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Abstract— There is a growing need for methods that can
represent and query uncertain graphs. These uncertain graphs
are often the result of an information extraction and integration
system that attempts to extract an entity graph or a knowledge
graph from multiple unstructured sources [25], [7]. Such an
integration typically leads to identity uncertainty, as different
data sources may use different references to the same underlying
real-world entities. Integration usually also introduces additional
uncertainty on node attributes and edge existence. In this paper,
we propose the notion of a probabilistic entity graph (PEG), a
formal model that uniformly and systematically addresses these
three types of uncertainty. A PEG is a probabilistic graph model
that defines a distribution over possible graphs at the entity
level. We introduce a general framework for constructing a PEG
given uncertain data at the reference level and develop efficient
algorithms to answer subgraph pattern matching queries in this
setting. Our algorithms are based on two novel ideas: context-
aware path indexing and reduction by join-candidates, which
drastically reduce the query search space. A comprehensive
experimental evaluation shows that our approach outperforms
baseline implementations by orders of magnitude.

I. INTRODUCTION

Querying relational data that has been extracted from vari-
ous sources is beneficial in a variety of application domains,
such as online social networks, the Web, communication
networks, bioinformatics and financial data management. The
relational structure of such data can conveniently be repre-
sented in the form of graphs or networks, which allows one to
express queries for groups of objects with a given attribute and
link structure as subgraph pattern matching tasks. However, to
obtain high quality answers, it is crucial to explicitly take into
account the uncertainty inherent in the data when querying.

The reasons for uncertainty are manyfold. As different data
sources often use different references to the same real world
object or entity, one needs to rely on automatic approaches,
such as entity resolution techniques [3], [1], [10], to identify
entities during integration; use of such techniques introduces
identity uncertainty in the data. Identity uncertainty in turn
leads to other types of uncertainty, including uncertainty
about attribute values and edge existence. The latter types
of uncertainty may also come directly from the data, for
instance, from an information extraction system that associates
a confidence with an extraction [26], [4]. Despite the many
scalable algorithms and indexing techniques for analyzing and
querying graphs that have been developed recently, e.g., [29],
[6], [11], [35], [9], and that also address uncertain data, e.g.,

[5], [16], [19], [22], [30], methods that jointly address these
different types of uncertainties are still lacking.

In this work, we propose the notion of a probabilistic entity
graph, PEG, a general abstract probabilistic graph model that
combines three common types of uncertainty. Specifically, we
consider: 1) identity uncertainty, that is, uncertainty about
whether each real world entity is represented by one or multi-
ple objects or references in the data, 2) uncertainty about the
attribute values of nodes (i.e., attribute value uncertainty), and
3) uncertainty about whether particular edges exist (i.e., edge
existence uncertainty). In addition, we develop techniques
for efficiently answering subgraph pattern queries over such
uncertain graphs. We show that our model defines a probability
distribution over possible graphs describing entities, their
attributes and relationships among them. We then introduce
techniques to find all matches of a subgraph pattern that have
probability above a given threshold. Answering subgraph pat-
tern matching queries is NP-hard on non-probabilistic graphs,
and becomes #P-complete when including identity uncertainty.
Nonetheless, we propose and systematically explore a range
of novel techniques to prune the search space and effectively
perform subgraph pattern matching over large-scale uncertain
graphs.

To summarize, we make the following contributions:
• We introduce probabilistic entity graphs, a general uncer-

tain graph model that captures identity, attribute and edge
uncertainties.

• We define the semantics of a probabilistic entity graph as a
probability distribution over possible entity graphs.

• We develop scalable algorithms to answer subgraph pattern
matching queries over such uncertain graph data, based on
query path decomposition.

• We present a novel graph indexing method, context-aware
path indexing, to capture information about the graph paths,
their surrounding structures, and their probabilities, enabling
efficient retrieval of candidate matches.

• We propose reduction by join-candidates, an algorithm
that efficiently prunes candidate answers by progressively
propagating structural and probabilistic information between
the candidates.

• We demonstrate that our approaches can evaluate complex
queries over graphs with millions of nodes and edges in
seconds, outperforming a baseline implementation by orders
of magnitude.
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Fig. 1. (a) Reference-level network, (b), (c) the two possible entity graphs,
(d) a query graph

II. MOTIVATING EXAMPLE

As a simple motivating example, consider a system to help
organizations find experts in different domains. The system
integrates information about experts and their affiliations from
multiple sources. Assume three sources: an online professional
network (e.g., LinkedIn), an online social network (e.g., Face-
book), and personal webpages or blogs. The system uses the
experts’ names, their affiliations (Academia (a), Research
Lab (r), or Industry (i)), and relationships between experts.
Figure 1 illustrates a small example, where we omit names
for clarity. We use the term reference to denote the observed
objects, which in this example are strings encoding names,
while we use the term entity to refer to real-world objects,
that is, the experts in our case. A real-world object may thus
correspond to a collection of references, as names may be
abbreviated, misspelled, etc. In Figure 1(a), nodes represent
references, letters inside nodes represent reference IDs, and
letters outside nodes represent labels, that is, affiliations,
along with their probabilities in parentheses, representing
node attribute uncertainty. Consider node r1, extracted from
a personal webpage. Suppose that a text analysis method
suggests that the name is “Gerald Maya” and the affiliation is
Industry with probability 0.75 and Research Lab with
probability 0.25 (an instance of attribute value uncertainty).
Nodes r2 and r3 are extracted from an online professional
network, with name “Becky Castor” and an affiliation with
Academia, and the name “Christopher Tucker” and an affili-
ation with a Research Lab, respectively. Finally, node r4 is
extracted from an online social network, with the name “Chris
Tucker” and an Industry affiliation. Relationships, such
as co-worker, friend, or class-mate, between the individuals
are extracted (represented as edges in the figure) and are
associated with probabilities that reflect the likelihood of
the relationship’s existence (i.e., edge existence uncertainty).
These probabilities can be calculated based on whatever
information is available from these online resources, such
as the number of common connections or shared attributes
between them. Finally, to encode that “Christopher Tucker”
and “Chris Tucker” may refer to the same person, we put them
together in the same reference set (depicted as a dashed line
in the figure). To quantify such identity uncertainty, i.e., the
uncertainty about whether multiple references refer to the same
real-world entity, we assign this reference set a probability
of 0.8, denoting the likelihood that the elements in the set
correspond to a single real-world entity.

Figures 1(b) and (c) illustrate the two possible sets of
entities with their labels and relations for the example ref-
erence network shown in Figure 1(a), where the letters inside

the nodes represent entity IDs. Figure 1(b) depicts the entity
graph in which r3 and r4 remain unmerged, i.e., are assumed
to be separate real-world entities (pr = 0.2); Figure 1(c)
depicts the one where they are assumed to refer to the same
person (pr = 0.8), and thus merged into a new node s34

with its own label and edge probability distributions. Going
from a set of references to an entity requires merging the
information associated with the references, i.e., their labels
and the relationships they participate in. In this example, we
average the probability distributions. Since r3 has label r and
r4 has label i, we assign a label distribution of {r(0.5), i(0.5)}
to entity s34. Similarly, s34 has an edge to s2 with pr = 0.75
(average of r3’s edge with pr = 1 and r4’s edge with
pr = 0.5).

