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Abstract 12 

The success of phytoremediation is dependent on the exposure of plants to contaminants, which is 13 

controlled by root distribution, physicochemical characteristics, and contaminant behaviour in the 14 

soil environment. Whilst phytoremediation has been successful in remediating hydrocarbons and 15 

other organic contaminants, there is little understanding of the impact of non-aqueous phase liquids 16 

(NAPLs) on plant behavior, root architecture and the resulting impact of this on phytoremediation. 17 

Light NAPLs (LNAPLs) may be present in pore spaces in the capillary zone as a continuous or 18 

semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources. 19 

Experimental work with ryegrass (Lolium perenne) grown under hydroponic conditions in 20 

idealised pore scale models is presented, exploring how plant growth, root distribution and 21 

development, and oil removal are affected through direct physical contact with a model LNAPL 22 

(mineral oil). In the presence of low levels of LNAPL, a significant decrease in root length was 23 

observed, whilst at higher LNAPL levels root lengths increased due to root diversion and 24 

spreading, with evidence of root redistribution in the case of LNAPL contamination across 25 

multiple adjacent pores. Changes to root morphology were also observed in the presence of 26 

LNAPL with plant roots coarse and crooked compared to long, fine and smooth roots in 27 

uncontaminated columns. Root and shoot biomass also appear to be impacted by the LNAPL 28 

although the effects are complex, affected by both root diversion and thickening. Substantial levels 29 

of LNAPL removal were observed, with roots close to LNAPL sources able to remove dissolved-30 

phase contamination, and root growth through LNAPL sources suggest that direct 31 

uptake/degradation is possible. 32 

Keywords: non-aqueous phase liquids, phytoremediation, Lolium perenne, root architecture 33 
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Abstract art:  34 

 35 

1. Introduction 36 

Phytoremediation is the treatment of environmental contamination through the use of plants to 37 

clean up or contain contaminants in soil in situ. It has been used in the treatment of numerous 38 

organic contaminants, with a number of different mechanisms postulated, including plant-39 

associated direct uptake or metabolism (Gobelius et al., 2017; Wang et al., 2004), volatilization 40 

(Limmer and Burken, 2016) or rhizosphere interactions (dos Santos and Maranho, 2018). In all 41 

cases, however, the interaction between contamination and the plant root system is central to the 42 

success of the treatment. Many organic contaminant species are relatively insoluble in water, and 43 

so are commonly refered to as non-aqueous phase liquids (NAPLs), a separate liquid phase to 44 

groundwater which is relatively immobile, difficult to remediate and a persistent and recalcitrant 45 

source of dissolved phase contamination which pose serious management challenges (Tomlinson 46 

et al., 2017). Light non-aqueous phase liquids (LNAPLs), such as fuel oils , are less dense than 47 

water and so are commonly present in the capillary zone and around the phreatic surface. They are 48 

therefore likely to interact with plant root systems and so could be considered targets for 49 

phytoremediation but to date there has been little consideration of the impact of NAPLs on plant 50 

roots, or vice versa. Their physical distribution may be complex, with scenarios ranging from 51 
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larger zones of continuous NAPL contamination to small unconnected individual ganglia isolated 52 

in single pore spaces with the latter becoming more common as the contaminant source ages.  53 

Interaction between the plant rhizosphere and contaminants is essential for remediation – the 54 

potential for plants to clean up dissolved phase contamination is well established as these are 55 

mobile and easily taken up by roots or microorganisms. The ability of various species to 56 

phytoremediate oil contamination at levels where NAPLs would be expected has also been 57 

demonstrated (Hunt et al., 2018; Lu et al., 2010). However, the interaction of LNAPLs with roots, 58 

and their effect on root development and morphology, plant growth and subsequent contaminant 59 

behavior is yet to be established. For example, NAPLs may hinder root development and instigate 60 

root avoidance of NAPL-contaminated pores or zones, but roots in close proximity to NAPLs may 61 

be able to reduce dissolved-phase contamination through mechanisms including uptake and 62 

rhizodegradation such that non-equilibrium conditions arise, causing relatively rapid dissolution 63 

of the NAPL. It may even be the case that roots and the rhizosphere interact with the NAPL to 64 

bring about its removal or breakdown directly. The impact of likely NAPL-forming contaminants 65 

on roots has been considered previously (Vázquez-Cuevas et al., 2018), but the impact of the 66 

physical form of the chemical, and therefore the presence or absence of NAPL, was not addressed. 67 

Roots of plants in soil mixed with heavy oil were found to be coarse and injured (Franco et al., 68 

2011; Naidoo, 2016) with increased root diameter commonly observed. Effects of oils or similar 69 

contaminants that are known or likely to impact upon root morphology include decreased hydraulic 70 

conductivity due to heavy oil blocking flow paths (Khamehchiyan et al., 2007), higher soil 71 

temperature due to darker soil causing increased absorption of heat (Balks et al., 2002), increased 72 

mechanical impedance (Merkl et al., 2005), water deficiency causing drought stress (Merkl et al., 73 

