CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

ORCA – Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/124813/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Oniosun, Sunday, Harbottle, Michael, Tripathy, Snehasis and Cleall, Peter 2019. Plant growth, root distribution and non-aqueous phase liquid phytoremediation at the pore-scale. Journal of Environmental Management 249, 109378. 10.1016/j.jenvman.2019.109378

Publishers page: http://dx.doi.org/10.1016/j.jenvman.2019.109378

Please note:

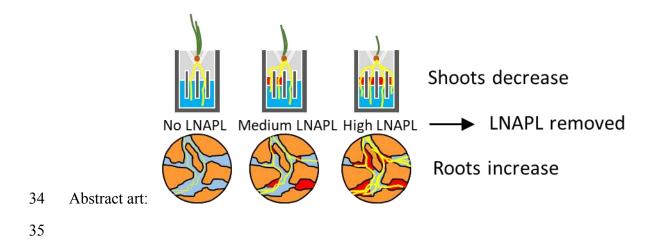
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Plant growth, root distribution and non-aqueous phase liquid phytoremediation at the pore-scale

3 Sunday Oniosun^{*a*}, Michael Harbottle^{*b**}, Snehasis Tripathy^{*c*}, and Peter Cleall^{*d*}

^a Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff,


- 5 Wales, United Kingdom. CF24 3AA.
- ⁶ ^b Cardiff School of Engineering, *corresponding author email: HarbottleM@cardiff.ac.uk; tel:
- 7 +44 2920 875759.
- 8 ^c Cardiff School of Engineering, email: TripathyS@cardiff.ac.uk.
- 9 ^d Cardiff School of Engineering, email: Cleall@cardiff.ac.uk.
- 10

12 Abstract

13 The success of phytoremediation is dependent on the exposure of plants to contaminants, which is 14 controlled by root distribution, physicochemical characteristics, and contaminant behaviour in the 15 soil environment. Whilst phytoremediation has been successful in remediating hydrocarbons and 16 other organic contaminants, there is little understanding of the impact of non-aqueous phase liquids 17 (NAPLs) on plant behavior, root architecture and the resulting impact of this on phytoremediation. 18 Light NAPLs (LNAPLs) may be present in pore spaces in the capillary zone as a continuous or 19 semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources. 20 Experimental work with ryegrass (Lolium perenne) grown under hydroponic conditions in 21 idealised pore scale models is presented, exploring how plant growth, root distribution and 22 development, and oil removal are affected through direct physical contact with a model LNAPL 23 (mineral oil). In the presence of low levels of LNAPL, a significant decrease in root length was 24 observed, whilst at higher LNAPL levels root lengths increased due to root diversion and 25 spreading, with evidence of root redistribution in the case of LNAPL contamination across 26 multiple adjacent pores. Changes to root morphology were also observed in the presence of 27 LNAPL with plant roots coarse and crooked compared to long, fine and smooth roots in 28 uncontaminated columns. Root and shoot biomass also appear to be impacted by the LNAPL 29 although the effects are complex, affected by both root diversion and thickening. Substantial levels 30 of LNAPL removal were observed, with roots close to LNAPL sources able to remove dissolvedphase contamination, and root growth through LNAPL sources suggest that direct 31 32 uptake/degradation is possible.

33

Keywords: non-aqueous phase liquids, phytoremediation, Lolium perenne, root architecture

36 **1. Introduction**

37 Phytoremediation is the treatment of environmental contamination through the use of plants to clean up or contain contaminants in soil *in situ*. It has been used in the treatment of numerous 38 39 organic contaminants, with a number of different mechanisms postulated, including plant-40 associated direct uptake or metabolism (Gobelius et al., 2017; Wang et al., 2004), volatilization 41 (Limmer and Burken, 2016) or rhizosphere interactions (dos Santos and Maranho, 2018). In all 42 cases, however, the interaction between contamination and the plant root system is central to the 43 success of the treatment. Many organic contaminant species are relatively insoluble in water, and 44 so are commonly refered to as non-aqueous phase liquids (NAPLs), a separate liquid phase to 45 groundwater which is relatively immobile, difficult to remediate and a persistent and recalcitrant source of dissolved phase contamination which pose serious management challenges (Tomlinson 46 47 et al., 2017). Light non-aqueous phase liquids (LNAPLs), such as fuel oils, are less dense than 48 water and so are commonly present in the capillary zone and around the phreatic surface. They are 49 therefore likely to interact with plant root systems and so could be considered targets for 50 phytoremediation but to date there has been little consideration of the impact of NAPLs on plant 51 roots, or vice versa. Their physical distribution may be complex, with scenarios ranging from larger zones of continuous NAPL contamination to small unconnected individual ganglia isolated
in single pore spaces with the latter becoming more common as the contaminant source ages.