Clearly, we want to specify queries to our information
system at the level of entities rather than references. In this
work, we focus on subgraph pattern matching queries, perhaps
the most widely used and studied class of queries over graphs.
Figure 1(d) depicts a query which asks for all paths of length 2
over nodes labeled (r, a, i). A query also specifies a minimum
threshold α (α = 0.25 in the example), to indicate that only
matches with probability larger than α should be returned. In
this simple case, we can answer our query by examining all
possible matches. In the entity graph in Figure 1(b), with r3

and r4 unmerged, the nodes (s3, s2, s4) form a path with the
required labels. The probability of that path is computed by
multiplying the three node label probabilities (1, 1, 1), the two
edge probabilities (1, 0.5), and the probability that the nodes
r3 and r4 are not merged (0.2); resulting in a match probability
of 0.1, which is below our cutoff of 0.25. The other two
potential matches, (s1, s2, s4) and (s3, s2, s1), do not satisfy
the minimum threshold constraint either. The second entity
graph in Figure 1(c) contains two potential matches for the
query: (s1, s2, s34) with probability 0.084, and (s34, s2, s1)
with probability 0.253. Therefore, (s34, s2, s1) is the only
answer to our query. Clearly, such an exhaustive approach is
infeasible for larger graphs. In this work, we therefore develop
a scalable approach to answer subgraph pattern matching
queries in this setting.

III. UNCERTAIN GRAPH MODELING

We now discuss our formal model for the types of uncer-
tainties arising in the example above, where we are given
information about references, or mentions of objects, but are
interested in queries about entities, or the objects themselves.
We introduce probabilistic entity graphs, which define a
probability distribution over graphs, where nodes correspond
to entities, node labels to entities’ attributes, and edges to
the relations between them. The key challenge here is that
references induce constraints on which entity nodes can co-
occur in the same graph, as each graph structure corresponds
to one possible way of assigning references to existing entities.
To deal with these dependencies, we represent our probability
distribution as a probabilistic graphical model (PGM) [18].
After a quick summary of the necessary basics, we introduce
the notion of a probabilistic graph description (PGD), and



show how to derive the actual PGM, our probabilistic entity
graph, from the PGD. We first focus on the basic case,
where distributions over labels and edges are all independent,
and then show how additional dependencies can directly be
introduced.

A PGM P = 〈V,F〉 defines a joint probability distribution
over its random variables V via its set of factors F . Each factor
f ∈ F is defined over a subset Vf of V and represents a de-
pendency between those random variables. Given a complete
joint assignment v ∈ Dom(V) to the variables in V , the joint
distribution is defined by Pr(v) = 1

Z
∏
f∈F f(vf ), where

vf denotes the assignments restricted to the arguments Vf
of f and Z =

∑
v′∈Dom(V)

∏
f∈F f(v′f ) is a normalization

constant referred to as the partition function. The indepen-
dencies in the distribution defined by a PGM are represented
graphically in its Markov network, which contains one node for
each random variable, and an edge between a pair of random
variables if and only if the two variables co-occur in some
factor. Each connected component in the Markov network
corresponds to a part of the model that is independent from the
rest. We can thus compute the normalized probability for each
connected component separately and multiply them together
to obtain the full joint distribution.

As a first step towards our probabilistic model, we introduce
random variables for labels of references (r.x), existence of
edges between pairs of references ((r1, r2).x), and existence
of an entity corresponding to a set of references (s.x), together
with a probability distribution for each of them.

Definition 1: Probabilistic Graph Description: A prob-
abilistic graph description (PGD) is a tuple D =
(R,S,Σ, P,mΣ,m{T,F}), where R is a set of references, S is
a set of subsets of R (each of them a potential entity) including
at least all singleton subsets, Σ is a set of labels, and:
• P is a set of probability distributions containing (1) for each
r ∈ R, a probability distribution pr(r.x) over a random
variable r.x with values from Σ, (2) for each (r1, r2) ∈
R × R, a probability distribution p(r1,r2)((r1, r2).x) over
a random variable (r1, r2).x with values from {T, F}, and
(3) for each s ∈ S, a probability distribution ps(s.x) over
a random variable s.x with values from {T, F}.

• The merge functions mΣ and m{T,F} transform a set of
probability distributions over random variables with values
in Σ and {T, F}, respectively, into a single distribution.
Note that a PGD is not a graphical model, but simply

specifies the objects and observations as well as a set of basic,
independent probability distributions over those. This includes
the set of observed references R ({r1, . . . , r4} in Figure 1(a))
together with their possible labels Σ ({a, r, i} in the example);
it also includes the probabilities for the existence of edges
between two references, and the set S of potential entities,
where each entity is represented by a subset of the references
(S = {{r1}, {r2}, {r3}, {r4}, {r3, r4}} in the example). The
PGD specifies independent probability distributions for the
existence of such entities, as well as merge functions that
specify how to combine distributions of labels and edges if
references are merged into an entity, for instance, by averaging,

or, in the case of Boolean domains, by forming the disjunction
of the input distributions.

In the next step of our model construction, the proba-
bilistic entity graph combines these independent probability
distributions into a coherent graphical model that encodes the
dependencies between entities induced by shared references
and combines the distributions over labels and edges using
the merge functions provided by the PGD.

Definition 2: Probabilistic Entity Graph: For a given
PGD D, the probabilistic entity graph (PEG) U is the graphical
model 〈V,F〉 whose set of random variables V contains, for
each s ∈ S, a node existence variable s.n and a label variable
s.l, and for each pair (s1, s2) ∈ S × S, an edge existence
variable (s1, s2).e, and whose set of factors F is defined as
follows. For each r ∈ R with Sr = {s1, . . . , sk} = {s ∈
S|r ∈ s}, F contains a node existence factor

(1)
fN (s1.n = v1, . . . , sk.n = vk) ={
ps(si.x = T ) if vi = T and, for all j 6= i, vj = F

0 otherwise.
For each s ∈ S, F contains a node label factor

Pr(s.l) =
[
mΣ({pr|r ∈ s})

]
(s.l) (2)

For each (s1, s2) ∈ S×S, F contains an edge existence factor

Pr((s1, s2).e) =
[
m{T,F}({p(r1,r2)|ri ∈ si})

]
((s1, s2).e)

(3)
Identity uncertainty is modeled by the node existence factors

(fN (s1.n = v1, . . . , sk.n = vk)), which ensure that all
assignments where two entity nodes share a reference have
zero probability. The node label factors (Pr(s.l)) are probabil-
ity distributions obtained by aggregating the label probability
distributions of all references in the underlying set s via the
node label merge function. In the same way, the edge existence
factors (Pr((s1, s2).e)) are probability distributions obtained
by aggregating the edge existence probability distributions of
all pairs of references from the underlying sets via the edge
existence merge function.
Example: In Figure 1(a), we choose to use pointwise average
as the merge function. Since pr(r3.x = r) = 1 and pr(r4.x =
i) = 1, the node s34 (formed by merging {r3, r4}) has label
distribution Pr(s34.l = r) = Pr(s34.l = i) = 0.5. Similarly,
Pr((s34, s2).e = T ) = 0.75, as the reference level edges
(r3, r2) and (r4, r2) have probabilities 1 and 0.5 respectively.

