

undetectable by malware (known 

for achieving good transparency). 

Utilises Xen hypervisor and Intel 

VT [33] to provide hardware 

virtualization 

HookMe Uses Microsoft’s Detours [18] to 

perform in line hooking 

Malpimp [139] Based on pydbg (pure Python 

debugger) 

Micro analysis System (MicS) 

[141] 

Executes in a real (not virtual) 

environment and uses IAT hooking 

NtTrace [143] Tool that uses inline hooking to 

hook ntdll.dll 

Osiris [34] VMI solution using a modified 

version of QEMU [29] . Also 

provides a simulated network 

environment. Monitors specific set 

of user and kernel level calls 

StraceNT [145] Inspired by strace on Linux. Uses 

IAT hooking to hook all user-level 

APIs 

Sysinternals Process Monitor [23] Gathers data using a kernel driver 

(file system filter driver) [6] 

TEMU [154] Extensible complete-system, 

fine-grained analysis platform 

capable of monitoring any call 

TTAnalyze (used in Anubis 

(Analysis of unknown binaries) 

Sandbox [157] [158] ) 

Uses QEMU [29] to perform 

software emulation. Monitors 

specific categories of API calls 

through JIT compilation [28] 

WinAPIOverride [164] Free tool to monitor all user-level 

Windows API calls made by 

processes 
unding 
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ppendix A. Tools used in the literature to gather API-calls 
Kernel hook User hook Used by 

x [63,83–85] 

x [88] 

x [53,90] 

x [91,92] 

x [51,52,54,67,68,73,95–127] 

x [129–134] 

x [65] 

x [53,64,136,137] 

x [61,138] 

x [140] 

x [142] 

x [144] 

x x [64] 

x [146–148] 

x [51,91,149–153] 

x x [30,155,156] 

x x [62,159–163] 

x [165,166] 

https://doi.org/10.13039/501100000266
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