2005), or increased competition for nutrients such as phosphorus with microorganisms 74 
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biodegrading the oil (Merkl et al., 2005).  However, the actual mechanisms of the multiphase 75 

interactions of plant, soil minerals, soil pore liquid and soil pore gas with NAPL contaminants in 76 

the rhizosphere remain ill-defined. 77 

The principal aim of this study is to explore how root growth and distribution is affected through 78 

physical proximity to an LNAPL in the pore space. Root distribution patterns of ryegrass plants 79 

were observed within artificial pores both with and without LNAPL contamination under 80 

hydroponic conditions in 3D-printed pore-scale rhizoboxes. In addition, the spatial distribution of 81 

NAPL contamination loss is related to the spatial distribution of roots. Quantitative and semi-82 

quantitative measurements for root growth, root morphology in a particular column, NAPL loss, 83 

shoot height and root length were measured over time, and root and shoot biomass determined at 84 

the end of the experimental trial.  Preliminary results from a small part of this work have been 85 

reported in Oniosun et al. (2018).  86 

  87 

2. Materials and methods 88 

Mineral oil (Fisher Bio-Reagents) was chosen as the model LNAPL as it has low volatility and 89 

water solubility meaning mechanisms of contaminant loss other than through 90 

bio/phytoremediation are minimised. Mineral oil is a non-aromatic, slightly toxic hydrocarbon 91 

with a density of 0.83 Mg/m3 and viscosity of 33.5 x 10-3 Pa.s. The colorant Oil Red O (Sigma-92 

Aldrich) was added to the mineral oil at a concentration of 50mg/L to enhance oil visibility 93 

allowing the movement and location of the LNAPL to be detected (Page et al., 2007). Perennial 94 

ryegrass (Lolium perenne, obtained from Boston Seeds, UK) was chosen as the model 95 

phytoremediation agent because of its proven capability to remediate organic contaminants (Rezek 96 
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et al., 2008). The plant growth solution, used as the aqueous phase, was quarter strength 97 

Hoagland’s solution (2.5 g/L Hoagland’s No.2 Basal Salt Mixture (Sigma-Aldrich, UK) in 98 

deionized water). 99 

2.1 Apparatus 100 

Plants were grown under hydroponic conditions in pore-scale 3D-printed rhizoboxes (Figure 1). 101 

These were printed from polylactic acid (PLA) on an Ultimaker 3D printer. Each box had PLA 102 

back, side walls, base and three partitions (15 mm by 1 mm by 2mm) creating four equally spaced 103 

columns (1.75 mm wide and 2.0 mm thick) above a 2.5 mm deep open void. Above these, a V-104 

shaped seed housing was created to ensure consistent location of a single seed for germination and 105 

plant growth. To allow visual observation of plant development, acetate sheets (26 x 15 x 1 mm) 106 

were bonded to the rhizobox front with cyanoacrylate glue and sealed with LS-X jointing 107 

compound and external leak sealer ensuring water and oil tightness. Each sheet was placed to leave 108 

a 2mm gap at the base of the box, allowing nutrient solution movement to and from an external 109 

reservoir.  110 

Rhizobox materials were tested for their potential to impact upon experimental observations 111 

through oil absorption. Polylactic acid filament and acetate film samples were found to absorb 112 

1.14 and 0.02% mineral oil by mass on average, although this is a conservative measure and likely 113 

to be lower. 114 

2.2 Experimental design 115 

Ten contamination scenarios were considered as shown in Table 1 and comprise all possible 116 

combinations of oil contamination in the four columns (note that combinations that are 117 

‘reflections’ of others, e.g. oil in columns 2 and 4 rather than 1 and 3, are considered to be identical 118 
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and were not tested). Scenario 10 is a no-oil control to which other scenarios can be compared. 119 

The ten scenarios were considered to give a practical representation of the state of LNAPL in pore 120 

spaces in the capillary zone, and could be considered as a continuous or semi-continuous phase, 121 

or as unconnected ganglia. The gap between the planted seed and the contaminant and/or fluid 122 

allows germination and initial establishment of ryegrass in all scenarios, as this can be affected by 123 

phytotoxicity of organic contaminants (Adam and Duncan, 2002). Moreover, it was designed for 124 

the root to grow freely and not be forced into any of the columns, since it has been shown that 125 

deeper contaminated layers allow for better initial root establishment (Kechavarzi et al., 2007). 126 

Five replicates were tested for each of the ten scenarios.  127 

2.3 Sample preparation and rhizobox arrangements 128 

The fifty rhizoboxes were affixed to the base of a 660 (W) x 650 (D) x 210 mm (H) plastic 129 

container, which acted as a reservoir of nutrient solution. The reservoir container was filled with 130 

3500 ml of the nutrient solution (quarter-strength Hoagland’s No. 2 Basal Salt Mixture, Sigma 131 