Further, in the example, ps(s3.x = T ) = ps(s4.x = T ) =
0.25, and ps(s34.x = T ) = 0.5 (Figure 1 only shows the final
normalized probabilities, computed by following the process
described below). Hence, the node existence factor for r3 is:
fN (s3.n = T, s34.n = F ) = 0.25, fN (s3.n = F, s34.n =
T ) = 0.5, and 0 otherwise (note that the factors are not
pdfs, and hence do not have to sum up to 1). Similarly, the
node existence factor for r4 is: fN (s4.n = T, s34.n = F ) =
0.25, fN (s4.n = F, s34.n = T ) = 0.5, and 0 otherwise. The
factor for r1 is: fN (s1.n = T ) = 1, fN (s1.n = F ) = 0, and
the factor for r2 is: fN (s2.n = T ) = 1, fN (s2.n = F ) = 0.
Exploiting Independence: Writing out the probability distri-
bution defined by the PEG, we have



(4)

Pr(S.n, S.l, (S × S).e) =
1

Z
·
∏
r∈R

fN (Sr.n) ·
∏
s∈S

Pr(s.l)

·
∏

(s1,s2)∈S×S

Pr((s1, s2).e)

We use shorthand notation for assignments to sets of random
variables, e.g., S.n for s1.n = n1, . . . , s|S|.n = n|S|. The
partition function Z is the sum of the factor product over all
variable assignments. As all node label and edge existence
factors are probability distributions independent of all other
factors, Eq. 4 is equivalent to

(5)

Pr(S.n, S.l, (S × S).e) = Pr(S.n) ·
∏
s∈S

Pr(s.l)

·
∏

(s1,s2)∈S×S

Pr((s1, s2).e)

where Pr(S.n) is the normalized product of all node existence
factors, that is, the partition function Zn is with respect to
those factors only:

Pr(S.n) =
1

Zn

∏
r∈R

fN (Sr.n) (6)

This function can often be decomposed further, based on the
independencies encoded in the Markov network. Let C(S.n) be
the partitioning of the set of random variables S.n induced by
the connected components of the Markov network, that is, each
element of C(S.n) contains all random variables participating
in one such component. We then obtain

Pr(S.n) =
∏

Si.n∈C(S.n)

1

Zni

∏
r∈R∧Sr⊆Si

fN (Sr.n)

=
∏

Si.n∈C(S.n)

Pr(Si.n) (7)

where the partition function Zni
normalizes over all assign-

ments for random variables in Si.n.
Example: In our example, there are three connected com-
ponents, i.e., C(S.n) = {{s1.n}, {s2.n}, {s3.n, s4.n, s34.n}}.
For the first two, fN is already a probability distribution, and
thus Zn1

= Zn2
= 1. For the third, the product of the two

corresponding factors has non-zero value for two assignments:
fN (s3.n = T, s4.n = T, s34.n = F ) = fN (s3.n =
T, s34.n = F )× fN (s4.n = T, s34.n = F ) = 0.0625, and
fN (s3.n = F, s4.n = F, s34.n = T ) = fN (s3.n =
F, s34.n = T )× fN (s4.n = F, s34.n = T ) = 0.25.
Hence, Zn3

= 0.25 + 0.0625 = 0.3125,
Pr(s3.n = T, s4.n = T, s34.n = F ) = 0.0625/0.3125 = 0.2,
P r(s3.n = F, s4.n = F, s34.n = T ) = 0.25/0.3125 = 0.8;
the last two are the final probabilities of r3 and r4 not being
merged (Figure 1(b)), and merged (Figure 1(c)), respectively.
Distribution over Graphs: Clearly, not all assignments to
random variables in the model above directly correspond to
legal graphs. We now show how to obtain the final distribution
over labeled graphs. The set PW (U) of possible world graphs
of a PEG U consists of those graphs W = (V,E, l(.)) where
V is a set of entity nodes corresponding to reference sets
from S (merged into a single entity), E ⊆ V × V is a set of

edges between them, and the label function l : V → Σ labels
these nodes with elements of Σ. Slightly abusing notation, we
identify a graph node v ∈ V with the corresponding set of
references s ∈ S (thus treating V as a subset of S), and use
both notations interchangeably. Each possible world graph W
induces a partial value assignment (S.nW , V.lW , (V ×V ).eW )
to the random variables in the graphical model as follows. For
each s ∈ V , we have s.nW = T , and for each s ∈ S \ V , we
have s.nW = F , that is, values of node existence variables
mirror the (non-)existence of nodes in W . For each s ∈ V ,
we have s.lW = l(s), that is, for all existing nodes, values
of node label random variables mirror the labels in W , and
all other node label random variables remain unassigned. For
all (s1, s2) ∈ E, we have (s1, s2).eW = T , and for all
(s1, s2) ∈ (V × V ) \ E, we have (s1, s2).eW = F , that
is, for all pairs of existing nodes, edge existence variables
mirror the (non-)existence of edges in the graph, and all
other edge existence random variables remain unassigned.
The probability of W is now obtained based on Equation 5
by marginalizing over all unassigned variables. As those all
appear in independent factors only, we get

Pr((V,E, l(.))) = Pr(S.nW ) ·
∏
v∈V

Pr(v.l = l(v)) (8)

·
∏

(s1,s2)∈E

Pr((s1, s2).e = T ) ·
∏

(s1,s2)∈
(V×V )\E

Pr((s1, s2).e = F )

As every full assignment to the variables in the graphical
model contributes to exactly one graph’s probability, this
defines a probability distribution over possible world graphs.
Introducing Correlations: Our model can easily be
adapted to introduce additional correlations, such as edge
existence probabilities depending on node labels. This
is done by replacing the edge existence probabilities
p(r1,r2)((r1, r2).x) in the PGD by conditional probabilities
p(r1,r2)((r1, r2).x0|r1.x1, r2.x2), The edge existence factors
in the PEG now include three random variables, with values
Pr((s1, s2).e|s1.l1, s2.l2) obtained by applying the merge
function in Equation 3 to the conditional distributions:

(9)
Pr((s1, s2).e|s1.l1, s2.l2) =[
m{T,F}({p(r1,r2)|ri ∈ si})

]
((s1, s2).e|s1.l1, s2.l2)

Since there are no cyclic dependencies between random
variables, the product of these factors still is a normalized
probability distribution, which allows us to use the new edge
existence factors instead of the previous ones in the full joint
distribution (Equation 4), its factorization (Equation 5), and
the probability of possible world graphs (Equation 8).

IV. SUBGRAPH PATTERN MATCHING

We now define the task of subgraph pattern matching over
uncertain graphs based on the notion of match in graphs
without uncertainty. We assume undirected graphs, but our
approaches are equally applicable to directed graphs. A query
graph Q = (VQ, EQ) is a graph where each node v ∈ VQ is
labeled with a label lQ(v) ∈ Σ.



Definition 3: Match: Given a labeled graph G =
(VG, EG, lG(.)) and a query graph Q = (VQ, EQ, lQ(.)), a
subgraph M = (VM , EM ) of G is a match of Q in G if and
only if there is a bijective mapping ψ : VQ → VM such that
(i) ∀u ∈ VQ : lQ(u) = lG(ψ(u)) and (ii) (ψ(u), ψ(v)) ∈ EM
if and only if (u, v) ∈ EQ.

Definition 4: Probabilistic Match: A graph M is a prob-
abilistic match of a query graph Q in a PEG U if and only if
M is a match of Q in at least one legal possible world graph
G of U , that is, one where no two nodes share a reference.
The probability of the match M is the sum of the probabilities
of all possible world graphs of U where M is a match:

Pr(M) =
∑

G∈PW (U)∧M⊆G

Pr(G) (10)

Definition 5: Probabilistic Subgraph Pattern Matching:
Given a PEG U , a query graph Q, and a probability threshold
α, find all matches of Q in U such that Pr(M) ≥ α.

