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Abstract 
A number of effective models have been developed for simulating chemical transport in porous media; 

however, when a reactive chemical problem comprises multiple species within a substantial domain 

for a long period of time, the computational cost can become prohibitively expensive. This issue is 

addressed here by proposing a new numerical procedure to reduce the number of transport equations 

to be solved. This new problem reduction scheme (PRS) uses a predictor-corrector approach, which 

‘predicts’ the transport of a set of non-indicator species using results from a set of indicator species 

before ‘correcting’ the non-indicator concentrations using a mass balance error measure. The full 

chemical transport model is described along with an experimental validation. The PRS scheme is then 

presented together with an investigation, based on a 16 species reactive advective-diffusion problem, 

which determines the range of applicability of different orders of PRS. The results of a further study 

are presented in which a set of PRS simulations are compared with those from full model predictions. 

The application of the scheme to the intermediate-sized problems considered in the present study 

showed reductions of up to 82 % in CPU time with good levels of accuracy maintained.  
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Nomenclature  
c Chemical concentration [kg/kg] nind Number of indicator species 

𝐂 
Global storage matrix 

np 
Number of precipitates/sorbed 
masses 

Dπ /Dπ  Diffusion coefficient/tensor for phase π [m2/s] ns Number of species 
F Faraday constant [C/mol]  𝐧 Unit normal vector to boundary 

𝐅 Global RHS vector PC Capillary pressure [Pa] 

𝐠 Gravity vector [m/s2] qπ Imposed flux of phase π  

Jπ Flux of phase π  r Reaction rate [1/s] 
Ki,/Ki Permeability coefficient/tensor of Type i [m2/-] R Ideal gas constant [J/K*kmol] 

𝐊 Global flux matrix RH Relative humidity 

kd, ka Desorption and Adsorption Rate Parameters Sπ Degree of saturation of phase π 
𝑚𝜋 Mass of phase π t Time [s] 
n Porosity T Temperature [K] 
N Shape function vector vπ Velocity of phase π [m/s] 
ne Number of elements z Charge of chemical species 
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Greek Letters 
αT, αL Transverse and longitudinal dispersivities  𝜌𝜋̅̅ ̅ Phase averaged density of phase π 

βc Moisture transfer coefficient [m/s] τ Characteristic time [s] 

γc Chemical transfer coefficient [kg/m2 s] φ Vector of residuals 
δkj Kronecker delta ψ Local electric field  

ε Dielectric permittivity [F/m] Γπ Boundary of domain 

μ, λ Rate parameters Φ Vector of primary variables 
μw Dynamic viscosity [Pa*s] Ω Total domain 

ρπ Density of phase π [kg/m3]    Ωe Element domain 

 

Subscripts/Superscripts 
0 Initial ind/jnd Indicator 

b Boundary k Iteration number 
c Cauchy mol Molecular 

C Capillary mv Moisture vapour 

d Dispersive p Precipitated/Sorbed 

D Dirichlet r Reference 
e Element rw Relative water 

env Environment s Solid 

es Electrostatic double layer SIS Source influence solution 
g Gas τ Tortuosity 

gr Gradient u/l Upper/Lower 

i Chemical species i v Vapour 

in Intrinsic W Water 

 

1 Introduction 
The prediction of chemical solute transport behaviour in porous media is of great importance in a wide 

range of engineering applications. To this end, a significant number of numerical transport models 

have been developed. Typically, these are coupled models which consider advection and 

hydrodynamic dispersion, the latter of which comprises both mechanical dispersion and self-diffusion1 

of the chemical species coupled with heat flow, and often, the mechanical behaviour of the medium.  

In addition to these flow and deformation processes, the solute can also be considered to be either 

reactive or non-reactive depending on the nature of the problem considered.  

The application of these models has varied considerably, with many studies concentrating on 

geochemical problems such as modelling groundwater systems,2-6 assessing the performance of 

engineered barriers,7-11 or attenuation of mine water tailings.12-14 Application of these models to 

cementitious materials has most often investigated the ingress of chloride ions15-18 or calcium 

leaching;19,20 however, recently these models have also been used for the investigation of self-healing 

concrete.21,22  

One of the major disadvantages of these models is that they can become computationally expensive 

when the chemical system becomes relatively large. Cleall et al.23 suggest that the magnitude of a 

problem is governed by three main aspects; the domain size, timescale and the complexity of the 

analysis, which includes the number of variables, the degree of coupling between them, the number 

of processes considered and the degree of nonlinearity of the system. The degree of nonlinearity 

depends on the underlying physical processes; for example, the system will be highly nonlinear if the 



reactions are sensitive to small changes in concentration, or the permeability of the porous medium 

is sensitive to the degree of saturation. To deal with this issue, several techniques have been proposed 

to improve the computational efficiency of the associated solution process; including, ‘operator 

splitting’ techniques and reformulation of the coupled system. Operator splitting divides or ’splits’ a 

time step into a transport calculation and a reaction calculation, to be solved sequentially, with many 

models iterating between the two. This is an approximation of the time integral of the governing 

equation,24 which therefore changes the numerical framework from a global implicit approach (GIA) 

to a sequential iterative or sequential non-iterative approach (SIA/SNIA). Such calculation splitting 

methods have been found to reduce the computational cost25 and have been used by many authors.2-

4,8-11 A disadvantage of the SNIA approach is its propensity to introduce splitting errors (for example 

mass balance errors), whilst the SIA tends to require prohibitively small time steps and a relatively 

large number of iterations to achieve convergence.26,27  Consequentially, these operator splitting 

approaches have been found to increase computational demand for certain ‘chemically difficult’ cases 

(for example, cases with high kinetic reaction rates).27,28 

A number of authors have taken an alternative approach, concentrating instead on improving the 

efficiency of GIAs. Most studies have focussed on reformulating the system by decoupling a number 

of the partial differential equations (PDEs) and eliminating certain local (spatially invariant) equations, 

including both ordinary differential equations (ODEs) and algebraic equations (AEs).26,27,29-31 A 

common assumption used in such formulations is that all chemical species have the same diffusion 

coefficient.26,27 This has been justified by the fact that predicted responses are relatively insensitive to 

differences in diffusion constants because mechanical dispersion is normally the dominant transport 

mechanism.27 An alternative view was expressed by Thomas et al.10 who suggested that this 

assumption is not valid for some chemical systems. The presence of minerals whose concentrations 

can reach zero may also cause issues when such schemes are used,26 although Kräutle and Knabner26 

have introduced a moving boundary condition and a complimentary function to alleviate these 

difficulties.  

The reduction in computational demand that can be achieved by the operator-splitting and 

reformulation approaches described above is often limited by the chemistry of a problem; for 

example, only limited reductions are possible when a large number of kinetic reactions with high 

reaction rates are considered. To address this issue, an indicator-based multi-order problem reduction 

scheme is proposed, which allows a greater reduction in problem size that is independent of the 

nature of reactions, and which explicitly considers species-dependent diffusion coefficients. The 

scheme works by decoupling a number of the nonlinear PDEs from the global system of equations. In 

this new Problem Reduction Scheme (PRS), a small number of indicator species (≤3) are selected for 

full computation and then, on a step-wise basis, the response of other species is inferred from these 

indicators using a predictor-corrector approach. The reduction in computational demand is achieved 

through the reduction in size of the nonlinear global system of equations and by the replacement of 

nonlinear PDEs with step-wise predictor-corrector computations for non-indicator species. Three 

different orders of the PRS are considered, each applicable to different chemical systems.  The new 

PRS is presented along with a study to establish the range of applicability of each order considered. 

This is followed by a set of validation examples in which the reactive transport of chemical species 

through mortar and concrete specimens is simulated. 



2 Theoretical Formulation 

2.1 Mathematical model 
The theoretical model is based on the approach of Gawin et al.32 The porous medium is assumed to 

be composed of three main phases namely; solid skeleton, liquid moisture and gas, the latter of which 

consists of dry air and moisture vapour. It is also assumed that dissolved chemical species are present 

in the liquid moisture phase and that precipitation can occur. Following the approach of Chitez and 

Jefferson,33 the combined gas pressure of dry air and moisture vapour is assumed to remain constant 

at atmospheric pressure but that the moisture vapour may diffuse through the gas phase. 

The primary variables considered here are the capillary pressure (PC), and chemical concentration (ci) 

of each species. The advantages of using capillary pressure as the primary moisture variable have been 

discussed by Gawin et al.32 These include the fact that it is convenient for coupling moisture flow to 

mechanical behaviour, due to the direct relationship that exists between the pressure and the 

components of stress, and that it provides a physically meaningful driving force for moisture flow.  

Macroscopic balance equations, as derived from the volume averaging theorem and hybrid mixture 

theory,34 are presented in the following sections. Heat transport is included in the model, governed 

by the enthalpy balance equation; however, the problems considered here are isothermal and so this 

part of the model has not been used in the present study. 

2.2 Governing Equations 

2.2.1 Moisture transport 

Transport in the porous medium is described using mass balance equations for liquid moisture, 

moisture vapour and chemical species. Defining the domain 𝛺 ∈ ℝ𝑑 with boundary 𝛤, and noting that 

the time interval considered is given as 𝑡 ∈ [𝑡0, 𝑇], the mass balance of the liquid moisture and 

moisture vapour can be written as: 

𝜕𝑡(𝑛𝑆𝑤𝜌𝑤  ) + 𝛁 ∙ (𝑛𝑆𝑤𝜌𝑤𝐯𝑤) + 𝜕𝑡(𝑚𝑣) = 0   ∀ 𝐱 ∈ 𝛺    (1) 

𝜕𝑡(𝑛𝑆𝑔𝜌𝑣) + 𝛁 ∙ 𝐉v − 𝜕𝑡(𝑚𝑣) = 0           ∀ 𝐱 ∈ 𝛺    (2) 

Summing these together gives the total mass balance for moisture: 

𝜕𝑡(𝑛𝑆𝑤𝜌𝑤) + 𝜕𝑡(𝑛𝑆𝑔𝜌𝑣) + 𝛁 ∙ (𝑛𝑆𝑤𝜌𝑤𝐯𝑤) + 𝛁 ∙ 𝐉𝑣 = 0        ∀ 𝐱 ∈ 𝛺    (3) 

where 𝑛 denotes the porosity, 𝑆𝑤 is the degree of liquid moisture saturation and 𝜌𝑤 is the liquid 

density, 𝑆𝑔 is the degree of gas saturation and 𝜌𝑣 the moisture vapour density. 𝜕𝑡 denotes a time 

derivative, 𝐯𝑤 is the liquid moisture velocity, 𝜕𝑡(𝑚𝑣) is the rate of moisture transfer from liquid to 

vapour and Jv is the moisture vapour diffusion described here by Fick’s law:32 

𝐉𝑣 = −𝜌𝑔𝐃𝐦𝐯𝛁(
𝜌𝑣

𝜌𝑔
)          (4) 

where 𝜌𝑔 is the gas density and 𝐃𝐦𝐯
 is the moisture vapour diffusivity tensor given by:22 



𝐷𝑖,𝑗
𝑚𝑣 = {

𝑛(1 − 𝑆𝑤)𝐴𝑣𝑓𝑣𝐷
𝑣0 (

𝑇

𝑇𝑟
)
𝐵𝑣 𝑃𝑎𝑡𝑚

𝑃𝑔
           ∀ 𝑖 = 𝑗

0                                                                 ∀ 𝑖 ≠ 𝑗
      (5) 

where Av =1, Bv =1.667 and fv =0.01. D v0=2.47x10-5 m2/s is the moisture vapour diffusion coefficient in 

air, Tr=273 K is the reference temperature, and Pg and Patm denote the gas pressure and atmospheric 

pressure respectively. 