Aldrich, UK), maintaining the height of nutrient solution in the rhizoboxes at 18 mm above the 132 

lowest point of the base with no oil present. When oil was present, the upper surface of the oil 133 

layer was at a height of 20 mm above this point. A Mariotte bottle supplied nutrient solution to the 134 

reservoir when necessary to maintain a constant fluid level within the rhizoboxes and surrounding 135 

reservoir. The reservoir fluid was pumped through an ultraviolet water steriliser (Vecton 120 136 

Nano) at around 5 ml per minute (one volume per 11.7 hours) to control microbial growth. The 137 

pH was checked daily to ensure that it was maintained between the range of 5.3 – 6.5 to maximise 138 

nutrient solubility. Airborne microbial contamination and water loss to evaporation were 139 

minimized by a purpose-made plastic cloche with vents to allow air circulation. The container and 140 

cloche were contained within a transparent PVC tunnel greenhouse.  141 



 8 

Ten microliters of coloured mineral oil was deposited on the nutrient solution surface in all the 142 

rhizobox columns designated as being contaminated by oil (Table 1) with a Hamilton 701RN 143 

syringe. This gave an oil layer within the column of depth 2.9 mm. One seedling of perennial 144 

ryegrass was placed into the seed housing, along with a small amount of cotton wool moistened 145 

with quarter-strength Hoagland’s solution.  146 

The reservoir container was exposed to light provided by four 58 W cool white daylight spectrum 147 

fluorescent tubes, placed 1500 mm above the rhizoboxes for 16 hours per day. A temperature data-148 

logger was used to record the ambient temperature. Plant images were captured with a water 149 

resistant 12 MP wide-angle digital camera, placed on a small camera stand located 15 cm from the 150 

front of the rhizobox. A Softbox Twin-Head Continuous lighting kit, comprising 2 x continuous 151 

single lamp heads (105W, 5500K daylight balanced Compact Fluorescent Light bulbs) with 152 

integrated 50 cm x 70 cm softboxes was used as a broader light source. 153 

2.4 Plant and Oil analysis 154 

The experiment lasted four weeks, with day 0 defined as the time of seeding. At 7, 14, 21 and 28 155 

days, images were taken and observations made of root and shoot growth patterns and oil levels in 156 

all rhizoboxes. Semi-quantitative measurements of root growth and distribution and oil loss were 157 

made during the experiment as fully quantitative and accurate data could not be obtained for either 158 

measurement without disturbing the specimen. The presence of roots in each column of each 159 

rhizobox was assessed as established (score = 1, where the longest root was observed to reach a 160 

depth of at least 14 mm below the seed housing (8 mm below the surface of the oil layer where 161 

present), limited (score = 0.5, where the longest root has penetrated the oil layer and/or water 162 

beneath but where the depth is less than 14 mm below the seed housing), and none (score = 0, 163 
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where there is no root, or the root has not yet penetrated the oil and/or water layer). Similarly, oil 164 

loss was categorized as full (score = 1, where there was no visible oil left), partial (score = 0.5, 165 

where oil was visible but clearly reduced in thickness) or none (score = 0, where the oil has 166 

remained at or near its initial volume, i.e. approximately 2.9mm, determined using scales attached 167 

to each rhizobox). The root and shoot biomass were determined at the end of the experimental 168 

growth trial by carefully washing the seedlings with de-ionized water and separating them into 169 

shoots and roots at the crown (growing point). The fresh root and shoot samples were dried at 75ºC 170 

for 24 hours and then weighed to determine the biomass production. Total root and shoot lengths 171 

were determined by summing the total length of all roots or shoots in a replicate. The oil and root 172 

scoring data was statistically examined using non-parametric t-tests. Quantitative shoot and root 173 

data was statistically examined to determine the significance of differences between treatments, 174 

calculated using analysis of variance (Minitab v.17). Significance was evaluated at the 95% 175 

confidence level. Pairwise comparisons were made using the Tukey method, again at the 95% 176 

confidence level, in order to determine the significance of differences between means.  177 

 178 

3. Results and discussion 179 

Seedling germination and growth was found to be consistently good across all replicates in all 180 

scenarios. Germination occurred in all rhizoboxes.  181 

Figure 2 shows stacked root growth and oil loss scores at day 28. Each ‘stack’ includes the scores 182 

from all five replicates, presented for each of the 4 columns in all ten scenarios. For example, if 183 

full root growth or complete oil loss (i.e. score = 1) was observed in a particular column in all five 184 

replicates, the bar will have a total index of 5. Stacked root growth bars are presented in order to 185 
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graphically show the distribution of growth across all replicates as it was not found to be 186 

sufficiently informative to present data as, for example, averages with error bars given the limited 187 

number of possible scores in the raw data. In all scenarios, it is apparent that roots were spatially 188 

located primarily in the two middle columns (columns 2 and 3) regardless of contaminant location, 189 

indicating that roots tend to grow vertically downwards with little lateral spread initially, and that 190 

this is largely unaffected by the presence of individual oil ‘ganglia’ in these columns. The roots 191 

appear to coexist with the contaminants within oil-contaminated columns rather than avoiding 192 

them. An effect of mineral oil on root growth is apparent in scenarios 7, 8 and 9 where three or all 193 

four columns had oil, with root growth being considerably more evenly distributed across the 194 

columns. The standard deviation of the root growth score across each rhizobox was determined as 195 

a measure of root growth distribution across the different columns. For scenarios 1-6 and 10, this 196 

value was typically between 0.4 and 0.6 (n = 35, with one outlier at 0.3), which may be expected 197 

given the preponderance of growth in columns 2 and 3. For scenarios 7-9, this measure of root 198 

growth distribution was typically between 0 and 0.3 (n = 15, with two outliers at 0.48), 199 

demonstrating much more even growth. However, it is not simply the presence of oil in columns 200 