54 Interaction between the plant rhizosphere and contaminants is essential for remediation – the 55 potential for plants to clean up dissolved phase contamination is well established as these are 56 mobile and easily taken up by roots or microorganisms. The ability of various species to 57 phytoremediate oil contamination at levels where NAPLs would be expected has also been 58 demonstrated (Hunt et al., 2018; Lu et al., 2010). However, the interaction of LNAPLs with roots, 59 and their effect on root development and morphology, plant growth and subsequent contaminant 60 behavior is yet to be established. For example, NAPLs may hinder root development and instigate 61 root avoidance of NAPL-contaminated pores or zones, but roots in close proximity to NAPLs may 62 be able to reduce dissolved-phase contamination through mechanisms including uptake and 63 rhizodegradation such that non-equilibrium conditions arise, causing relatively rapid dissolution 64 of the NAPL. It may even be the case that roots and the rhizosphere interact with the NAPL to 65 bring about its removal or breakdown directly. The impact of likely NAPL-forming contaminants 66 on roots has been considered previously (Vázquez-Cuevas et al., 2018), but the impact of the 67 physical form of the chemical, and therefore the presence or absence of NAPL, was not addressed. 68 Roots of plants in soil mixed with heavy oil were found to be coarse and injured (Franco et al., 69 2011; Naidoo, 2016) with increased root diameter commonly observed. Effects of oils or similar 70 contaminants that are known or likely to impact upon root morphology include decreased hydraulic 71 conductivity due to heavy oil blocking flow paths (Khamehchiyan et al., 2007), higher soil 72 temperature due to darker soil causing increased absorption of heat (Balks et al., 2002), increased 73 mechanical impedance (Merkl et al., 2005), water deficiency causing drought stress (Merkl et al., 74 2005), or increased competition for nutrients such as phosphorus with microorganisms

biodegrading the oil (Merkl et al., 2005). However, the actual mechanisms of the multiphase
interactions of plant, soil minerals, soil pore liquid and soil pore gas with NAPL contaminants in
the rhizosphere remain ill-defined.

78 The principal aim of this study is to explore how root growth and distribution is affected through 79 physical proximity to an LNAPL in the pore space. Root distribution patterns of ryegrass plants 80 were observed within artificial pores both with and without LNAPL contamination under 81 hydroponic conditions in 3D-printed pore-scale rhizoboxes. In addition, the spatial distribution of 82 NAPL contamination loss is related to the spatial distribution of roots. Quantitative and semi-83 quantitative measurements for root growth, root morphology in a particular column, NAPL loss, 84 shoot height and root length were measured over time, and root and shoot biomass determined at 85 the end of the experimental trial. Preliminary results from a small part of this work have been 86 reported in Oniosun et al. (2018).

87

88 2. Materials and methods

89 Mineral oil (Fisher Bio-Reagents) was chosen as the model LNAPL as it has low volatility and 90 water solubility meaning mechanisms of contaminant loss other than through 91 bio/phytoremediation are minimised. Mineral oil is a non-aromatic, slightly toxic hydrocarbon with a density of 0.83 Mg/m³ and viscosity of 33.5 x 10⁻³ Pa.s. The colorant Oil Red O (Sigma-92 93 Aldrich) was added to the mineral oil at a concentration of 50mg/L to enhance oil visibility 94 allowing the movement and location of the LNAPL to be detected (Page et al., 2007). Perennial 95 ryegrass (Lolium perenne, obtained from Boston Seeds, UK) was chosen as the model 96 phytoremediation agent because of its proven capability to remediate organic contaminants (Rezek et al., 2008). The plant growth solution, used as the aqueous phase, was quarter strength
Hoagland's solution (2.5 g/L Hoagland's No.2 Basal Salt Mixture (Sigma-Aldrich, UK) in
deionized water).

100 2.1 Apparatus

101 Plants were grown under hydroponic conditions in pore-scale 3D-printed rhizoboxes (Figure 1). 102 These were printed from polylactic acid (PLA) on an Ultimaker 3D printer. Each box had PLA 103 back, side walls, base and three partitions (15 mm by 1 mm by 2mm) creating four equally spaced 104 columns (1.75 mm wide and 2.0 mm thick) above a 2.5 mm deep open void. Above these, a V-105 shaped seed housing was created to ensure consistent location of a single seed for germination and 106 plant growth. To allow visual observation of plant development, acetate sheets (26 x 15 x 1 mm) 107 were bonded to the rhizobox front with cyanoacrylate glue and sealed with LS-X jointing 108 compound and external leak sealer ensuring water and oil tightness. Each sheet was placed to leave 109 a 2mm gap at the base of the box, allowing nutrient solution movement to and from an external 110 reservoir.

111 Rhizobox materials were tested for their potential to impact upon experimental observations 112 through oil absorption. Polylactic acid filament and acetate film samples were found to absorb 113 1.14 and 0.02% mineral oil by mass on average, although this is a conservative measure and likely 114 to be lower.

115 **2.2 Experimental design**

116 Ten contamination scenarios were considered as shown in Table 1 and comprise all possible 117 combinations of oil contamination in the four columns (note that combinations that are 118 'reflections' of others, e.g. oil in columns 2 and 4 rather than 1 and 3, are considered to be identical 119 and were not tested). Scenario 10 is a no-oil control to which other scenarios can be compared. 120 The ten scenarios were considered to give a practical representation of the state of LNAPL in pore 121 spaces in the capillary zone, and could be considered as a continuous or semi-continuous phase, 122 or as unconnected ganglia. The gap between the planted seed and the contaminant and/or fluid 123 allows germination and initial establishment of ryegrass in all scenarios, as this can be affected by 124 phytotoxicity of organic contaminants (Adam and Duncan, 2002). Moreover, it was designed for 125 the root to grow freely and not be forced into any of the columns, since it has been shown that 126 deeper contaminated layers allow for better initial root establishment (Kechavarzi et al., 2007). 127 Five replicates were tested for each of the ten scenarios.

