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Inhibition of GATA2 restrains 
cell proliferation and enhances 
apoptosis and chemotherapy 
mediated apoptosis in human 
GATA2 overexpressing AML cells
Juan Bautista Menendez-Gonzalez  1, Samantha Sinnadurai1, Alex Gibbs1, Leigh-
anne Thomas1, Maria Konstantinou1, Alfonso Garcia-Valverde1, Magali Boyer1, 
Zhengke Wang2, Ashleigh S. Boyd3,4, Allison Blair5,6, Rhys G. Morgan  5,7 & Neil P. Rodrigues1

GATA2, a zinc finger transcription factor predominantly expressed in hematopoietic cells, acts as an 
essential regulator of hematopoietic stem cell generation, survival and functionality. Loss and gain 
of GATA2 expression has been implicated in myelodysplastic syndrome and acute myeloid leukemia 
(AML) yet the precise biological impact of GATA2 expression on human AML cell fate decisions remains 
ambiguous. Herein, we performed large-scale bioinformatics that demonstrated relatively frequent 
GATA2 overexpression in AML patients as well as select human AML (or AML-like) cell lines. By using 
shRNAi to target GATA2 in these AML cell lines, and an AML cell line expressing normal levels of 
GATA2, we found that inhibition of GATA2 caused attenuated cell proliferation and enhanced apoptosis 
exclusively in AML cell lines that overexpress GATA2. We proceeded to pharmacologically inhibit 
GATA2 in concert with AML chemotherapeutics and found this augmented cell killing in AML cell lines 
that overexpress GATA2, but not in an AML cell line expressing normal levels of GATA2. These data 
indicate that inhibition of GATA2 enhances chemotherapy-mediated apoptosis in human AML cells 
overexpressing GATA2. Thus, we define novel insights into the oncogenic role of GATA2 in human AML 
cells and suggest the potential utilization of transient GATA2 therapeutic targeting in AML.

Life-long hematopoiesis is sustained by bone marrow (BM) resident, multi-potent hematopoietic stem cells 
(HSCs). Extrinsic signals conveyed from the BM niche alongside a cell intrinsic transcriptional program driven 
by transcription factors (TFs) are crucial for HSC homeostasis and normal hematopoiesis. Chromosomal trans-
locations as well as epigenetic and genetic alterations of TF activity perturb HSC homeostasis leading to the 
development of acute myeloid leukemia (AML). GATA2, a zinc finger TF predominantly expressed within the 
hematopoietic system, is an essential, level-dependent regulator of HSC generation, survival and functional-
ity1,2. Exemplifying its role as a crucial regulator of HSC behavior, perturbations of GATA2 expression have been 
observed in AML3,4. GATA2 loss of function mutations cause immunodeficiency syndromes that progress to 
myelodysplastic syndrome and AML on acquisition of secondary mutations5–7. Conversely, overexpression of 
GATA2 has been implicated in the pathogenesis of pediatric and adult AML4,8 and low-level overexpression of 
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GATA2 immortalizes murine BM in vitro without leading to myeloid neoplasia in vivo9. As of yet, the precise 
biological impact of GATA2 overexpression on human AML cell fate decisions remains unclear. In this study, we 
therefore explore the requirement for GATA2 expression in human AML cells.