2 and 3 which subsequently caused the plant to seek out new routes to the nutrient medium, as 201 

scenario 4 had oil only in these columns and no diversion or spreading of roots was observed. 202 

Instead, it is hypothesized that the larger oil presence in scenarios 7 to 9 led to higher levels of 203 

dissolved mineral oil, at least transiently, and that it was this that limited growth in columns 2 and 204 

3 and therefore caused root spreading. There is some evidence for this in that the root growth in 205 

columns 2 and 3 of scenario 4 was found to be consistently higher than that in scenarios 7 to 9. 206 

In oil contaminated columns, the presence of a root led to substantial oil loss (Figure 2) whereas 207 

in plant-free experiments little or no oil loss was observed (results not presented). Even where little 208 
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or no root growth was observed in an oil-contaminated column, the oil still disappeared, albeit 209 

more slowly than when a plant root was present. This suggests that oil removal occurred through 210 

the actions of roots in adjacent columns, due to phytoremediation of the dissolved fraction of oil 211 

leading to increased rates of oil dissolution. Greater oil loss was generally observed in scenarios 212 

with less contamination overall, similar to the outcomes in other studies (Terzaghi et al., 2018; 213 

Zengel et al., 2016). This may also be related to the possible phytoremediation of dissolved phase 214 

oil, as if all roots contribute to remediation of all columns, a smaller amount of oil will generally 215 

be remediated more quickly (Gouda et al., 2016).  216 

The presence of oil in an individual column had only a small effect on the root growth within that 217 

column (Figure 3). The average of the observed root growth indices for a given column with or 218 

without oil for all five replicates and all ten scenarios are presented because the total number of 219 

columns with and without oil are different and so a stacked plot (as in Figure 2) would not suffice 220 

(e.g. there are more column 3s and 4s without oil than with it). Although the effect of oil is small, 221 

in columns 2 and 3 there is apparently a small negative effect of the presence of oil on root growth 222 

in individual columns (statistically significant in column 2 - p = 0.007 for day 28 respectively). It 223 

may be that the thickness of the oil layer was insufficient to affect the root growth significantly, 224 

and that greater amounts of oil would have a larger effect. In addition, ryegrass has some tolerance 225 

to oil contamination (McIntosh et al., 2017; Zhu et al., 2018). 226 

Although the visual scoring of root length showed relatively little impact of increasing oil levels 227 

on total root length across all columns in a particular scenario, it was observed that, in the oil-228 

contaminated columns, plant roots were coarse and crooked, while those in uncontaminated 229 

columns were long, fine and smooth. Slightly increased root growth with increasing oil levels was 230 

observed in scenario 7 and 9 (oil in three or four columns), compared to the uncontaminated 231 
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scenario 10, and this may be a response of the plants to environmental stress, increasing the spread 232 

of roots in an effort to find an uncontaminated route to nutrient supply. Root injuries and changes 233 

in root architecture (length, thickness and branching) are commonly observed as a result of abiotic 234 

stresses such as drought, salinity or metal contamination (Álvarez and Sánchez-Blanco, 2013; 235 

Franco et al., 2011) although the actual impact is highly species dependent.   236 

Figure 4 combines the root growth and oil loss data for columns where oil was present, for each 237 

time point, and shows that root growth appears to be correlated to oil loss at days 14 and 21 – 238 

increased root growth in columns 2 and 3 is matched by increasing levels of oil loss. It should be 239 

noted that there is overlap of data points on this figure, because of the limited number of possible 240 

values for both parameters. However, as time progressed there was some root growth and 241 

concomitant oil loss in columns 1 and 4, though the oil loss was large for relatively small root 242 

growth and in certain cases, oil was lost without any root growth in a column. This suggests that 243 

enhanced removal of the low levels of dissolved phase mineral oil by established roots in columns 244 

2 and 3 disrupts the equilibrium causing further mineral oil in all columns to dissolve, which in 245 

turn is removed by the action of the roots and possibly attendant microorganisms. 246 

Figure 5a shows the day 28 total root and shoot length for each scenario, averaged across all 247 

replicates, whilst Figure 5b shows root and shoot biomass in a similar manner. There are trends in 248 

the average values in each scenario which may be of relevance but these must be viewed with 249 

caution given the high variability in the data. Analysis of variance indicated that there were no 250 

statistically significant differences of root/shoot mass or shoot length between any scenarios. 251 

