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ABSTRACT

This thesis investigates a number of new approaches for visual speech
synthesis using data-driven methods to implement a talking face.

The main contributions in this thesis are the following. The ac-
curacy of shared Gaussian process latent variable model (SGPLVM)
built using the active appearance model (AAM) and relative spectral
transform-perceptual linear prediction (RASTAPLP) features is im-
proved by employing a more accurate AAM. This is the first study
to report that using a more accurate AAM improves the accuracy of
SGPLVM. Objective evaluation via reconstruction error is performed
to compare the proposed approach against previously existing meth-
ods. In addition, it is shown experimentally that the accuracy of AAM
can be improved by using a larger number of landmarks and/or larger
number of samples in the training data.

The second research contribution is a new method for visual speech
synthesis utilising a fully Bayesian method namely the manifold rele-
vance determination (MRD) for modelling dynamical systems through
probabilistic non-linear dimensionality reduction. This is the first time
MRD was used in the context of generating talking faces from the
input speech signal. The expressive power of this model is in the abil-
ity to consider non-linear mappings between audio and visual features

within a Bayesian approach. An efficient latent space has been learnt
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Abstract iv

using a fully Bayesian latent representation relying on conditional non-
linear independence framework. In the SGPLVM the structure of the
latent space cannot be automatically estimated because of using a max-
imum likelihood formulation. In contrast to SGPLVM the Bayesian ap-
proaches allow the automatic determination of the dimensionality of the
latent spaces. The proposed method compares favourably against sev-
eral other state-of-the-art methods for visual speech generation, which
is shown in quantitative and qualitative evaluation on two different
datasets.

Finally, the possibility of incremental learning of AAM for inclu-
sion in the proposed MRD approach for visual speech generation is
investigated. The quantitative results demonstrate that using MRD in
conjunction with incremental AAMs produces only slightly less accu-
rate results than using batch methods. These results support a way of
training this kind of models on computers with limited resources, for
example in mobile computing.

Overall, this thesis proposes several improvements to the current
state-of-the-art in generating talking faces from speech signal leading

to perceptually more convincing results.
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Chapter 1

INTRODUCTION

Speech animation synthesis is the process of animating a face model to
produce articulated movements that match accompanying vocal speech
data. The issue of synthesising realistic talking faces is multifaceted,
requiring the production of high-quality facial images, lip movements
synchronised with the auditory input, and reasonable facial expressions.
This is challenging because humans are expert at detecting subtle ab-
normalities in facial motion and auditory-visual synchronisation. Pre-
vious studies in visual speech animation can be categorised into two
different classes: viseme-driven methods and data-driven methods [43].
Viseme-driven methods require key mouth shapes to be designed for
phonemes to synthesise new speech animations, whereas data-driven
methods need a pre-recorded facial motion dataset for synthesis pur-
poses. Data-driven methods synthesise novel speech motions by com-
bining prerecorded motion frame sequences (sample-based methods) or
sampling from statistical models learned from the facial motion data
(learning-based methods) [43].

Synthesising realistic visual speech animations has been a challeng-
ing task for decades, one of the major challenges being the phenom-
ena of speech coarticulation, which complicates the mappings between

speech signals and visual speech movements. Coarticulation refers to



changes in the articulation of a speech unit according to preceding or
backward coarticulation and upcoming units or forward coarticulation.
The animation parameters are typically synthesised utilising either a
unit-driven approach [13,57,85] or a feature-driven [12,48, 186]. Unit-
driven methods use an indirect mapping of audio to visual speech, where
trajectories of parameter values are formed from typically phoneme, di-
phone or triphone level representations of a sentence based on unit by
unit. For unit-driven synthesis, longer-term coarticulation effects can
be determined utilising phonetic context [172]. The disadvantages of
these methods are that the dataset from which speech units are cho-
sen do not include all possible phonetic contexts. The advantages of
feature-driven methods which synthesise animation parameters as a di-
rect mapping from parameterised auditory speech on a video frame by
frame basis is that the articulators of speech are physically located to
form the speech sound.

Auditory-visual mapping is highly non-linear because of ambiguities
in both the auditory and visual domains [125]. High dimensional time
series are endemic in applications of machine learning. Practical non-
linear probabilistic methods for this data are required [33]. In this
work, we focus on the auditory-visual mapping issue, aiming to model
the non-linear relationship between auditory and visual features.

An overview of a general audio-driven visual speech synthesis is
illustrated in Figure 1.1. An audio-visual corpus for visual speech syn-
thesis is used. In the training stage, feature parameters of the auditory
and visual signals are extracted then a mapping from auditory features
to visual features is learned. In the synthesis stage, the trained model

is utilised to estimate the visual parameters associated with an input
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Figure 1.1. A general overview of the audio-driven visual speech syn-
thesis. Training process is marked using the blue arrows, and synthesis

process is marked by the orange arrows.

1.1 Applications

Over recent years, synthesis of realistically looking videos of moving
human faces from speech found applications in such diverse areas as
Massaro at the Perceptual Science Laboratory at University of Cali-
fornia at Santa Cruz (PSL-UCSC) have been enhancing the precision
of visible speech generated by Baldi, a synthesised talking tool [113].
Baldi has been utilised efficiently to offer curricular lessons, also to train
vocabulary to profoundly deaf student at the TuckerMaxon Oral School
in Portland Oregon [6,118]. The PSL-UCSC coarticulation algorithm

has been effectively utilised in American English and Mexican Span-
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ish [113], and French [68]. Recently, Baldi presently talks Italian [28]
and Arabic [132].

Some of applications include talking faces for teaching English as a
second language such as Massaro’s Baldi system [115]. Cohen and Mas-
saro introduced a novel visual speech animation coarticulatory control
strategy, utilising dominance and blending functions [117]. In addition,
Baldi has control on the paralinguistic information therefore facial ex-
pressions and gestures can be displayed in the face, thus happiness,
sadness and anger can be showed [119]. The system presents text-to-
visible speech animation and alignment with normal speech. Baldi can
be represented in different configurations, for instance, the skin can
be made transparent thus the inside of the mouth (i.e tongue) can be
seen, also the head can be turned around to be viewed from the side or
back [28]. Massaro et al. [119] augmented Baldi with a body, to develop
communication through gesture.

The recently released, publicly accessible resources provide articula-
tion videos, which can be appropriate when learning/teaching the pro-
nunciation of sounds absent in the learners local. There are some stud-
ies that have introduced improved pronunciation of non-native sounds
through training with animated faces revealing the operations of inter-
nal speech articulators [44,114,191]. Computer assisted auditory-visual
language learning enhances user engagement when compared to audi-
tory alone. Karaoke, also called KTV, is a main pastime among Chi-
nese nation, with various KTV clubs found in great cities in China. A
karaoke-like feature has been added to Engkoo — a specialised search
engine located at www.engkoo.cn — prepared for Chinese speakers

learning English as a foreign language [155, 188], this allows English
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learners to train the pronunciation online by mimicking a photo-realistic
talking face lip-synchronously inside an inquiry and revelation environ-
ment. The KTVfunction is showed as videos produced from a large
set of example sentences obtained from the web. Videos can easily be
lunched by select the desired sentence. The videos show the sentence
on the screen, while a model speaker utters it aloud, teaching the users
how to pronounce the words, as appeared in Figure 1.2. Wang and
Soong [189] motivation is on producing a photo-realistic, lip-synced
talking face as a language assistant, web-based and low cost language
learning. Their long-term target is to produce a technology that can
assist users everywhere, and anytime from detailed pronunciation prac-
ticing to conversational training.

One of the motivating applications of facial animation in medicine
is computer assisted craniofacial surgery (CAS) [67]. Patients with
facial deformities or paralysis are restricted in their capability to com-
municate with other persons, so that, the re-formation of aesthetic
appearance and natural facial expressions remains the main interest of
corrective surgery. Such applications need a tissue and muscle model
of the face to assist the surgeons planning their surgery. Animation
approaches allow the construction of real dynamic faces helpful in the
planning of reconstructive forensic medicine and facial surgery.

Talking faces are valuable in applications of human-machine inter-
action. Ostermann and Weissenfeld [130] have shown that confidence
and reliance of humans toward machines growing by 30% when com-
municating with a talking head instead of text only. So that, visual
speech can catch the interest of a user, making the human-machine

interface more attractive. Avatars, with visual speech synthesis, are
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increasingly being utilised to communicate with humans on a different
of electronic devices, for example mobile phones, computers, kiosks,
PDAs, and game consoles. Avatars can be found across many fields,
such as technical support and customer service, also in entertainment.

Following is some of the many uses of avatars [199]:

e Providing instructions and advice to guide users through Web

sites;
e Reading news and other information to users;
e Displaying personalised messages on public Web sites;
e Practicing users to achieve complex tasks;

e Representing digital helpers and automated operators for help

desks, contact centres, and self-service;
e Acting as character roles in games;
e Producing new branding opportunities for communities;
e Catching users attention in advertisements and announcements;
e Attracting users attention in advertisements;

Figure 1.3 shows applications of human-machine interaction with

talking faces.
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Figure 1.3. Applications of human-machine interaction with talking
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There is a large variety of multimedia on the Internet with the main
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purpose of attracting human attention. MPEG-4 is an object-based
multimedia compression standard, which permits to independently en-
code various visual objects in the scene. The visual objects might have
a natural or synthetic content. The MPEG-4 standard expects that
talking faces will play an important role in future customer service ap-
plications. MPEG-4 enables face animation over low bit rate commu-
nication channels. In particular, MPEG-4 facial animation parameters
(FAPs) [91,99,203], where FAPs are popular for synthesising animation

of human talking faces.

1.2 Research aims

Visual speech animation is an important aspect of synthesising a re-
alistic talking head. Poor visual speech animation can be distracting,
and confusing. It is known that there is a strong relationship between
lip motions and speech. Mismatch between auditory and visual speech
can change what the observer believes they heard [125]. Therefore, if
the animation is not synchronised with the speech, the animations of a
talking face cannot look realistic. One of the main challenge in visual
speech synthesis is realism. The choice of approaches utilised for facial
modelling and auditory-visual mapping greatly influences the amount
of realism achieved.

This thesis focuses on generating realistic visual speech animation
utilising a 2D shape and appearance models for facial modelling and a
learning-based method to auditory-visual mapping. A 2D appearance
facial modelling method [27] is used because it is a generative paramet-
ric model and commonly utilised to track and synthesise faces in video

utterances. The model consists of two components: shape variation
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model and appearance variation model. Therefore, using such models
is attractive in speech animation because the geometry and the texture
of the face are captured together.

The aim of this thesis is to improve visual realism of speech driven
talking head by adopting a learning-based visual speech synthesis
approach. Specifically the approach focusing on developing robust
auditory-visual mapping. A novel principled method to learning a
latent variable space of auditory and visual dynamic of speech is in-
troduced. In contrast to previous methods the model is fully Bayesian,
yielding the ability to estimate of the dimensionality and the structure
of the latent space to be done automatically. The model can capture

structure underlying high dimensional representations.