The flow of the liquid moisture through the medium can be described by Darcy’s law:32 

𝑛𝑆𝑤𝐯𝑤 =
𝐊in𝐾𝑟𝑤

𝜇𝑤
(𝛁𝑃𝐶 + 𝜌𝑤𝐠)         (6) 

where Kin is the intrinsic permeability tensor of the medium, μw is the viscosity of the fluid and Krw is 

the relative permeability of the moisture phase given by:8 

𝐾𝑟𝑤 = 𝑆𝑤
𝐴𝑤           (7) 

where Aw =4 in the present work. 

The remaining constitutive relationships used in the moisture transport component of the model are 

given in Appendix A. 

2.2.2 Chemical transport  

The mass balance of a dissolved chemical species, i, can be written as: 

𝜕𝑡(𝑛𝑆𝑤𝜌𝑤𝑐𝑖) + 𝛁 ∙ (𝑛𝑆𝑤𝜌𝑤𝑐𝑖𝐯𝑤) + 𝛁 ∙ 𝐉𝑑
𝑖 − 𝑛𝜌𝑝𝜕𝑡(𝑆𝑝)

𝑖
= 0 ∀ 𝐱 ∈ 𝛺    (8) 

where the final term on the left hand side is the source/sink term due to chemical reactions, Sp is the 

degree of saturation of precipitated or sorbed material, 𝜌𝑝 is the mass of the precipitated or sorbed 

material and 𝐉𝑑
𝑖

 is the dispersive flux given by the Poisson Nernst Planck equations, which can be 

written as follows35, where the first term on the right hand side of eq. (9) represents mechanical 

dispersion and the remaining r.h.s. terms account for diffusion: 

𝐉𝑑
𝑖 = −𝜌𝑤𝐃𝑖

𝑑 ∙ 𝛁𝑐𝑖 − 𝑛𝑆𝑤𝜌𝑤𝐷𝑖
𝑚𝑜𝑙(𝛁𝑐𝑖 +

𝑧𝑖𝐹

𝑅𝑇
𝑐𝑖𝛁𝜓)      (9) 

𝜀∇2 ∙ 𝜓 + 𝐹(∑ 𝑧𝑖𝑐𝑖 + 𝜌𝑛𝑠
𝑖=1 ) = 0         (10) 

𝐷𝑖
𝑚𝑜𝑙

 is the coefficient of molecular diffusion, z is the charge of an ion, ε is the dielectric permittivity, 

𝜌 is the charge density, F is Faraday’s constant and 𝜓 is the electrical potential.  𝐃𝑖
𝑑is the mechanical 

dispersion tensor, defined below in equation 14. The second term in the bracket in eq. (9) represents 

dispersion due to the local electric field 𝜓 which can be calculated from eq. (10). It can be noted that 

the first term in eq. (10) is negligible,35,36 as is the charge density 𝜌, thus eq. (10) reduces to the 

following charge neutrality condition: 10,35-37 

∑ 𝑧𝑖𝑐𝑖 = 0𝑛𝑠
𝑖=1            (11) 

and, since the pore solution is initially charge neutral, this condition is ensured through the no 

electrical current condition:10,36,37 



∑ 𝑧𝑖𝐉𝑖 = 0𝑛𝑠
𝑖=1            (12) 

where 𝐉𝑖 = −𝑛𝑆𝑤𝜌𝑤𝐷𝑖
𝑚𝑜𝑙(𝛁𝑐𝑖 +

𝑧𝑖𝐹

𝑅𝑇
𝑐𝑖𝛁𝜓) is the diffusive flux of species i.  

Equation (12) can be used to eliminate the electrical potential gradient giving the dispersive flux of 

species i as: 

𝐉𝑑
𝑖 = −𝜌𝑤𝐃𝑖

𝑑 ∙ 𝛁𝑐𝑖 − 𝑛𝑆𝑤𝜌𝑤𝐷𝑖
𝑚𝑜𝑙 (𝛁𝑐𝑖 + 𝑧𝑖𝑐𝑖

∑ 𝑧𝑖𝐷𝑖
𝑚𝑜𝑙𝛁𝑐𝑖

𝑛𝑠
𝑖=1

∑ 𝑧𝑖
2𝐷𝑖

𝑚𝑜𝑙𝑐𝑖
𝑛𝑠
𝑖=1

)     (13) 

The hydrodynamic dispersion is the sum of the molecular diffusion and mechanical dispersion. The 

definition of hydrodynamic dispersion of Bear and Bachmat1 is adopted here, where the mechanical 

dispersion tensor is given as: 

 𝐷𝑖
𝑑

𝑘,𝑗
= 𝛼𝑇|𝐯𝑤|𝛿𝑘𝑗 + (𝛼𝐿 − 𝛼𝑇)

𝒗𝑤
𝑘 𝒗𝑤

𝑗

|𝐯𝑤|
        (14) 

where 𝛼𝐿 and 𝛼𝑇 are the longitudinal and transverse dispersivities respectively and 𝛿𝑘𝑗 is the 

Kronecker delta (𝛿𝑘𝑗 = 1 if k=j or 𝛿𝑘𝑗 = 0 𝑖𝑓 𝑘𝑗 ).  

2.2.3 Chemical reactions 

The chemical reactions considered here are all assumed to be non-equilibrium reactions, i.e. transport 

of the ions may be faster than the rate of reactions such that binding or precipitation is not 

instantaneous.38 In addition, it is assumed that the rates of the reaction can be computed using a 

Freundlich type isotherm, as follows:35 

𝜕𝑡(𝑆𝑝)
𝑖
= −

(𝑆𝑝−𝜇𝑐𝑖
𝜆)

𝜏
          (15) 

in which, μ and λ are rate parameters, and τ is a characteristic time that accounts for non-equilibrium 

behaviour. It can be noted that molar concentrations are used to calculate the reaction rates 

throughout. 

2.3 Boundary conditions 
In order to solve the system, both the initial conditions and boundary conditions (BC) are required. 

The initial conditions considered here define the values of all variables at time t=t0 throughout the 

domain and on the boundary as follows: 

𝑃𝐶 = 𝑃𝐶
0       𝑐𝑖 = 𝑐𝑖

0            ∀ 𝐱 ∈ 𝛺     (16) 

The boundary conditions considered here are of the Cauchy type and Dirichlet type. The former are a 

combination of imposed fluxes (which in isolation describe Neumann boundary conditions)32 and 

convective fluxes, which are a function of the difference in variables between the sample and the 

environment. Applied to the governing mass balance equations of moisture and of dissolved chemical 

species, the Cauchy boundary conditions describe the rate of mass transfer from the environment to 

the sample and are given as: 

(𝑛𝑆𝑤𝜌𝑤𝐯𝑤 + 𝐉𝑣) ∙ 𝐧 − 𝑞𝑣 − 𝑞𝑤 − 𝛽𝑐(𝜌𝑣 − 𝜌𝑣
𝑒𝑛𝑣) ∀ 𝐱 ∈ 𝛤𝑐1    (17) 

(𝑛𝑆𝑤𝜌𝑤𝑐𝑖𝐯𝑤 + 𝐉𝑑
𝑖 ) ∙ 𝐧 − 𝑞𝑐 − 𝛾𝑐(𝑐𝑖 − 𝑐𝑖

𝑒𝑛𝑣)        ∀ 𝐱 ∈ 𝛤𝑐2    (18) 



where qw, qv and qc are the prescribed fluxes of the moisture, moisture vapour and chemical species 

respectively, and βc and γc are the convective transfer coefficients of the moisture and chemical 

species respectively. 𝐧 is the unit normal vector to the boundary. 

The Dirichlet boundary conditions fix the value of the variable on the boundary and are given by: 

𝑃𝑐(𝑡) = 𝑃𝑐
Γ      ∀ 𝐱 ∈ 𝛤𝐷1    (19) 

𝑐𝑖(𝑡) = 𝑐𝑖
Γ      ∀ 𝐱 ∈ 𝛤𝐷2    (20)  

3 Numerical Solution 
In the present study, the governing equations (3 and 8) are discretised using the finite element 

method. The resulting variational problem, after the application of Gauss-Green divergence theorem, 

may be written as follows: 

find 𝚽 ∈ 𝑈, such that, 

∫ 𝐖(𝜕𝑡(𝑛𝑆𝑤𝜌𝑤) + 𝜕𝑡(𝑛𝑆𝑔𝜌𝑣))Ω
𝑑Ω − ∫ 𝛁𝐖 ∙ ((𝑛𝑆𝑤𝜌𝑤𝐯𝑤) + 𝐉𝑣)Ω

𝑑Ω + ∫ 𝐖(𝑞𝑣 + 𝑞𝑤 + 𝛽𝑐(𝜌𝑣 −
Γ

𝜌𝑣
𝑒𝑛𝑣)) 𝑑Γ = 0           (21) 

∫ 𝐖(𝑛𝑆𝑤𝜌𝑤𝜕𝑡(𝑐𝑖) − 𝑛𝜌𝑝𝜕𝑡(𝑆𝑝)
𝑖
)

Ω
𝑑Ω − ∫ 𝛁𝐖 ∙ ((𝑛𝑆𝑤𝜌𝑤𝑐𝑖𝐯𝑤) + 𝐉𝑑

𝑖 )
Ω

𝑑Ω + ∫ 𝐖(𝑞𝑐 + 𝛾𝑐(𝑐𝑖 −
Γ

𝑐𝑖
𝑒𝑛𝑣)) 𝑑Γ = 0           (22) 

where 𝚽 = [𝐏𝑐
̅̅ ̅ 𝐜�̅� … 𝐜𝑛𝑠̅̅ ̅̅ ] is the vector of primary variables, and the space for the trial functions 

is defined as 𝑈 = {𝐮 ∈ 𝐻1(Ω) | 𝐮(𝐱) = 𝚽Γ   ∀𝐱 ∈ 𝛤𝐷}. 