Scenario 10, without any contamination, had the highest average total shoot length and mass as 252 

might be expected, whilst the average values from scenarios 4, 7 and 9 were substantially lower. 253 

The largest average root masses (Figure 5b) were also found in these scenarios, which are the ones 254 
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with oil present in both central columns, so given the prevalence of root growth in these columns 255 

it is perhaps not surprising that this has impacted upon plant shoot development. With roots, the 256 

average total length in scenarios 7, 8 and 9 were not significantly different to the largest values in 257 

scenario 10 whilst others were significantly lower (p=0.05 or above), which is indicative of the 258 

greater distribution of root growth across all columns in these scenarios as noted earlier.  259 

Although not statistically significant, the increase in average root biomass, compared to a 260 

corresponding decrease in average shoot biomass, in response to increasing mineral oil suggests 261 

the plant put more energy into root growth than shoot growth due to stress induced by oil 262 

contamination. Oil can not only reduce the amount of water and oxygen available for plant growth 263 

(Kaur et al., 2017) but also can interfere with plant-water relations by direct physical contact 264 

(coating of root tissues) thus negatively affecting shoot growth (Razmjoo and Adavi, 2012). Such 265 

phenomena affect the local biogeochemistry, for example changing nutrient dynamics (Xu and 266 

Johnson, 1997) which in turn cause changes in root morphology similar to those observed here 267 

(Franco et al., 2011; Hermans et al., 2006). 268 

It is noted that soil texture and consequent variations in pore structure are likely to affect the 269 

interaction between oil and root/rhizosphere in a real application. Such impacts have been explored 270 

in more detail in Oniosun et al. (2018) and Oniosun (2019). They report an influence of the 271 

presence of a fine-grained particle fraction on the location of oil within the pore space and discuss 272 

potential changes in contaminant bioavailability and transport in the larger pores impacting how 273 

toxic compounds can migrate in the soil and inhibit water and nutrients from reaching the 274 

rhizosphere thereby reducing the supply of oxygen, moisture, and nutrients which may lead to root 275 

damage or death. Such variations in soil texture might give plant roots greater accessibility to 276 
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larger pores in coarser soils meaning increased accessibility to nutrients and moisture in the 277 

rhizosphere (Mitton et al., 2014), therefore a lesser adverse effect on plant root growth. 278 

It has been previously found that mineral oil negatively affects plant root architecture (thickness, 279 

length and branching) as a result of injuries caused by contamination (Vervaeke et al., 2003). 280 

Studies have observed increased root biomass in mineral oil-treated soil, attributed to a typical 281 

plant response to the reduced rhizosphere mycorrhiza and nutrient deficiency due to oil 282 

contamination (Heinonsalo et al., 2000). Poorter and Nagel (2000) concluded that plants respond 283 

to a decrease in below ground nutrients with increased allocation of biomass to roots and a 284 

reduction in above-ground resources (e.g. sunlight) with increased allocation of biomass to shoots. 285 

This effect resulted in coarser roots, expressed in increased average root diameter with a reduction 286 

in specific root length, but a larger surface area. Greater phytodegradation of organic contaminants 287 

has previously been related to higher specific root surface area (Ahmad et al., 2012; Merkl et al., 288 

2005).  289 

 290 

4. Conclusions 291 

In contaminated soils light NAPLs may be present in pore spaces in the capillary zone as a 292 

continuous or semi-continuous phase, or as unconnected ganglia which act as individual 293 

contaminant sources, providing a long-term supply of dissolved phase contamination. A laboratory 294 

experiment to provide evidence of the impact of LNAPL distribution in the pore space on root 295 

growth distribution was performed. Oil levels and root growth was monitored on a regular basis, 296 

and the resulting contaminant loss, root morphology, root, and shoot biomass analysed.  Good 297 

levels of consistency in germination and growth were found across all experiments. 298 
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It is apparent from comparisons of oil loss in contaminated columns with the presence of a root to 299 

that in plant-free experiments that phytoremediation of dissolved phase contamination accelerates 300 

the dissolution of LNAPLs into adjacent groundwater and thus can indirectly destroy these 301 

persistent contaminant sources considerably more rapidly than by natural attenuation alone. Any 302 

contribution from direct interaction between root and NAPL has not been conclusively 303 

demonstrated here, but direct uptake of hydrocarbons is known to be possible (Hunt et al., 2018) 304 

although likely to be slower than dissolved phase effects. In general, greater oil loss was observed 305 

in scenarios with lower levels of overall contamination. Indeed, the presence of NAPL does not 306 

prevent growth of a root within a pore, with a preference for vertical downwards root growth 307 

dominating, allowing co-existence and therefore more rapid NAPL removal (either directly, 308 

indirectly or both) than would otherwise be the case. The impact of NAPL on root architecture is 309 

clear, with greater distribution of root growth with more extensive NAPL coverage (thought to be 310 

caused by increased access to dissolved phase oil) and changes to individual root morphology. 311 