Naively, this problem could be solved by performing sub-
graph pattern matching over each possible world graph and
for each match found, summing the probabilities of possible
worlds it appears in. Clearly, this approach is computationally
infeasible. In the remainder of this section, we show how to
(a) find all matches by performing subgraph matching on a
single graph only, and (b) calculate the probability of a given
match directly, without need to explicitly consider all possible
worlds it appears in. This provides the basis for the algorithms
discussed in Section V, which further speed up probabilistic
subgraph pattern matching.
Finding Matches: For a given PEG U , let GU be the
graph that has a node for each s ∈ S, labeled with the
set of labels L(s) that are associated with s with non-zero
probability, that is, L(s) = {l′|l′ ∈ Σ ∧ Pr(s.l = l′) > 0},
and an edge between two nodes s1 and s2 if and only if
Pr((s1, s2).e = T ) > 0. To obtain a one-to-one correspon-
dence between matches on GU and probabilistic matches on
U , we generalize the notion of match on GU to (a) require
the query node label to be in the set of labels of the matched
node, and (b) only return matches where no two nodes share
a reference. For the discussions to follow, we use the term
probabilistic entity graph to denote GU as well, as it is the
structure that our algorithms operate on.
Calculating Probabilities: The probability of a match M on
GU (Equation 10) is the sum of the probabilities of a set of
possible world graphs (Equation 8). As the graphs in this set
are exactly those containing all nodes in VM with correct labels
as well as all edges in EM , and arbitrary sets of additional
nodes and edges, the probability of M equals the marginal

Pr(M) = Prn(M) · Prle(M) (11)
Prn(M) = Pr(VM .n = T ) (12)

Prle(M) =
∏
v∈VM

Pr(v.l = l(v)) ·
∏
e∈EM

Pr(e.e = T ) (13)

where Pr(VM .n = T ) is the corresponding marginal of
Pr(S.n) that sums out values of all node existence variables

whose nodes are not part of M . In practice, as in Equation 7,
we further exploit independencies in the underlying graphical
model. Recall that C(S.n) partitions the set of node existence
random variables S.n based on the connected components of
the Markov network. As each node in a match corresponds to
one such random variable, we can use the same partitioning,
restricted to the set of nodes VM in the match, to calculate
Pr(VM .n = T ) as

∏
C.n∈C(S.n) Pr((VM .n ∩ C.n) = T ).

Note that Prle(M) is subgraph decomposable, i.e., for two
disjoint subgraphs M1 and M2, Prle(M1) × Prle(M2) =
Prle(M1 ∪M2), but Prn(M) is not.

V. ALGORITHMS

The problem of probabilistic subgraph pattern matching
with identity uncertainty is #P-complete. To increase effi-
ciency, we propose a new path-based solution to this problem,
which decomposes the query into a set of paths, finds matches
of individual paths, and exploits probabilistic information to
prune the space of possible matches. We focus on paths rather
than nodes only when finding candidate matches, as this takes
into account more probabilistic information, thus resulting in
tighter bounds and increased pruning capabilities, especially
when used in association with path context information and
further reduction techniques as outlined below.

To enable efficient and scalable online processing, our
approach combines an offline phase (Section V-A) and an
online phase (Section V-B), summarized in Figure 2. We refer
the reader to the extended version of the paper for detailed
examples of the various steps [20].

A. Offline Phase

The offline phase precomputes entity-level probability in-
formation (specifically, component probabilities) and builds a
novel disk-based context-aware path index on the probabilistic
entity graph, indexing not only all the paths in the PEG up to
a given length, but also other context information that captures
different properties of the paths’ local neighborhoods.
Component Probabilities: To reduce calls to the PGM engine
during online inference, we precompute and store components
of match probabilities (Equation 11). As Prle(.) is decom-
posable, we only precompute its parts, i.e., node label and
edge existence probabilities based on Equations 2 and 3, re-
spectively. Since Prn(.) is not decomposable, we precompute
node existence marginals for all possible valid configurations
of every connected component, i.e., those consisting of entities
not sharing a reference. In general, the connected components
are expected to be small enough in practice for this to be
feasible. If not, we could instead either employ an approximate
inference technique to compute the marginals, or compute
them on demand using the PGM engine.
Path Index: The path index contains all paths in the prob-
abilistic entity graph of length at most L and probability at
least β that do not contain two nodes sharing an underlying
reference1. Each entry has two components:

1Paths with smaller probability are computed on demand.
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set of paths corresponding to the key. There are three types of context information: c(v, σ), ppu(v, σ), fpu(v, σ), where v ∈ {v1, v2, v3, . . .}, σ ∈ {a, b}.

• Key: the entry’s key is a pair 〈X, π〉, where X ∈ Σl+1 is a
sequence of node labels of length l + 1, and π ∈ {β, β +
γ, β + 2γ, . . . , 1} is a probability value. The parameter γ
defines the resolution of the index and provides a tradeoff
between accuracy and response times.

• Value: the entry’s value is the set of paths Pu of length l
with probability under the node label assignment X between
π and π + γ; the paths must also satisfy the reference
constraint. For every Pu ∈ Pu, we store the path itself
as well as its two probability components Prle(Pu) and
Prn(Pu).

Example: Say the graph contains two paths Pu1 , P
u
2 of length

1 such that Prle(Pu1 ) = 0.85, P rle(P
u
2 ) = 0.95, P rn(Pu1 ) =

Prn(Pu2 ) = 1 under the assignment (a, a) for their node
labels; then we have Pr(Pu1 ) = 0.85, P r(Pu2 ) = 0.95. If
β = 0.7, and γ = 0.1, then the value of the key 〈(a, a), 0.9〉
will contain Pu2 (along with its corresponding Prle(.), P rn(.)
probabilities), and the value of 〈(a, a), 0.8〉 will contain Pu1 ,
while the value of 〈(a, a), 0.7〉 will contain neither of them.

To increase efficiency, we build a two-level index, where the
first level, accessing X via equality predicates, is a hash index,
and the second level, accessing π via range predicates, is a B+-
tree index. Paths of increasing length are built incrementally,
exploiting the fact that all paths with probability at least β
must consist of sub-paths with probability at least β as well.
We use multiple threads and a synchronization barrier to build
entries for different label sequences in parallel. To increase I/O
performance, we accumulate a group of records in a memory
buffer before writing the buffer to disk. Finally, for undirected
graphs, entries for labels X = {X1, X2, . . . , Xl−1, Xl} are
identical to those for X’ = {Xl, Xl−1, . . . , X2, X1} because
of symmetry, and we therefore only store one direction for
each such case and derive the other one as needed.
Context Information: To enable further pruning (Sec-
tion V-B2), we precompute context information for nodes. For
a node v ∈ GU and a label σ ∈ Σ, let N(v, σ) be the set of
neighbors of v that have σ in their set of possible labels, i.e.,
N(v, σ) = {v′|v′ ∈ Γ(v), σ ∈ L(v), refs(v) ∩ refs(v′) = ∅},
where Γ(v) is the set of neighbors of node v, and refs(v)
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Fig. 3. Context information example

is the set of underlying references of node v. For each node
v ∈ VU and label σ ∈ Σ, we compute the following values,
capturing different aspects of node/path neighborhoods:
• Cardinality: c(v, σ) = |N(v, σ)|, i.e., the size of N(v, σ).
• Partial Probability Upperbound: ppu(v, σ), which is an

upperbound for the probabilities in the neighborhood of v
considering only the edges between v and N(v, σ).

ppu(v, σ) = maxv′∈N(v,σ)Pr((v, v
′).e = T )

• Full Probability Upperbound: fpu(v, σ), which is an
upperbound for the probabilities in the neighborhood of v
also taking into account the neighbors’ labels.
fpu(v, σ) = maxv′∈N(v,σ)Pr(v

′.l = σ) · Pr((v, v′).e = T )

Example: In Figure 3, c(v1, a) = c(v1, b) = 3. ppu(v1, a) =
0.9 because the highest edge probability that connects v1 to a
node with label a is 0.9. Similarly, ppu(v1, b) = 1.0. Finally,
fpu(v1, a) = 0.72, as this is the highest product of an edge
connecting v1 to another node (with 0.9), and that node having
label a (with 0.8). Similarly, fpu(v1, b) = 1.0.