In this study, the continuous Galerkin weighted residual method32 is employed such that the weight 

functions (W) are chosen to be equal to the shape functions (N), with the primary variables being the 

capillary pressure and the species’ concentrations.  The resulting system of discretised equations is as 

follows: 

[
 
 
 
 𝐊11 𝐊1i … 𝐊1ns

𝐊i1 𝐊ii …    𝟎   
⋮

𝐊𝑛𝑠𝑖

⋮
𝟎

⋱     𝟎   

𝟎 𝐊𝑛𝑠𝑛𝑠]
 
 
 
 

[

𝐏𝑐
̅̅ ̅

𝐜�̅�

⋮
𝐜𝑛𝑠̅̅ ̅̅

] +

[
 
 
 
 𝐂11 𝐂1𝑖 … 𝐂1𝑛𝑠

𝐂𝑖1 𝐂𝑖𝑖 …    𝟎   
⋮

𝐂𝑛𝑠𝑖

⋮
𝟎

⋱     𝟎   

𝟎 𝐂𝑛𝑠𝑛𝑠]
 
 
 
 

[
 
 
 𝐏𝑐
̅̅ ̅̇

𝐜i̇̅

⋮
𝐜𝑛𝑠̅̅ ̅̇̅ ]

 
 
 

=

[
 
 
 
 𝐅1

𝐅𝑖

⋮

𝐅𝑛𝑠]
 
 
 
 

      (23) 

where the superior dot denotes a time derivative and each variable (e.g. Pc) is interpolated from the 

vector of nodal variables in the standard manner (i.e. 𝑃�̅�=∑𝑁𝑖𝑃𝑐𝑖
̅̅ ̅=N𝐏𝒄

̅̅ ̅).  

It is recognised that the continuous Galerkin method does not guarantee local mass conservation 

when applied to equations (21 & 22), and the system described by equation (23) may be subject to 

spurious oscillations;39 particularly for an advection dominant case. To address this issue, a number of 

stabilisation techniques may be used, including mass lumping, SUPG and enrichment of the Galerkin 

method.39-41 Alternatively, a different method could be employed for the spatial discretisation, such 

as the discontinuous Galerkin method.39 In the present work, however, no spurious oscillations were 

observed in the problems considered and therefore it did not prove necessary to employ any of the 

above stabilisation techniques. 



The global matrices are given by: 

𝐊𝑖𝑗 = ∑ ∫ ∇𝐍T𝐊𝑖𝑗∇𝐍
Ω𝑒 𝑑Ω𝑒𝑛𝑒

𝑒=1          (24) 

𝐂𝑖𝑗 = ∑ ∫ 𝐍T𝐶𝑖𝑗𝐍Ω𝑒 𝑑Ω𝑒𝑛𝑒
𝑒=1          (25) 

𝐅𝑖 = ∑ (∫ 𝛁𝐍 ∙ 𝐅𝑔𝑖Ω𝑒 𝑑Ω𝑒 − ∫ 𝛁𝐍 ∙ 𝐅𝑑𝑖Ω𝑒 𝑑Ω𝑒 − ∫ 𝐍𝐹qiΓ𝑒 𝑑Γ𝑒 − ∫ 𝐍𝐹SpiΩ𝑒 𝑑Ω𝑒)𝑛𝑒
𝑒=1   (26) 

where ne is the number of elements and the element matrices are as follows: 

𝐶11 =
𝜕(𝑛𝑆𝑤𝜌𝑤)

𝜕𝑃𝑐
+

𝜕(𝑛𝑆𝑔𝜌𝑣)

𝜕𝑃𝑐
  𝐶12

𝑖 = 0 

𝐶21
𝑖 =

𝜕(𝑛𝑆𝑤𝜌𝑤𝑐𝑖)

𝜕𝑃𝑐
   𝐶22

𝑖 = 𝑛𝑆𝑤𝜌𝑤 

𝐊11 = −𝜌𝑤
𝐊𝐢𝐧𝐾𝑟𝑤

𝜇𝑤
+ 𝐃𝑚𝑣 𝜕𝑃𝑣

𝜕𝑃𝐶
  𝐊12

𝑖 = 𝟎 

𝐊21
𝑖 = −𝜌𝑤

𝐊𝐢𝐧𝐾𝑟𝑤

𝜇𝑤
𝑐𝑖   𝐊22

𝑖 = 𝜌𝑤𝐃𝑖
𝑑 + 𝑛𝑆𝑤𝜌𝑤𝐷𝑖

𝑚𝑜𝑙𝐈 

𝐅𝑔1 = 𝜌𝑤
𝐊𝐢𝐧𝐾𝑟𝑤

𝜇𝑤
𝜌𝑤𝐠   𝐅𝒈𝟐

𝑖 = 𝑐𝑖𝜌𝑤
𝐊𝐢𝐧𝐾𝑟𝑤

𝜇𝑤
𝜌𝑤𝐠 

𝐹𝑞1 = 𝑞𝑣 + 𝑞𝑤 + 𝛽𝑐(𝜌𝑣 − 𝜌𝑣
𝑒𝑛𝑣) 𝐹𝑞2

𝑖 = 𝑞𝑐 + 𝛾𝑐(𝑐𝑖 − 𝑐𝑖
𝑒𝑛𝑣) 

𝐹𝑆𝑝1
𝑖 = (

𝜕(𝑛𝑆𝑤𝜌𝑤)

𝜕𝑆𝑝
𝑖 +

𝜕(𝑛𝑆𝑔𝜌𝑣)

𝜕𝑆𝑝
𝑖 ) 𝜕𝑡(𝑆𝑝)𝑖

 𝐹𝑆𝑝2
𝑖 = −𝑛𝜌𝑝𝜕𝑡(𝑆𝑝)𝑖

 

𝐅𝒅𝟏 = 𝟎    𝐅𝑑2
𝑖 = 𝑛𝑆𝑤𝜌𝑤𝐷𝑖

𝑚𝑜𝑙 (𝑧𝑖𝑐𝑖
∑ 𝑧𝑖𝐷𝑖

𝑚𝑜𝑙𝛁𝑐𝑖
𝑛𝑠
𝑖=1

∑ 𝑧𝑖
2𝐷𝑖

𝑚𝑜𝑙𝑐𝑖
𝑛𝑠
𝑖=1

)          

The global system can be written in a compact form as: 

𝐊𝚽 + 𝐂�̇� = 𝐅     ∀ 𝐱 ∈ 𝛺      (27) 

Applying an implicit Euler backward difference scheme33 for the time discretisation leads to: 

𝐊𝚽𝑡+1 +
1

∆𝑡
𝐂(𝚽𝑡+1 − 𝚽𝑡) = 𝐅         (28) 

This set of nonlinear equations can then be solved using a standard Newton-Raphson procedure33  

based on a first order Taylor series expansion of the mass/energy balance error, which leads to the 

following incremental-iterative update of the primary variable vector (𝛿𝚽𝑘+1
𝑡+1) : 

𝛿𝚽𝑘+1
𝑡+1 = [

𝜕𝛗

𝜕𝚽𝑘
𝑡+1]

−1

(−𝛗)         (29) 

where 𝛗 is the approximation error given here as: 

𝛗 = ∆𝑡𝐊𝚽𝑡+1 + 𝐂(𝚽𝑡+1 − 𝚽𝑡) − Δ𝑡𝐅        (30) 

Without a loss of generality, bilinear quadrilateral elements were used throughout this study.  



Since convergence is not always guaranteed with the Newton-Raphson procedure,39  the stability of a 

solution was checked using the following Courant-Friedrich-Lewy condition, as suggested by Zhu et 

al.12: 

𝑣𝑤∆𝑡

∆ℎ
≤ 1            (31) 

4 Problem Reduction Scheme (PRS) 
The balance equations governing reactive transport in porous media (eq. 27) are often highly coupled 

and nonlinear and, as such, the computational demand associated with their solution can become 

prohibitively expensive, particularly when solutions are required for large domains and relatively long 

time periods. The present approach addresses this issue by decoupling a number of the nonlinear 

PDEs from the global system of equations.  

The proposed Problem Reduction Scheme (PRS) is a predictor-corrector approach that employs one 

or more indicator species and then, in the ‘predictor’ step, computes the transport of the other (non-

indicator) species by interpolation. The ‘corrector’ step then refines the predicted concentrations 

using an error approximation. Reactions involving both indicator and non-indicator species are dealt 

with on a point-wise basis (at nodal points) at the end of each time step. Before describing the 

interpolations and detailed processes used in the PRS, the overall solution algorithm is presented to 

show where the PRS fits into the transient solution procedure.   



4.1 Algorithm 
Box 1 – Solution algorithm 

Set 𝑡 = 𝑡0, 𝚽 = 𝚽0, 𝑆𝑝 = 𝑆𝑝
0 

Set boundary conditions (eqs. 19-20) 

Undertake a linear solution for indicator species as a reference predicator i.e. Calculate 𝑐𝑖
𝑆𝐼𝑆 (eq. 35 or 36) 

do itime=1,ntime              ! Time step loop 

     Increment time variable t       

      do iiter=1,niter            ! Iteration loop 

            Calculate boundary fluxes (eqs. 17-18) 

            Calculate reaction rates (eq. 15) 

            Solve for incremental primary variables1  𝛿𝚽 (eq. 29) 

            Update primary variables 𝚽 = 𝚽 + 𝛿𝚽 

            if |𝚽|/𝝋𝑟𝑒𝑓 <tol then exit iteration loop 

      enddo iiter 

      Apply ‘Predictor’ step (eq. 40). Compute the concentrations for non-indicator species.   
      Apply ‘Corrector’ step (eq. 41). Compute the concentration correction for non-indicator species.    
enddo itime 

 
in which; 
  𝛗𝑟𝑒𝑓  = a reference vector for normalising the error (𝛗) 

  ntime, niter are the number of time steps and limiting number of iterations respectively  
 
Notes 
1 The primary variables comprise the capillary pressure and the concentrations of the 
   indicator species  

  

 

4.2 Formulation 
The aim of the PRS scheme is to greatly reduce the computational cost of solving multi-species 

chemical transport problems by reducing the number of primary variables solved in the coupled 

system. In this scheme, a full solution is undertaken for the capillary pressure and a selected number 

of indicator species and then a predictor-corrector approach is used to compute the concentration of 

non-indicator species. The predictor first computes the concentration of non-indicator species from 

the concentration of the indicators and then a correction is applied to these values using an error 

approximation derived from an appropriate balance equation.  