128 **2.3 Sample preparation and rhizobox arrangements**

129 The fifty rhizoboxes were affixed to the base of a 660 (W) x 650 (D) x 210 mm (H) plastic 130 container, which acted as a reservoir of nutrient solution. The reservoir container was filled with 131 3500 ml of the nutrient solution (quarter-strength Hoagland's No. 2 Basal Salt Mixture, Sigma 132 Aldrich, UK), maintaining the height of nutrient solution in the rhizoboxes at 18 mm above the 133 lowest point of the base with no oil present. When oil was present, the upper surface of the oil 134 layer was at a height of 20 mm above this point. A Mariotte bottle supplied nutrient solution to the 135 reservoir when necessary to maintain a constant fluid level within the rhizoboxes and surrounding 136 reservoir. The reservoir fluid was pumped through an ultraviolet water steriliser (Vecton 120 137 Nano) at around 5 ml per minute (one volume per 11.7 hours) to control microbial growth. The 138 pH was checked daily to ensure that it was maintained between the range of 5.3 - 6.5 to maximise 139 nutrient solubility. Airborne microbial contamination and water loss to evaporation were 140 minimized by a purpose-made plastic cloche with vents to allow air circulation. The container and 141 cloche were contained within a transparent PVC tunnel greenhouse.

Ten microliters of coloured mineral oil was deposited on the nutrient solution surface in all the rhizobox columns designated as being contaminated by oil (Table 1) with a Hamilton 701RN syringe. This gave an oil layer within the column of depth 2.9 mm. One seedling of perennial ryegrass was placed into the seed housing, along with a small amount of cotton wool moistened with quarter-strength Hoagland's solution.

The reservoir container was exposed to light provided by four 58 W cool white daylight spectrum fluorescent tubes, placed 1500 mm above the rhizoboxes for 16 hours per day. A temperature datalogger was used to record the ambient temperature. Plant images were captured with a water resistant 12 MP wide-angle digital camera, placed on a small camera stand located 15 cm from the front of the rhizobox. A Softbox Twin-Head Continuous lighting kit, comprising 2 x continuous single lamp heads (105W, 5500K daylight balanced Compact Fluorescent Light bulbs) with integrated 50 cm x 70 cm softboxes was used as a broader light source.

154 **2.4 Plant and Oil analysis**

155 The experiment lasted four weeks, with day 0 defined as the time of seeding. At 7, 14, 21 and 28 156 days, images were taken and observations made of root and shoot growth patterns and oil levels in 157 all rhizoboxes. Semi-quantitative measurements of root growth and distribution and oil loss were 158 made during the experiment as fully quantitative and accurate data could not be obtained for either 159 measurement without disturbing the specimen. The presence of roots in each column of each 160 rhizobox was assessed as *established* (score = 1, where the longest root was observed to reach a 161 depth of at least 14 mm below the seed housing (8 mm below the surface of the oil layer where 162 present), *limited* (score = 0.5, where the longest root has penetrated the oil layer and/or water 163 beneath but where the depth is less than 14 mm below the seed housing), and *none* (score = 0,

164 where there is no root, or the root has not yet penetrated the oil and/or water layer). Similarly, oil 165 loss was categorized as *full* (score = 1, where there was no visible oil left), *partial* (score = 0.5, 166 where oil was visible but clearly reduced in thickness) or *none* (score = 0, where the oil has 167 remained at or near its initial volume, i.e. approximately 2.9mm, determined using scales attached 168 to each rhizobox). The root and shoot biomass were determined at the end of the experimental 169 growth trial by carefully washing the seedlings with de-ionized water and separating them into 170 shoots and roots at the crown (growing point). The fresh root and shoot samples were dried at 75°C 171 for 24 hours and then weighed to determine the biomass production. Total root and shoot lengths 172 were determined by summing the total length of all roots or shoots in a replicate. The oil and root 173 scoring data was statistically examined using non-parametric t-tests. Quantitative shoot and root 174 data was statistically examined to determine the significance of differences between treatments, 175 calculated using analysis of variance (Minitab v.17). Significance was evaluated at the 95% 176 confidence level. Pairwise comparisons were made using the Tukey method, again at the 95% 177 confidence level, in order to determine the significance of differences between means.

178

179 **3. Results and discussion**

180 Seedling germination and growth was found to be consistently good across all replicates in all181 scenarios. Germination occurred in all rhizoboxes.

Figure 2 shows stacked root growth and oil loss scores at day 28. Each 'stack' includes the scores from all five replicates, presented for each of the 4 columns in all ten scenarios. For example, if full root growth or complete oil loss (i.e. score = 1) was observed in a particular column in all five replicates, the bar will have a total index of 5. Stacked root growth bars are presented in order to

186 graphically show the distribution of growth across all replicates as it was not found to be 187 sufficiently informative to present data as, for example, averages with error bars given the limited 188 number of possible scores in the raw data. In all scenarios, it is apparent that roots were spatially 189 located primarily in the two middle columns (columns 2 and 3) regardless of contaminant location, 190 indicating that roots tend to grow vertically downwards with little lateral spread initially, and that 191 this is largely unaffected by the presence of individual oil 'ganglia' in these columns. The roots 192 appear to coexist with the contaminants within oil-contaminated columns rather than avoiding 193 them. An effect of mineral oil on root growth is apparent in scenarios 7, 8 and 9 where three or all 194 four columns had oil, with root growth being considerably more evenly distributed across the 195 columns. The standard deviation of the root growth score across each rhizobox was determined as 196 a measure of root growth distribution across the different columns. For scenarios 1-6 and 10, this 197 value was typically between 0.4 and 0.6 (n = 35, with one outlier at 0.3), which may be expected 198 given the preponderance of growth in columns 2 and 3. For scenarios 7-9, this measure of root 199 growth distribution was typically between 0 and 0.3 (n = 15, with two outliers at 0.48), 200 demonstrating much more even growth. However, it is not simply the presence of oil in columns 201 2 and 3 which subsequently caused the plant to seek out new routes to the nutrient medium, as 202 scenario 4 had oil only in these columns and no diversion or spreading of roots was observed. 203 Instead, it is hypothesized that the larger oil presence in scenarios 7 to 9 led to higher levels of 204 *dissolved* mineral oil, at least transiently, and that it was this that limited growth in columns 2 and 205 3 and therefore caused root spreading. There is some evidence for this in that the root growth in 206 columns 2 and 3 of scenario 4 was found to be consistently higher than that in scenarios 7 to 9.