1.3 Main contributions

The main contributions in this thesis are the following:

e A more accurate active appearance model (AAM) of
talking faces: We show that using larger dataset and more
landmarks for building AAM produces more accurate model.
Deena et al. [38] uses 56 markup points identified for each frame;
24 of them described the inner and outer mouth shape. In this
thesis, we build a more accurate active appearance model, with 97
facial landmarks identified for each frame; 38 of them described
the inner and outer mouth shape. Experiments are conducted to
investigate the hypothesis of that increasing the number of land-
mark points can increase the accuracy. Quantitative evaluation
demonstrates that using more landmark points around the mouth

can give more accurate model and a smoother facial boundary can
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be obtained using more landmark points for each frame, details
are given in Chapter 4. In addition, experiments are conducted
showing that building AAM on larger dataset improves the model

accuracy, details are also given in Chapter 4.

Improving the accuracy of shared Gaussian process la-
tent variable model: A more accurate shared Gaussian pro-
cess latent variable model (SGPLVM) is built on the AAM and
relative spectral transform-perceptual linear prediction (RASTA-
PLP) features which are extracted from video sequences. Previ-
ous method [38] used 184 images by selecting 4 random frames
throughout the LIPS dataset, from each of the 45 sounds. An
AAM was built using this number of images, then the remain-
ing dataset was projected to AAM parameters. In this work, the
AAM is built using larger dataset of around 6000 frames. In ad-
dition, the AAM is built with more facial landmarks identified
for each frame. This is the first study to report that building
an AAM using a larger dataset and a larger number of land-
marks improves the accuracy of SGPLVM. Objective evaluation
via reconstruction error is performed to compare our proposed
approach against previously existing methods. The quantitative
evaluation shows that the SGPLVM model using a larger dataset
and more landmark points for each frame to build the AAM gives

better results, with a full description is given in Chapter 4.

First application of manifold relevance determination
model for visual speech synthesis: A novel model for visual

speech synthesis is introduced in order to produce more accurate
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coarticulation, namely manifold relevance determination model
(MRD), which explicitly models the non-linearities in auditory-
visual mapping. MRD has not been used previously for gener-
ating videos of talking faces from audio features. In contrast to
previous methods the model is fully Bayesian, allowing the auto-
matic estimation of the dimensionality and the structure of the
latent spaces. The model is able to capture the structure of data
with extremely high dimensionality. Accurate visual features can
be inferred directly from the trained model by sampling from the
discovered latent points. The accuracy of generating videos of
talking faces using MRD instead of SGPLVM has been improved.
Statistical evaluation of inferred visual features against ground
truth data is obtained and compared with the current state-of-
the-art visual speech synthesis approach. The results show a note-
worthy difference between the errors obtained from the MRD and
SGPLVM methods, the analysis and learning of manifold rele-

vance determination is described fully in Chapter 5.

Facilitating the performance of MRD by utilising incre-
mental eigenmodels: To produce realistic videos of talking
faces, a generative model of the face that captures both the shape
and texture variation is used for training MRD. Moreover, a mul-
tiple eigenvector adding algorithm [76,77] is used, thus allowing
for incremental updating of data models. This approach opens a
way of training these kind of models on computers with limitted
resources, for example mobile computing. Moreover, the incre-
mental eigenmodels method is appropriate for real-world applica-

tions where the online learning from real-time dataset is needed.
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The quantitative results demonstrate that MRD using incremen-
tal AAMs provides only slightly less accurate results than us-
ing batch methods. The proposed methods compare favourably
against several other state-of-the-art methods for visual speech
synthesis, which is shown in quantitative and qualitative evalua-

tion. Full details are given in Chapter 6.
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1.4 Thesis structure

Chapter 2 reviews background on the human speech production
process, and a description of a phenomenon of coarticulation,
followed by methods that have been used to generate talking
head including Three-dimensions (3D) head model and image
based facial animation. Then, visual speech animation methods
and synthesiser’s input requirements are presented. A review
of deep neural networks approaches for visual animation and
evaluation methods of synthesis methods for talking faces are
described.

Chapter 3 reviews approaches for facial parameterisation and
auditory speech feature extraction. Then, details of visual and
audio processing are described. Finally, the synchronisation
between audio and visual speech parameters is presented.
Chapter 4 different latent variable models are presented using
the probabilistic graphical model structure. Moreover, shared
linear dynamical system (SLDS) and a SGPLVM to model audio
and visual features of a talking face are presented. The SGPLVM
is then applied to predict visual from auditory features and a
comprehensive evaluation of its performance is dealt with. A
more accurate active appearance model was built using more
landmark points for each frame and larger dataset. Experiments
are conducted to compute the performance accuracy of increasing
landmarks around the mouth shape. In addition, experiments
are performed to investigate that building an AAM on larger
dataset can improve the model accuracy.

Chapter 5 deals with MRD method which is used to represent
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auditory and visual signal as a set of factorised latent spaces.
Training and inference for MRD are described. Quantitative
evaluation of the quality of visual speech of two different datasets
are presented for MRD and SGPLVM models.

Chapter 6 a generative model of the face which captures the
shape and texture variation and a method for adding eigenspaces
is described. The MRD method using batch and incremental
approaches for visual representation are compared. Experiments
are conducted to initialise the latent space. Experiments are
performed to compare two normalisation method utilising
Mean-centering AAM parameters and a 2z-score normalisation.
Then, quantitative and qualitative evaluation of the quality of
visual speech of the talking head results are presented. MRD
methods are evaluated against multiple methods of visual speech
synthesis.

Chapter 7 concludes the work described in this thesis with a

summary and indicates directions for future work.

1.5 Publications

Below is a publication based on the novel contribution related to Chap-

ter 5

e S. Dawood, Y. Hicks, and D. Marshall, “Speech-Driven Facial
Animation Using Manifold Relevance Determination.” In Eu-

ropean Conference on Computer Vision., Springer International

Publishing, 2016.
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In addition a journal paper is in preparation

e S. Dawood, Y. Hicks, and D. Marshall, “The Manifold Relevance
Determination for Audio Visual Mapping Based on Appearance

Facial Model.”



Chapter 2

LITERATURE REVIEW

This chapter provides background on human speech production pro-
cess, followed by a review of approaches that have been utilised to
synthesise visual speech including three-dimensions (3D) head model
and image based facial animation, and a phenomenon of coarticula-
tion. An input requirement to the synthesis system is then presented,
which can be achieved by means of sound/viseme sequence or plain
text (namely, text-driven systems), or by means of an audio speech sig-
nal (namely, speech-driven systems). In addition, different deep neural
network (DNN) techniques in the area of facial animation have been
reviewed. A review of different datasets for visual speech synthesis and

evaluation approaches for talking head have also been presented.

2.1 Human speech generation and the multimodal nature of

speech

Human speech is generated through the increase and decrease of air
pressure over the larynx and vocal tract out of the mouth or oral cavity
and nose or nasal cavity by the action of the diaphragm, as shown in
Figure 2.1. The sounds are produced because of the interaction of

the different cavities, associated with the vibration of the vocal cords.

16
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To produce speech, the different fragments of the larynx and mouth
should be in certain positions. Voiced sounds are produced when the
vocal chords are tightened; the air flow becomes restricted causing them
to vibrate. On the contrary, as the vocal chords are relaxed this results
in voiceless sounds. As an example, the long sound of phoneme v in
the word “vet” causes the vocal cords to vibrate, whereas the phoneme
f in the word “fish” does not. The portions of the vocal tract that

produce voices are called articulators [135].

Velum

Mose
Lips Fe

Tongue

Fharynx
Glottis

B

Trachea

Larynx

Inspiration
Diaphragm

Expiration
Vertebral

column
Abdominal
muscles

Figure 2.1. Sketch of the articulators utilised in human speech pro-

duction Parke and Waters [135].



Section 2.1. Human speech generation and the multimodal nature of speech 18

Some parts of the human speech generation system, for example the
cheeks and the lips, are clearly visible when looking at a talker’s face.
Moreover, other articulators for example the teeth and the tongue are
sometimes visible, depending on the speech sound that is being gen-
erated. The appearance of the visible articulators is highly correlated
with the uttered sequence of speech sounds, because the auditory speech
signal is the result of the movement of the articulators of the human
speech production system. Thus, two distinct data streams are received
when looking at the face of somebody who is speaking: visual speech
data containing a variation of the talkers visible articulators and acous-
tic speech data containing a sequence of speech sounds. Auditory-visual
speech data is the combination of these two data streams. Most de-
velopments in speech-based automatic recognition depend on auditory
speech as the sole input data, ignoring its visual counterpart. How-
ever, the combination of audio and visual modalities have been shown
to be suitable for improving recognition accuracy and robustness in
both humans and machines than can be obtained with a single modal-
ity [21,141,142]. This is because the complementary nature of the
auditory and visual modalities. For example, some sounds, such as “n”
and “m” that are confusable by ear are simply distinguishable by eye.

Although the acoustic speech mode is often regarded as the primary
communication channel, receiving also the visual signal helps to better
understand the message [116,179]. Erber [56], and Sumby and Pol-
lack [161] have shown an effective improvement in signal to noise ratio
(SNR) when the acoustic speech is corrupted by noise. Expressions of
emotion and extra metacognitive information are also utilised by the

speaker to emphasise the linguistic data transferred by speech, [15,162].
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Visual prosody is utilised to assign stress or to add an emotion to the
message [163]. The decoding of the audio data is influenced by the
captured visual data and vice versa. This observation explains the ex-
istence of auditory visual speech perception effect called McGurk [125].
For example, this occurs when an auditory presenting syllable /ba/ is
dubbed onto a video of a mouth /da/, the audio perception is altered
by the visual information and the observers heard /ga/ [116]. Another
effect, known as visual capture. This, happens when viewers who are
perceiving unmatched audio-visual speech reported hearing the visually

given syllable instead of the acoustic syllable that was given [1].

2.2 Phonemes and visemes

The phoneme is a basic unit of speech and viseme is a basic visual seg-
ment that corresponds to the phoneme. Correlating visemes to sounds
is defined as visemetrics. Visemes are a unique posture of the mouth
parts, Figure 2.2 shows some key viseme postures [194]. The combina-
tion of some postures can be derived from their audible equivalents. The
transition between adjacent phonemes is called diphone, whereas tri-
phones are a collection of three phonemes. They are utilised in speech
analysis and synthesis in which acoustic models are necessary to be
labelled to words in a language. Coarticulation is defined by such la-
belling which spans two sounds for diphones and three for triphones.
If the number of sounds in a language is N, then the potential total
number of diphones can be N? and N? for triphones [135]. The same

concepts can be applied to visual labelling.
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Neutral b: such in beef k such in cat i:such in see

b: such in feel [: such in shift 0: such in thick n: such in hang

. M

s such in seed v: such in very I: such in leek B: such in bat

Figure 2.2. American English visemes Parke and Waters [135].