Impact on the plant as a whole was detrimental, with considerably reduced above ground biomass 312 

as well as the changes to the roots. The observed increase in root biomass and a corresponding 313 

decrease in shoot biomass in the presence of increasing levels of LNAPL indicates plants diverting 314 

energy into root growth from shoot growth due to stress induced by oil contamination. This study 315 

gives valuable direct evidence on how plant growth, root distribution and development, and oil 316 

removal are affected through direct physical contact with LNAPL 317 

 318 

Acknowledgements 319 



 16 

The first author gratefully acknowledges moral support and encouragement from Powell Dobson 320 

Architects Ltd, Cardiff.  321 

 322 

Funding 323 

The first author was supported by Blowsome Estate Nig. Ltd (no grant number). 324 

 325 

References 326 

Adam, G., Duncan, H., 2002. Influence of diesel fuel on seed germination. Environ. Pollut. 120, 327 
363-370, https://doi.org/10.1016/S0269-7491(02)00119-7. 328 
Ahmad, F., Iqbal, S., Anwar, S., Afzal, M., Islam, E., Mustafa, T., Khan, Q.M., 2012. Enhanced 329 
remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-330 
degrading bacterium Bacillus pumilus C2A1. J. Hazard. Mater. 237, 110-115, 331 
https://doi.org/10.1016/j.jhazmat.2012.08.006. 332 
Álvarez, S., Sánchez-Blanco, M.J., 2013. Changes in growth rate, root morphology and water 333 
use efficiency of potted Callistemon citrinus plants in response to different levels of water 334 
deficit. Scientia horticulturae 156, 54-62, https://doi.org/10.1016/j.scienta.2013.03.024. 335 
Balks, M.R., Paetzold, R.F., Kimble, J.M., Aislabie, J., Campbell, I.B., 2002. Effects of 336 
hydrocarbon spills on the temperature and moisture regimes of Cryosols in the Ross Sea region. 337 
Antarct. Sci. 14, 319-326, https://doi.org/10.1017/S0954102002000135. 338 
dos Santos, J.J., Maranho, L.T., 2018. Rhizospheric microorganisms as a solution for the 339 
recovery of soils contaminated by petroleum: A review. J. Environ. Manage. 210, 104-113, 340 
https://doi.org/10.1016/j.jenvman.2018.01.015. 341 
Franco, J., Bañón, S., Vicente, M., Miralles, J., Martínez-Sánchez, J., 2011. Root development in 342 
horticultural plants grown under abiotic stress conditions–a review. J Hortic Sci Biotechnol 86, 343 
543-556, https://doi.org/10.1080/14620316.2011.11512802. 344 
Gobelius, L., Lewis, J., Ahrens, L., 2017. Plant uptake of per-and polyfluoroalkyl substances at a 345 
contaminated fire training facility to evaluate the phytoremediation potential of various plant 346 
species. Environ. Sci. Technol. 51, 12602-12610, https://doi.org/10.1021/acs.est.7b02926. 347 
Gouda, A.H., El-Gendy, A.S., El-Razek, T.M.A., El-Kassas, H.I., 2016. Evaluation of 348 
phytoremediation and bioremediation for sandy soil contaminated with petroleum hydrocarbons. 349 
International Journal of Environmental Science and Development 7, 490, 350 
http://www.ijesd.org/vol7/826-X0052.pdf. 351 
Heinonsalo, J., Jørgensen, K.S., Haahtela, K., Sen, R., 2000. Effects of Pinus sylvestris root 352 
growth and mycorrhizosphere development on bacterial carbon source utilization and 353 

https://doi.org/10.1016/S0269-7491(02)00119-7
https://doi.org/10.1016/j.jhazmat.2012.08.006
https://doi.org/10.1016/j.scienta.2013.03.024
https://doi.org/10.1017/S0954102002000135
https://doi.org/10.1016/j.jenvman.2018.01.015
https://doi.org/10.1080/14620316.2011.11512802
https://doi.org/10.1021/acs.est.7b02926
http://www.ijesd.org/vol7/826-X0052.pdf