4.2.1 Predictor step 

The concentrations of the indicator species at each time step are computed from the solution of the 

coupled equation system (eq. 27 and Box 1). Once these indicator concentrations are known, the 

predictor step is applied to compute the transport of non-indicator species. To derive this predictor 

step, the governing mass balance equation for a conservative chemical species i is considered, which, 

neglecting the charge neutrality condition, is given as: 

𝜕𝑡(𝑛𝑆𝑤𝜌𝑤𝑐𝑖) = −𝛁 ∙ (𝑛𝑆𝑤𝜌𝑤𝑐𝑖𝐯𝑤) + 𝛁 ∙ (𝜌𝑤𝐃𝑖
𝑑 ∙ 𝛁𝑐𝑖 + 𝑛𝑆𝑤𝜌𝑤𝐷𝑖

𝑚𝑜𝑙𝛁𝑐𝑖)   (32) 

where 𝐃𝑖
𝑑 is a function of the liquid moisture velocity and the dispersivities  (see eq. 14).  



Noting that both 𝐃𝑖
𝑑 and 𝐯𝑤 are the same for all species, it can be seen from equation (32) that, for a 

conservative chemical species, the difference between the rate of transport of chemical species 

depends on their diffusion coefficients, concentrations and concentration gradients. 

In the present study, Lagrangian polynomial interpolation is used for diffusion, with the interpolated 

diffusion being used to weight the change in concentration of an indicator species over a time step, 

∆𝑐𝑖𝑛𝑑, based on the relative difference between the known diffusion coefficients of the current non-

indicator species 𝐷𝑖 and of the indicator species 𝐷𝑖𝑛𝑑 and 𝐷𝑗𝑛𝑑, as follows: 

𝑔(𝐷𝑖, ∆𝑐𝑖𝑛𝑑) = ∑ ∆𝑐𝑖𝑛𝑑 ∏ (
𝐷𝑖−𝐷𝑗𝑛𝑑

𝐷𝑖𝑛𝑑−𝐷𝑗𝑛𝑑
)

𝑛𝑖𝑛𝑑
𝑗𝑛𝑑≠𝑖𝑛𝑑,𝑗𝑛𝑑=1

𝑛𝑖𝑛𝑑
𝑖𝑛𝑑=1      (33) 

in which 𝑔(𝐷𝑖, ∆𝑐𝑖𝑛𝑑) is a diffusion interpolation function, which is incorporated into the final 

interpolation function below (eq. 34),  nind equals the number of indicator species; subscripts ind and 

jnd denote specific indicator species, subscript i denotes non-indicator species; and 𝐷𝑖 and 𝐷𝑖𝑛𝑑 

represent the diffusion coefficient of any species and a specific indicator respectively. It can be noted 

that in the case of nind=1, eq. (34) simplifies to 𝑔(𝐷𝑖, ∆𝑐𝑖𝑛𝑑) = ∆𝑐𝑖𝑛𝑑(𝐷𝑖 𝐷𝑖𝑛𝑑⁄ ). 

Equation (33) does not account for the effect of the difference in concentration gradients between 

indicator and interpolated non-indicator species. This is addressed by introducing a concentration 

gradient function (fc), and adding terms to account for chemical reactions and the charge neutrality 

condition, leads to equation (34) for predicting the concentration of a non-indicator species at time 

𝑡 + ∆𝑡 : 

𝑐𝑖
𝑡+∆𝑡 = 𝑐𝑖

𝑡 + ∑ 𝑓𝑐 (
𝑐𝑖

𝑔𝑟

𝑐
𝑖𝑛𝑑
𝑔𝑟 )∆𝑐𝑖𝑛𝑑 ∏ (

𝐷𝑖−𝐷𝑗𝑛𝑑

𝐷𝑖𝑛𝑑−𝐷𝑗𝑛𝑑
)

𝑛𝑖𝑛𝑑
𝑗𝑛𝑑≠𝑖𝑛𝑑,𝑗𝑛𝑑=1

𝑛𝑖𝑛𝑑
𝑖𝑛𝑑=1 − ∆𝑡𝜕𝑡(𝑆𝑝)

𝑖
− 𝑓𝑡+Δ𝑡  (34) 

where ci is the concentration of a chemical species, 𝑐𝑔𝑟 refers to a concentration gradient, and the t 

superscript denotes time.  

The penultimate term in equation (34) represents the source/sink (SS) due to chemical reactions and 

the final term (f) represents the diffusion due to the charge neutrality condition, which is elaborated 

in Section 4.3. In the scenario in which a reaction is ‘sufficiently fast’ in comparison with the rates of 

the transport processes, this may be treated under the local equilibrium assumption.38 As such the 

change in concentration over a time step should be multiplied by a retardation factor, as detailed in 

Fetter,42 (i.e. eq. (34) becomes 𝑐𝑖
𝑡+∆𝑡 = 𝑐𝑖

𝑡 +
1

𝑅
(𝑔(𝐷𝑖, ∆𝑐𝑖𝑛𝑑) − ∆𝑡𝜕𝑡(𝑆𝑝)

𝑖
− 𝑓𝑡+Δ𝑡) where 𝑅 denotes 

the retardation factor for an equilibrium reaction and the SS term has been retained to account for 

any kinetic reactions).  

A number of options were considered for the concentration gradient function (CGF) in eq. (34) (𝑓𝑐), 

including using the ratio of non-indicator to indicator gradients from the previous time step and using 

a weighted measure of concentrations from the sources. Both of these options proved to be flawed 

and to have problem-dependent levels of accuracy. A more successful approach was to derive 𝑓𝑐from 

a ‘source influence solution’ (SIS), which is a linear steady state solution of the diffusion problem for 

each chemical species that is carried out at the beginning of the solution procedure (thereby having a 

negligible effect on the overall solution time) and is given as: 

𝛁 ∙ (−𝑛𝑆𝑤𝜌𝑤𝐷𝑖
𝑚𝑜𝑙𝛁𝑐𝑖

𝑆𝐼𝑆) = 0         (35) 



noting that 𝑛, 𝜌𝑤 and 𝐷𝑖
𝑚𝑜𝑙 are constants, for a uniformly saturated medium eq. (35) simplifies to the 

Poisson equation: 

∇2𝑐𝑖
𝑆𝐼𝑆 = 0           (36) 

The output from the SISs are the concentrations of each chemical species throughout the domain, 

which are subsequently employed in fc as follows: 

𝑓𝑐 (
𝑐𝑖

𝑔𝑟

𝑐
𝑖𝑛𝑑
𝑔𝑟 ) =

𝑐𝑖
𝑆𝐼𝑆−𝑐𝑖

0

𝑐𝑖𝑛𝑑
𝑆𝐼𝑆−𝑐𝑖𝑛𝑑

0           (37) 

4.2.2 Corrector step 

The corrector refines the concentrations computed from the predictor step using the mass balance 

approximation error (eq. 30) for each non-indicator species in turn. The concentration correction for 

each species i  is then based on a first order Taylor series expansion of a single species form of equation 

29, as follows:     

𝐜𝑒𝑟𝑟𝑖
= (𝐌i)

−𝟏
𝛗𝑖          (38) 

where 𝐜𝑒𝑟𝑟𝑖
 is the concentration correction vector for species i and 𝐌𝑖 is an approximate tangent 

coefficient matrix. 

Two forms of 𝐌𝑖 were considered as follows: 

Option 1: 𝐌𝑖 = 𝐂𝑑𝑖𝑎𝑔𝑖
+ ∆𝑡𝐊𝑑𝑖𝑎𝑔𝑖

 

Option 2: 𝐌𝑖 = 𝐂𝑑𝑖𝑎𝑔𝑖
 

in which  𝐂𝑑𝑖𝑎𝑔𝑖
 is the lumped diagonal storage matrix and 𝐊𝑑𝑖𝑎𝑔𝑖

 is a diagonal form of the flux matrix.  

The use of diagonal lumped matrices implies that the concentrations can be updated on a point-wise 

basis. The concentrations are refined as: 

𝑐𝑐𝑜𝑟𝑖
𝑡+∆𝑡 = 𝑐𝑝𝑟𝑒𝑖

𝑡+∆𝑡 − 𝑐𝑒𝑟𝑟𝑖
          (39) 

It was found that the two options gave similar results in terms of the accuracy of solutions and 

therefore the simpler option (2) was adopted for all subsequent computations. In this study, the 

corrector step was treated as non-iterative since it was found that sufficient accuracy could be 

obtained using a single corrector step, as illustrated in Sections 6 and 7 of this paper. 

4.2.3 Summary of predictor-corrector scheme 

In the present work, three different orders of the generalised reduction scheme are investigated, 

denoted PRS0, PRS1 and PRS2, which use 1, 2 and 3 indicator species respectively. Recalling equations 

(34 & 39), the predictor-corrector scheme is summarised as: 

𝑐𝑖
𝑡+∆𝑡 = 𝑐𝑖

𝑡 + ∑ 𝑓𝑐 (
𝑐𝑖

𝑔𝑟

𝑐
𝑖𝑛𝑑
𝑔𝑟 )∆𝑐𝑖𝑛𝑑 ∏ (

𝐷𝑖−𝐷𝑗𝑛𝑑

𝐷𝑖𝑛𝑑−𝐷𝑗𝑛𝑑
)

𝑛𝑖𝑛𝑑
𝑗𝑛𝑑≠𝑖𝑛𝑑,𝑗𝑛𝑑=1

𝑛𝑖𝑛𝑑
𝑖𝑛𝑑=1 − ∆𝑡𝜕𝑡(𝑆𝑝)

𝑖
− 𝑓𝑡+Δ𝑡  (40) 

𝑐𝑐𝑜𝑟𝑖
𝑡+∆𝑡 = 𝑐𝑝𝑟𝑒𝑖

𝑡+∆𝑡 − 𝑐𝑒𝑟𝑟𝑖
          (41) 



4.3 Boundary conditions and charge neutrality condition 
The initial conditions for the PRS can be defined in the same way as in the full model (i.e. using 

equation (16) for all species). The boundary conditions for the PRSs are also defined in the same way 

as for the full model and should be of the same type for both ‘indicator’ and ‘non-indicator’ species, 

with the latter being calculated on a point-wise basis. 