2.3 Coarticulation

A speech utterance can be transcribed into a group of functional seg-
ments known as phonemes. Phoneme is the basic segment of speech and
viseme is the corresponding visual segment. There are 44 phonemes in
the British English Example Pronunciation Dictionary (BEEP) phone
set [169], which can be grouped into 14 visemes according to MPEG-4
standard [167]. The visual appearance of a phoneme depends on the
phonemes which come before and after it, this phenomenon is known as
coarticulation. Speech is a continuous process and in order to form the

sounds of speech the articulators need to be physically moved to their
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sequence of required positions. Coarticulation refers to changes in the
articulation of a speech unit according to preceding or backward coar-
ticulation and upcoming units or forward coarticulation. An example
of preceding coarticulation is a difference in articulation of a final con-
sonant in a word relying on the preceding vowel, e.g. boot vs beet. An
example of upcoming coarticulation is the anticipatory lip rounding at
the beginning of the word “stew” [22]. The speech articulators need to
transition from the current positions to the following configuration, so
that there is a blurring at the boundaries of the phonetic segments. For
example, the utterance of the sound /ih/ in milk and sit. In the first
case, the phoneme /m/ preceding the /ih/ would cause a lip-rounding
through the utterance of /ih/, which in turn has to transition to the
semi-vowel /1/ before reaching the sound /k/. The shape of the mouth
through the utterance of /ih/ is more elongated vertically. In the case of
the word sit, the sound /ih/ is encapsulated between /s/ and /t/, mak-
ing the occurrence of /ih/ of more elongated horizontally and shorter
duration. In both cases, the visual appearance would change, because
of the preceding and upcoming sounds that occur, so making speech

production a highly context-bound process [39].

2.4 Facial animation

Facial animation involves controlling a face model utilising geometric
manipulations or image manipulations. A review of facial modelling

and animation techniques is presented in this section.
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2.4.1 3D Head model and image based facial animation

Traditional facial animation methods are graphics-based, where points
on the face are represented as vertices in three-dimensions. To form
a connected mesh, the skin is approximated by connecting the ver-
tices. Using time-varying parameters, these mesh vertices are manip-
ulated which influence the mesh geometry either directly, or utilising
a physically-based method [135]. The pioneering work of Parke [136]
was the first to build a three-dimensional geometric model of a human
face using a polygon mesh, by painting the polygon topology onto a
human’s face, then 3D coordinates of the vertices were reconstructed
by measuring their distances in multiple photographs. Using key shape
interpolation, these head models were then animated, afterward the
face was manipulated through the use of parameters that controlled
interpolation, translation, rotation and scaling of different facial fea-
tures [134,136,137]. Figure 2.3 shows the polygon topology and two
type of rendering faces for Parke’s [134] model which is an arbitrary net-
work instead of a regular grid. The polygons are sized and positioned
to correspond to the features of the face.

Cohen and Massaro’s Baldi [22,23,113] is a descendant of Parke’s
software and his specific 3-D talking face [133]. The resolution of the
model was increased, modified and additional control parameters were
added, asymmetric facial movements were allowed, a complex tongue
was trained, a coarticulation algorithm was implemented, and con-
trols for paralinguistic data were added and have an effect in the face.
Baldi [131] can either be controlled by text-to-speech (TTS) synthe-
sis or aligned with natural speech to predict bimodal (audio/visual)

speech. The control parameters move vertices (and from these vertices,
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the neighbouring polygons were formed) on the face using geometric
functions such as rotation (e.g. jaw rotation which determines the
mouth opening) or translation (e.g., mouth widening, upper and lower
lip height). Other parameters controlled scaling and interpolating vari-
ous face sub-areas. Interpolation was used in the face shape parameters
for example cheek, forehead shape, neck, and smiling.

Another approach for 3D animation utilises motion capture to map
recorded movement onto a character [204]. By utilising reflectance
markers located on the actor, which are tracked by cameras, feature
points on the face are recorded. Ma et al. [112] achieve a small set of
facial expressions utilising a real-time 3D scanning technique to record
a high-resolution appearance and geometry of an actor. A group of
motion capture markers was placed on the face to track large scale
deformations. These large scale deformations were mapped to the de-
formations at finer scales. This relation was represented in the form of
deformation-driven polynomial displacement maps, encoding variations
in medium-scale and fine-scale displacements.

An anatomy-based method mentioned in a recent review paper dis-
cusses a strategy for defining the 3D polygon mesh [124]. The au-
thors mention that in this approach the deformations of the polygon
mesh cannot be directly parameterised. Alternatively, the facial ges-
tures are simulated by modelling the anatomy of the face: muscles,
bones and skin. Sifakis et al. [156] presented a physics-based method
for generating animations of words and phrases from text and audi-
tory input based on the analysis of motion captured speech samples.
A high resolution, anatomically accurate flesh and muscle model was

built for a specific subject. After that a motion captured training set of



Section 2.4. Facial animation 24

speech samples was translated into muscle activation signals, and seg-
ment those into time segments corresponding to individual phonemes.
Then, novel words and phrases were synthesised using these samples.
Physics based approaches model face movement depending on simu-
lating the effects of muscle interaction, allowing anatomically plausible
motion. However constructing such models needs noteworthy effort.
Waters [193] proposed a physical model which can predict a persons fa-
cial expressions given a neutral 3D range scan. Human emotions such
as fear, anger, surprise, disgust, happiness, and joy were animated util-
ising vector based linear and orbicularis oris muscles using the facial
action coding system (FACS) [53].

Image-based methods have been developed to generate a photore-
alistic human face model and can produce animated sequences with a
high degree of both static and dynamic realism. Photorealism denotes
that the novel synthesised images show the accurate dynamics, motion,
and coarticulation effects. In Theobald [169], image-based animation
approaches are classified into two major groups, namely morphing ap-
proach and a concatenative approach. The morphing method is equiva-
lent to traditional key-frame animation, in which images are selected to
represent mouth shapes or specific expressions and in-between frames
created utilising the morph. In a concatenative approach, the face in
each frame of the dataset is labeled with a set of parameters, then these
parameters are utilised to select frames from the dataset closest to the
required frame. The pioneering work of Bregler et al. [13] is the Video
Rewrite system where key-frame-based interpolation techniques based
on morphing between 2-D key-frame images were developed. The most

frequently utilised key-frame set is visemes, which form a set of images
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spanning many of mouth shapes. The transitions from one viseme to
other viseme can be computed and interpolated automatically, utilising
morphing approaches. The speech and video were modelled together
by breaking down the recorded video corpus into a group of smaller
audio-visual basis units, where each of the units is a triphone segment.
Photorealism in Video Rewrite is achieved by only utilising recorded se-
quences to synthesis the new video. Videorealism is realised by utilising
triphone contexts to model coarticulation. To deal with all the possible
triphone contexts, the system needs a library with tens and perhaps
thousands of subsequences, which appears to be too redundant. To
decrease the number of frames to be stored, other approaches morph
between keyframes [58] of visemes, which are the visual analogue of
sounds. A developed statistical analysis of video footage has yielded
other essential mouth shapes that can be encoded as a vector space of
warp-fields and textures [57]. Cosker et al. [30] proposed a hierarchi-
cal image based facial model capable of producing coarticulted mouth
animation given speech input. A novel modelling and synthesis algo-
rithm is incorporated for learning and producing coarticulated mouth
animation.

Producing synthesised talking heads that look like real humans is
challenging. The existing methods to talking heads utilised image-
based models [106, 123,186, 190]. Wang and Soong proposed a system
for producing photo-realistic talking head from video clip, and focus on
the articulator movements rendering such as lips, teeth, and tongue.
A hidden Markov model (HMM) trajectory-guided, real image sam-
ple concatenation method to photo-realistic talking head animation is

introduced by Wang and Soong [189]. They suggest to model and
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synthesise the lip movement trajectory using statistical HMM model,
the model is initialised with maximum likelihood training and refined
under minimum generation error principle. Then, they utilised the
trajectory-guided sample selection approach, in which the HMM syn-
thesised visual trajectory is utilised as guidance to select the natural
mouth images from the recorded collection for a photo-realistic head
rendering as illustrated in Figure 2.4. This system won the first place
in the auditory-visual contest in the LIPS2009 Challenge having been

perceptually evaluated by human subjects.
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(a) (b) (c)

Figure 2.3. The topology and the rendering images (a)Frontal and
side views of the topology, (b) The generated face with the eyelids

closed and neutral expression, (c) A smaller chin face Parke [134].

HMM generated trajectory

«———— n — < - ey

- m

Selected images

Figure 2.4. HMM trajectory-guided sample selection method. The
top-line images are the HMM generated visual trajectories. The bottom
colored images are real sample image candidates in which the optimal
lips sequence (red arrow path) is selected using Viterbi decoding (Wang

and Soong) [189].
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2.4.2 \Visual speech animation

Visual speech animation can be considered as visual motions of the face
(specifically the mouth part) when humans are speaking. Synthesising
realistic visual speech animations corresponding to novel text or
audio speech input has been a hard task for decades, because the
large number of phonemes in the human languages, such as English,
also the phenomena of coarticulation in speech that complicates the
mappings between phonemes (or auditory speech signals) and visual
speech motions. Previous studies in visual speech animation synthesis
can be roughly categorised into two classes: viseme-driven methods
and data-driven methods. Viseme-driven methods need animators to
design key mouth shapes for phonemes (visemes) in order to synthesis
novel visual speech. In contrast, data-driven methods require a

pre-recorded facial motion dataset for synthesis purposes.

Viseme-driven methods

Viseme-driven methods typically require the creation of key mouth
shapes (visemes) for each phonetic realisation, and then smoothing
functions or coarticulation rules are utilised to infer new speech ani-
mations. There is no agreement as to which phonemes are grouped
to form each viseme, and how many visemes are optimum. Many
researchers give different phoneme to viseme groupings [20, 126], the
main cause is the lack of standardisation for visemes, and also because
there are different phonetic alphabets for different languages. Some at-
tempts have been made to utilise machine learning methods to identify

visemes objectively [83]. However, these have yet to produce a generic
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set of visemes. Most viseme-based methods assume a many-to-one map-
ping between phonemes and visemes, and utilise an approximate set of
mouth shapes; as an example, Tekalp and Ostermann [167] utilised 14
visemes. Cohen and Massaro [22] introduce the coarticulation model
based on Lofqvist’s gestural theory of speech production [110] for syn-
thesis speech animations. In their method, a viseme shape is defined
utilising dominance and blending functions that are defined in terms of
each facial measurement. The final mouth shapes are then determined
using a weighted sum of dominance values. Dey et al. [45] implement
talking head utilising viseme-driven speech animation. In their work,
15 visemes were utilised, and meshes were built utilising Facegen mod-
elling software [88]. Tongue positions visemes were initially adapted
using Lazalde’s tongue models [103]. For a speech tutoring application,
the head was integrated into a GUI. The talking head explains how to
vocalise sounds, and displaying the proper mouth movements. Acous-
tic speech and phonetic labels with durations were generated from text.
An animation sequence was generated by mapping each phoneme label
to the corresponding viseme. Coarticulation was performed based on
Cohen and Massaro’s model, utilising a dominance function to repre-

sent the impact over time that a viseme has on an utterance [22].

