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Abstract: Wind power forecasting (WPF) is crucial in helping schedule and trade wind power generation at various spatial and
temporal scales. With increasing number of wind farms over a region, research focus of WPF methods has been recently moved
onto exploring spatial correlation among wind farms to benefit forecasting. In this study, a spatio-temporal Markov chain model
is proposed for very-short-term WPF by extending the traditional discrete-time Markov chain and incorporating off-site reference
information to improve forecasting accuracy of regional wind farms. Not only are the transitions between the power output states
of the target wind farm itself considered in the forecasting model, but also the transitions from the output states of reference
wind farms to that of the target wind farm are introduced. The forecasting results derived from multiple spatio-temporal Markov
chains regarding different reference wind farms over the same region are optimally weighted using sparse optimisation to
generate forecasts of the target wind farm. The proposed method is validated by comparing with both local and spatio-temporal
WPF methods, using a real-world dataset.

1 Introduction
Wind energy has seen its rapid growing around the world over the
past few decades. According to the Global Wind Energy Council,
the global cumulative installed wind power capacity increased
from 2.4 GW in 2001 to 487 GW in 2016 [1]. However, wind
power has very limited dispatchability and controllability, due to
the naturally stochastic and intermittent features of wind [2]. Thus,
large-scale wind power integration has brought big challenges to
the safety and stability of power system operations, since the power
supply and demand has to be balanced in real time [3]. Wind power
forecasting (WPF) is generally recognised as one of the most
effective tools to deal with the problems brought by wind power,
via helping both system operators and market traders make optimal
decisions under uncertainties [4].

The WPF has been widely researched and a variety of methods
as well as commercial products have been developed for power
system and electricity markets applications. The traditional WPF
methods are mainly classified into statistical, physical and hybrid
groups. Review of details about different classes of WPF methods
are given among others in [5–7]

Most of the existing WPF methods only consider local onsite
information (e.g. historical measurements, weather forecasts) of the
target wind farm to be forecasted. This kind of methods are
essentially based on temporal correlation of time series and
generally straightforward and simple to implement, but obviously,
the forecasting accuracy will be limited due to insufficient input
information. Nevertheless, the ever-increasing number of wind
farms over a region is bringing great opportunities for further
improving the WPF accuracy. In fact, spatial correlation between
regional wind farms always exists as a result of spatially coherent
evolution of a weather system [8]. Thus, it is intuitively beneficial
by using off-site information from neighbouring or correlated wind
farms as inputs to forecast a target wind farm [9, 10]. To this end,
many researchers has been focusing on exploring spatial-temporal
interdependence structures between wind farms and applying them
to improve the WPF performance [11].

Initially, different artificial intelligence models [12, 13] are
developed for both wind speed and WPF using data measured at
several neighbouring sites. Moreover, regime-switching space-time
methods [14], multichannel adaptive filters [15] and graph learning
analysis [16] are also among approaches proposed for spatio-
temporal WPF. These methods are feasible only when very few
target wind farms are to be forecasted since tuning of their model
structures for different wind farms is an important but very tedious
process. Therefore, they are almost impracticable in the case of a
modern power system with tens or even hundreds of wind farms.

To this end, multivariate linear regression approach is
introduced for efficient high-dimensional WPF. To avoid over-
fitting problems and make models more interpretable, sparse
modelling techniques are usually used to force regression
coefficients of some less important variables to be zeros. Typically,
sparse vector autoregression (VAR) models are frequently studied
in spatio-temporal WPF. Dowell and Pinson [17] applied a two-
stage sparse VAR for very-short-term probabilistic WPF by using
the partial spectral coherence and some basic statistics to determine
zero coefficients. Cavalcante et al. [18] described a forecasting
methodology that explores a set of different sparse structures for
VAR models based on the Least Absolute Shrinkage and Selection
Operator (LASSO) framework. Zhao et al. [19] presented a
correlation-constrained and sparsity-controlled VAR model by
transforming the VAR optimisation into a mixed-integer non-linear
programming, which allows both freely controlling sparsity and
incorporating expert knowledge on spatial correlation into the
forecasting model.