In oil contaminated columns, the presence of a root led to substantial oil loss (Figure 2) whereas in plant-free experiments little or no oil loss was observed (results not presented). Even where little

209 or no root growth was observed in an oil-contaminated column, the oil still disappeared, albeit 210 more slowly than when a plant root was present. This suggests that oil removal occurred through 211 the actions of roots in adjacent columns, due to phytoremediation of the dissolved fraction of oil 212 leading to increased rates of oil dissolution. Greater oil loss was generally observed in scenarios 213 with less contamination overall, similar to the outcomes in other studies (Terzaghi et al., 2018; 214 Zengel et al., 2016). This may also be related to the possible phytoremediation of dissolved phase 215 oil, as if all roots contribute to remediation of all columns, a smaller amount of oil will generally 216 be remediated more quickly (Gouda et al., 2016).

217 The presence of oil in an individual column had only a small effect on the root growth within that 218 column (Figure 3). The average of the observed root growth indices for a given column with or 219 without oil for all five replicates and all ten scenarios are presented because the total number of 220 columns with and without oil are different and so a stacked plot (as in Figure 2) would not suffice 221 (e.g. there are more column 3s and 4s without oil than with it). Although the effect of oil is small, 222 in columns 2 and 3 there is apparently a small negative effect of the presence of oil on root growth 223 in individual columns (statistically significant in column 2 - p = 0.007 for day 28 respectively). It 224 may be that the thickness of the oil layer was insufficient to affect the root growth significantly, 225 and that greater amounts of oil would have a larger effect. In addition, ryegrass has some tolerance 226 to oil contamination (McIntosh et al., 2017; Zhu et al., 2018).

Although the visual scoring of root length showed relatively little impact of increasing oil levels on total root length across all columns in a particular scenario, it was observed that, in the oilcontaminated columns, plant roots were coarse and crooked, while those in uncontaminated columns were long, fine and smooth. Slightly increased root growth with increasing oil levels was observed in scenario 7 and 9 (oil in three or four columns), compared to the uncontaminated scenario 10, and this may be a response of the plants to environmental stress, increasing the spread
of roots in an effort to find an uncontaminated route to nutrient supply. Root injuries and changes
in root architecture (length, thickness and branching) are commonly observed as a result of abiotic
stresses such as drought, salinity or metal contamination (Álvarez and Sánchez-Blanco, 2013;
Franco et al., 2011) although the actual impact is highly species dependent.

237 Figure 4 combines the root growth and oil loss data for columns where oil was present, for each 238 time point, and shows that root growth appears to be correlated to oil loss at days 14 and 21 -239 increased root growth in columns 2 and 3 is matched by increasing levels of oil loss. It should be 240 noted that there is overlap of data points on this figure, because of the limited number of possible 241 values for both parameters. However, as time progressed there was some root growth and 242 concomitant oil loss in columns 1 and 4, though the oil loss was large for relatively small root 243 growth and in certain cases, oil was lost without any root growth in a column. This suggests that 244 enhanced removal of the low levels of dissolved phase mineral oil by established roots in columns 245 2 and 3 disrupts the equilibrium causing further mineral oil in all columns to dissolve, which in 246 turn is removed by the action of the roots and possibly attendant microorganisms.

247 Figure 5a shows the day 28 total root and shoot length for each scenario, averaged across all 248 replicates, whilst Figure 5b shows root and shoot biomass in a similar manner. There are trends in 249 the average values in each scenario which may be of relevance but these must be viewed with 250 caution given the high variability in the data. Analysis of variance indicated that there were no 251 statistically significant differences of root/shoot mass or shoot length between any scenarios. 252 Scenario 10, without any contamination, had the highest average total shoot length and mass as 253 might be expected, whilst the average values from scenarios 4, 7 and 9 were substantially lower. 254 The largest average root masses (Figure 5b) were also found in these scenarios, which are the ones

with oil present in both central columns, so given the prevalence of root growth in these columns it is perhaps not surprising that this has impacted upon plant shoot development. With roots, the average total length in scenarios 7, 8 and 9 were not significantly different to the largest values in scenario 10 whilst others were significantly lower (p=0.05 or above), which is indicative of the greater distribution of root growth across all columns in these scenarios as noted earlier.

260 Although not statistically significant, the increase in average root biomass, compared to a 261 corresponding decrease in average shoot biomass, in response to increasing mineral oil suggests 262 the plant put more energy into root growth than shoot growth due to stress induced by oil 263 contamination. Oil can not only reduce the amount of water and oxygen available for plant growth 264 (Kaur et al., 2017) but also can interfere with plant-water relations by direct physical contact 265 (coating of root tissues) thus negatively affecting shoot growth (Razmjoo and Adavi, 2012). Such 266 phenomena affect the local biogeochemistry, for example changing nutrient dynamics (Xu and 267 Johnson, 1997) which in turn cause changes in root morphology similar to those observed here 268 (Franco et al., 2011; Hermans et al., 2006).