Another key consideration is how the charge neutrality condition is satisfied in the PRSs, since the 

transport of non-indicator species is not calculated in the reduced system of governing equations. In 

the present approach, the diffusive flux due to the electric field is considered explicitly by using 

concentrations from the previous time step and moving these to the right hand side of the governing 

equations in a similar manner to the way that moisture flow under gravity is included in liquid 

transport computations. For non-indicator species, this can then be calculated on a point-wise basis 

and subtracted at the end of a PRS predictor step (eq. 40). The diffusive flux due to the electric field is 

therefore given by: 

𝑓𝑡+Δ𝑡 = ∇ ∙ (−𝑆𝑤𝐷𝑖
𝑚𝑜𝑙𝑧𝑖𝑐𝑖

∑ 𝑧𝑖𝐷𝑖
𝑚𝑜𝑙𝛁𝑐𝑖

𝑛𝑠
𝑖=1

∑ 𝑧𝑖
2𝐷𝑖

𝑚𝑜𝑙𝑐𝑖
𝑛𝑠
𝑖=1

)
𝑡

       (42) 

4.4 Selection of indicator species 
The choice of indicator species is an important aspect of the PRS. For PRS1 and PRS2, species with the 

highest and lowest diffusion coefficients are always defined as indicators. This ensures that the 

computed responses of all non-indicator species are bounded by those of fully computed species. For 

PRS2, which requires a third indicator species, it was found, following an error analysis and sensitivity 

study (see section 6.2), that the greatest accuracy was achieved by using a third indicator species with 

a mean diffusion coefficient . In cases where such a real species is not available, artificial species can 

be used. Artificial indicator species may also be used for other reasons; for example, as mentioned 

above, PRS1 and PRS2 use indicator species with the highest and lowest diffusion coefficients. 

However, the presence of any reactions associated with one of the bounding species, with reaction 

rates of the same order as (or higher than) those of the transport processes, may alter its rate of 

transport, such that it may no longer be the highest/lowest. In such situations, a non-reactive artificial 

indicator should be used in its place, thereby maintaining the solution bound. The criterion used to 

select the single indicator species required for PRS0 is given in Section 6.2  

Another aspect of reactive transport problems, which is relevant to the choice of the indicator species, 

is that the transport of different species can take place over very different time scales. When this 

occurs due to a dominant (or ‘sufficiently fast’38) reaction linked to a particular non-indicator species, 

this is dealt with by modelling the process as an equilibrium reaction. If this is due to other factors, 

then indicator species could be chosen to represent each different time scale.  

It is recognised that other factors may also affect the choice of indicators; however, the factors 

considered in the present work encompass a wide range of real problems. 

The number of indicator species, and associated order of the scheme, is also a key consideration when 

employing the PRS. The choice of the number of indicator species to use depends upon the problem 

under consideration, and specifically upon the range of diffusion coefficients of the chemical species 

in the system. In general, the smaller this range, the lower the order of the scheme that is required, 

with PRS0 being applicable to problems in which the diffusion coefficients lie in a narrow range, as 



quantified in Section 6.2. An exception to this rule is problems with a significant degree of advection, 

for which PRS0 is not appropriate (unless the diffusion coefficients are equal for all species), since 

solutions for the non-indicator species transport are not bounded, which can lead to an 

overestimation of the advection.   

The specific selection criteria used to determine the indicators for each order of PRS is given in Section 

6.2, along with the expected accuracy for each degree of scheme.  

5 Validation of the full model 
Before investigating the behaviour of the PRS, the validity of the full model is demonstrated. To this 

end, a non-steady-state diffusion problem reported by Baroghel-Bouny et al.35 is considered. This 

problem is based on experiments carried out by Francy43 on cement discs of 120(d)x20(h) mm. In these 

tests, the left hand side of the sample was exposed to a salt solution whilst the remaining sides were 

sealed. The transport of Na+, OH-, K+ and Cl- ions was considered and non-equilibrium chloride binding 

was also taken into account, using eq. (15), in addition to the instantaneous formation of Friedel’s salt. 

It is assumed that since chloride ions sorb onto the solid mass, hydroxide ions are released to preserve 

charge neutrality. At the end of the test, measurements were taken of the free chloride and total 

chloride content of the sample at different locations.35,43 The problem set up can be seen in Figure 1. 

 

Figure 1 – Finite element mesh and problem geometry (not to scale) 

The time period considered was 7 days and, following a mesh and time step convergence study, a time 

step of Δt=3.6 s was selected, giving a total number of time steps of 168,000, along with a mesh of 

20 bilinear quadrilateral elements with a maximum element size of 1 mm. To reflect experimental 

conditions, the sample was assumed to be initially saturated. The model parameters, boundary 

conditions and diffusion coefficients of the chemical species are given in Table 1. It should be noted 

that in this example it was found that a tortuosity factor, Dτ, was needed to correctly predict the 

chemical transport; this factor takes into account the tortuous pathways of the medium and is simply 

multiplied by the species diffusion coefficients.  
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Table 1 – Model parameters 

Parameter Value Species Initial Conc. 
(kg/kg) 

Boundary 
Conc. (kg/kg) 

Dmol 

(10-11m2/s) 

n 0.13 Na+ 0.000299 0.01352 1.33 

γc (kg/m2s) 6.5x10-3 OH- 0.001105 0.00188 5.3 

Dτ 0.5 K+ 0.002028 0.00319 1.96 

μ 2.61 Cl- 0.0 0.01954 2.1 

λ 0.61     

τ (s) 36000     

pC0 (kN/m2) 1.34x103     

 

 
Figure 2 – Cl- concentrations and Tcc  profiles as predicted by the full model at t=7 days (where Tcc is 

measured in kg/m3 of mortar) 

The concentration profile and total chloride content (Tcc), as predicted by the full model, are 

compared with the corresponding experimental results in Figure 2. The numerical results are 

considered sufficiently close to the experimental results to validate the full model. The CPU time for 

the simulation was 1382 s. 

6 Investigation of the range of applicability  
The accuracy and range of applicability of the PRS with three different orders of the scheme (namely 

PRS0, PRS1 and PRS2) is studied by considering a wick action test on a mortar sample in which the 

transport of 16 chemical species is simulated. The analysis undertaken in this study considered 

chemical reactions between the ions and the cement matrix, as well as advective and dispersive 

transport. It was decided to use an artificial set of chemical species for this study in order to have 

control over the range and spread of the diffusion coefficients considered. 

The reactions concerned the adsorption of the chemical ions onto the cement matrix, described by 

the non-equilibrium Freundlich isotherm (eq. 15). The time period considered was 24 hours and the 

initial concentration of each ion, as well as the sorbed chemical mass for each species in the sample, 

was assumed to be zero. The mortar sample was assumed to be initially saturated, prior to the left 

hand side of the specimen being exposed to the chemical solution, and the right hand side being 

exposed to an environmental humidity of 60 %, with all remaining sides being sealed, thereby ensuring 

1D transport. A non-uniform mesh of 25 bilinear quadrilateral elements was used along the length of 

the specimen, with a maximum element size of 4 mm. A time step of Δt=36 s was used, giving a total 
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number of time steps of 2,400. As with the previous validation case, the mesh and time step were 

adopted following a convergence study.  

The diffusion coefficients for all species can be seen in Table 2, whilst model parameters, including the 

boundary mass transfer coefficients for all chemical species, are given in Table 3.  

Table 2 – Diffusion coefficients 

Species Dmol 

(10-10 m2/s) 

Species 
(cont’d) 

Dmol 

(10-10 m2/s) 

1 0.25 9 6 

2 0.5 10 7 

3 1 11 8 

4 1.5 12 9 

5 2 13 10 

6 3 14 12 

7 4 15 14 

8 5 16 16 

 
Table 3 – Model parameters 

Parameter Value Parameter Value 

μ 16 Kin (m2) 35x10-21 

λ 2.0 cb* (kg/kg) 1x10-3 

τ (s) 2000 z* (-) 1 

n 0.13 c0* (kg/kg) 0.0 

βc (m/s) 2.5x10-3 pC0 (kN/m2) 1.34x103 

γc (kg/m2s) 1x10-4   
*for all species 

6.1 Full-model results 
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Figure 3 – Normalised concentration, sorbed mass profiles and saturation profile as predicted by the full model 

at t=24 hrs 

To determine the accuracy of the reduction schemes, an analysis of the full problem was undertaken. 

The calculated profiles of chemical concentration, moisture content and sorbed masses from this full 

analysis at time t=24 hrs are given in Figure 3.  The responses are plotted in groups of species in order 

of increasing diffusion coefficient (Dmol).   The relative difference between the four responses in each 

of the groups reflects the relative spread of diffusion coefficient across the group, with group 1 

(species 1 to 4) representing a six fold increase in diffusion coefficient and group 4 having a relative 

increase of only 1.6. The moisture profile shows that some drying of the specimen has occurred over 

the 24 hour analysis period but most of the sample remains saturated or near-saturated. The sorbed 

mass profiles are very similar to the concentration profiles but with less penetration into the sample. 

The CPU time for the simulation was 312s. 

6.2 PRS results 
In this section, the results from a set of analyses of the problem considered in Section 6.1, undertaken 

with the three orders of PRS, are compared with the results from the full analysis described above. 

The indicator species chosen for each of the solutions are presented in Table 4. An artificial species 

labelled ‘A’ has been chosen for PRS0 and PRS2 in order to allow the use of an indicator with a diffusion 

coefficient corresponding to the mean value of the species diffusion coefficients.  
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Table 4 – Indicator species chosen and the corresponding diffusion coefficients (10-10 m2/s) 

PRS Indicator 1 Indicator 2 Indicator 3 

0     A (6.2) - - 

1 3 (1) 9 (6) - 

2 3 (1) A (7.03) 16 (16) 

 

This problem is used to determine the range of applicability of each of the reduction schemes based 

on a maximum allowable error in any one chemical species at any one time. The tolerance measure 

considered is the mean absolute percentage error (MAPE), defined as: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∙ ∑ |

𝑐𝑖
𝑝𝑟𝑠

−𝑐𝑖
𝑓𝑢𝑙𝑙

𝑐𝑖
𝑏 |𝑛

𝑖=1          (43) 

An acceptable MAPE of 3 % was selected for PRS0, and 1 % for both PRS1 and 2 to enable the definition 

of the range of applicability of each scheme. It is acknowledged that these tolerances are a matter of 

judgement and that different problems will require different levels of accuracy. 1 % is considered to 

be a reasonable tolerance for most practical purposes and 3 % is thought to be an acceptable error 

for the type of relatively coarse approximation associated with PRS0.   