However, regardless of that various VAR-based model were
developed for spatio-temporal WPF, the Markov chain has not
attracted much attention in this field. A Markov chain is a
stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in
the previous event. The discrete-time Markov chain has been
already used in relevant literature for the generation of synthetic
wind speed and wind power time series [20, 21] as well as very-
short-term WPF [22, 23] and achieved good performance.
However, as has been mentioned, the traditional Markov chains
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were only used in local WPF by considering only on-site historical
data.

In geostatistical modelling, the spatial Markov chain, or the
Markov chain geostatistics was developed based on the multi-
dimensional Markov chain random field theory [24]. The spatial
Markov chain moves or jumps in a space and decides its state at
any unobserved location through interactions with its nearest
known neighbours in different directions. Inspired by this idea, a
first-order discrete spatio-temporal Markov chain (STMC) model is
developed for very-short-term WPF. In this model, the spatio-
temporal transitions between the wind power output states of
reference wind farms and a target wind farm are additionally
considered as an extension of traditional Markov chain that only
considers temporal states transitions. The forecasts derived from
spatio-temporal Markov regarding multiple reference wind farms
are optimally combined using sparse modelling to obtain the final
forecasts for target wind farm. A case study is carried out to
demonstrate the effectiveness of the proposed method.

2 Spatio-temporal Markov chain model
The discrete-time Markov chain (TMC) is a stochastic process with
the property that if, for all t ≥ 1, the probability distribution of state
St+1 is determined by the state Stof the process at time t, and does
not depend on the past values of Sx for x ≤ t − 1.

The STMC is essentially an extension of the TMC. It considers
the transition from the previous output state of a reference wind
farm to the next state of a target wind farm, but not only consider
the temporal state transitions of the target wind farm itself. The
principle of the STMC is illustrated in Fig. 1. 

In the following, all the Markov chains are discussed in terms
of the first-order and discrete models.

2.1 Partition of wind power output states

Suppose N wind farms are spatially dispersed over a region. The
wind power output of wind farm i at time t is yi,t, i = 1,2,…,N.
Before building a Markov chain model, all the wind power values
are normalised into the range of [0,1] by their corresponding
nominal wind farm capacity:

pi, t = yi, t
Ci

(1)

where pi,t is the normalised wind power output of yi,t, and Ci is the
nominal installed capacity of wind farm i.

A state is referred to as an interval and the wind power values
that lie in a same interval are regarded as the same state. In this
paper, all the intervals have same width. With a predefined state
width, the state of wind farm i can be expressed as

Si
k = [(k − 1)d, kd), 1 ≤ k ≤ k − 1

[(k − 1)d, kd], k = k
(2)

where K is the total number of states of a wind farm, and d is the
width of a state interval. Note that the state width or the number of
states for different wind farms could be set as different values, but
here they are unified as the same value for all wind farms. The
resulted states partition for wind farm i is {Si

1, Si
2, …, Si

K} and their
corresponding state intervals are {[0, 1/K), [1/K, 2/K), …, [(K
−1)/K, 1]}.

Then the representative value of a state can be obtained by
averaging the wind power values within its corresponding interval

si
k = ∑ pi, t

Di
k , pi, t ∈ Si

k (3)

where the Di
k is the total number of values within the interval of Si

k.
The representative states vector of wind farm i is
si = (si

1, si
2, . . . , si

K)T.

2.2 Spatio-temporal transition probability matrices

To obtain the forecasts for target wind farm i using a reference
wind farm j, the spatio-temporal transition probability matrix
between the two wind farms needs to be generated by training data.

Based on the training data and the results of states partition,
count the number T ji

km of occurrences of the spatio-temporal state
transitions that the output state of reference wind farm j at time t is
S j

k and the output state of target wind farm i at time t + 1 is Si
m, m = 

1,2,…, K. In addition, also count the number T ji
km of occurrences of

the state transitions that the output state of reference wind farm j at
time t is S j

k and the output state of target wind farm i at time t + 1 is
any value. Then the probability of state transition from S j

k of wind
farm j to Si

m of wind farm j can be calculated by

qji
km = T ji

km

T ji
k (4)

It should be noted that in the above procedure it allows i = j. In that
case, the procedure will degenerate into generating pure temporal
state transition probabilities regarding the target wind farm itself,
which is exactly the traditional discrete-time Markov chain.