269 It is noted that soil texture and consequent variations in pore structure are likely to affect the 270 interaction between oil and root/rhizosphere in a real application. Such impacts have been explored 271 in more detail in Oniosun et al. (2018) and Oniosun (2019). They report an influence of the 272 presence of a fine-grained particle fraction on the location of oil within the pore space and discuss 273 potential changes in contaminant bioavailability and transport in the larger pores impacting how 274 toxic compounds can migrate in the soil and inhibit water and nutrients from reaching the 275 rhizosphere thereby reducing the supply of oxygen, moisture, and nutrients which may lead to root 276 damage or death. Such variations in soil texture might give plant roots greater accessibility to

277 larger pores in coarser soils meaning increased accessibility to nutrients and moisture in the278 rhizosphere (Mitton et al., 2014), therefore a lesser adverse effect on plant root growth.

279 It has been previously found that mineral oil negatively affects plant root architecture (thickness, 280 length and branching) as a result of injuries caused by contamination (Vervaeke et al., 2003). 281 Studies have observed increased root biomass in mineral oil-treated soil, attributed to a typical 282 plant response to the reduced rhizosphere mycorrhiza and nutrient deficiency due to oil 283 contamination (Heinonsalo et al., 2000). Poorter and Nagel (2000) concluded that plants respond 284 to a decrease in below ground nutrients with increased allocation of biomass to roots and a 285 reduction in above-ground resources (e.g. sunlight) with increased allocation of biomass to shoots. 286 This effect resulted in coarser roots, expressed in increased average root diameter with a reduction 287 in specific root length, but a larger surface area. Greater phytodegradation of organic contaminants 288 has previously been related to higher specific root surface area (Ahmad et al., 2012; Merkl et al., 289 2005).

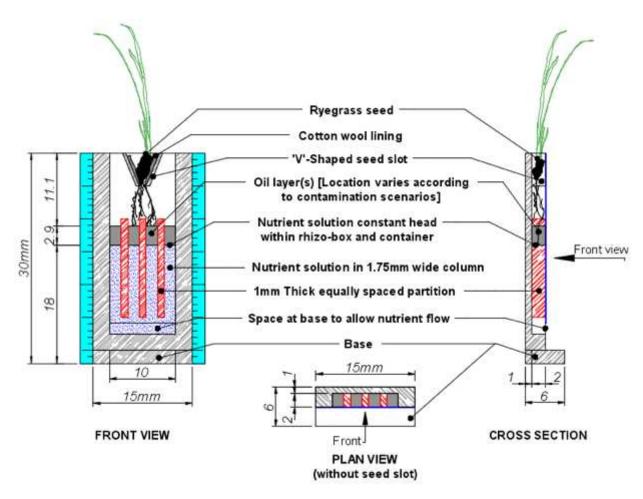
290

4. Conclusions

In contaminated soils light NAPLs may be present in pore spaces in the capillary zone as a continuous or semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources, providing a long-term supply of dissolved phase contamination. A laboratory experiment to provide evidence of the impact of LNAPL distribution in the pore space on root growth distribution was performed. Oil levels and root growth was monitored on a regular basis, and the resulting contaminant loss, root morphology, root, and shoot biomass analysed. Good levels of consistency in germination and growth were found across all experiments.

299 It is apparent from comparisons of oil loss in contaminated columns with the presence of a root to 300 that in plant-free experiments that phytoremediation of dissolved phase contamination accelerates 301 the dissolution of LNAPLs into adjacent groundwater and thus can indirectly destroy these 302 persistent contaminant sources considerably more rapidly than by natural attenuation alone. Any 303 contribution from direct interaction between root and NAPL has not been conclusively 304 demonstrated here, but direct uptake of hydrocarbons is known to be possible (Hunt et al., 2018) 305 although likely to be slower than dissolved phase effects. In general, greater oil loss was observed 306 in scenarios with lower levels of overall contamination. Indeed, the presence of NAPL does not 307 prevent growth of a root within a pore, with a preference for vertical downwards root growth 308 dominating, allowing co-existence and therefore more rapid NAPL removal (either directly, 309 indirectly or both) than would otherwise be the case. The impact of NAPL on root architecture is 310 clear, with greater distribution of root growth with more extensive NAPL coverage (thought to be 311 caused by increased access to dissolved phase oil) and changes to individual root morphology. 312 Impact on the plant as a whole was detrimental, with considerably reduced above ground biomass 313 as well as the changes to the roots. The observed increase in root biomass and a corresponding 314 decrease in shoot biomass in the presence of increasing levels of LNAPL indicates plants diverting 315 energy into root growth from shoot growth due to stress induced by oil contamination. This study 316 gives valuable direct evidence on how plant growth, root distribution and development, and oil 317 removal are affected through direct physical contact with LNAPL