For PRS0, it is possible to consider species with progressively larger or smaller diffusion coefficients 

until a profile exceeds the tolerance; however, this is not possible for PRS1 and PRS2 as they use the 

extremes of the diffusion coefficient range as indicator species. To overcome this issue, the range was 

successively varied on a trial and error basis until the maximum range that meets the tolerance was 

found.  

The resulting ranges, over which each PRS achieves the selected tolerance, are given in Table 5 (where 

the u and l  superscripts indicate upper and lower indicators respectively). The intermediate indicator 

(𝐷𝑖𝑛𝑑,𝑚) for PRS2 was chosen to be the mean diffusion coefficient, which was based on the results of 

a series of analyses aimed at finding the value of 𝐷𝑖𝑛𝑑,𝑚that produced the most accurate solutions.  

Table 5 – Diffusion coefficient ranges over which each scheme is applicable 

PRS 0 1 2 

Diffusion Coefficient 
Range 

0.8𝐷𝑖𝑛𝑑<𝐷𝑖<1.5𝐷𝑖𝑛𝑑 𝐷𝑖𝑛𝑑,𝑢<6𝐷𝑖𝑛𝑑,𝑙  𝐷𝑖𝑛𝑑,𝑢<16𝐷𝑖𝑛𝑑,𝑙* 

*the maximum MAPE was 1.13 %, but this was deemed close enough to the 1 % tolerance, the average 

was only 0.63 % 

To further explore the influence of changing the diffusion coefficient of an indicator species, a 

sensitivity analysis was undertaken on the value of the diffusion constant used for the intermediate 

indicator for PRS2. Using the problem considered in Section 6.1, it was found that changing this 

coefficient by 20 % resulted in an increase in the MAPE of 0.13 % and the mass balance error of 0.17 

%, which suggests that the scheme is relatively insensitive to the choice of the intermediate indicator.  

Profiles showing the two species with the largest departure from results of the full analysis, within the 

range of applicability given in Table 5, are presented for each PRS scheme in Figure 4. The relative 

percentage error plots for each PRS can be seen in Figure 5, where the relative percentage error is 

given as: 𝑅𝐸 = |(𝑐𝑖
𝑝𝑟𝑠

− 𝑐𝑖
𝑓𝑢𝑙𝑙

) 𝑐𝑖
𝑏⁄ |. It can be seen from the profiles that PRS results are very close to 



those of the full model, particularly for PRS1 and 2. The profiles corresponding to the PRS without the 

corrector step show a larger departure from the results of the full analysis; however, the profiles are 

still relatively close to one another. This shows that for this particular problem, the corrector has a 

limited effect, although, as is shown in Section 7.1, this is not the case for many other problems.  

  

   

  
Figure 4 – Worst case profiles in applicable range for a) PRS0 (species 12 & 13), b) PRS1 (species 5 & 6) and c) 

PRS2 (species 4 & 5) at t=24 hrs 
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Figure 5 – Relative error profiles for a) PRS0, b) PRS1 and c) PRS2 

As well as the relative error in concentrations, another key consideration is the mass balance error. 

To assess this, the total accumulated mass balance error was calculated by comparing the mass of 

each chemical in the system obtained from the PRS analysis with the results from the corresponding 

full analysis; the latter being taken as the correct solution for this purpose. The average relative mass 

balance errors were 1.14 % for PRS0, 4.24 % for PRS1 and 1.98 % for PRS2. In this case, the mass 

balance error for PRS0 is the smallest, even though PRS0 predicts the concentrations less accurately. 

This is because PRS0 has areas of over-prediction and under-prediction, leading to a small overall error 

in mass balance. 

The results of this investigation led to the PRS selection criteria for the PRS given in Tables 6 and 7. 

These recommendations are based on the range of diffusion coefficients for each scheme, which was 

found to give an acceptable MAPE, and the corresponding indicator species selected. The selection of 

the order of the PRS scheme should also take into account the fact that PRS0 is an inappropriate choice 

for problems with a significant degree of advection, as discussed in Section 4.4. Clearly it would be 

possible to use higher order PRSs, but the range of orders examined here (i.e. 0 to 2) are considered 

to cover the majority of practical examples. 

Table 6 – Selection of order of PRS 

Diffusion Coefficient Range PRS scheme 

𝑫𝒖<1.9𝑫𝒍     0** 

𝑫𝒖<6.0𝑫𝒍 1 

𝑫𝒖<16𝑫𝒍 2 
*where 𝐷𝑢 and 𝐷𝑙  indicate the upper and lower diffusion coefficients respectively 
**where advection is significant, PRS1 is the appropriate choice 
 
Table 7 – Selection of indicator species for each order of PRS  

PRS scheme Indicator number 

1 2 3 

0 0.67𝐷𝑢** - - 

1 𝐷𝑙 𝐷𝑢 - 

2 𝐷𝑙 𝐷𝑚𝑒𝑎𝑛 𝐷𝑢 
*where the selected indicator species should have diffusion coefficients corresponding to the tabulated values, 

in the case that no species exists with such a diffusion coefficient, or the species is highly reactive, an artificial 

species with corresponding diffusion coefficient should be used 

**this recommendation is based on the fact that PRS0 was found to have an upper limit to its applicable diffusion 

coefficient range of 1.5𝐷𝑖𝑛𝑑  (see Table 5) 
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6.2.1 Convergence 

The above problem (described in Section 6.1) was also used to examine the convergence properties 

of the model with respect to mesh refinement (i.e. h refinement) and with respect to the order of the 

PRS (or PRS-order). The following 𝐿2 error norm was employed in these convergence studies: 

‖𝐞‖𝐿2 = ‖𝐜 − 𝐜𝑟‖𝐿2          (44) 

where 𝐞 is the error vector and 𝐜𝑟 is the vector of reference concentrations.  

In the absence of an analytical solution to this problem, the reference solution for the h-convergence 

study was obtained by using a very fine mesh (h=3.125x10-4 mm); for example, the reference solution 

for PRS0 is the PRS0 solution obtained using this very fine mesh.  

The reference solution for PRS-order convergence was the solution from the full model. The results of 

the investigation are given in Figure 6. It is noted that uniform meshes were used for all of the analyses 

in this convergence study and that the mesh size for the PRS-order convergence was h=6.25x10-4 mm. 

  

Figure 6 – Mesh size and PRS order convergence study results  

The results presented in Figure 6 show that the full model and all PRSs exhibit satisfactory h-

convergence. It noticeable that that the order of h-convergence is greatest for PRS0 but least for the 

full solution, but this believed to relate to the fact that the reference solutions for each set of results 

are those obtained from a fine mesh with the order of scheme being considered. The ‘error’ measures 

are therefore relative and not absolute.  

The results also show the convergence with respect to PRS-order.  It is interesting to note that the 

relative errors of the PRS solutions are similar to those of the reduced order model (ROM) of the 

reactive advection-diffusion equation found in McLaughlin et al.44 and of the solute transport problem 

found in Luo et al.45 In addition to this, the convergence with respect to PRS-order shows similarities 

to the convergence of aforementioned ROMs with respect to the number of basis functions employed. 

7 Validation of the PRS 
Having established a range of applicability for each PRS-order, it is considered desirable to validate 

the final procedure using data reported by other authors. To this end, a problem for each reduction 

order has been considered in addition to an advection dominant problem for PRS1 and PRS2. The first 

two problems consider the diffusion and reactions of chemical species in a mortar sample and are 

based on alternative numerical solutions presented by previous authors.35,36 The third example is a  
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hypothetical scenario and considers 2D diffusive-reactive transport in a mortar specimen based on 

the example in Zhu et al.12  The advection dominant problem is an extension of the advective example 

reported in Baroghel-Bouny et al.35 

As before, the meshes and time steps used for all of the analyses reported in this section resulted from 

convergence studies. 

7.1 PRS0 
The diffusion case reported by Baroghel-Bouny et al.35, which was used to validate the full model, is 

considered here over a time period of 12 hours, using the same mesh and time step as reported in 

Section 5. The total number of time steps was 12,000. The sample was assumed to be initially 

saturated.  

The narrow range of the diffusion coefficients of the dominant species in this problem suggests that 

PRS0 is applicable. The chosen indicator species was Na+ and the diffusion coefficients for non-

indicator species K+ and Cl- lie within the established range of validity of PRS0; however, the other 

species, OH-, lies outside the nominal applicability range but since there is little transport of OH-, this 

was deemed acceptable in this case. The model parameters, boundary conditions and diffusion 

coefficients of the chemical species can be seen in Table 1, with the one difference being that a value 

of τ=360 s was used for the chloride binding. 

The concentration profiles as predicted by the full model and PRS0 can be seen in Figure 7, along with 

the total chloride content (Tcc).  

  
Figure 7 – Chemical concentrations and Tcc  profiles as predicted by the full model and PRS0 at t=12 hrs 

It can be seen from the profiles that the PRS results show a very close match to those of the full model, 

with the exception of the OH- profile, which involves a relatively small overall change in concentration. 

The reason for the greater difference observed in the predicted OH- profiles is that the diffusion 

coefficient lies outside of the applicable range of the scheme; as such, the transport is being over-

predicted by PRS0 and the local peak of OH- ions dissipates more quickly than in the full model 

simulations. The average relative mass balance error in this analysis is 2.05 %.  

The Cl- concentration profiles predicted by the full model and PRS0 with and without the corrector 

step are shown in Figure 8. It may be seen from the profiles that in this example the corrector step 

has a significant effect on the accuracy of the solution, with the profile predicted by PRS0 without the 

corrector showing a much greater departure from that predicted by the full model. In addition to this, 
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neglecting the corrector step increases the average relative mass balance error in this analysis to 8.31 

%. The CPU times using the full model and PRS0 were 101 s and 62 s respectively. 