The above procedure is repeated until all possible transitions
between the states given by the state partition are retrieved and
counted. The spatio-temporal state transition probability matrix
from wind farm j to wind farm i can be achieved as

Qji =

qji
11 qji

12 ⋯ qji
1K

qji
21 qji

22 ⋯ qji
2K

⋮ ⋮ ⋱ ⋮
qji

K1 qji
K2 ⋯ qji

KK

(5)

where Qji ∈ RK×K. When i = j, Qji will become temporal transition
probability matrix. As the state transition from wind farm j to wind
farm i is not equivalent to the state transition from wind farm i to
wind farm j, the derived matrix Qji is not necessarily equal to Qij.

The same approach can be applied to generate the spatio-
temporal transition probability matrices Qji(j = 1, 2, …, N) between
target wind farm i and all reference wind farms (including the
target wind farm itself).

2.3 WPF model using spatio-temporal Markov chain

Based on the generated transition matrix Qji, the representative
states vector si of target wind farm i, and the output state Sjt of
wind farm j at time t, the one-step-ahead forecast for wind farm i
based on wind farm j is formulated as

pi, t + 1 j, t = Qji
r j, t ⋅ sj (6)

Fig. 1  Principle illustration of the STMC
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where rj,i is the index of the state Sjt, and Qji
r j, t is the rj,tth row of

transition matrix Qji.
The forecasts for the target wind farm i based on all the

reference wind farms with their corresponding spatio-temporal
state transition matrices are acquired by using (6). The final
forecast for target wind farm is obtained by weighting all the
forecasts regarding N reference wind farms, i.e.

pi, t + 1 = β1
i pi, t + 1 1, t + ⋯ + β j

i pi, t + 1 j, t + ⋯ + βN
i pi, t + 1 N , t

= βi
T pi, t + 1 N

(7)

where β j
i is the weighting coefficient for quantifying the devotion

of reference wind farm j to wind farm i, β ∈ RN is weighting
coefficient vector, and
pi, t + 1 N = (pi, t + 1 1, t, pi, t + 1 2, t, …, pi, t + 1 N , t) ∈ RN is the forecasts
vector whose entries are the forecasts made by all N reference wind
farms.

The forecasting error at time t + 1 is

ei, t + 1 = pi, t + 1 − pi, t + 1

= pi, t + 1 − βi
T pi, t + 1 N

(8)

To optimise the coefficient vector of the forecasting model, the
sum of squared errors should be optimised over the period of
training dataset, that is

βi = min
βi

Ei = min
βi

∑
t = 1

L − 1
(ei, t + 1)2

= min
βi

∑
t = 1

L − 1
(pi, t + 1 − βi

T pi, t + 1 N)2
(9)

where L is the length of training time series. As the forecasting
model involves a large number of wind farms, a l1-norm
regularisation is further added to help avoid over-fitting and make
the model more computationally efficient and interpretable.
Equation (9) is modified as

βi = min
βi

∑
t = 1

L − 1
(pi, t + 1 − βi

T pi, t + 1 N)2 + λ ∥ βi ∥1 (10)

where || · || is the l1-norm of a vector, and λ is shrinkage parameter
that balances between the estimation error and the degree of
sparsity of the solution.

There have been many algorithms for solving optimisation
problems like (10), such as coordinate descent algorithm and
alternating direction method of multipliers.

3 Results and discussions
3.1 Data preparation and benchmarking models

A whole-year wind power dataset of 100 wind farms over a region
is used to testify the proposed methods. The time resolution is 15 
min. Each wind farm time series contains 35,040 data points and is
divided into three consecutive parts, including 10,000 data points
for training, 10,000 data points for validation (parameter
optimisation) and the remaining 15,040 data points for out-of-
sample testing.

Different forecasting methods are also implemented as
benchmarks, which include local WPF models and spatio-temporal
models. The local models include persistence model and
autoregression (AR) model, which use only local onsite
information while the spatio-temporal models including VAR
model and LASSO-based VAR (LASSO-VAR) model use both
onsite and offsite spatial information to improve forecasting
accuracy. The readers are referred to [18] for mode detail about the
LASSO-VAR in WPF. Both the STMC and the LASSO-VAR
models are solved by the Matlab package ‘Glmnet’. The VAR

results are achieved by setting the shrinkage parameter as zero. The
root mean squared error (RMSE) and mean absolute error (MAE)
are used as metrics to evaluate these methods [25].