 17 

hydrocarbon oxidation in forest and petroleum-contaminated soils. Can. J. Microbiol. 46, 451-354 
464, https://doi.org/10.1139/w00-011. 355 
Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N., 2006. How do plants respond to 356 
nutrient shortage by biomass allocation? Trends Plant Sci. 11, 610-617, 357 
https://doi.org/10.1016/j.tplants.2006.10.007. 358 
Hunt, L.J., Duca, D., Dan, T., Knopper, L.D., 2018. Petroleum hydrocarbon (PHC) uptake in 359 
plants: A literature review. Environ. Pollut., https://doi.org/10.1016/j.envpol.2018.11.012. 360 
Kaur, N., Erickson, T.E., Ball, A.S., Ryan, M.H., 2017. A review of germination and early 361 
growth as a proxy for plant fitness under petrogenic contamination—knowledge gaps and 362 
recommendations. Sci. Total Environ. 603, 728-744, 363 
https://doi.org/10.1016/j.scitotenv.2017.02.179. 364 
Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L., Ledin, S., 2007. Root 365 
establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. 366 
Environ. Pollut. 145, 68-74, https://doi.org/10.1016/j.envpol.2006.03.039. 367 
Khamehchiyan, M., Charkhabi, A.H., Tajik, M., 2007. Effects of crude oil contamination on 368 
geotechnical properties of clayey and sandy soils. Eng Geol 89, 220-229, 369 
https://doi.org/10.1016/j.enggeo.2006.10.009. 370 
Limmer, M., Burken, J., 2016. Phytovolatilization of Organic Contaminants. Environ. Sci. 371 
Technol. 50, 6632-6643, https://doi.org/10.1021/acs.est.5b04113. 372 
Lu, M., Zhang, Z., Sun, S., Wei, X., Wang, Q., Su, Y., 2010. The use of goosegrass (Eleusine 373 
indica) to remediate soil contaminated with petroleum. Water, Air, Soil Pollut. 209, 181-189, 374 
https://doi.org/10.1007/s11270-009-0190-x. 375 
McIntosh, P., Schulthess, C.P., Kuzovkina, Y.A., Guillard, K., 2017. Bioremediation and 376 
phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. Int. J. 377 
Phytoremediation 19, 755-764, https://doi.org/10.1080/15226514.2017.1284753. 378 
Merkl, N., Schultze-Kraft, R., Infante, C., 2005. Phytoremediation in the tropics - influence of 379 
heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 138, 86-91, 380 
https://doi.org/10.1016/j.envpol.2005.02.023. 381 
Mitton, F.M., Miglioranza, K.S., Gonzalez, M., Shimabukuro, V.M., Monserrat, J.M., 2014. 382 
Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted 383 
soils. Ecol. Eng. 71, 501-508, https://doi.org/10.1016/j.ecoleng.2014.07.069. 384 
Naidoo, G., 2016. Mangrove propagule size and oil contamination effects: Does size matter? 385 
Mar. Pollut. Bull. 110, 362-370, https://doi.org/10.1016/j.marpolbul.2016.06.040. 386 
Oniosun, S., Harbottle, M., Tripathy, S., Cleall, P., 2018. Phytoremediation of Light Non-387 
Aqueous Phase Liquids, Proceedings of the 8th International Congress on Environmental 388 
Geotechnics; Zhan, L., Chen, Y., Bouazza, A., Eds., Springer: Singapore, pp. 788-795, 389 
https://doi.org/10.1007/978-981-13-2221-1_89. 390 
Oniosun, S.A., 2019. Phytoremediation of LNAPLs and Residual Oils in the Vadose Zone and 391 
Capillary Fringe. School of Engineering, Cardiff University United Kingdom, 392 
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.775010. 393 
Page, J.W.E., Soga, K., Illangasekare, T., 2007. The significance of heterogeneity on mass flux 394 
from DNAPL source zones: An experimental investigation. J. Contam. Hydrol. 94, 215-234, 395 
https://doi.org/10.1016/j.jconhyd.2007.06.004. 396 
Poorter, H., Nagel, O., 2000. The role of biomass allocation in the growth response of plants to 397 
different levels of light, CO2, nutrients and water: a quantitative review. Funct. Plant Biol. 27, 398 
1191-1191, https://doi.org/10.1071/PP99173_CO. 399 

https://doi.org/10.1139/w00-011
https://doi.org/10.1016/j.tplants.2006.10.007
https://doi.org/10.1016/j.envpol.2018.11.012
https://doi.org/10.1016/j.scitotenv.2017.02.179
https://doi.org/10.1016/j.envpol.2006.03.039
https://doi.org/10.1016/j.enggeo.2006.10.009
https://doi.org/10.1021/acs.est.5b04113
https://doi.org/10.1007/s11270-009-0190-x
https://doi.org/10.1080/15226514.2017.1284753
https://doi.org/10.1016/j.envpol.2005.02.023
https://doi.org/10.1016/j.ecoleng.2014.07.069
https://doi.org/10.1016/j.marpolbul.2016.06.040
https://doi.org/10.1007/978-981-13-2221-1_89
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.775010
https://doi.org/10.1016/j.jconhyd.2007.06.004
https://doi.org/10.1071/PP99173_CO