  
Figure 8 – Cl- concentration profiles as predicted by the full model, PRS0 and PRS0 without corrector at t=12 

hrs 

7.2 PRS1  
Diffusion experiments, and accompanying numerical simulations, presented by Song et al.36 are 

considered here. In these tests, a concrete slab was cured for 90 days, after which a series of 

100(d)x50(h) mm cylindrical cores were taken from the slab. The sides and bottom of the specimens 

were then sealed and the remaining surface exposed to a salt solution for 6 months. The simulation 

considers the transport of six chemical species (OH-, K+, Na+, Cl-, SO42-, and Ca2+).  The reaction rates 

for the chemical species were considered as given by: 

𝑟1 = 𝑘𝑑
𝐶𝑆𝐻.𝐶𝑎𝐶𝑙2[𝐶𝑆𝐻. 𝐶𝑎𝐶𝑙2] − 𝑘𝑎

𝐶𝑆𝐻.𝐶𝑎𝐶𝑙2([𝐶𝑎2+][𝐶𝑙−]2)𝜆1     (45) 

𝑟2 = 𝑘𝑑
𝐶𝑆𝐻.𝑁𝑎𝐶𝑙[𝐶𝑆𝐻.𝑁𝑎𝐶𝑙] − 𝑘𝑎

𝐶𝑆𝐻.𝑁𝑎𝐶𝑙([𝑁𝑎+]2[𝐶𝑙−]2)𝜆2     (46) 

𝑟3 = 𝑘𝑑
𝐶𝑆𝐻.2𝐾𝐶𝑙[𝐶𝑆𝐻. 2𝐾𝐶𝑙] − 𝑘𝑎

𝐶𝑆𝐻.2𝐾𝐶𝑙([𝐾+]2[𝐶𝑙−]2)𝜆3     (47) 

𝑟4 = 𝑘𝑑
𝐶𝑆𝐻.2𝑁𝑎𝑂𝐻[𝐶𝑆𝐻. 2𝑁𝑎𝑂𝐻] − 𝑘𝑎

𝐶𝑆𝐻.2𝑁𝑎𝑂𝐻([𝑁𝑎+]2[𝑂𝐻−]2)𝜆4    (48) 

𝑟5 = 𝑘𝑑
𝐶𝑆𝐻.2𝐾𝑂𝐻[𝐶𝑆𝐻. 2𝐾𝑂𝐻] − 𝑘𝑎

𝐶𝑆𝐻.2𝐾𝑂𝐻([𝐾+]2[𝑂𝐻−]2)𝜆5     (49) 

𝑟6 = 𝑘𝑑
𝐶𝐴𝐻.𝐶𝑎𝐶𝑙2[𝐶𝐴𝐻. 𝐶𝑎𝐶𝑙2] − 𝑘𝑎

𝐶𝐴𝐻.𝐶𝑎𝐶𝑙2([𝐶𝑎2+][𝐶𝑙−]2)𝜆6     (50) 

where ka and kd represent the adsorption and desorption rates respectively. The Freundlich type 

isotherm was used and the adsorption calculated based on a non-equilibrium assumption. The SS term 

for the mass balance equation (eq. 8) for each species is given as the sum of the SS due to each relevant 

reaction (e.g. the SS for Ca2+ is obtained from: 𝜕𝑡(𝑆𝑝)𝐶𝑎
= 𝑟1 + 𝑟6). Song et al.36 also considered the 

reaction of the cement matrix minerals; however, the associated changes were negligible and these 

reactions were therefore not included in the present computations.  

The model parameters are given in Table 8. The boundary conditions are given in Table 9 along with 

the diffusion coefficients and the Des factors which account for electrostatic double-layer effects36. The 

sample was assumed to be initially saturated and the time period considered was 2 months. The time 

step size was Δ𝑡 = 36 𝑠, giving a total number of time steps of 144,000, and a mesh of 52 bilinear 

quadrilateral elements was used with an element size of 2 mm. PRS1 was applicable since the diffusion 
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coefficient range satisfies the condition (𝐷𝑖𝑛𝑑,𝑢<6𝐷𝑖𝑛𝑑,𝑙), the OH- and K+ species were chosen as the 

indicator species in this case as they are the species with the highest and lowest effective diffusion 

coefficients respectively (where the effective diffusion coefficient is given as the product of Dmol and 

Des).  

Table 8 – Model parameters 

Parameter Value 

n 0.13 

γc (kg/m2s) 1x10-4 

pC0 (kN/m2) 1.34x103 

 

Table 9 – BCs, ICs and diffusion coefficients of chemical species 

Species Initial 
Conc. 

(kg/kg) 

Bound. 
Conc. 

(kg/kg) 

Dmol 

(10-9m2/s) 
Des Eq. ka (10-8) kd (10-8) λ 

Na+ 0.001978 0.0 1.33 0.25 r1 18.0 12.0 0.35 

OH- 0.004573 0.0 5.3 0.25 r2 24.0 144.0 0.35 

K+ 0.007215 0.0 1.96 0.0875 r3 330.0 1375.0 0.35 

Cl- 0.0 0.01775 2.1 0.25 r4 1.275 6.42 0.2 

SO42- 0.000192 0.0 1.07 1.0 r5 0.75 5.4 0.2 

Ca2+ 0.00004 0.01 0.79 0.4 r6 1000.00 1200.0 0.35 

 

The concentration and sorbed mass profiles as predicted by the full model and PRS1 can be seen in 

Figure 9. The results of the PRS solution are a close match to those of the full model. The largest 

difference can be seen in the Cl- profile, which is due to the fact that Cl-  ions are very reactive in this 

case being involved in 4 of the 6 reactions. The average relative mass balance error in this analysis is 

2.23 %. The CPU times using the full model and PRS1 were 409 s and 198 s respectively. 

 



  
Figure 9 – Chemical concentrations and sorbed mass profiles as predicted by the full model and PRS1 at t=2 

months (where sorbed mass concentrations are measured in wt% of concrete, sorbed masses containing Cl- 

are measured in Cl- concentration of the sorbed mass in wt% of concrete) 

7.3 PRS2  
The third simulation is based on a study by Zhu et al.12. This involves the transport of 10 chemical 

species, precipitation of 6 minerals and considers 1 immobile solid species. This is a 2D problem with 

a point and a line source for the chemical species (marked A and B respectively in Figure 10; point A 

corresponds to the coordinates (0,0), whilst the two ends of line B correspond to the coordinates 

(15,4) and (15,8) respectively). The geometry of the problem is given in Figure 10. The boundary 

conditions impose a zero flux on all sides. The time period considered was 24 hours,  Δt=36 s, giving 

a total number of time steps of 2,400, and a mesh of 1000 bilinear quadrilateral elements was used 

with an element size of 0.5 mm (as shown in Figure 10). It was assumed that the sample was initially 

saturated.  

 
Figure 10 – Problem geometry (not to scale) 
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The Freundlich type isotherm (eq. 15) was used and the reactions were calculated based on a non-

equilibrium assumption. The reaction rates for the 6 solid minerals considered are given as: 

𝑟1 = 𝑘𝑑
𝐴𝑙(𝑂𝐻)3[𝐴𝑙(𝑂𝐻)3] − 𝑘𝑎

𝐴𝑙(𝑂𝐻)3([𝐴𝑙3+][𝑂𝐻−]3)𝜆1      (51) 

𝑟2 = 𝑘𝑑
𝐶𝑎𝑆𝑂4.2𝐻2𝑂[𝐶𝑎𝑆𝑂4. 2𝐻2𝑂] − 𝑘𝑎

𝐶𝑎𝑆𝑂4.2𝐻2𝑂([𝐶𝑎2+][𝑆𝑂4
2−][𝑂𝐻−]2)𝜆2   (52) 

𝑟3 = 𝑘𝑑
𝐾0.6𝑀𝑔0.25𝐴𝑙2.3𝑆𝑖3.5𝑂10(𝑂𝐻)2[𝐾0.6𝑀𝑔0.25𝐴𝑙2.3𝑆𝑖3.5𝑂10(𝑂𝐻)2] −

          𝑘𝑎
𝐾0.6𝑀𝑔0.25𝐴𝑙2.3𝑆𝑖3.5𝑂10(𝑂𝐻)2([𝐾+]2[𝑀𝑔2+][𝐻+]2[𝐴𝑙(𝑂𝐻)4

−]2[𝐻3𝑆𝑖𝑂4
−]2)𝜆3   (53) 

𝑟4 = 𝑘𝑑
𝐹𝑒(𝑂𝐻)3[𝐹𝑒(𝑂𝐻)3] − 𝑘𝑎

𝐹𝑒(𝑂𝐻)3([𝐹𝑒3+][𝑂𝐻−]3)𝜆4      (54) 

𝑟5 = 𝑘𝑑
𝐶𝑎𝐶𝑂3[𝐶𝑎𝐶𝑂3] − 𝑘𝑎

𝐶𝑎𝐶𝑂3([𝐶𝑎2+][𝐶𝑂3
2−])𝜆5      (55) 

𝑟6 = 𝑘𝑑
𝐻4𝑆𝑖𝑂4[𝐻4𝑆𝑖𝑂4] − 𝑘𝑎

𝐻4𝑆𝑖𝑂4([𝐻+]2[𝑆𝑖𝑂2]
2)𝜆6      (56) 

The model parameters are given in Table 10. The boundary conditions, initial conditions, reaction rates 

and diffusion coefficients are given in Table 11. PRS2 was chosen to model this example since the 

diffusion coefficient range is greater than the range of applicability of both PRS0 and PRS1. H+, Al3+ 

and K+ were chosen as indicator species.  

Table 10 – Model parameters 

Parameter Value 

n 0.3 

γc (kg/m2s) 1x10-4 

pC0 (kN/m2) 1.34x103 
 

Table 11 – BCs, ICs and diffusion coefficients of chemical species 

Species Initial 
Conc. 

(kg/kg) 

Boundary 
Conc. A 
(kg/kg) 

Boundary 
Conc. B 
(kg/kg) 

Dmol 

(10-9m2/s) 
Eq. ka  

(10-7) 
kd 

(10-8) 
λ 

H+ 0.000028 0.00005 0.00010 9.311 r1 2.6 29.6 0.61 

Ca2+ 0.0003164 0.00048 0.00096 0.792 r2 0.6 8.67 0.2 

Mg2+ 0.0010230 0.001944 0.003888 0.706 r3 1.4 9.0 0.07 

HCO3- 0.00061 0.000030 0.000060 1.185 r4 2.8 2.0 0.11 

Al3+ 0.000837 0.00135 0.00270 0.541 r5 2.1 6.0 0.43 

SO42 0.016896 0.024 0.048 1.065 r6 0.425 74.0 0.35 

Fe3+ 0.0019920 0.00279 0.00558 0.604     

K+ 0.0000612 0.000078 0.000156 1.957     

Cl- 0.0010295 0.001775 0.00355 2.032     

Na+ 0.0018515 0.000345 0.000690 1.334     

SiO2 0.015 - - -     
 

The dissolved concentration profiles as predicted by the SIS can be seen in Figure 11 for two example 

species. The dissolved and precipitated mass concentration profiles as predicted by the full model are 

given in Figure 12 for selected species. An example of the transient behaviour is provided in Figure 13. 