B. Online Phase
Our online query processing technique consists of five main

steps (shown in Figure 2(b)): (1) decompose the query into
a set of paths, (2) obtain a set of candidates for every path
in the decomposition using the path index, (3) obtain join-
candidate paths for every candidate path (i.e., candidate paths
whose query paths share a node with the given candidate and
can thus extend it to form a partial match), (4) jointly reduce
the candidate search space by reduction by join-candidates
which performs message passing in a k-partite graph, (5) find
matches to the full query.

1) Path Decomposition: The task of path decomposition is
to split the query into a set of possibly overlapping paths, each
of length L or less, that cover the entire query, and whose



matches can be obtained from the path index. To preserve
the structural information of the query, intersection points
between the paths are expressed as join predicates, which
have to be satisfied when combining path matches into a
full query match. For example, Figure 2(b) shows a query
and its decomposition into three paths P1, P2, and P3. In
order to preserve the structural information of the query, any
paths (Pu1 , P

u
2 , P

u
3 ) that match (P1, P2, P3) must satisfy the

predicates Pu1 .1 = Pu2 .1, Pu1 .3 = Pu2 .3, Pu3 .1 = Pu2 .1,
and Pu3 .3 = Pu2 .3 (we use Pu1 .1 to denote the vertex in
path Pu1 that matches the vertex 1 in path P1). Query path
decomposition thus decomposes a query Q into a set of
node/edge overlapping paths P . For every pair of overlapping
paths P1 and P2, the decomposition defines a set of join
predicates JP (P1, P2). Further, we denote the set of paths
joining with a path P by J(P ).

As finding a least-cost path decomposition based on the
number of operations involved in producing the final re-
sult is too costly, we instead use an estimate of the initial
query search space size SS0. We would thus like to find
argminP⊆P(Q),P covers QSS0(P), where P(Q) is the set of all
possible paths of length at most L in Q. For each path P in
the decomposition, we estimate the number of matches, or its
cardinality C(P, α). The cardinality is based on the number of
database paths matching the query path P with probability at
least α, but also takes into account the fact that those matches
have to be extended to neighboring query paths. We hence
express C(P, α) in terms of the following quantities.

1) Number of candidates |PIndex(lQ(VP ), α)| matching P ’s
labels lQ(VP ) with probability at least α in the path index.

2) Path degree degree(P ): sum of path node degrees, not
counting edges on the path, that is,

degree(P ) =
∑
n∈VP

degree(n)− 2× length(P )

3) Path density density(P ): this measures how close the
nodes on P are to forming a clique. Let K be the number
of edges between the nodes of P , and M the number of
nodes on the path, then density(P ) = (2K)/(M(M −1)).

Taking into account the direction of influence of these com-
ponents on the true number of matches, we approximate |P |
as:

C(P, α) ∝ |PIndex(lQ(VP ), α)|
degree(P ) · density(P )

We then estimate the search space size as the product of all
such path cardinalities. Therefore, our goal is to find:

argmin P⊆P(Q),
P covers Q

∏
P∈P

|PIndex(lQ(VP ), α)|
degree(P ) · density(P )

Since it is not practical to query the index for an arbitrary
α and lQ(VP ) at query time, we build a histogram for
every possible label sequence X during the offline phase at
selected probability points (α0, . . . , 1). At runtime, we use
exponential curve fitting to estimate |PIndex(lQ(VP ), α)|
given hist(lQ(VP ), αi) and hist(lQ(VP ), αi+1) where αi <
α < αi+1.

We reduce the problem of optimizing the cost function to
that of SET COVER, where the set of query edges corresponds

to the universal set (in the SET COVER instance), and each
path P in the query with length at most L is a candidate set.
Note that we allow paths with shared edges, as this can reduce
the cost of several paths at once (e.g., in the case of a very
selective edge connected to multiple non-selective paths). The
cost of the cover is the product of the individual costs of the
participating paths. Since SET COVER is NP-complete, we
use the standard greedy approximation to solve the problem,
using the length of a path divided by its cost as score.

2) Finding Path Candidates: Given a path decomposition
P , we find candidate matches for every query path. For every
path P ∈ P , we retrieve its matches PIndex(lQ(VP ), α) from
the path index, but only keep those paths that satisfy certain
context criteria. We denote the resulting set of matches by
cn(P ) (⊆ PIndex(lQ(VP ), α)). This second step relies on
the following query statistics:

• Node-level statistics: For every node n ∈ VQ, we calculate
its neighborhood label count for every label σ ∈ Σ,

c(n, σ) = |{m|m ∈ Γ(n), lQ(m) = σ}|
• Path-level statistics: A path match can only contribute to a

full match if it can be extended to at least the neighboring
nodes in both the query and the graph, and we can safely
prune other path matches. For every path P ∈ P , we
therefore collect the following information:

1) Path neighbors Γ(P ): the set of nodes that are not on P
but are neighbors of at least one node on P .

2) Reverse path neighbors: for every m ∈ Γ(P ), rv(P,m)
is the set of nodes on P that are neighbors of m.

3) Path cycles: for every n ∈ VP , path cycles, cyc(P, n), is
the set of nodes on P that are also connected to n by
a query edge outside the path, and thus appear together
with n in a cycle. To avoid information duplication, each
such edge only contributes to the path cycles of one of
its endpoints.

Node-level pruning: Using the node-level statistics, we obtain
the set of candidates cn(n) for every node n ∈ VQ as follows:

1) For every label σ ∈ Σ, v must have a number of neighbors
that is greater than or equal to the number of neighbors of
n with label σ, i.e., c(v, σ) ≥ c(n, σ),∀σ ∈ Σ.

2) For every label σ ∈ Σ, the probability of v having the
correct label and at least the number of neighbors labeled σ
required by the query has to exceed the query threshold α.
Using precomputed full probability upperbounds as approx-
imation and taking into account multiple occurrences of the
same label, we thus only keep candidates v for n satisfying
Pr(v.l = lQ(n))× fpu(v, σ)c(v,σ) ≥ α,∀σ ∈ Σ.

Path-level pruning: Next, we prune the set of candi-
date paths using path-level statistics. For each path Pu ∈
PIndex(lQ(VP ), α), we perform the following tests:

1) For every node v ∈ VPu , v must be a candidate for the
corresponding node n in P , i.e., v ∈ cn(n).

2) The probability of a path together with its neighboring nodes
and cycles must be greater than or equal to α, which we test
using (Prle(P

u) × Prn(Pu)) × pu(Pu) × cpr(Pu) ≥ α,
with pu(Pu) and cpr(Pu) defined as follows.