Data-driven methods

Data-driven methods infer new talking heads by concatenating pre-
recorded facial motion database or building a statistical model that
captures the mapping between auditory and visual parameters. There
are two ways to deal with the constructed facial motion data, either

by utilising learning-based methods in which statistical models for
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facial motion control are trained from the data, or facial motion data
is further organised and processed utilising sample-based methods.
Lastly, given novel acoustic speech or text input, corresponding visual
speech animations are synthesised by sampling from the trained
statistical models, or recombining facial motion frames optimally
chosen from the facial motion dataset.

Data-driven methods can be further classified in terms of the input
utilised to produce facial animation as well as on the method utilised
to achieve auditory-visual mapping. The input can be either text or
speech features. Text input in a given language is driving the facial an-
imation and in the synthesis stage, text-to-speech synthesis is involved,
followed by a mapping between underlying phonemes and visual
speech [91,121,187]. Speech-driven facial animation involves mapping
the discrete phonemes or continuous speech parameters onto the face.
Audio information can be represented utilising phonemes which are
obtained by phonetically aligning auditory data to phonemes [87].
Speech-driven facial animation in the work of Deena et al. [38] refers

both to phoneme-driven and continuous speech-driven facial animation.

Sample based approaches

Sample based methods concatenate visual speech units in a dataset,
where the units may be variable length [111,166] or fixed-length (e.g.
phonemes, visemes, or words) [85,122,172]. To form the animation, a
set of units are found by minimising a cost function, based on phonetic
context and smoothness of concatenation. Bregler et al. [13] proposed

the video rewrite approach for inferring 2D talking heads given novel
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voice input, based on the collected triphone video units. This method
models the coarticulation effect with triphone video units. Kshirsagar
and Thalmann [97] present a syllable motion based method to infer
novel speech animations. In their method, captured facial motions
are segmented into syllable motions, and then new speech animations
are achieved by concatenating syllable motion segments optimally. To
allow natural smoothing between concatenated units and avoids dis-
continuities, it is important to have a sufficiently large database. To
overcome these problems, statistical approaches are used to learn and

then predict visual speech parameters from speech or phonetic context.

Learning-based approaches

Learning-based methods model speech coarticulations as implicit func-
tions in statistical models. Xie and Liu [197] used a coupled HMM to
model the auditory and visual speech separately with coupled states
having a mapping on both data streams. Visual parameters are pre-
dicted from auditory parameters using a Baum-Welch auditory-visual
inversion algorithm. Brand [12] utilised an entropy minimisation learn-
ing algorithm to learn a HMM-based facial control model from au-
dio and visual training data, then full facial motions were predicted
from novel audio speech. To synthesis facial configuration sequences
a Viterbi algorithm is used through vocal HMMs to search for most
likely facial state sequence. Lehn-Schioler et al. [105] utilised a linear
dynamical system (LDS) to jointly model voice and video parameters.
A Kalman filter was used during inference to synthesise the underlying
states from voice data, and a linear mapping was then utilised to infer

the visual parameters from the synthesised states. Variant of switching
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linear dynamical systems (SLDS) was used in the work of [55], named
deterministic process dynamical system (DPDS) to model video data
while voice data was modelled utilising a HMM. The two models were
joined by the phonemes, which represent the states of the HMM and
the switching states of the switching linear dynamical systems. During
inference, synthesised phonemes from the HMM were utilised to find
the most likely video parameters utilising the DPDS. Lehn-Schioler
et al. [105] and Englebienne et al. [55] methods only model carry-over
coarticulation through use of autoregressive linear dynamics models be-
cause the state vector for the current frame is synthesised from that of
the previous frame in the inference stage. In Deena et al’s. method [36]
shared Gaussian process latent variable model (SGPLVM) is proposed
to model a mapping between facial motion and speech data. A shared
latent space is computed by maximising the joint likelihood function
of the auditory and visual features, utilising Gaussian kernels. Dur-
ing the inference stage, intermediate latent points are obtained from
the auditory data, and then utilised to synthesise the corresponding
visual data using the Gaussian process mapping, visual data is repre-
sented using active appearance models (AAMs) [25]. Chen et al [19]
introduced a nonparametric switching state-space model, to account for
multiple types of dynamics. This approach is an extension of the shared
GPDM [36], where multiple shared GPDMs are indexed by switching
states. Later, Deena et al [38] utilised switching shared Gaussian pro-
cess dynamical model (SSGPDM) with a variable-order Markov model
on phonemes for talking head synthesis. We adopt such a learning-
based method in this thesis because it allows for a compact representa-

tion of facial data. More details on specific learning-based approaches
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applied to visual speech animation and related to this thesis are pre-

sented in Chapter 4.

2.4.3 Input text and speech driven systems

To synthesise the target audio visual speech data, the sequence of
phonemes that must be uttered by the computer system is required.
The input data can be plain text, which is called text-to-speech syn-
thesis systems. A sequence of visemes can describe speech instead of
phonemes, because visemes are more suitable to describe visual speech
data [62]. A many-to-one mapping from phonemes to visemes is the
standard method that utilised, in this approach a multiple visually simi-
lar phonemes are mapped on the same viseme. However, a many-to-one
phoneme-to-viseme mapping does not take visual coarticulation effects
into account. Mattheyses et al. [122] introduced a novel approach to de-
fine a many-to-many phoneme-to-viseme mapping, and showed that a
many-to-many relationship more accurately describe the visual speech
data as compared to many-to-one viseme-based and phoneme-based
speech labels. Some visual speech animation synthesis a novel visual
speech data based on an audio speech data that is given as input to
the system. These systems estimate the target facial data based on
features extracted from the audio input data. To obtain appropriate
visual features, a training set is utilised to train a statistical model on
the auditory speech features and their corresponding visual features.
In the synthesis stage, this model is utilised to infer the target visual
features giving a novel audio speech data. The synthesised visual fea-
tures can then be utilised to drive the visual speech. Different methods

have been utilised to represent visual speech and audio features for vi-
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sual speech animation driven by speech. In addition, diverse techniques
have been suggested to learn the mapping between the audio and vi-
sual features, such as Gaussian mixture models [206], hidden Markov
model [11,12,30], regression techniques [84], an artificial neural network
(ANN) [2], DPDS [54] and SGPLVMs [37].

More relevant literature relating to visual speech synthesis are given in

the following Chapters.

2.5 Deep Neural Networks

Recently, deep neural networks have been successfully applied to facial
animation. The long short-term memory (LSTM) is an extension of the
recurrent neural network (RNN) architecture. Conventional RNNs are
only able to utilise previous context data. However, modelling speech
is highly related with preceding and succeeding speech contexts. Such
that, bidirectional RNNs can access both the past and future contexts
with two separate hidden layers. Pham et al. [140] introduced a re-
gression framework based on LSTM RNN to determine rotation and
activation parameters of a 3D blendshape face model [17] from a collec-
tion of audio features, for real-time facial animation. A set of acoustic
features to capture contextual progression and emotional intensity of
the speech were extracted from input audio. The blendshape model
of [17] was used for animation. It can represent different emotional
states, such as happiness, sadness, etc., without explicitly specifying
them. Fan et al. [59] proposed a deep BLSTM (DBLSTM) method in
modelling nonlinear mapping between auditory and visual data streams
for photo-realistic talking face, which showed some enhancements over

HMMs utilising a small database. A deep BLSTM RNN can be con-
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structed by stacking multiple BLSTM RNN hidden layers. The output
sequence of one layer is utilised as the input sequence of the follow-
ing layer. In their work, the auditory and visual data were converted
into utterances of contextual labels and visual parameter, respectively.
The deep BLSTM network was trained to learn the regression model
between the auditory and visual utterances by minimising the gener-
ation errors. The input layer of the network was the labels sequence
and the output layer was the AAM visual features sequence. In fol-
lowing work, Fan et al. [60] introduced a 2D image-based video-real
speech animation. Using AAM learned from a group of facial images,
the lower face area of the speaker was modelled. A deep neural net-
work model was trained to learn an auditory to visual mapping. To
enhance the realism of the presented talking face, the trajectory tiling
approach was adopted to utilise the generated AAM trajectory as a
guide to select a smooth and natural video sequence from the recorded
audio-visual database. Inspired by the encouraging performance of low
level descriptors (LLD) in speech emotion recognition, Lan et al. [99]
investigated LLD based DBLSTM bottleneck feature for speech driven
talking avatar that considers the contextual auditory feature correla-
tions and the textual information. The proposed method demonstrated
some improvements over the conventional spectrum related features.
Recent studies have shown that utilising deep neural networks re-
sults in improved synthesis of head motion, especially when using BLS-
TM. Ding et al. [47] proposed a neural network method for speech-
driven head motion synthesis to model a non-linear mapping from au-
ditory speech to head motion. They showed that using a one-hidden-

layer multi-layer perceptron (MLP) with Mel-frequency cepstral co-
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efficient (MFCC) feature input enhanced the head motion synthesis
accuracy significantly. Their study showed that feed-forward neural
networks (FFNNs) have dramatically outperformed a HMM in head
motion prediction. A bidirectional LSTM (BLSTM) was used in their
recent work [46] and showed that the BLSTM networks outperform
the FFNNs because of their capability of learning long-range speech
dynamics. Haag and Shimodaira [75] presented a novel method which
combines stacked bottleneck features and a BLSTM network, to model
context and expressive variability for the task of expressive speech-
driven head motion synthesis. The proposed method outperforms the
conventional feed-forward DNNs. Sadoughi and Busso [151] built a
model to learn the distribution of head motions conditioned on speech
prosodic features employing a conditional generative adversarial net-
work (GAN) with BLSTM. The conditional GAN model showed im-
provement performance over some baseline systems.

Karras et al. [93] introduced a deep convolutional neural network
(CNN) that learns a mapping from input auditory coefficients to the 3D
vertex coordinates of a face model to generate an expressive 3D facial
animation. Taylor et al. [165] introduced a framework utilising deep
neural network to estimate AAM coefficients from input phonemes,
which can be generalised to any input speaker and languages. Their
method was a continuous deep learning sliding window predictor which
means that the predictor can represent a complex non-linear regression
between the input phonetic context and output visual representation
of continuous speech that includes coarticulation effects. Their sliding
window predictor can be viewed as a variant of a convolutional deep

learning architecture. Song et al. [158] presented a synchronised audi-
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tory to talking video generation method using the recurrent adversarial
network to model the temporal correlation between auditory features
and face image features at the same time. In addition, a sample selec-
tion approach which decreases the training size by eliminating highly
repeated samples without affecting performance. The limitation of the
end-to-end training performance is that the auditory encoder network
needs the off-the-shelf auditory extractor.

The main limitation for using a deep neural network for auditory-
visual mapping is a lack of publicly available auditory-visual speech
corpus which is either of restricted vocabulary or size [24,139]. Employ-
ing modern machine learning techniques such as deep learning required
a sufficiently comprehensive dataset, because such approaches are gen-
erally highly under constrained. In addition, training deep learning is
computationally very expensive and needs a GPU with high perfor-

mance.