318


319 Acknowledgements

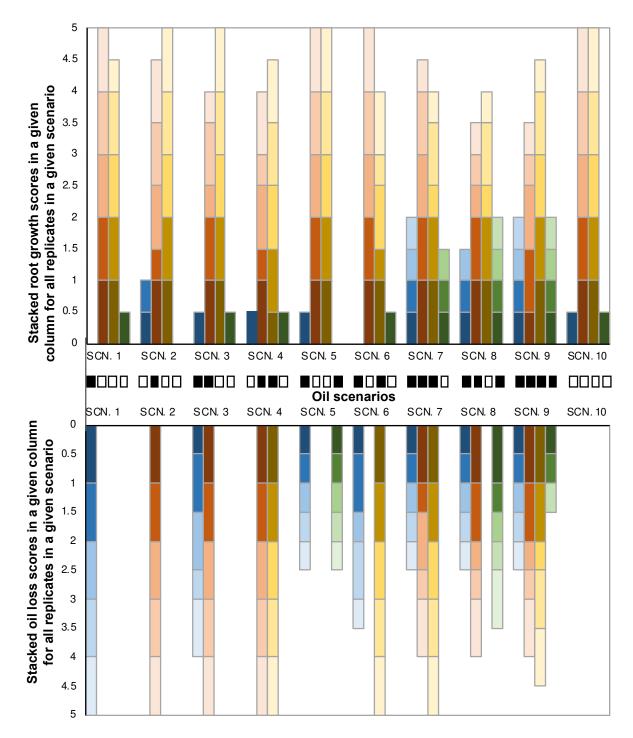
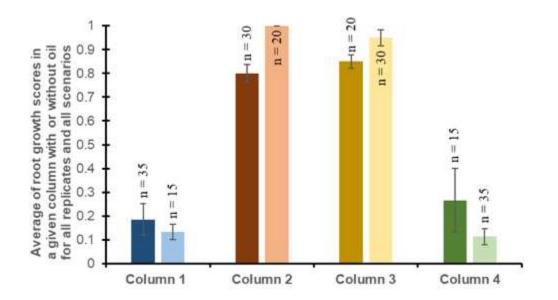
- 320 The first author gratefully acknowledges moral support and encouragement from Powell Dobson
- 321 Architects Ltd, Cardiff.

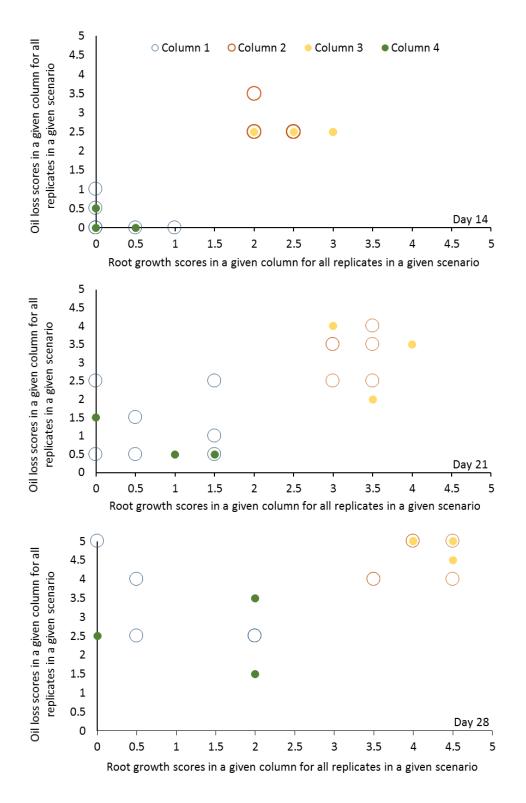
- 323 Funding
- 324 The first author was supported by Blowsome Estate Nig. Ltd (no grant number).
- 325
- 326 **References**
- Adam, G., Duncan, H., 2002. Influence of diesel fuel on seed germination. Environ. Pollut. 120,
 363-370, https://doi.org/10.1016/S0269-7491(02)00119-7.
- 329 Ahmad, F., Iqbal, S., Anwar, S., Afzal, M., Islam, E., Mustafa, T., Khan, Q.M., 2012. Enhanced
- 330 remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-
- degrading bacterium Bacillus pumilus C2A1. J. Hazard. Mater. 237, 110-115,
- 332 https://doi.org/10.1016/j.jhazmat.2012.08.006.
- 333 Álvarez, S., Sánchez-Blanco, M.J., 2013. Changes in growth rate, root morphology and water
- 334 use efficiency of potted Callistemon citrinus plants in response to different levels of water
- deficit. Scientia horticulturae 156, 54-62, <u>https://doi.org/10.1016/j.scienta.2013.03.024</u>.
- Balks, M.R., Paetzold, R.F., Kimble, J.M., Aislabie, J., Campbell, I.B., 2002. Effects of
- 337 hydrocarbon spills on the temperature and moisture regimes of Cryosols in the Ross Sea region.
- 338 Antarct. Sci. 14, 319-326, <u>https://doi.org/10.1017/S0954102002000135</u>.
- dos Santos, J.J., Maranho, L.T., 2018. Rhizospheric microorganisms as a solution for the
- recovery of soils contaminated by petroleum: A review. J. Environ. Manage. 210, 104-113,
 https://doi.org/10.1016/j.jenvman.2018.01.015.
- 342 Franco, J., Bañón, S., Vicente, M., Miralles, J., Martínez-Sánchez, J., 2011. Root development in
- horticultural plants grown under abiotic stress conditions–a review. J Hortic Sci Biotechnol 86,
- 344 543-556, https://doi.org/10.1080/14620316.2011.11512802.
- 345 Gobelius, L., Lewis, J., Ahrens, L., 2017. Plant uptake of per-and polyfluoroalkyl substances at a
- 346 contaminated fire training facility to evaluate the phytoremediation potential of various plant
- 347 species. Environ. Sci. Technol. 51, 12602-12610, <u>https://doi.org/10.1021/acs.est.7b02926</u>.
- 348 Gouda, A.H., El-Gendy, A.S., El-Razek, T.M.A., El-Kassas, H.I., 2016. Evaluation of
- 349 phytoremediation and bioremediation for sandy soil contaminated with petroleum hydrocarbons.
- 350 International Journal of Environmental Science and Development 7, 490,
- 351 <u>http://www.ijesd.org/vol7/826-X0052.pdf</u>.
- Heinonsalo, J., Jørgensen, K.S., Haahtela, K., Sen, R., 2000. Effects of Pinus sylvestris root
- 353 growth and mycorrhizosphere development on bacterial carbon source utilization and