The path-neighborhood probability upperbound pu(Pu)
of a candidate path Pu matching a query path P is an
upperbound for the probability of all nodes matching Γ(P )
and their edges. Let m ∈ Γ(P ) be a path P neighbor, and
n ∈ rv(P,m) a node on P . We compute a probability
upperbound pu(n,m,Pu) on the neighborhood of m as:

fpu(ψ(n), lQ(m)) =
∏

n′∈rv(P,m),n′ 6=n

ppu(ψ(n′), lQ(m))

where we use the full probability upperbound fpu for the
edge between the match of m and the selected neighbor n,
and partial probability upperbounds for all other neighbors
of m’s match, thus ensuring that information on m is only
considered once. Choosing the tightest upperbound over
all reverse path neighbors rv(P,m) and aggregating over
all m ∈ Γ(P ), we get the overall path Pu neighborhood
probability upperbound:

pu(Pu) =
∏
m∈Γ(P )minn∈rv(P,m)pu(n,m,Pu)

The path-cycles probability cpr(Pu) is the probability of
edges not on the path Pu but connecting path nodes:

cpr(Pu) =
∏

n∈VP ,
m∈cyc(P,n)

Pr((ψ(n), ψ(m)).e = T )

For every path P in the decomposition, the final list of
candidates cn(P ) contains exactly those paths from the initial
set PIndex(lQ(VP ), α) that pass the above tests.

3) Finding Join-Candidates: In this step, for every candi-
date path Pu ∈ cn(P ) of every query path P , we find a set
of paths that are candidates to be joined with Pu. Recall that
every query path P1 ∈ P can be joined with a set of paths
J(P1) ⊆ P , and there is a set of join predicates JP (P1, P2)
between P1 and every path P2 ∈ J(P1). For a query path
P1 ∈ P , and a candidate path Pu1 ∈ cn(P1), we define its
join-candidate paths of type P2 ∈ J(P1) as:

cn(P1, P
u
1 , P2)

= {Pu2 |Pu2 ∈ cn(P2)∧jp(Pu1 , Pu2 ) = T, ∀jp ∈ JP (P1, P2)

∧Pr(Pu1 ◦ Pu2 ) ≥ α ∧ refs(VPu
1

) ∩ refs(VPu
2

) = ∅}

where jp(Pu1 , P
u
2 ) is the instantiation of the predicate jp ∈

JP (P1, P2) using paths Pu1 and Pu2 , and Pu1 ◦ Pu2 is the
subgraph consisting of the two joined paths. Intuitively,
cn(P1, P

u
1 , P2) refers to the set of paths in cn(P2) that are

candidates to be joined with Pu1 ∈ cn(P1).
To facilitate finding join-candidate paths, for each P ∈ P ,

while finding cn(P ), we build a lookup table T (P, Pi) for
each query path Pi ∈ J(P ). For every table T (P, Pi), the
set of positions 〈pi1, . . . , pik〉 indicates the nodes in Pi that
participate in join predicates. The key for table T (P, Pi) is a
set of nodes 〈n1, . . . , nk〉, and the values are paths in cn(P )
that have nodes 〈n1, . . . , nk〉 at positions 〈pi1, . . . , pik〉. Given
a path Pui ∈ cn(Pi), paths in P which are joinable with Pui
can now be obtained using a direct lookup operation from
table T (P, Pi), where the access key is obtained from Pui .

4) Joint Search Space Reduction: We next exploit the
mutual relationship between the candidates and their join-
candidates to reduce the size of all candidate lists based on

the following two observations. First, for a candidate match
of a path P to contribute to a full query match, we must be
able to combine it with at least one candidate for all query
paths joining P . Second, if we can obtain an upperbound on
the probability of all full query matches a candidate path can
appear in, we can prune candidate paths based on the query
threshold α. We refer to these two principles as reduction
by structure and reduction by upperbounds, respectively, and
discuss their details below. As they influence each other,
the overall algorithm for joint search space reduction iterates
between them until no further changes occur.

The reduction is based on a k-partite graph, where each par-
tition corresponds to a query path, each vertex to a candidate
path match, and each link to a join between two candidate
paths.2 Pruning a candidate thus corresponds to deleting a
vertex and its outgoing links from the k-partite graph.

Definition 6: Candidate k-partite Graph: A candidate k-
partite graph is a k-partite graph that has a partition for each
P ∈ P , where the set of vertices of each partition P are
cn(P ). There is a link between Pu1 in partition P1 and Pu2 in
partition P2 iff Pu2 ∈ cn(P1, P

u
1 , P2).

Every match of the query in the PEG corresponds to a
subgraph of the candidate k-partite graph with one vertex per
partition (i.e., one match for each query path) and all join links
between them. We can thus safely prune all vertices that have
no links to a partition they should link to, as well as those
that cannot participate in any match with probability above
the query threshold.
Reduction by structure: If a vertex has no links to at least
one partition its query path joins with, we remove the vertex
and all of its links to vertices in all partitions. This is repeated
until no further changes occur.
Reduction by upperbounds: In order to exploit probabilistic
information during search space reduction, we now introduce
two types of vertex weights, based on Prle(.) and Prn(.), re-
spectively, and discuss a message passing scheme that exploits
these weights to obtain bounds for reduction by upperbounds.

The first type of weights is assigned such that when a
subgraph’s weights are multiplied, we obtain the final Prle(.)
probability of the corresponding match. To avoid double
contributions in cases of overlap between paths, we assign the
overlapping elements’ probability to exactly one partition, i.e.,
for every v ∈ VQ, e ∈ EQ, we choose exactly one partition to
cover v’s or e’s probability. Let partition P (we use P to refer
to both the path and its corresponding partition) exclusively
cover nodes and edges cv(P ) and ce(P ), respectively, then a
vertex’s first weight is

w1(Pu) =
∏

n∈cv(P )

Pr(ψ(n).l = lQ(n))
∏

e∈ce(P )

Pr(ψ(e).e = T )

where ψ(n) is the PEG node matching the query node n.
As identity probabilities Prn(Pu) are not decomposable, we
directly use the identity probability of a path as the second

2To avoid confusion, we use the terms (vertex/link) when referring to the
k-partite graph, and (node/edge) when referring to the PEG.



weight of its corresponding vertex in the k-partite graph
(however, we cannot multiply weights of this type together
as it is the case with w1 weights):

w2(Pu) = Prn(Pu)
In addition to the two weights, each vertex Pu has an

associated perception vector of length k, that is, with one
entry per partition. Each entry is an upperbound on the w1

weights of all vertices in that partition that can appear in
a full match with Pu. Initially, we have w1(Pu) for the
entry corresponding to Pu’s own partition, and 1 for all other
partitions. During message passing, each vertex first sends its
current vector to each of its neighboring vertices (excluding the
entry for the receiving neighbor’s partition). Once all messages
are received, each vertex Pu1 updates its own vector as follows.
For each vector entry corresponding to a partition P and each
partition P2 containing neighboring nodes of Pu1 , we choose
the maximum value for P sent by the neighbors in P2. We then
take the minimum of these over all such P2 as the new value
in the vector, and iterate the overall process. The upperbound
used to prune a vertex (and thus a candidate path) based on
the query threshold α then is the product of all entries in the
vertex’ vector and its weight w2.

As discussed above, the final algorithm iterates between
both types of reduction until no further changes take place.
We further improve efficiency through two optimizations:
(1) incremental maintenance, wherein we only recompute
upperbounds for vertices for which a neighbor has been
deleted or has reduced its perception, and only consider
vertices connected to a newly deleted link for deletion, and (2)
parallelization of the reduction algorithm, with one thread per
partition, where we introduce appropriate locking protocols to
avoid incorrect modifications of the k-partite graph by multiple
threads at the same time. We note here that we also exploit
parallelism in other parts of the system such as constructing
node candidates, path candidates, and join-candidate sets.