Figure 1. GATA2 is overexpressed in AML. (A) Bioinformatics analysis of GATA2 expression between control 
and AML patients. (B) GATA2 expression in AML samples. Red line marks GATA2 overexpressing samples 
(25%) based on Log2FC. (C) GATA2 expression between FAB subtypes in AML patients (D) GATA2 RNA 
levels from human AML patients. Dotted line marks GATA2 over-expressing samples in comparison to healthy 
BM control samples. (E) RNA from NOMO1, THP1, KG1a and K562 was extracted and GATA2 levels assessed 
by qPCR. Human BM MNCs were used as a control. GAPDH was used as a housekeeping gene. n = 2–5 from 2 
independent experiments.
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Figure 2. GATA2 knockdown impedes cell proliferation and induces apoptosis of THP1 AML cells. THP1 cells 
were transduced with lentiviruses encoding a short hairpin against human GATA2 (or scramble control) and 
a GFP reporter. GFP+ cells were FACS-sorted and cultured for 72 hours. (A) Western blot showing GATA2 
knockdown in THP1 cells. Un-cropped Western blot shown in Supplementary Fig. 1 (B) Flow cytometry 
histogram showing GATA2 protein levels in shGATA2 31 and 34 compared to control using intracellular flow 
cytometry. (C) Number of live cells at 72 hours after sorting (n = 4). (D) Number of CFCs at day 12 (n = 4). (E) 
Flow cytometry histogram showing cell cycle profile at 72 hours after sorting (F,G). Frequency at 72 hours after 
sorting of (F) proliferating cells (S + G2/M) and (G) apoptotic cells (subG0/G1) (n = 4). (H) FACS plots showing 
increased apoptosis after GATA2 knockdown 72 hours after sorting. (I) Frequency of apoptotic cells (Annexin 
V+) at 72 hours after sorting (n = 4). Data are mean ± SEM. Statistical analysis: Mann–Whitney U test.
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Material and Methods
AML cell lines and inhibitors. THP1, HL60, K562, and NOMO1 were cultured in RPMI supplemented 
with 10% FBS. K-7174 (Bioquote limited) and Etoposide (VP16; Sigma) were dissolved in DMSO. Ara-C 
(Cytosine β-D-arabinofuranoside; Sigma) was dissolved in PBS. Inhibitor assays were performed for 48 hours.

Colony forming cell (CFC) assay. Colony forming cell (CFC) assay was performed by plating 2,000 THP1 
cells into methylcellulose H4434 (STEMCELL technologies) following the manufacturer’s instructions.

Bioinformatics analysis. AML and control patient datasets were downloaded from GEO10 and 
ArrayExpress11 to yield a case/control AML cohort hybridized to the same array (Affymetrix Human Genome 
U133 Plus 2.0 GeneChip). AML cohort (n = 2611), control cohort: (n = 77) from GEO (GSE14468, GSE22845, 
GSE10358, GSE12417, GSE13159, GSE14062, GSE15434, GSE16015, GSE38987, GSE22056, GSE33223, 
GSE17855, GSE15389) and ArrayExpress (E-MTAB-3444). Raw Affymetrix data were downloaded in raw CEL 
format and imported into an in-house analysis pipeline written in R (version 3.1.1) using Bioconductor12 pack-
ages from limma13, affy14 and oligo15. Data were normalised using RMA and differentially expressed genes/
transcripts were identified using limma “best practice”, and p-values were corrected for multiple testing using 
Benjamini-Hochberg (false discovery rate). Samples were then run through 2 bespoke R scripts to enable visu-
alization per gene, where the WGNCA package16 was used to convert probe-level data to gene-level data. These 
datasets were then used to produce boxplots.

Human AML samples. Bone marrow, peripheral blood or leukapheresis samples from patients diag-
nosed with AML/MDS (Clinical information in Supplementary Table S1) were collected in accordance with the 
Declaration of Helsinki, with informed consent from Bristol Royal Hospital for Children and Bristol Hematology 
and Oncology Centre and with approval of University Hospitals Bristol NHS Trust and London Brent Research 
Ethics Committee. Mononuclear cells were separated using Ficoll-Hypaque (Sigma-Aldrich, Poole, UK) and sam-
ples with ≥80% viability included in the study. Normal human BM mononuclear cells purchased from Stem Cell 
Technologies. Details of samples listed in Supplementary Table S1.