- 354 hydrocarbon oxidation in forest and petroleum-contaminated soils. Can. J. Microbiol. 46, 451-
- 355 464, <u>https://doi.org/10.1139/w00-011</u>.
- Hermans, C., Hammond, J.P., White, P.J., Verbruggen, N., 2006. How do plants respond to
- nutrient shortage by biomass allocation? Trends Plant Sci. 11, 610-617,
- 358 <u>https://doi.org/10.1016/j.tplants.2006.10.007</u>.
- Hunt, L.J., Duca, D., Dan, T., Knopper, L.D., 2018. Petroleum hydrocarbon (PHC) uptake in
- 360 plants: A literature review. Environ. Pollut., <u>https://doi.org/10.1016/j.envpol.2018.11.012</u>.
- 361 Kaur, N., Erickson, T.E., Ball, A.S., Ryan, M.H., 2017. A review of germination and early
- 362 growth as a proxy for plant fitness under petrogenic contamination—knowledge gaps and
- 363 recommendations. Sci. Total Environ. 603, 728-744,
- 364 <u>https://doi.org/10.1016/j.scitotenv.2017.02.179</u>.
- 365 Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L., Ledin, S., 2007. Root
- establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers.
 Environ. Pollut. 145, 68-74, https://doi.org/10.1016/j.envpol.2006.03.039.
- 368 Khamehchiyan, M., Charkhabi, A.H., Tajik, M., 2007. Effects of crude oil contamination on
- 369 geotechnical properties of clayey and sandy soils. Eng Geol 89, 220-229,
- 370 <u>https://doi.org/10.1016/j.enggeo.2006.10.009</u>.
- 371 Limmer, M., Burken, J., 2016. Phytovolatilization of Organic Contaminants. Environ. Sci.
- 372 Technol. 50, 6632-6643, <u>https://doi.org/10.1021/acs.est.5b04113</u>.
- Lu, M., Zhang, Z., Sun, S., Wei, X., Wang, Q., Su, Y., 2010. The use of goosegrass (Eleusine
- indica) to remediate soil contaminated with petroleum. Water, Air, Soil Pollut. 209, 181-189,
 <u>https://doi.org/10.1007/s11270-009-0190-x</u>.
- 376 McIntosh, P., Schulthess, C.P., Kuzovkina, Y.A., Guillard, K., 2017. Bioremediation and
- 377 phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. Int. J.
- 378 Phytoremediation 19, 755-764, <u>https://doi.org/10.1080/15226514.2017.1284753</u>.
- 379 Merkl, N., Schultze-Kraft, R., Infante, C., 2005. Phytoremediation in the tropics influence of
- heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 138, 86-91,
 <u>https://doi.org/10.1016/j.envpol.2005.02.023</u>.
- 382 Mitton, F.M., Miglioranza, K.S., Gonzalez, M., Shimabukuro, V.M., Monserrat, J.M., 2014.
- Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted
 soils. Ecol. Eng. 71, 501-508, <u>https://doi.org/10.1016/j.ecoleng.2014.07.069</u>.
- 385 Naidoo, G., 2016. Mangrove propagule size and oil contamination effects: Does size matter?
- 386 Mar. Pollut. Bull. 110, 362-370, https://doi.org/10.1016/j.marpolbul.2016.06.040.
- 387 Oniosun, S., Harbottle, M., Tripathy, S., Cleall, P., 2018. Phytoremediation of Light Non-
- 388 Aqueous Phase Liquids, Proceedings of the 8th International Congress on Environmental
- 389 Geotechnics; Zhan, L., Chen, Y., Bouazza, A., Eds., Springer: Singapore, pp. 788-795,
- 390 <u>https://doi.org/10.1007/978-981-13-2221-1_89</u>.
- 391 Oniosun, S.A., 2019. Phytoremediation of LNAPLs and Residual Oils in the Vadose Zone and
- 392 Capillary Fringe. School of Engineering, Cardiff University United Kingdom,
- 393 <u>https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.775010</u>.
- 394 Page, J.W.E., Soga, K., Illangasekare, T., 2007. The significance of heterogeneity on mass flux
- from DNAPL source zones: An experimental investigation. J. Contam. Hydrol. 94, 215-234,
 <u>https://doi.org/10.1016/j.jconhyd.2007.06.004</u>.
- 397 Poorter, H., Nagel, O., 2000. The role of biomass allocation in the growth response of plants to
- different levels of light, CO2, nutrients and water: a quantitative review. Funct. Plant Biol. 27,
- 399 1191-1191, <u>https://doi.org/10.1071/PP99173_CO</u>.