5) Finding Full Query Matches: The final step finds the
full query matches, starting from the matches of one path and
progressively adding matches of joining paths, based on an
initially determined join order.
Join order determination: To avoid solving an additional
optimization problem, we add paths to the join order one at a
time, based on the following heuristic:

1) Choose the path with the largest number of nodes overlap-
ping with the paths that already exist in the order.

2) In case of ties, choose the path with the largest number of
join predicates with the existing paths.

3) In case of ties, choose the path with smallest cardinality
(estimated as in path decomposition).

Finding matches: Given the join order {P1, . . . , P|P|}, we
use the reduced candidate k-partite graph to construct matches
incrementally. The initial matches are the vertices in the
partition corresponding to P1. Each match Mi up to path Pi
is extended to matches up to Pi+1 as follows. We first identify
all paths Pj with j ≤ i that join with Pi+1. For each vertex in
Pi+1’s partition that has a link to the corresponding vertex in
Mi for each such Pj , we extend Mi by adding that vertex’s

candidate match. We discard Mi if there is no such vertex, and
only produce those extended matches that have probability at
least α and do not contain two nodes sharing a reference.

C. Handling Correlations

To handle edge existence correlations discussed in Sec-
tion III, we replace the independent edge existence proba-
bilities Pr((s1, s2).e) in all the equations with their corre-
sponding conditional probabilities Pr((s1, s2).e|s1.l1, s2.l2).
Since the end point node labels are required to match the
labels of the corresponding nodes in the query, this conditional
probability can be computed directly from the CPT in most
of the equations. The only exceptions are the equations for
ppu(v, σ) and fpu(v, σ) (Section V-A), where the existence
probability of an edge is needed but one of the end point
node labels is not known. Since those two functions are upper
bounds, we simply modify the equations to find the maximum
value over all possible labels of v. Although this reduces the
pruning ability of the context information, we found it to have
a negligible impact in our experimental evaluation.

VI. EXPERIMENTAL EVALUATION

We have implemented our approach in Java, using the disk-
based graph database engine Neo4j to store the probabilistic
graph, and the key/value store KyotoCabinet to store the index
as a B+-tree. We assess the index construction algorithm’s
performance in terms of both time and space, online query
performance compared to various baselines, and the effect of
our search space reduction methods.
Datasets: We use two real-world datasets from DBLP and
IMDB, further details on which are provided in Section VI-C,
as well as synthetic graphs whose structure is generated
according to the preferential attachment model [2]. In the
synthetic graphs, node label probabilities are based on a set
of random probabilities p1, . . . , p|Σ|, which we weight by a
zipf distribution, i.e., p′i = pi/i. We normalize those to obtain
final probabilities p′′i = p′i/(

∑
j p
′
j), which are assigned to

node labels randomly. Edge probabilities are generated anal-
ogously. To generate reference sets corresponding to entities,
we randomly choose k subsets of s nodes each from the graph,
and randomly assign r pairs of nodes per group to the same
reference set. That is, reference sets are of size 2, and the
maximum size of a connected component is s. We assign
random probabilities to reference sets. The merge functions
average the underlying distributions for both node attributes
and edge existence. We consider four settings with 50k, 100k,
500k, and 1m references, and a number of edges equal to
five times the number of references in every setting. We
set k = No. of references/1000, s = r = 4. We associate
probability distributions with 20% of the references, relations,
and reference sets unless otherwise stated. These settings result
in probabilistic entity graphs of sizes (54k/292k), (108k/583k),
(540k/ 2.95m) and (1.08m/5.88m) nodes/edges, respectively.
Experiments are performed on an 8-core Linux Amazon EC2
instance, with 117GB of RAM and 1.8TB of instance storage.
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Fig. 4. (a-b) Offline phase performance; Online query times for (c) varying
query sizes, (d) varying query densities, (e-f) varying degrees of uncertainty.
A * indicates that the query did not finish in allotted time (15 minutes), or
the process ran out of memory.

A. Offline Phase Performance

We first compare performance of the offline phase for
maximum index path lengths L = 1, 2, 3. As the index size
for the 500k network with L = 4 was larger than the instance
space available, we do not report results for that path length.
Running Time: Figure 4(a) shows the offline phase running
time (which includes calculating PEG component probabili-
ties, building the index, and calculating context information)
when varying both the graph size and the index lowerbound
probability threshold β. The running time increases by a factor
of 10 to 14 when going from L = 1 to L = 2, and 7 to 30
when going from L = 2 to L = 3. The running time increase
is sub-linear in the size of the graph in most cases, which is
due to higher memory buffer utilization for larger graphs.
Path Index Size: Figure 4(b) shows that index sizes at L = 2
are 32 times larger than those at L = 1 on average, and index
sizes at L = 3 are 28 times larger than those at L = 2 on
average. Index size increases at the same rate as the graph
size at L = 1, and faster than the increase in the graph size at
L = 2, e.g., the index size at 1m is 20 times larger than that
of 50k on average at L = 1 and 25 times on average at L = 2.
This is because indexes at L = 1 increase linearly with graph
size, while at L = 2 the index size increases quadratically. The
same trend applies at L = 3 as its size increases cubically.

B. Online Phase Performance

We compare the running time of our proposed algorithm
with all optimizations (Opt(L), with path lengths L = 1, 2, 3)
against the following baselines.

1) Random decomposition (RD): Our proposed approach, but
using random query decomposition instead of SET COVER,
and a path join order based on the number of path index
matches only (with path length L = 3).

2) No search space reduction (NoSSR): Our optimized
method, but without the joint search space reduction on the
k-partite graph, thus generating final results after construct-
ing the candidate and relative candidate lists (with L = 3).

3) SQL: An SQL implementation of our queries run on top of
MySQL database. This approach did not finish in a month
on the 100k nodes dataset for a query with 5 nodes and 7
edges and a threshold of 0.7, which is answered in less than
a second by our approach, and is therefore not used further.

Unless stated otherwise, we use the 100k dataset and a query
threshold of 0.7.
Varying input query size: Figure 4(c) shows running times
for 7 different query sizes between q(3,3) and q(15,60),
where q(n,m) denotes a query with n nodes and m edges,
averaged over five randomly generated queries per size. m
is set to be 4n, unless n(n − 1)/2 (the maximum number
of edges permitted) is less than that, in which case, m is
set to be n(n − 1)/2. Opt(3) always performs best. Opt(1)
slightly outperforms Opt(2) for smaller queries, because the
advantages of richer context information with L = 2 do not
outweigh the overheads of processing the larger number of
matches returned by the path index. However, in almost all
other experiments we performed, Opt(2) outperforms Opt(1),
by orders of magnitude in many cases. Opt(2) thus provides
a compromise that does not take as much time and space
as Opt(3) in building its index, and still has an acceptable
performance, even in cases where Opt(1) may not succeed.
Varying input query density: Figure 4(d) shows running
times for 5 different query densities, for queries with 15 nodes
and between 20 and 100 edges. Each result is the average over
five randomly generated queries of the corresponding size.
Again, Opt(3) always outperforms Opt(1), Opt(2) (except for
q(15, 20)), RD and NoSSR. Opt(1) runs out of memory for
query q(15, 20) due to the large number of matches returned
by the index because of the query sparsity. Furthermore, for
several queries sizes, at least one run of Opt(1), RD and
NoSSR did not finish within the time limit of 15 minutes.
Varying input graph degree of uncertainty: We now focus
on our approach, using query sizes q(5,5) and q(5,9) (in
Figure 4(e)), and q(10,20) and q(10,40) (in Figure 4(f)), and
varying the number of uncertain nodes and edges from 20%
to 100%. Opt(3) always outperforms Opt(1) and Opt(2), while
Opt(2) outperforms Opt(1) for all degrees of uncertainty larger
than 20%.
Varying input graph size: We next vary the number of edges
in the input graph between 300 thousand and 6 million, using
query sizes q(5,5) and q(5,9) (in Figure 5(a)), and q(10,20)
and q(10,40) (in Figure 5(b)). With query q(5,5), Opt(1) runs
out of memory at both 500k and 1m due to the high number of
matches. Opt(3) again performs best in most cases, and only
slightly worse in the others.
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(e) Pattern queries for real-world datasets (f) DBLP Dataset (g) IMDB Dataset
Fig. 5. (a-b) Online query times with varying input graph sizes, and (c-d) varying input query thresholds, for queries with 5 and 10 nodes. (e) Patterns used
in real-world experiments; (f-g) Performance on the DBLP and IMDB real-world datasets, respectively.