2.6 Datasets

For visual-speech synthesis purposes, no standardised databases are
available. Therefore, each visual-speech synthesis method is developed
and assessed utilising its own visual-speech database. Recently, Tay-
lor et al. [164] studied the problem of mapping from audio to visual
speech to generate speech animation automatically from an auditory
speech data. A sliding window DNN that learns a mapping from a
window of audio parameters to a window of visual parameters from a
large auditory-visual speech corpus is presented. The KB-2k corpus is
used from [166] which is expected to be set for future release. It is

a large auditory-visual speech corpus including a male actor speaking
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about 2500 phonetically balanced TIMIT [65] utterances in a neutral
style. The actor was requested to speak in a neutral talking style and
maintain, with a fixed pose.

Ding et al. [46] used the MNGUO electromagnetic midsagittal artic-
ulography (EMA) dataset in their experiments for training of BLSTM-
RNNs. The corpus consists of 1263 sequences recorded from a single
talker. Pham et al. [140] utilise the ryerson auditory-visual dataset of
emotional speech and song (RAVDESS) [109] for training and evalu-
ation DNN. The database includes 24 professional actors talking and
singing with several emotions such as neutral, happy, calm, angry, sad,
fearful, surprised and disgust. Video utterances of the 20 actors are
used for training, with about 250,000 frames, and the model is evalu-
ated on the data of four actors.

Vougioukas et al. [181] suggested a temporal GAN, capable of syn-
thesising a video of a talking face from an auditory data and a single
still image. Evaluation was performed on the GRID [24] and TCD
TIMIT [79] datasets. GRID an auditory visual dataset consists of 1000
sentences per talker such as “place blue at F 9 now” spoken by each
of 34 speakers giving a total collection size of 34,000. The sentences
structure is drawn from the following grammar “command:4, color:4,
preposition:4, letter:25, digit:10, adverb:4”. GRID had been collected
to support the utilise of common material in speech perception and
automatic speech recognition research’s. TCD-TIMIT consists of au-
ditory and video footage of 62 talkers reading 6913 phonetically rich
sentences from the TIMIT corpus.

Kuhnke [98] demonstrated a structure to construct a visual speech

synthesis method from 3D performance capture data utilising a pub-
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licly available 3D database [61]. BIWI 3D audio-visual dataset [61] of
Affective Communication includes 14 different subjects, citing 40 ut-
terences once neutral and once emotional. The 3D mesh utterances
are registered at 25 fps and phoneme labels of the auditory utterances
provided with the corpus.

In 2008, the LIPS visual speech synthesis challenge was organised
to evaluate and compare different auditory-visual speech synthesis ap-
proaches utilising the same original speech data [171]. An English visual
speech dataset appropriate for auditory-visual speech synthesis was re-
leased. A great part of the work described in this thesis employed the
LIPS 2008 dataset [171]. This public database has 278 video files with
corresponding audio data, each being one English utterance from the
phonetically-balanced Messiah corpus [169] spoken by a native English
female speaker with neutral emotion. Another dataset closer to natu-
ral speech is used in this work namely DemocracyNow! corpus (DEM-
NOW dataset) [54] consists of 803 utterances for a total duration of 1h
7m 29.20s featuring a female American anchor reading broadcast news
items. A more detailed description of the datasets used in this work is

described in Chapter 3.

2.7 Evaluation methods of synthesis methods for talking faces

The quality of a visual speech synthesiser can be determined util-
ising various methods, which can be categorised as either objective
and subjective evaluation methods. Objective methods include de-
termining the error or correlation between real and synthetic visual
features [29, 39, 169] in addition to comparing the evolution of their

trajectories over time. Error measures such as the sum of absolute dif-
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ferences (SAD), the root mean squared error (RMSE) or mean squared
error (MSE) (the difference between the two-error measure is in units),
the maximum absolute error (MAE) and average mean squared error
(AMSE), in addition to the correlation metrics such as average correla-
tion coefficient (ACC), give a measure of the static comparison between
real and synthetic visual parameters. Whereas comparison between real
and synthetic visual feature trajectories provide the dynamic correla-
tion of the two features. The RMSE can be utilised as a performance
evaluation, either in terms of the pixel values in the synthesised shape-
free texture images [48] or the synthesised landmarks [3].

Objective quality evaluations are easy to achieve and are less time-
demanding in comparison to other evaluation methods because the nu-
meric quality metric can be determined directly from the visual speech
data. The main disadvantage of utilising purely objective measures
is that it is difficult to compute the overall realism, naturalness and
intelligibility of the synthetic output in comparing features of original
and synthetic visual speech. These measures cannot consider cognitive
issues with respect to how the brain perceives a speaking head.

In Englebienne [54], it was shown that objective results do not nec-
essarily correlate with subjective results since a synthesiser, which pro-
vided less appropriate objective results was found to be better based
on perceptual judgments.

A subjective evaluation is the most frequently utilised method for
assessing the naturalness, and the degree of viewer agreement of synthe-
sised visual speech signals. A subjective evaluation of the visual speech
quality includes a set of test subjects contributing in an evaluation ex-

periment. In some cases of subjective evaluation the quality measure is
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computed by collecting the test participants opinion utilising a Likert
scale [45,122]. To compare different synthesis methods, it is useful to
use comparative mean opinion scores [38,55,120].

RMSE shows the parameter prediction errors and gives a more
average-case statistical comparison. Therefore, in this research we
utilise the AMSE or RMSE as the error measure between the true
and estimated visual parameters as has been used by researchers such
as Deena et al. [38], Gutierrez-Osuna et al. [73], Xie and Liu [197],
and Terissi et al. [168]. MSE is used by the researchers such as Xie et
al. [198], Wang et al. [183], and Taylor et al. [165]. We also use ACC
in our experiments. ACC describes how the synthesised trajectory is
correlated with the ground truth and it is used by the researchers such
as Deena et al. [38], Gutierrez-Osuna et al. [73], Xie and Liu [197], and
Terissi et al. [168]. Note that lower AMSE and higher ACC correspond
to better performance.

The advantage of objective evaluations is that they can be calcu-
lated automatically, much less time consuming, and the tests are in-
expensive to perform than subjective evaluations. However, humans
certainly not repeat the same words exactly in the same way, therefore
there might be differences in the parameters performing repetitions of
the same words, so that a synthesiser will not be able to exactly resyn-
thesise an occurrence of the words. The differences between the refer-
ence and generated parameters could appear in the difference viewed in
normal speech production, which are not perceived by observers. On
the contrary, the variation might be because of errors in the generated
visual speech.

Therefore, the objective evaluations might be not enough to evaluate
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our work. Thus we also use another useful evaluation method such as

subjective evaluation.

2.8 Summary

A description of the human speech generation and the multimodal na-
ture of speech and a review of approaches to synthesise visual speech in-
cluding 3D head model and image based facial animation was presented.
In addition, classes of visual speech animation including viseme-driven
and data-driven approaches were described. The phenomenon of coar-
ticulation has also been addressed, followed by a description of the input
requirement to the synthesis system. Moreover, various DNN methods
in the domain of visual speech synthesis were reviewed. A review of
different databases for visual speech synthesis and evaluation methods
of synthesis approaches for talking face was then presented.

The choice of approaches utilised for face modelling and auditory-
visual mapping importantly effects the level of realism achieved. The
aim of this work is to improve the state-of-the-art in the area of learning-
based speech-driven talking face. Our focus is on the auditory-visual
mapping, aiming to automatically model the relationship between au-
ditory and visual features by jointly modelling auditory and visual
speech utilising non-linear mappings within a Bayesian framework.
In addition, 2D appearance-based face modelling and a construction

eigenspace models are used in this work.



Chapter 3

DATA PRE-PROCESSING
AND MODELLING

A dataset of auditory-visual recordings of a talking head that captures
the different phonetic combinations in the language is required for vi-
sual speech synthesis. In this chapter, we begin by reviewing methods
for facial parameterisation and audio speech feature extraction. Af-
terwards, details of visual and auditory processing are presented. The
synchronisation between auditory and visual speech parameters is dis-
cussed as there is typically a mismatch between the auditory and visual
frequency because of the requirement for an auditory window in which
the audio speech data is stationary.

In modelling a talking face, we require some way of representing the
visual speech, either in two or three dimensions. In this work, we
focus on 2D appearance models, which can deliver high levels of real-

ism [106, 185].

3.1 Data

Two datasets are utilised in this work: the first one is LIPS dataset [171]

and the second is DEMNOW dataset [55], because they are most popu-
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lar, large datasets and also we want to compare our proposed approach
using different training databases. The LIPS corpora is phonetically
balanced, while DEMNOW is closer to natural speech.

The LIPS dataset has 278 video files and all together 61,028 face
images with corresponding auditory track, each being one English sen-
tence from the Messiah corpus [169] spoken by a single British female
with neutral emotion. The duration of each sentence is approximately
3-6 seconds. This dataset was made available for the LIPS2008 Visual
Speech Synthesis Challenge. The auditory signal is in the form of WAV
files with 16-bits/sample and a sampling frequency of 44.1 KHz. The
phonetic annotation for each frame has also been made available for the
corpora. The acoustic speech for each utterance has been aligned to the
corresponding video. Utilising the British English Example Pronunci-
ation (BEEP) phonetic dictionary, the corpus was phonetically aligned
with the HTK audio speech recognition software [202], and the full con-
textual labels are generated with a phoneme dictionary which has 50
phonemes. The phonetic labels are specified in terms of the timings and
this is processed to align the phonemes with each frame of the utterance.
The dataset consists of video stream of size 576 x 720 sampled at a rate
of 50 frames per second according to the PAL standard [90]. The corpus
is available for download at the website: http://www.1ips2008.org/.

The DEMNOW datasets (originally called the Democracy Now!
news broadcast) [54] consists of 803 utterances featuring a female
American news reader, which are available for download at the web-
site http://gwenn.dk/demnow/. The sequences were extracted from
broadcasts totalling one hour and seven minutes of video. FEnglebi-

enne [54] manually extracted short video sequences of about 3 — 10



Section 3.2. Statistical models of shape and texture as a representation of the face 45

seconds (eliminating inserts, telephone talks, etc.). According to the
American NTSC standard [129] utilised for the recordings, a frame rate
of 29.97 Hz was extracted. The DEMNOW dataset was phonetically
aligned utilising HTK [202] with the CMU phonetic dictionary [195],

because Amy Goodman, the news reader, is American.