Generation of lentiviruses. Calcium phosphate method was used to generate lentiviruses17. Briefly, lenviti-
ral vectors containing shRNA against human GATA2 (or scramble control) were diluted in H2O, and then mixed 
with calcium chloride (Sigma). This mix was added drop-wise to 2x hepes buffered saline (HBS; Sigma) and after 
15′ incubation, added to the media of HEK293T cells at 70% confluency in a 10-cm dish. Supernatant containing 
lentiviruses was collected at 48 hours after transfection, passed through a 0.45 μm filter (Sigma), snap freezed in 
dry ice, and stored at minus 80 °C.

GATA2 knockdown. Lentiviruses encoding shGATA2 (31–34) (Genecopoeia) linked to GFP or a GFP con-
trol vector were bound to the retronectin-coated wells and AML cells were bound to the virus-retronectin-coated 
plate by centrifugation. Eight hours later, AML cells were transferred to another plate and expanded for 5 days 
before sorting GFP+ cells.

RNA extraction and gene expression analysis. RNA extraction was carried out with the RNAeasy Plus 
Micro Kit (Qiagen) according to the manufacturer’s instructions. cDNA was made using the QuantiTec RT Kit 
(Qiagen) according to the manufacturer’s instructions. Real time quantitative PCR (RT-qPCR) was performed 
in a QuantStudio® 7 Flex Real-Time PCR System (Applied biosystems) using Taqman (Applied Biosystems) 
method. Differences in input cDNA were normalised against the housekeeping gene GAPDH (Hs02758991_g1) 
and the mRNA expression levels of GATA2 (Hs00231119_m1) were determined by the 2−ΔΔCT method of relative 
quantification18.

Western blot. 10 μg of protein extracts were separated in a SDS-PAGE gel, and transferred to PVDF mem-
branes overnight. Membranes were incubated overnight with anti-human GATA2 (clone 3C10.1, Merck Milipore) 
and detected by a HRP-conjugated anti-mouse IgG secondary antibody and enhanced chemiluminescent (ECL) 
reagents (WBLUF0100, Merck Millipore). Beta-actin or GAPDH was used as a loading control.

Flow cytometry. To measure apoptosis, Annexin V assay (BioLegend) was performed as described previ-
ously19. To assess the cell cycle status, AML cells were stained with DAPI (5 μg/mL) and 0.1% NP40 (Sigma). Live 
cells were enumerated by staining with propidium iodide (20 μg/mL) (Sigma). Data were analysed using FlowJo 
10.0.8 (Tree Star, Inc) software and graphed using GraphPad Prism 7 (GraphPad Software Inc, CA). For intracel-
lular flow cytometry, AML cells were fixed with 1% PFA (Thermofisher) for 12′ on ice. Cells were permeabilised 
with 2% BSA (Thermofisher) and 0.1% Triton-X (Sigma) for 20′ on ice, washed, and stained for 30′ on ice in the 
dark with anti-human GATA2-PE (IC2046P) (R&D systems). Cells were then washed twice with 2% BSA PBS 
and analysed in a BD LSR Fortessa IV (BD).

Statistical analysis. Data presented as mean ± SEM. Significant differences were calculated using Mann–
Whitney U test or ONE-WAY ANOVA.
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Results and Discussion
We initially sought to uniformly evaluate GATA2 expression in a large cohort of AML patients. AML (n = 2611) 
and control (n = 77) patient datasets were downloaded from Gene Expression Omnibus (GEO) to create a case/
control cohort hybridised to the same array (Affymetrix Human Genome U133 Plus 2.0 GeneChip) and analyzed 
through R using bio-conductor packages, where data was normalized using Robust Multi-array Average (RMA). 
We found that GATA2 expression was higher in AML patients compared to healthy controls (BM MNCs) and was 
overexpressed in 25% of AML samples (Fig. 1A,B). GATA2 overexpression was observed across FAB-subtypes in 
AML patients, including M1, M2, M3 and M6 subtypes while M5 AML expressed normal GATA2 level (Fig. 1C). 
Mirroring this data, we detected GATA2 overexpression in 8 out of 19 samples (42%) in primary AML patient 
samples (Fig. 1D). When assessing GATA2 gene expression in human AML (or AML-like) cell lines, we observed 
that, compared to normal BM MNCs, GATA2 expression was increased by 20-fold in KG1 cells and 30-fold in 
K562 cells (Fig. 1E). We also gauged GATA2 gene expression in two AML cell lines harboring the MLL-AF9 