   

 Figure 11 – Dissolved concentrations predicted by the SIS for a) Al3+ and b) HCO32- 

   

   

Figure 12 – Dissolved and precipitated mass concentration profiles as predicted by the full model for a) Ca+, 

b) SO42-, c) Al(OH)3 and d) CaCO3  at t=24 hrs 

a) 

d) 

b) 

c) 

a) b) 



   

   

Figure 13 – HCO3- concentration after a) 2.5 hrs, b) 5 hrs, c) 7.5 hrs and d) 24 hrs 

 

Figure 14 – Longitudinal profiles taken along the x-axis as predicted by the full model and PRS2 at t=24 hrs 

It can be seen from the profiles presented in Figure 14 that for this example both the dissolved 

concentration profiles and the precipitated solids were accurately predicted by the PRS. Figure 14 

shows the profiles of a group of species that include species whose diffusion coefficient is furthest 
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away from an indicator. The results shown are typical of the results of all considered species. The 

average relative mass balance error in this analysis is 2.77 %. The CPU times using the full model and 

PRS2 were 8710 s and 1543 s respectively. 

7.4 Advection Dominant – PRS1 and PRS2 
The final example is based on an advection dominant problem reported by Baroghel-Bouny et al.35 

The problem set up is the same as the diffusion case; however, in this test the sample was first dried 

at a RH of 4 %, giving a uniform initial moisture content of Sw=0.09. The problem has been extended 

beyond that considered by Baroghel-Bouny et al.35 with the inclusion of species Ca2+ and SO42-, and 

the chemical reaction considered has been changed to the formation of NaCl  given by the non-

equilibrium Freundlich isotherm: 

𝜕𝑡(𝑆𝑝) = −
(𝑆𝑝−𝜇([𝑁𝑎+][𝐶𝑙−])𝜆)

𝜏
         (55) 

Table 12 – Model parameters 

Parameter Value Species Initial Conc. 
(kg/kg) 

Boundary 
Conc. (kg/kg) 

Dmol 

(10-9m2/s) 

n 0.13 Na+ 0.003312 0.013524 1.33 

μ 0.3 OH- 0.012274 0.000000 5.3 

λ 0.61 K+ 0.024980 0.000000 1.96 

τ (s) 72000 Cl- 0.000000 0.038624 2.1 

Kin (m2) 10x10-21 Ca2+ 0.000000 0.010000 0.79 

pC0 (kN/m2) 233.6x103 SO42- 0.003000 0.000000 1.07 

pCb (kN/m2) 1.34x103     

The time period considered was 3 hours and the time step chosen was Δt=0.9 s, giving a total number 

of time steps of 12,000. The finite element mesh and problem geometry were kept the same as for 

the diffusion case. The model parameters, boundary conditions and diffusion coefficients of the 

chemical species are given in Table 12. PRS1 and PRS2 were chosen to model this example, with OH-, 

Ca2+ and Cl-  as indicator species.  

 



 

Figure 15 – Concentration, sorbed mass and saturation profiles as predicted by the full model, PRS1 and PRS2 

at t=3 hrs (where the black line indicates the position of the wetting front)  

 

Figure 16 – Transient concentration, sorbed mass and saturation profiles as predicted by the full model, PRS1 

and PRS2 at x=1 mm 

The concentration, sorbed mass and saturation profiles as predicted by the full model and both PRS1 

and PRS2 can be seen in Figure 15; whilst transient profiles corresponding to a point 1 mm from the 

exposed face are given in Figure 16. The results of the PRS simulations are a good match to those of 

the full model, with the biggest differences being seen in the Cl-  and K+ profiles for PRS1. The average 

relative mass balance error in this analysis is 2.24 % for PRS1 and 1.23 % for PRS2. The CPU time using 

the full model, PRS1 and PRS2 were 146 s, 83 s and 103 s respectively. 
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8 Computational Cost 
The purpose of the reduction schemes is to reduce the computational cost of solving reactive chemical 

transport problems. In the above examples, the computational time for solving the problems with 

PRSs was substantially less than those of the associated full solutions. In order to quantify the 

reduction in computational cost, CPU times from each of the example problems presented in Sections 

6 and 7 using the PRS scheme are compared with those from a full solution.  This analysis was 

performed on a PC with an Intel Core i7-7700HQ @2.80 GHz and 15.9 GB useable RAM. The CPU time 

of the time step loop was measured for a number of runs and an average taken. The results for each 

of the problems considered are given in Table 13 and Table 14. 

It can be seen from the table that the PRS achieves significant reductions in computational times for 

the example problems, with reductions being up to 82 % CPU time. The smallest reduction is 29 % for 

the advection dominant case (where the highly nonlinear moisture transport is responsible for the 

bulk of the computational cost). It can be seen from Table 14 that the implementation of the reduction 

scheme does not increase the number of Newton iterations required per time step. Table 14 also 

shows that the reduction in computational cost achieved by the scheme is a result of reducing the size 

of the nonlinear system through the reduction of the number of coupled nonlinear PDEs to be solved, 

as opposed to reducing the nonlinearity of the PDEs or improving the convergence of the Newton-

Raphson procedure. The nature of the predictor-corrector approach (eqs. 40 & 41) makes this part of 

the model readily parallelisable, and, in addition to this, the model is compatible with domain 

decomposition methods, both of which would reduce the computational cost further. 

Finally, it is noted that the reduction in total solution times gained from using the proposed PRS may 

depend on the moisture transport model employed and whether or not temperature is included as a 

primary variable. In the present case, the authors considered isothermal problems and have used a 

single degree of freedom (Pc) to simulate moisture flow, whereas Gawin et al.32 employed two degrees 

of freedom in their moisture transport model. The authors expect that the reduction gained, relative 

to a full model solution, from reducing the number of chemical species that are primary variables 

would be different if a temperature dependent two-variable moisture model had been used. However, 

we believe that the use of the PRS will always result in a substantial reduction in CPU time (for any 

practical engineering problem) when the number of primary chemical species is reduced significantly.       

Table 13 – Normalised CPU times and percentage reduction for example problems 

Example 

Problem 

Full Model Time (-) PRS Time (-) Reduction (%) 

0 1 2 0 1 2 

4 Ion 1 0.616 - - 38.37 - - 

6 Ion 1 - 0.485 - - 51.55 - 

6 Ion Adv. 1 - 0.571 0.709 - 42.93 29.14 

10 Ion 1 - - 0.177 - - 82.28 

16 Ion* 1 0.226 0.280 0.461 77.39 71.97 53.92 

*times given relate to the PRS applied over the applicable ranges and the corresponding full model time 
 
 
 
 
 



 
Table 14 – Average Newton iterations for example problems 

Example 

Problem 

Full Model Average 

Iterations (-) 

PRS Average Iterations (-) 

0 1 2 

4 Ion 2 2 - - 

6 Ion 2 - 2 - 

6 Ion Adv. 2 - 2 2 

10 Ion 2 - - 2 

16 Ion 2 2 2 2 

 

9 Conclusions 
The coupled computational model described in this paper is capable of simulating moisture and 

chemical transport in porous media, as demonstrated in a validation exercise using experimental data 

from Francy.35,43 

The computational cost of large-scale multi-species chemical transport problems can become 

prohibitively expensive and therefore efficient computational procedures and/or problem reduction 

schemes are required to solve such problems within reasonable times.   

The approach of undertaking full solutions for a limited number of chemical (indicator) species and 

interpolating the response of the other (non-indicator) species provides a direct and effective method 

for reducing the computational size of multi-species chemical transport problems. 

The new predictor-corrector Problem Reduction Scheme (PRS), based on a Lagrangian interpolation 

and a mass balance correction, is able to solve multi-species coupled chemical transport problems 

with good accuracy and efficiency, with errors in chemical concentration and mass being within 1 % 

and 4 % respectively of those from a full solution. The accuracy of the PRS depends on the order of 

the scheme, with higher order schemes being applicable to problems that have larger ranges of 

diffusion coefficients. The range of applicability of zero, first and second order schemes (with 1,2 and 

3 indicator species respectively), in terms of a reference (lower) diffusion constant D, are D to 1.9D, 

D to 6D and D to 16D respectively with an accuracy of 1 % (or 3 % for PRS0).  

The reduction in computational cost of an example 10-ion transport problem using the PRS is 82 % 

relative to the corresponding cost of a full solution. 

Overall, the new numerical procedure described in this paper has the potential to offer significant 

reductions in computational demand for highly coupled multi-species reactive transport 

models.  Furthermore, the particular nature of the PRS algorithm makes it suitable for parallelisation, 

and the scheme is compatible with domain decomposition methods. This implies that the proposed 

PRS is capable of overcoming existing barriers to the exploitation of supercomputing facilities in the 

solution of such coupled problems. 
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Appendix A 
Constitutive Relation Expression Values 

Kelvin’s law22 

𝑃𝑐 =
−𝜌𝑤𝑅𝑇

𝑀𝑤
ln (

𝑃𝑣

𝑃𝑣𝑠
) 

𝑀𝑤 = 18 𝑘𝑔/𝑘𝑚𝑜𝑙 
𝑅 = 8314.5 𝐽/𝐾 𝑘𝑚𝑜𝑙 

Dalton’s law22 𝑃𝑔 = 𝑃𝑑𝑎 + 𝑃𝑣 - 

Antoine’s law22 

𝜌𝑣𝑠 = 𝑏1 ∙ 10
𝑏2−

𝑏3
𝑏4+𝑇−𝑏5 

𝑏1 = 133.32, 𝑏2 = 8.07, 
 𝑏3 = 1730.63, 𝑏4 = 233.43 

𝑏5 = 273 
Moisture retention22,46 

𝑆𝑤 = ((
𝑃𝐶

𝑎
)

1
1−𝑚

+ 1)

−𝑚

 

𝑎 = 1.867 × 107 𝑃𝑎 
𝑚 = 0.44 
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