 18 

Razmjoo, K., Adavi, Z., 2012. Assessment of bermudagrass cultivars for phytoremediation of 400 
petroleum contaminated soils. Int. J. Phytoremediation 14, 14-23, 401 
https://doi.org/10.1080/15226514.2011.560212. 402 
Rezek, J., Wiesche, C.I.D., Mackova, M., Zadrazil, F., Macek, T., 2008. The effect of ryegrass 403 
(Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70, 404 
1603-1608, https://doi.org/10.1016/j.chemosphere.2007.08.003. 405 
Terzaghi, E., Zanardini, E., Morosini, C., Raspa, G., Borin, S., Mapelli, F., Vergani, L., Di 406 
Guardo, A., 2018. Rhizoremediation half-lives of PCBs: Role of congener composition, organic 407 
carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the 408 
prediction of fate and persistence in soil. Sci. Total Environ. 612, 544-560, 409 
https://doi.org/10.1016/j.scitotenv.2017.08.189. 410 
Tomlinson, D.W., Rivett, M.O., Wealthall, G.P., Sweeney, R.E., 2017. Understanding complex 411 
LNAPL sites: Illustrated handbook of LNAPL transport and fate in the subsurface. J. Environ. 412 
Manage. 204, 748-756, https://doi.org/10.1016/j.jenvman.2017.08.015. 413 
Vázquez-Cuevas, G.M., Stevens, C.J., Semple, K.T., 2018. Enhancement of 14 C-phenanthrene 414 
mineralisation in the presence of plant-root biomass in PAH-NAPL amended soil. Int. 415 
Biodeterior. Biodegrad. 126, 78-85, https://doi.org/10.1016/j.ibiod.2017.09.021. 416 
Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F.M.G., Lust, N., 2003. 417 
Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ. 418 
Pollut. 126, 275-282, https://doi.org/10.1016/S0269-7491(03)00189-1. 419 
Wang, X., Dossett, M.P., Gordon, M.P., Strand, S.E., 2004. Fate of Carbon Tetrachloride during 420 
Phytoremediation with Poplar under Controlled Field Conditions. Environ. Sci. Technol. 38, 421 
5744-5749, https://doi.org/10.1021/es0499187. 422 
Xu, J., Johnson, R., 1997. Nitrogen dynamics in soils with different hydrocarbon contents 423 
planted to barley and field pea. Can. J. Soil Sci. 77, 453-458, https://doi.org/10.4141/S96-046. 424 
Zengel, S., Montague, C.L., Pennings, S.C., Powers, S.P., Steinhoff, M., Fricano, G., Schlemme, 425 
C., Zhang, M., Oehrig, J., Nixon, Z., 2016. Impacts of the Deepwater Horizon oil spill on salt 426 
marsh periwinkles (Littoraria irrorata). Environ. Sci. Technol. 50, 643-652, 427 
https://doi.org/10.1021/acs.est.5b04371. 428 
Zhu, H., Gao, Y., Li, D., 2018. Germination of grass species in soil affected by crude oil 429 
contamination. Int. J. Phytoremediation 20, 567-573, 430 
https://doi.org/10.1080/15226514.2017.1405376. 431 

 432 

  433 

https://doi.org/10.1080/15226514.2011.560212
https://doi.org/10.1016/j.chemosphere.2007.08.003
https://doi.org/10.1016/j.scitotenv.2017.08.189
https://doi.org/10.1016/j.jenvman.2017.08.015
https://doi.org/10.1016/j.ibiod.2017.09.021
https://doi.org/10.1016/S0269-7491(03)00189-1
https://doi.org/10.1021/es0499187
https://doi.org/10.4141/S96-046
https://doi.org/10.1021/acs.est.5b04371
https://doi.org/10.1080/15226514.2017.1405376


 19 

 434 

Figure 1. Schematic of pore-scale 3D-printed rhizobox 435 
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 437 

Figure 2.  Root growth and oil loss in individual columns for all ten scenarios (Day 28) (blue – 438 
column 1; orange – column 2; yellow – column 3; green – column 4). For each column, root growth 439 
and oil loss are scored for all five replicates and these scores presented as a stacked bar (established 440 
root / full oil loss = 1; limited root growth / partial oil loss = 0.5; no root growth / no oil loss = 0). 441 
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 443 

Figure 3. Effect of presence of oil on average root growth score in individual columns at day 28. 444 
For each column, root growth is scored for all replicates in all scenarios and the average presented 445 
(established root = 1; limited root growth = 0.5; no root growth = 0). The numbers with (left-hand 446 
bar, darker shade) and without oil (right-hand bar, lighter shade) (i.e. the number of readings used 447 
to calculated the averages) are presented on the figure. Error bars represent ± one standard error 448 
of the mean. 449 
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   451 

Figure 4.  Relationship between root growth and oil loss in individual columns for all ten scenarios, 452 
(Days 14, 21 and 28. For each column, root growth and oil loss are scored for all five replicates 453 
and the total counts of these scores presented as a scatter plot (established root / full oil loss = 1; 454 
limited root growth / partial oil loss = 0.5; no root growth / no oil loss = 0).  455 
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 (a)  

 (b)  

Figure 5. Effect of the presence of oil on (a) root and shoot length for all scenarios (for each 456 
scenario, root and shoot lengths were measured and summed for each replicate) and (b) root and 457 
shoot biomass (for each scenario, root and shoot mass are totalled for each replicate). Error bars 458 
represent the standard error of the mean (n=5).   459 
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Table 1. Mineral oil contamination scenarios inside the rhizoboxes. 461 

Contamination 

Scenario 
Column 1 Column 2 Column 3 Column 4 

1 Oil    

2  Oil   

3 Oil Oil   

4  Oil Oil  

5 Oil   Oil 

6 Oil  Oil  

7 Oil Oil Oil  

8 Oil Oil  Oil 

9 Oil Oil Oil Oil 

10     
 462 

 463 