3.2 Statistical models of shape and texture as a representation

of the face

Statistical models of shape and texture have been widely utilised for
recognition, tracking, and synthesis. These models have been used to
recognise and track objects, including in video sequences [27]. The ac-
tive appearance model (AAM) approach seeks to find the model param-
eters which produce a synthetic image as close as possible to the target
one. To allow an easy mapping from audio features to visual features,
some speech-driven 2D talking head synthesisers utilise a mathematical
model to parameterise the visual speech data. For example, AAMs are
ustilised by Cosker et al., Englebienne et al. and Deena et al. [31,36,55].
Our work will focus on a statistical method of AAM to obtain appropri-
ate visual features. Kass et al [94] introduced Active Contour Models
(snakes) which can be utilised to “snap” onto nearby edges through an
energy-minimising spline function. Sirovich and Kirby [95,157] first ap-
plied principal component analysis (PCA) to efficiently find the lower
dimensional model of human faces. It was argued that any face picture
could be resynthesised as a weighted sum of a small collection of pictures
which define the eigenfaces, and a mean image of the face. Turk and
Pentland [178] utilised PCA to represent the intensity patterns in the

images in terms of a set of eigenfaces. A set of basis vectors were com-
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puted from a training data of faces and every training face decomposed
into its principal components, which was applied to facial classificia-
tion. PCA was used by Cootes et al. [26] to model the shape variation
of the face example, then they used active shape model (ASM) search
approach (also known as smart snakes) to fit a shape model to images.
Craw and Cameron [32] used manually selected points to warp the in-
put images to the mean shape, yielding shape-free images. Moghaddam
and Pentland [127] used view-based eigenface models to describe differ-
ent viewpoints, for the shape-free representations. Active appearance
model (AAM) were developed by Cootes et al. [25], they combined the
modelling of both shape and texture using PCA. The AAM method
offers a convenient hybrid of model-based and image-based approaches
in the form of a compact model that describes the variations of the

shape and appearance of the face.

3.3 Appearance models

Appearance models [25,27] are generated by combining a model of
shape variations with a model of the appearance variations. In our
work, we used a statistical approach of appearance models to build a
face model. A training set of labeled images is required, where landmark
points are marked on each face. The appearance models allows any face
to be represented using a compact set of parameters, which can be used

to synthesise the original face.

3.3.1 Statistical models of the shape

In order to begin building an appearance model, the construction of

a point distribution model (PDM) is required [26]. Statistical models
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of shape are used to represent objects in images. In a 2D image n
landmark points, {(x;,y;)} can be represented for a single shape as the

2n element vector,

X = (mla-'-vxn7y17"'7yn)T (31)

where x and y coordinates represent image landmarks, n is the number
of landmarks in an image, s such vectors x, can be generated for s
training examples. Figure 3.1 shows a face image from LIPS dataset
marked with points defining the main features. A PDM captures shape
variation, for instance, in the face example, we would be interested
in capturing variation which occurs in regions such as the mouth, for
example, when it opens or closes. However, the variation which might
occur due to pose changes in the face, for example, when a person moves
their face out-of-plane is not appropriate. Therefore, before statistical
analysis can be applied on these shapes, it is necessary that the shapes
are in the common co-ordinate frame, the shape training set is firstly
normalised with respect to pose using an alignment algorithm. The
most popular method of aligning shapes in a same co-ordinate frame
is Procrustes analysis [71]. In this method each shape is aligned such
that the sum of distances of each shape to the mean (F = ¥ |x; — X|*)
is minimised, where x; is a shape vector, X is the mean shape.

A simple iterative approach for minimising F', can be described as fol-

lows:

1. Each shape is translated so that its centre of gravity is at the

origin.

2. One shape vector is chosen as an initial estimate of the mean and
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scale so that |x| = 1.
3. The first estimate is recorded as X.
4. Each vector is aligned with the current estimate X,.
5. The mean is re-estimated from the aligned vectors.

6. If mean estimation has not converged then return to step 4. Con-
vergence is declared if the mean does not change significantly

between iterations.

By applying PCA on the shape vector set, variation can be approxi-
mated in terms of principle axis. The principle components are com-

puted as follows

1. The mean of the distribution is calculated using
<= Z (3.2)
X = — Xi .
53

2. The covariance of the data, is calculated using

8= i - > (i —x)(x; —x)" (3.3)

i=1

3. The eigenvectors ¢; and eigenvalues \; of S, ordered such that
Ai > Aiy1, i.e. in descending order of energy are calculated. By
performing PCA on the matrix S, the data can be represented

as a linear model

x=x+P,b, (3.4)
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where P, = (P, P,,..., P;) is the matrix of the first t eigenvectors
corresponding to the largest eigenvalues, and b, = (b, bs,...,0;) is a

shape parameter represented as

b, = PI(x — %) (3.5)

By varying the elements of b, new shapes are allowed to be defined.
Suitable limits of F3v/)\; (since most of population lies within three
standard deviation) might be applied to the parameter b; of b, to en-
sure that synthesised shapes are similar to those present in the original
training set.

The choice of ¢ determines the number of principle components (or the
proportion (e.g. 98% ) of total energy retained in the model). To com-
pute the number of eigenvectors required to retain a certain proportion

of shape variation, t might be chosen such that

t
i=1

where p, represents the percentage of the total variation.
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Figure 3.1. A labeled training image gives a shape free patch and a

set of points.

3.3.2 Statistical models of texture

After PDM construction, the next stage in building an appearance
model is to construct a statistical model of texture, which is either
gray-scale pixel intensities or Red, Green and Blue (RGB) colour
values. To achieve this numerous image warping methods exist,
including Bookstein thin-plate spline warping [10] and piecewise
affine warping [159]. To obtain shape-free patches (also called shape
normalised textures), we use a triangulation piece-wise affine warping
to warp each image texture from the landmark coordinates to the mean
landmark shape, because this approach is less expensive to calculate.

The procedure includes implementing Delaunay triangulation on image
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landmark data in the original and target images, then affine warping
corresponding triangles. In order to get a texture vector, g;, the
intensity information from the shape-normalised image over the region
covered by the mean shape needs to be sampled. Figure 3.2 summaries

the building of a shape-free patch using piece-wise affine warping.

Figure 3.2. Building a shape-free patch. The texture in each triangle
in the original shape (left) is warped to the corresponding position in
the mean shape. Reiterating this for each triangle results in a shape-free

patch of the training face (right).

The texture needs to be normalised to minimise the effect of global

lighting variation, following the method described in [27]:

1. Select a texture from the texture collection as an initial estimate
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of the mean texture g.

2. A scaling value a = g; - g and an offset value 8 = (g; - 1)/n can
be determined for each texture g;, where ¢ = 1, ---, N and n is
the number of elements in g;, then g; = (g; — f - 1)/a can be

recalculated.
3. Determine a new estimate for the mean g.

4. The steps 2 and 3 can be repeated until g converges.

PCA is then applied to the data giving the linear model

g =g+ Pgb, (3.7)

Where P, is a set of orthogonal modes of variation, g is the mean
vector, and b, is a texture parameter vector. Then, the shape and

texture are separately projected to PCA parameters as follows

b, = PI(x — %) (3.8)

b, =P, (g - g) (3.9)

3.3.3 Combined shape and texture models

The shape and texture of any image can then be represented using
the parameter vectors b, and b,. However, the correlations might
be exist between the shape and texture variations, so that, further
PCA can be applied to the combined parameters. For each exam-

ple in the training set, the concatenated vector b is generated as follows
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b W.b, _ W,.PL(x — x) (3.10)

bg PgT (g - g)
where the matrix W, is a diagonal matrix of weights for each shape
parameter, witch allows for the difference in units between the shape
and texture models. PCA is then applied on these vectors to obtain a

further model b,

b= Qc (3.11)

where Q contains the first t eigenvectors, and c is an appearance pa-
rameters controlling both the shape and texture of the model. The
matrix Q contain both shape and texture related elements, which is

given by

Q=% (3.12)

Q,

where the dimensions of Q,, Qg are (n,t), (m,t) respectively, ¢ is the
number of eigenvectors in Q, n is the number of eigevectors in P, and m
is the number of eigenvectors in P,. Example of appearance model are
shown in Figure 3.3, where appearance model trained on 50 sequences
(totalling 5332 images) of LIPS dataset using adding eigenspace as
described in Chapter 6. The first 5 mode are shown at F2 standard

deviations from the mean.
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N
<

Figure 3.3. Effect of varying each of the first five parameters
(—2v A < b; < 2¢/\;) of the appearance model.

3.3.4 Synthesis of an AAM

To synthesise an example image, the shape x and texture g are recon-

structed as a function of AAM parameters c as follows:

x=%x+P,W;'Q,c (3.13)

g=g+P,Q,c (3.14)

An output image can be synthesised for a given ¢ by warping the texture

g from the mean shape X to the new shape x.
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3.4 Mean-centering AAM parameters and z-score normalisation

Pose differences between real and synthetic videos may lead to quanti-
tative results that are not meaningful. So that the pose normalisation
procedure is required to make the quantitative results more reliable
since they correspond to visual features associated to auditory speech
motions in a normalised coordinate space. The LIPS corpus contains
many variabilities across utterances because of discrepancies in the ori-
entation of the speaker with respect to the camera, so that visual nor-
malisation needs to be performed to remove pose variations in the visual
data. This is done by calculating the mean of the parameters for each
mode of variation for a given collection, then subtracting that mean

from the corresponding parameters, as demonstrated in equation 3.15,

Cj = Cj — C_j (315)

where j is a given mode of variation and c¢; is the mean of the
jth mode of variation across all frames in the utterance. The above
is the mean-centering parameters, we also used in this thesis z-score

normalisation as represented in equation 3.16,
_ Y
cj = —-— (3.16)

where o; refer to standard deviation of the jth mode of variation across

all frames in the utterance.
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3.5 Speech pre-processing

To obtain robust and uncorrelated continuous speech features, the con-
tinuous speech signal is first processed. Several approaches exist which
allow this, including relative spectral transform-perceptual linear pre-
diction (RASTA-PLP) [82], linear predictive coding (LPC) [42] and
Mel-Cepstral analysis [40]. These approaches are utilised frequently in
speech recognition [40]. Deena et al. [39] found that using RASTA-
PLP for speech animation gives better results for LIPS dataset, there-
fore in this thesis RASTA-PLP analysis is utilised. A description of
Fourier transform, RASTA-PLP, LPC, line spectral pairs/frequencies
(LSPs/LSFs), and Mel-frequency cepstral coefficients (MFCCs) which
is utilised in many of the audio speech processing approaches are given
in this section. This is followed by the details of auditory processing

and synchronisation with video in the next sections.

3.5.1 Windowing

For audio speech parameterisation, a sliding window is utilised to rep-
resent the part of the signal that is considered for analysis at each time
point. Features are extracted from the speech signal within the rect-
angular time window of ¢,, which is known as a Dirichlet window [144]
and the information outside of this window are discarded. However,
spurious high-frequency components at the edges of the window is in-
troduced. In order to avoid this problem, soft window boundaries can
be utilised, such as the Hamming window [78] which is defined as:

27(t — 1)

L =10.54—0.46
Sy cos( N1

)| st (3.17)
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The discontinuities at the edges are attenuated, because the Ham-
ming window is based on the cosine function. Moreover, the win-
dow utilised is typically overlapping to capture dynamical properties
of audio speech. The Hamming window is widely utilised in speech
recognition, despite of the fact that the Hamming window has small
discontinuities at the edges. Artifacts in the extracted features are in-
troduced, however those artifacts have quite restricted impact. The size
of the audio window utilised at any time point is denoted as window
size while the length of the overlap that moving from one time point to
the next is the hop size. Typically, a window size of 10 — 25 ms is re-
quired by feature extraction approaches, where the speech data remains
relatively stable. So that, audio speech is typically parameterised with
a window of 25 ms-length frames with 10 ms overlapping between the
windows, resulting in an audio speech processing frequency of 100 Hz.
We utilised RASTA-PLP for the features extracted in this work and
utilised a Hamming window of 50 ms, and sliding the window by 40 ms

for every feature vector to compute 20 RASTA-PLP features.