- 400 Razmjoo, K., Adavi, Z., 2012. Assessment of bermudagrass cultivars for phytoremediation of
- 401 petroleum contaminated soils. Int. J. Phytoremediation 14, 14-23,
- 402 <u>https://doi.org/10.1080/15226514.2011.560212</u>.
- 403 Rezek, J., Wiesche, C.I.D., Mackova, M., Zadrazil, F., Macek, T., 2008. The effect of ryegrass
- 404 (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70,
 405 1603-1608, https://doi.org/10.1016/j.chemosphere.2007.08.003.
- 406 Terzaghi, E., Zanardini, E., Morosini, C., Raspa, G., Borin, S., Mapelli, F., Vergani, L., Di
- 407 Guardo, A., 2018. Rhizoremediation half-lives of PCBs: Role of congener composition, organic
- 408 carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the
- 409 prediction of fate and persistence in soil. Sci. Total Environ. 612, 544-560,
- 410 <u>https://doi.org/10.1016/j.scitotenv.2017.08.189</u>.
- 411 Tomlinson, D.W., Rivett, M.O., Wealthall, G.P., Sweeney, R.E., 2017. Understanding complex
- 412 LNAPL sites: Illustrated handbook of LNAPL transport and fate in the subsurface. J. Environ.
- 413 Manage. 204, 748-756, <u>https://doi.org/10.1016/j.jenvman.2017.08.015</u>.
- 414 Vázquez-Cuevas, G.M., Stevens, C.J., Semple, K.T., 2018. Enhancement of 14 C-phenanthrene
- 415 mineralisation in the presence of plant-root biomass in PAH-NAPL amended soil. Int.
- 416 Biodeterior. Biodegrad. 126, 78-85, <u>https://doi.org/10.1016/j.ibiod.2017.09.021</u>.
- 417 Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F.M.G., Lust, N., 2003.
- Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ.
 Pollut. 126, 275-282, <u>https://doi.org/10.1016/S0269-7491(03)00189-1</u>.
- 420 Wang, X., Dossett, M.P., Gordon, M.P., Strand, S.E., 2004. Fate of Carbon Tetrachloride during
- 421 Phytoremediation with Poplar under Controlled Field Conditions. Environ. Sci. Technol. 38,
- 422 5744-5749, <u>https://doi.org/10.1021/es0499187</u>.
- 423 Xu, J., Johnson, R., 1997. Nitrogen dynamics in soils with different hydrocarbon contents
- 424 planted to barley and field pea. Can. J. Soil Sci. 77, 453-458, <u>https://doi.org/10.4141/S96-046</u>.
- 425 Zengel, S., Montague, C.L., Pennings, S.C., Powers, S.P., Steinhoff, M., Fricano, G., Schlemme,
- 426 C., Zhang, M., Oehrig, J., Nixon, Z., 2016. Impacts of the Deepwater Horizon oil spill on salt
- 427 marsh periwinkles (Littoraria irrorata). Environ. Sci. Technol. 50, 643-652,
- 428 <u>https://doi.org/10.1021/acs.est.5b04371</u>.
- 429 Zhu, H., Gao, Y., Li, D., 2018. Germination of grass species in soil affected by crude oil
- 430 contamination. Int. J. Phytoremediation 20, 567-573,
- 431 https://doi.org/10.1080/15226514.2017.1405376.
- 432
- 433

435 Figure 1. Schematic of pore-scale 3D-printed rhizobox


Figure 2. Root growth and oil loss in individual columns for all ten scenarios (Day 28) (blue – column 1; orange – column 2; yellow – column 3; green – column 4). For each column, root growth and oil loss are scored for all five replicates and these scores presented as a stacked bar (established root / full oil loss = 1; limited root growth / partial oil loss = 0.5; no root growth / no oil loss = 0).

443

Figure 3. Effect of presence of oil on average root growth score in individual columns at day 28. For each column, root growth is scored for all replicates in all scenarios and the average presented (established root = 1; limited root growth = 0.5; no root growth = 0). The numbers with (left-hand bar, darker shade) and without oil (right-hand bar, lighter shade) (i.e. the number of readings used

to calculated the averages) are presented on the figure. Error bars represent \pm one standard error of the mean.

452 Figure 4. Relationship between root growth and oil loss in individual columns for all ten scenarios,
453 (Days 14, 21 and 28. For each column, root growth and oil loss are scored for all five replicates
454 and the total counts of these scores presented as a scatter plot (established root / full oil loss = 1;
455 limited root growth / partial oil loss = 0.5; no root growth / no oil loss = 0).

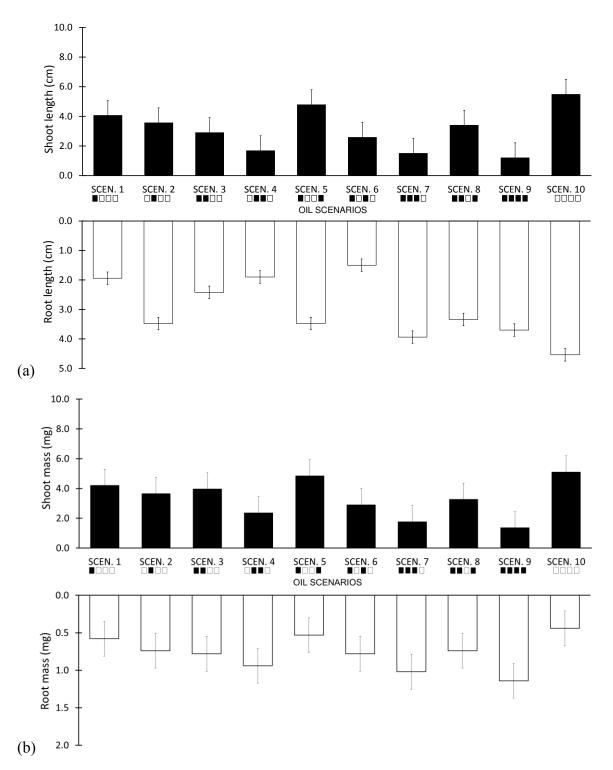


Figure 5. Effect of the presence of oil on (a) root and shoot length for all scenarios (for each scenario, root and shoot lengths were measured and summed for each replicate) and (b) root and shoot biomass (for each scenario, root and shoot mass are totalled for each replicate). Error bars represent the standard error of the mean (n=5).

Contamination Scenario	Column 1	Column 2	Column 3	Column 4
1	Oil			
2		Oil		
3	Oil	Oil		
4		Oil	Oil	
5	Oil			Oil
6	Oil		Oil	
7	Oil	Oil	Oil	
8	Oil	Oil		Oil
9	Oil	Oil	Oil	Oil
10				

461 Table 1. Mineral oil contamination scenarios inside the rhizoboxes.