Figure 3. GATA2 knockdown impairs leukemia growth/survival of HL60 and K562 cells but does not affect 
NOMO1 cells. HL60, K562 and NOMO1 cells were transduced with lentiviruses encoding a short hairpin 
against human GATA2 (or scramble control) and a GFP reporter. GFP+ cells were FAC-sorted and cultured for 
72 hours. (A) Number of live HL60 cells 72 hours after sorting (n = 4). (B) Frequency of apoptotic HL60 cells 
(annexin V+) 72 hours after sorting (n = 4). (C) Number of live K562 cells 72 hours after sorting (n = 3–4). (D) 
Frequency of apoptotic K562 cells (annexin V+) 72 hours after sorting (n = 4). (E) Number of live NOMO1 
cells 72 hours after sorting (n = 3–4). (F) Frequency of apoptotic NOMO1 cells (annexin V+) 72 hours after 
sorting (n = 4). Data are mean ± SEM. Statistical analysis: Mann-Whitney test.
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translocation; THP1 cells showed a 4-fold increase in GATA2, while NOMO1 cells had similar GATA2 expres-
sion compared to control BM MNCs (Fig. 1E). From this data we infer that GATA2 overexpression is relatively 
prevalent in human AML.

Yet the precise biological impact of GATA2 overexpression on human AML cell fate decisions remains unclear. 
To address this, we employed a bicistronic lentiviral vector system carrying a GFP reporter and shRNA targeted 
to GATA2 expression in THP1 cells. Efficient knockdown of GATA2 protein (Fig. 2A,B, Supplementary Fig. 1) 

Figure 4. Short-term pharmacological inhibition of GATA2 enhances the killing activity of AML 
chemotherapeutics. THP1, HL60, K562, and NOMO1 cells were treated with K-7174 alone or in combination 
with VP16 or Ara-C for 48 hours. (A) Representative flow cytometric plots showing increased apoptosis after 
K-7174 treatment alone or in combination with chemotherapeutics in THP1 cells. (B–E) Bar graph showing 
levels of annexin V+ cells in (B) THP1, (C) HL60, (D) K562, and (E) NOMO1 cells at 48-hour time point 
(n = 4). (F) Bar graph showing levels of annexin V+ cells in scramble and shGATA2-31 KD THP1 cells treated 
with K-7174 for 72 hours (n = 3–4). Data are mean ± SEM. Statistical analysis: ONE-WAY ANOVA.
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and RNA (Supplementary Fig. 2) was confirmed in three out of four knockdown (KD) constructs. Proliferation 
and clonal (CFC) growth capacity of GATA2 KD THP1 cells was compromised compared to control THP1 cells 
(Fig. 2C,D). When cell cycle status of GATA2 KD THP1 cells was evaluated, we found a reduction in the fre-
quency of proliferating cells (S + G2/M) (Fig. 2E,F). The cell cycle profile of GATA2 KD THP1 cells also revealed 
an increase in the subG0/G1 population, indicative of diminished cell survival (Fig. 2E,G) and, congruent with 
this observation, the Annexin V assay confirmed that GATA2 KD induced apoptosis of THP1 cells (Fig. 2H,I). 
To validate that these effects were not THP1 cell-specific, we repeated these experiments in another AML line, 
HL60, and a myeloid leukemia cell line, K562 (derived from a chronic myeloid leukemia patient in blast crisis 
and therefore akin to AML); both these cell lines overexpress GATA2 (Fig. 1 and 8). In agreement with results 
in GATA2 KD THP1 cells, we observed an impact on cell proliferation and survival in HL60 and K562 cells 
following GATA2 KD (Fig. 3A–D, Supplementary Figs 2, 3). This phenotype was not replicated in NOMO1 cells 
(Fig. 3E,F, Supplementary Fig. 2), where GATA2 was expressed at a normal level. These data collectively demon-
strate that inhibition of GATA2 expression forestalls AML cell proliferation and survival in the setting of GATA2 
overexpression, and suggest the potential for AML therapeutic targeting in this context.