3.5.2 Fourier transform

The Fourier transform [63] is described here because it is utilised in the
perceptually-motivated approaches of speech parameterisation. The
continuous Fourier transform of a function z(t) and its inverse will be

given here as

X(F) = / h e Ly (1) dt, (3.18)
z(t) = / b X (F)dF, (3.19)
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where F' represents the frequency components.

The discrete Fourier transform (DFT) [64] can be defined as a set of N
samples { X (k)} of the Fourier transform X (w) for a finite duration se-
quence {z(n)} of length L < N. The sampling of X (w) occurs at the N
uniformly spaced frequencies wy, = 2rk/N, where k = 0,1,2,--- /N —1,
and X (w) is defined as

o0

X(w)=F{z(n)} = Y x(n)e’™" (3.20)

n=—oo

The definition of the DFT pair is as follows:

N-1

X(k) = Jz(n)ezmk”/N k=0,1,--- ,N—1 (3.21)

3
I
o

N-1
= (1/N)Y_ X(k)e ™ /N p=0,1,--- N-1 (322
k=0

The fast Fourier transform (FFT) [14] is an efficient algorithm to de-

termine the DFT and its inverse.

3.5.3 RASTA-PLP

The perceptual linear predictive (PLP) technique presented by Her-
mansky [81] to study auditory like spectral modifications. PLP anal-
ysis yields a low-dimensional representation of speech. This method
utilises three ideas from the psychophysics of hearing to extract an es-
timate of the audio spectrum: the critical-band spectral resolution, the
equal-loudness curve, and the intensity-loudness power law. The audio
spectrum is then approximated using an autoregressive all-pole model.

A block diagram of the PLP approach is shown in Figure 3.4. The
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speech fragment is weighted by the Hamming window
W(n) = 0.54q — 0.46 cos[27 /(N — 1)] (3.23)

where N is the length of the window. The typical length of the
window is around 20 ms. The windowed speech fragment is trans-
formed into the frequency domain using DF'T. In comparison with PLP
analysis, RASTA-PLP analysis proposed by Hermansky et al. [82], is
more robust to linear spectral distortions than PLP, since each fre-
quency channel of PLP is band-pass filtered [78]. A block diagram of
the RASTA-PLP method is shown in Figure 3.5.

Critical band Equalloudness g
Speech—» ; | o q . . Intensity-loudness
analysis pre-emphasis conversion
\
| di " Solution for
nversediscrete :
|, = ) | autoregressive |- + All-pole model
Fourier transform £
coefficients

Figure 3.4. A block diagram of the PLP approach.

The steps of RASTA-PLP method are as follows [82].

For each analysis frame,

e The critical-band spectrum is computed (as in the PLP) and its

logarithm is taken.

e The temporal derivative of the log critical-band spectrum is es-
timated utilising regression line through five sequential spectral

values.
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e Non-linear processing (i.e. applying median filtering or threshold)

can be achieved.

e The log critical-band temporal derivative is re-integrated utilis-
ing a first order Infinite Impulse Response (IIR) system. The
effective window size can be determined by adjusting the pole
position of this system. This value can be set to 0.98, produc-
ing an exponential integration window with a 3-dB point after 34

frames.

e In accord with the PLP, the equal loudness curve is added and

multiplied by 0.33 to simulate the power law of hearing.

e The inverse logarithm of the relative log spectrum is taken, pro-

ducing a relative audio spectrum.

e An all-pole model of the spectrum is computed, following the

conventional PLP method.
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Figure 3.5. A block diagram of the RASTA-PLP approach [81].

3.5.4 Linear Predictive Coding

Linear Predictive Coding [42] models the sound signal as being the re-
sult of filtering by an all-pole filter. The linear prediction also called an
autoregressive refers to the mechanism of utilising a linear combination
of the previous speech frames, s[n—1], s[n—2], - , s[n— M], to predict

the frame s[n|:

sln] ~ §[n] = — Z a;s[n — i (3.24)
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where §[n] represent the predicted frame, and a;,i = 1,2,--- , M are
the LPC coefficients

The sampled error for the prediction can be defined as

e[n] = s[n] — &[n] = s[n] + Z a;s[n — i) = Z a;sln —i  (3.25)

where ag = 1. The z transform of equation 3.25 can be obtained as,

Elz] = S[z] + Z a;8(z)z"" = S(2)[1 + Z a;z"" = S(2)A(z) (3.26)
equation 3.26 can be written as,
S[z] = ig (3.27)

So that, the sound signal can be represented as an output of a transfer

function of an all-pole digital filter, where the input to the filter is the

1

YIER Consequently,

LPC error data e[n], and the transfer function is
equation 3.26 can be interpreted as an inverse filter whose transfer
function is A(z). The mechanism is as follows, if the sound signal s[n]

passed into an inverse filter, then the output will be the error data e[n].

3.5.5 Line Spectral Pairs/Frequencies

Line spectral frequencies (LSF) [86,89] parameters are one of the most
efficient choices of transmission parameters for the LPC coefficients.
They are particularly appropriate for transmission over a channel, as
in a communication system. This is due to quantisation required to

be performed for transmission vector and LPC is not very strong to
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quantisation noise. The idea of LSP decomposition is to decompose
the LP polynomial A(z) into a symmetrical and antisymmetrical part

represented by the P(z) and Q(z) respectively:

P(2) = A(2) + 2~ MDAz (3.28)

Q(2) = A(z) — 2~ MDAz (3.29)

The linear predictor A(z) can be defined in terms of P(z) and Q(z) as

follows:

A() = 5(P(2) + Q) (3.30)

The process is shown in Figure 3.6. The LSP parameters are rep-
resented as the roots or (zeros) of P(z) and (Q(z). Since all zeroes are
placed on the unit circle, it is essential to specify the angle w to express
the LSP. If LSP is represented in terms of the angular frequency, then
the solutions are called line spectrum frequencies (LSF). The LSFs co-
efficients are generally the preferred feature vectors utilised in vector

quantisation.

. -»
[ Speech signal s[n] }_[ LPC-analysis ],[ Decomposition ] b?((?
— P(z

Figure 3.6. The decomposition of the linear predictor A(z).

3.5.6 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients are found by warping the frequen-

cies of auditory signal onto the mel scale [160]. An approximation
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of the non-linear frequency response of the human ear is namely mel
scale. The mel coefficients are distributed approximately logarithmi-
cally above 1 kHz and linearly up to 1 kHz , and may be computed in

the following manner [16,29]:

e Divide the auditory signal into windows.

Take the DFT of the signal in each window.

Take the spectral magnitude and logarithm of each frame.

Warp the frequencies according to the mel scale.

Take the inverse DFT Fourier transform.

3.6 Audio processing and synchronisation with video

A good visual speech synthesis system, which produces facial anima-
tion given audio speech input, does not only require generating both
kinds of data in high quality; it also requires achieving good temporal
alignment between the two, for example, synchrony between audio and
video, to deliver a visual signal that is consistent with those delivered
by a real talking person.

The method used in this work for features extraction was RASTA-PLP
features, which are perceptually-motivated. To satisfy the requirement
of having a window where the acoustic data is stable, a time window size
of 25 ms with a hop size of 10ms is typically utilised resulting in a fre-
quency of 100 Hz. This results in a mismatch with the video frame rates
of 25 fps. So that, the audio speech parameters need to be downsampled
to match the visual processing rate. Deena [39] conducted experiments

to investigate three methods to matching the auditory features to visual
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features. The first method consists of utilising an audio speech window
of 50 ms and a hop window of 40 ms. The second and third methods
consist of utilising an auditory window of 25 ms and a hop window
of 10 ms to obtain acaustic features at 100 Hz, then downsampling to
match the visual features utilising polyphase quadrature filtering [150]
and median filtering [4]. Tt was found that features computed from the
first approach were smoother but some salient features may be poten-
tially discarded. Theobald and Wilkinson [173] conducted experiments
to determine the effect of the audio window size on the auditory-visual
correlation. The window size is assumed to be 40 ms duration so the
audio features were in direct correspondence with 25 Hz visual fea-
tures. It was found that smoother acoustic properties can be obtained
utilising auditory features over a longer period that have higher linear
correlation with visual features, as compared to the correlation between
upsampled video to match the acoustic parameterised at 100 Hz and
the audio speech parameters. In this work, we downsampled the visual
data to 25 fps in order to obtain a reasonable corpus size, and processed
the speech signal in frames of 50 ms with a 40 ms overlapping (at the
visual frame rate 25 Hz). Figure 3.7 shows the mean trajectories of the

RASTA-PLP parameters for a sequence of the LIPS corpora.
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Figure 3.7. Mean RASTA-PLP trajectories for a given LIPS utter-

ance.

3.7 Summary

A review of shape and appearance models has been presented in this
chapter. This requires hand-annotated images for training the point
distribution model and can handle variations in pose. The appearance
is described by the shape-free texture model, built by warping each
labelled image from the landmarks to the mean shape and perform-
ing a PCA on the resultant images. A combined model is constructed
by calculating and concatenating the shape and shape-free texture pa-
rameters for the labelled images and processing a third PCA on the
resulting parameters. The AAM algorithm seeks to find the model pa-
rameters which generate a synthetic image as close as possible to the
target image. It has been used in this work to automatically project
the face of a talker in each frame of a video sequence onto the principal

components. We have also described several techniques to representing
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speech signal that are commonly used in speech feature extraction in-
cluding RASTA-PLP. These approaches are used frequently in speech
recognition. In this thesis RASTA-PLP analysis is used to provide ro-
bust speech features. We have also presented the data corpora used in
our work as well as details of auditory and visual parameterisations on

the data corpora.



Chapter 4

IMPROVING THE
ACCURACY OF
AUDITORY-VISUAL
MAPPING USING
STATE-SPACE MODEL

One of the challenges in visual animation is producing accurate videos
of faces from the audio signal alone. Our hypothesis is that using a
more accurate AAM in the shared Gaussian process latent variable
model (SGPLVM) will improve the accuracy of the produced videos of
the talking faces.

In this chapter, we improve the performance of the SGPLVM [38].
As stated above, it is required to build a more accurate AAM to de-
velop the SGPLVM model of the talking faces. An AAM is built on a
larger number of sequences with more landmark points for each frame
than in Deena et al. [38]. Experiments are conducted to investigate
the hypothesis of increasing the number of landmark points can im-
prove the accuracy of AAM. In addition, experiments are performed to

68
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investigate that constructing an AAM on larger dataset can improve
its accuracy. From the quantitative evaluation, we found that our im-
proved SGPLVM model using a more accurate AAM outperforms the
existing SGPLVM model [38].