It is recommended that the wind power time series should be
transformed to Gaussian ones by using Logit transformation [26].
However, the ranges of wind power values may be different for
different wind farms, which can make it inconvenient to
demonstrate the proposed method. Thus, the Logit transformation
is not applied in this paper for any WPF model for the sake of fair
comparisons.

3.2 Parameter setting

Partial auto-correlogram is an effective tool to determine the orders
of AR time series models. The partial auto-correlogram calculated
from training data is used for each of the 100 wind farms to
determine their optimal orders, which are shown in Fig. 2. 

It is shown that the AR models for different wind farms have
different optimal orders. Each AR model is trained using its
corresponding optimal order. However, a spatio-temporal model
requires a unified order for all wind farms, thus the optimal orders
of VAR and LASSO-VAR are set as a moderate value of 3,
according to Fig. 2.

Another important parameter of LASSO-VAR is its shrinkage
parameter. This parameter is optimised using validation data. The
trend of average validation RMSE of 100 wind farms with the
varying values of the shrinkage parameter is given in Fig. 3. The
RMSE firstly decreases and then increases, with the optimal value
achieved when the parameter is 0.00033. So, the optimal shrinkage
parameter of the LASSO-VAR is set as 0.00033. 

The trend of average validation RMSE of STMC model with
varying value of λ is also given in Fig. 4. 

It can be seen that the trend of average validation RMSE of the
STMC is very similar to that of the LASSO-VAR. The RMSE
reaches its minimum at λ = 0.00025. Thus, the λ is finally set as

Fig. 2  Optimal order of AR model for each wind farm
 

Fig. 3  Average validation RMSE of the LASSO-VAR with varying value of
its shrinkage parameter
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0.00025. The other parameter of the STMC, i.e. number of
partitioned states is set as K = 100.

3.3 Forecasting results and analysis

A selected segment of the final STMC forecasting results for a
specific wind farm is demonstrated in Fig. 5, along with the
measurements and 100 reference forecast curves obtained by the
spatio-temporal transition probability matrix regarding each
reference wind farm. 

It can be seen that the measurements and the STMC forecasts
can be well encompassed by the 100 reference forecast curves. The
STMC forecasting model can extract useful patterns from abundant
reference information. Therefore, it is expected that the STMC
forecasts for the target wind farm can be improved by optimising
the weights of these individual forecasts.

The average testing RMSE and MAE of 100 wind farms by
using different methods are provided in Table 1. The proposed
STMC is the best one among all these forecasting methods. The
bad performance of the VAR model can be explained by the over-
fitting problem in high-dimensional modelling. However, the
LASSO-VAR is always reported to perform quite well in literature,
while in this case it does not behave as expected. 

In order to provide a more comprehensive predictive
performance analysis, the box plots of RMSE of 100 wind farms
for different methods are depicted in Fig. 6. 

The stars in the figure are outliers and the circles are the
average RMSE, which have been given in Table 1. It is shown that
the VAR and the LASSO-VAR present very large forecasting errors
for several wind farms, in comparison with other methods. This is
the main reason that leads to higher average RMSE values of the
two methods. However, it should be noted that the accuracies of
the LASSO-VAR for at least half number of wind farms are
competitive with that of the STMC.

4 Conclusions
In this paper, a spatio-temporal Markov chain model is proposed
for very-short-term WPF of a large number of wind farms over a
region. This model is obtained by extending the traditional
discrete-time Markov chain into a spatio-temporal framework,
which aims to apply spatial correlation between wind farms to
benefit forecasting.

The proposed model is verified on a real-world data from 100
wind farms. The model is more accurate and more stable in terms
of forecasting errors when compared with other methods. Some
further work could be done to improve or extend the proposed
method:

(i) The impact of the number of partitioned states on the predictive
performance needs to be investigated to find the optimal number of
states.
(ii) The number of partitioned states can be set as different values
for different wind farms.
(iii) The forecasting in longer time horizons needs to be evaluated.
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