Using a combination of specific small molecule inhibitors with standard AML chemotherapeutics is a desir-
able treatment option, especially if this enables a calibrated reduction of standard chemotherapeutics and its 
related toxicity. We asked whether pharmacological GATA2 inhibition could improve the killing activity of the 
AML chemotherapeutics Cytarabine (Ara-C) and Etoposide (VP16). By incubating THP1, HL60 and K562 cells 
with K-7174, a pharmacological inhibitor of GATA220–22, either alone or in combination with VP16 or Ara-C for 
48 hours, we found that K-7174 treatment augmented the number of apoptotic THP1 and K562 cells and that 
addition of K-7174 to VP16 or Ara-C increased its ability to eradicate THP1 and K562 cells (Fig. 4A,B,D). HL60 
cells were susceptible to K7174 treatment alone or in combination with VP16, but not with Ara-C (Fig. 4C). 
In contrast, K-7174 used alone or in combination with VP16 or Ara-C had no impact on the killing activity in 
NOMO1 cells (Fig. 4E). While knockdown of GATA2 with shGATA2 prior to K7174 treatment reduced relative 
K7174 mediated killing in THP1 cells (GATA2 KD + K7174: 4.7 fold apoptosis versus K7174 alone: 10.1 fold 
apoptosis) (Fig. 4F), complete desensitization of THP1 cells to K7174 mediated killing in this setting was not 
achieved, suggesting that K7174 may have other biological targets. This caveat notwithstanding, overall, direct 
pharmacological inhibition of GATA2 in GATA2 overexpressing AML cells enhances the killing activity of stand-
ard AML chemotherapeutics.

In this report, we identified that GATA2 mediates regulation of cell proliferation and survival in human AML 
cells overexpressing GATA2. This inference is consistent with independent observations in the GATA2 over-
expressing AML cell line KG-1 (Fig. 1E and 23). Yet GATA2 inhibition did not impact NOMO1 cells, which 
exhibit normal GATA2 expression. It is possible that persistent GATA2 inhibition could alter the proliferative 
and survival capacity of AML cells with normal GATA2 expression. Notably, the extent of impact of GATA2 
knockdown in leukemic cells appears to be independent of basal GATA2 overexpression level (Figs 1E, 2–4 8 
and unpublished observations), which may reflect differential dose-dependent transcriptional requirements for 
GATA2 in myeloid leukemia subtypes or in pediatric versus adult patients. We propose transient, pharmacolog-
ical inhibition of GATA2, in collaboration with standard chemotherapeutics, as a novel therapeutic strategy in 
AML cases where GATA2 is overexpressed. That effects were observed in cell lines derived from patients with 
pediatric AML (THP1) or adult AML (HL60) suggests that inhibiting GATA2 will be clinically effective in both 
pediatric and adult AMLs that overexpress GATA2. Alternatively, as opposed to directly targeting GATA2, it may 
feasible to therapeutically target the GATA2 transcriptional network in these AML settings. Given that relative 
GATA2 expression increases in AML patients after chemotherapy23, beneficiaries of this therapy could extend 
beyond those patients who overexpress GATA2 at diagnosis. GATA2 mediated therapeutic strategies should also 
focus on human AML leukemic stem cells, where GATA2 expression is up-regulated24 and where inducing cell 
death would be an attractive strategy to eliminate the provenance of leukemic cell growth.
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