Varying input query threshold: Varying the query threshold
between 0.3 and 0.9 with queries of size q(5,5), q(5,9) (in
Figure 5(c)) and q(10,20), q(10,40) (in Figure 5(d)), we see
that performance generally improves with increasing thresh-
old, where higher path lengths are less sensitive to the changes.

Finally, we performed experiments to study performance of
our approach with respect to reducing the search space size.
Experimental evaluation showed that our algorithms reduced
the search space size by more than ten orders of magnitude.
We refer the reader to [20] for a detailed discussion.

C. Performance on Real-world Data

We now provide experimental results on two real-world
datasets, DBLP and IMDB. We use correlated edge and label
probabilities with DBLP, and independent edge probabilities
with IMDB. For the DBLP network, we extract the “author
collaboration” graph, that is, nodes represent authors, and
edges represent collaboration relationships. We annotate the
collaboration graph with probabilistic data to capture different
types of uncertainties. For every author, we assign a probability
distribution over the areas that she/he is interested in, which
can be Databases, Machine Learning, or Software Engineering.
This information is based on the author’s relative contribution
to conferences of each area. To obtain the edge existence
probability for a pair of authors, we first generate a base
probability between 0.5 and 1 depending on the number of
collaborations between them. If the authors’ research interests
as given by the node labels are the same, the conditional
edge existence probability is the base probability p, else, it
is 0.8 · p. We create a reference set for every pair of authors
whose names have normalized string similarity score above
0.9 (to capture identity uncertainty). The resulting graph has
16.8k nodes and 40.3k edges. We use the collaboration patterns
shown in Figure 5(e) with a query threshold of 0.1. Running
times of the online phase are shown in Figure 5(f). Opt(3)
outperforms Opt(2), which in turn outperforms Opt(1), for all
queries except the star, whose maximum path length is 2. The
IMDB network is a “co-starring” graph, that is, nodes are
actors, and edges are co-starring relationships between actors.

We use Drama, Comedy, Family and Action movies from the
IMDB dataset, and create a co-starring edge between the two
main stars of each movie. Standard statistical prediction meth-
ods are used to introduce probabilities to the network, where
node attribute uncertainties are obtained from the distribution
over movie genres an actor participates in, edge probabilities
are obtained from the number of times two actors co-star
together, and identity uncertainty is obtained from similarities
in actor names, which may have occurred from duplicates or
misspellings. The network has 91k nodes and 936k edges. We
use the query structure depicted in Figure 5(e), with the same
randomly generated label for all nodes in a query. The input
probability threshold α is 0.1. Again, Figure 5(g) shows that
Opt(3) outperforms Opt(2), which in turn outperforms Opt(1).

VII. RELATED WORK

Although many research studies have addressed the prob-
lems of representing and querying uncertain and probabilistic
data [27], the area of uncertain graph data processing is still
new and gaining more interest recently. Research in uncertain
graph databases has covered different topics such as finding
shortest paths, reliable subgraphs, mining frequent patterns,
and answering graph queries, e.g., [23], [17], [16], [12], [36],
[22], [37], [5], [31], [30].

Udrea et al. define semantics for probabilistic RDF graphs
formed by associating probabilities to triplets, calling them
quadruples [28]. They propose algorithms for answering
queries consisting of one quadruple with one variable at most.
Huang el al. propose algorithms for query processing over
probabilistic RDF graphs [14]. Lian et al. propose efficient
algorithms for querying probabilistic RDF graphs with node
attribute correlations [19]. Chen et al. propose algorithms for
continuously searching for subgraph patterns over multiple
streaming uncertain graphs [5]. Yuan et al. propose algorithms
for retrieving graphs containing a query graph from an uncer-
tain graph database [31]. In their more recent work, Yuan et
al. consider the problem of graph similarity over uncertain
graphs [30]. However, [14], [5], [31], [30] only consider edge
uncertainty. Further none of these supports identity uncertainty.



Ioannou et al. propose query evaluation algorithms for
uncertain data with identity uncertainty [15], but their methods
are not designed for graph data. Furthermore, our semantics
are more general, as we allow user-provided merge functions.
Hua et al. propose a method for evaluating aggregate queries
over data with identity uncertainty [13], but their methods
are not designed for graph data either, and their model con-
strains the acceptable configurations of groups of references
representing entities. Our PGM-based representation allows
for arbitrary configurations. Dedupalog [1] is a system for
declaratively resolving duplicate references using hard and soft
constraints. GRDB [21] is a system for declarative cleaning of
noisy graph data, including missing attributes and links, and
resolving duplicate references. Neither of these considers the
problem of querying uncertain graph data.

Subgraph pattern matching has received renewed interest in
recent years, leading to new exact or approximate methods
that search for patterns in graph databases consisting either
of several relatively small graphs or a single large graph,
e.g., [24], [29], [34], [6], [11], [32], [33], [9], [8], [35]. For
path indexing, Zhao et al. use shortest path-based subgraph
pattern matching [33], but they consider only certain graphs.
Further, while we use context-aware path indexing, they utilize
shortest paths calculated at query runtime to prune candidates.
Although their use of shortest paths for subgraph pattern
matching implies decomposing the query graph into paths
as we do, they use different criteria for path decomposition
and join order selection better suited for certain graphs. Our
approach utilizes probabilistic information for pruning, and
implements reduction by join-candidates to further reduce the
search space. GraphGrep [24] uses path indexing for querying
a database of multiple graphs. It does not handle probabilistic
graphs, and it is designed to deal with small graph sizes in the
order of tens to hundreds of nodes. For indexing, it indexes
paths only without local information. Our approach can be
used to query very large probabilistic graphs in the order of
millions of nodes and edges.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a probabilistic approach for modeling uncer-
tain entity graphs and answering queries over them. Our prob-
abilistic entity graph captures node attribute uncertainty, edge
existence uncertainty, and identity uncertainty. We presented
efficient algorithms to solve subgraph pattern matching queries
over such uncertain graphs, where queries are expressed and
evaluated at the entity-level. Our approaches outperform an
equivalent SQL implementation by orders of magnitude.
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[35] L. Zou, L. Chen, and M. T. Özsu. Distance-join: pattern match query
in a large graph database. PVLDB, 2(1):886–897, 2009.

[36] Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maximal cliques in
an uncertain graph. In ICDE, 2010.

[37] Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent subgraph patterns
from uncertain graph data. TKDE, 22(9):1203–1218, 2010.