Initially we describe a non-linear state-space model that can be
utilised to jointly model the auditory and visual features of a visual
speech synthesis. Different latent variable models are described utilising
the probabilistic graphical model structure, emphasising their previous
use for visual speech animation. In addition, a shared linear dynamical
system (SLDS) to model auditory and visual modalities of a talking
face and a shared latent variable model utilising Gaussian processes

are presented.

4.1 Graphical models

Before we present the specific models in which we are interested, it
is beneficial to have a general overview of the graphical models. In
a graphical model, a node denotes the variables and the arcs denote
probabilistic dependencies between the variables. There are two types
of graphical models: undirected graphical models, for example Markov
random fields, and directed graphical models, for example Bayesian
networks [9]. Markov random frameworks are appropriate for the rep-
resentation of soft constraints between points. Bayesian frameworks
are suitable for modelling the relationships between random variables
and can be utilised to model generative processes. In Bayesian net-
works, the existence of a link between variable X and Y indicates a
conditional dependency between Y and X. The lack of links is appro-

priate because it decodes to conditional independence properties. In our
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work, we deal with the Bayesian networks. Utilising the product and
sum rules of probability, graphical models permit us to do inference of
the hidden variables given several observations. Inference typically in-
volves marginalising over several variables, which involves integrations
in the continuous case and summations in the discrete case. The gen-
eralised approach for achieving inference in graphical models is named
the sum-product algorithm [96], which depend on converting the graph-
ical model to a factor graph. The more general process for graphical

model including those with loops is Belief propagation [201].

4.2 Probabilistic principal component analysis

Principal component analysis (PCA) [92] is a well-established approach
for dimensionality reduction. Tipping [174] proposed a probabilistic
formulation of PCA from a Gaussian latent variable model. In linear
subspace models, a D-dimensional observation data Y is related to a

corresponding g-dimensional latent variables X, as follows:

Y=WX+pu+e (4.1)

The matrix W relates the two sets of variables, while g permits having
non-zero means in the model and € refer to the noise term. With ¢ < D,
the latent variables could give a more parsimonious explanation of the
dependencies between the observations. A reformulation of PCA as
a latent variable model is given by the model equation 4.1 which is
named as probabilistic principal component analysis (PPCA) in the
case where the noise € follows an isotropic Gaussian distribution. In

this work, the probabilistic principal component analysis is one of the
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approaches utilised to initialise latent spaces of the proposed manifold

relevance determination methods.

4.3 Gaussian Mixture Models

A Gaussian mixture model (GMM) is a non-linear modelling approach.
It is a mixture of some Gaussian distributions and different subclasses

can be represented inside one class. A GMM is described by

P(y) = Z ;g (y, pi, 2i) (4.2)

where «a; are the prior probability of each Gaussian, pu; are the means
of the Gaussians, X; are the covariance matrices and M represents the
number of Gaussians [49]. In a GMM, the latent states 7 € 1,...M are
discrete. GMMs can be utilised to segment information into clusters of
Gaussian distributions.

Expectation-Maximisation (EM) [41] is a widely utilised approach
for estimating the parameters of the GMM. It is an iterative method.
To proceed EM iteratively, there are two steps, the expectation and
the maximisation. In the expectation step, the expectation of the log-
likelihood over all possible assignments of data points to sources are
calculated. In the maximisation step, the expectation by differentiating

written current parameters are maximised.

4.4 Hidden Markov Models

Hidden Markov models (HMMs) have been utilised since 1970s in
speech recognition field [40]. At the beginning, they were utilised to

model auditory features but more recently they have been utilised to
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model auditory-visual speech features [12,30,189]. A hidden Markov
model is a probabilistic model that allows the temporal dependencies
of information to be modelled utilising a transition matrix, where each
element of the matrix represents the conditional transition probability
from one state to another. The state inferred from the observation.
It is hidden because the observation is a probabilistic function of the

state. The basic elements of an HMM are as follows:

e k is the number of states in the model, the state at discrete time

t is given by qx(t)

e A = {a;;} describes the transition probability matrix, where

ay = Plgy(t + D), 1<ij<k (4.3)

that is, a;; is the probability of making a transition from state
i to state j, B = {b;(O)} is the set of emission probability dis-
tributions, where b;(O) is the probability distribution for state
7.

e The initial probabilities of being in state i at ¢t = 1

The model parameters of an HMM are defined as:

A= (A,B,7) (4.5)

The three basic problems with HMMs identified by [143] are:

e Given the observation sequence O = (01, Os, ..., Oy) and a model
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parameters A = (A, B, ), compute the probability of the obser-

vation sequence P(O|\).

e Given the observation sequence O = (01, Oy, ..., Oy ) and a model
parameters A = (A, B, ), compute a corresponding hidden state

sequence Q = (q1, g2, ---, qn ) , which best explains the observation.
e Adjust the model parameters A = (A, B, ) to maximise P(O|\).

Brand [12] applied HMMs to visual speech synthesis. HMM-based
to map from auditory parameters (RASTA-PLP/LPC) to marker data
is built. Facial landmarks tracked on the face of the talker to repre-
sent facial features. The HMM is trained to recognise the auditory
signal, then for animation a Viterbi algorithm is utilised through vo-
cal HMMs to search for most likely hidden state sequence. Wang et
al. [186] utilised the maximum likelihood (ML) based estimation for
the auditory-visual joint HMM training. The ML-based training does
not explicitly optimise the quality of generated trajectory. To address
this issue, Wang et al. [190] propose to utilise the minimum gener-
ated visual trajectory error method to enhance speech animation. The
model parameters were improved by minimizing the mean square errors
between the synthesised visual trajectories and the real ones utilising a
probabilistic descent (PD) algorithm. The MGE training was incorpo-
rated into HMM trajectory-guided talking face rendering system. The
HMM-based method can produce an efficient estimate of the visual
speech given any new speech input, the animation synthesised is syn-
chronised with speech, but lacks photo realism. Therefore, Wang and
Soong [189] combined both sample-based concatenation and the HMM-

based modelling methods to get both lip in synced with speech and
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photo-realistic. In this work, we limit ourselves to learning-based ap-

proaches when answering research problems related to auditory-visual

mapping.

4.5 Linear Dynamical System

The linear dynamical system (LDS) is a continuous state space model,
and it is more suitable for synthesis because there is a dynamical map-
ping from the preceding state to the next. The graphical model of the
LDS is similar to the HMM with the difference that the latent points
are continuous instead of discrete. The LDS is a generative model in
which the observations can be generated from the states. Saisan [153]
utilised LDS for the synthesis of lip articulation with speech as the
driving input. Lehn-Schiler et al. [105] applied SLDS to model audi-
tory and visual modalities of a talking head. The state-space equations

of the model is as follows:

ry = Az +nf (4.6)
Yy = Ba, +nf (4.7)
2z = Cxy +ny (4.8)

where x; is a hidden vairiable, 1, is the audio features, and z; is the vi-
sual features, n is Gaussian noise parameter that add to each equation,
A is the prediction matrix that maps previous states to next states,
B and C are the observation matrices which transforms latent states

to observations. Through training the audio and visual features are
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known, and both the observation equations can be represented in one.

Y B ny
"= ot | (4.9)
2t C n;

The parameters {A, B, C, X% 3% ¥#} can be found utilising the EM
algorithm [41] on the training data, where Y's are the diagonal covari-
ance matrices of the noise parameters. Given a new audio sequence,
the corresponding visual features can be obtained, y; = Cuxy.
Englebienne [54] used a more robust model called as switching linear
dynamical system (SLDS) by augmenting the linear dynamical system
with switching states, where phonemes were utilised as the switching
states and visual speech data were the observations. However, En-
glebienne [54] displayed that the parametric assumptions in the SLDS
are not appropriate for speech animation and simplified the model

to acquire a model called the deterministic process dynamical system

(DPDS).

------- b@——b@—------b@ Latent space

Figure 4.1. Graphical model for LDS.

4.6 Gaussian Processes

Gaussian processes (GP) are generalisations of Gaussian distributions

specified over infinite index sets [147]. A GP is defined as a collection



Section 4.6. Gaussian Processes 76

of random variables, any finite number of which have joint Gaussian
distributions. It can be utilised to define distribution over functions.
A GP is completely determined by its mean function g, which is often
taken to be zero and its covariance function k£ defined over infinite index

sets, x [145,146].

[~ GP(u(x), k(x,x)) (4.10)

where
() = E[f (x)] (4.11)
k(x,x") = E[(f(x) — p(x))(f(x') — p(x))] (4.12)

The radial basis function (RBF) kernel is widely utilised in the GP.

The covariance function for the RBF kernel is represented by:
g
k(x;,x;) = o ea:p(—§(xi —x;) (% — x;)) (4.13)

a is the variance of the kernel, v is its inverse width. An elegant
structure of GPs for regression is provided. Given a set consisting of N
input points X = {Xn}i:le of dimension ¢ and a set of corresponding
output points targets y = {yn}ivzl . A function f is fitted to the data

such that:

Yn = f(Xn) +€ €~N(0,571 (4.14)

where f is inverse variance. One widely utilised covariance function

which combines an RBF function, and a noise term is

k(xi,x;) = aep(— 2 [Ixi = x;[*) + 87", (4.15)
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d;; is Kroneckers delta function. By integrating over f, a marginal

likelihood is obtained:

PIYIX.0) = [ POINPUIX.0)f (1.16

The parameters 6 of the covariance function k are denoted as the hyper-
parameters of the GP given by 6 = {a,7,8}. The GP parameters
are obtained utilising maximum likelihood, typically utilising gradient-
based optimisation approaches such as conjugate gradient optimisation
[69].

0 = argmazxeP(Y|X,0) (4.17)

Then the learnt regression model can be utilised to predict function
values y, at previous unseen input points x,. The Gaussian distribution

of the predictive distribution is:
P(y*|x*,X,y) NN(UMUE) (4'18)

The joint distribution between y and y, given by

y K+ 571 k
~N o, (4.19)

s kT k(x,,x,) + 871
where K = k(X, X) and k = k(X x,)

4.6.1 The Gaussian Process Latent Variable Model

The Gaussian process latent variable model (GPLVM) [101] is an algo-

rithm for dimensionality reduction using GPs. It is a generative model,
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where observation space y, € R is assumed to be generated from a
latent space x,, € R? through a mapping f that is corrupted by noise.
The relationship between the data points and the latent points is the
same as for GP regression as given by equation 4.14. By placing a zero
mean GP prior on the mapping f and marginalising it, the likelihood
P(Y|X,0) is obtained, which is a product of D GPs, while 6 represents

the hyper parameters of the covariance function

D
1 1
P(Y|X,0)= ————exp(—=yL K 'y 4.20
010 =TT el w420

where y.; is the ith column from the data matrix, Y.
Maximising the marginal likelihood in equation 4.20 with respect to
both the latent points X and the hyper-parameters 6 of the covariance

function results in the latent space representation of the GPLVM:

{)A(, é\} = argmazxx P (Y|X,0) (4.21)

The back-constrained GPLVM.

A smooth mapping from the latent space X to the data space Y is
specified using a smooth covariance function, which means that points
close in the latent space will be close in the data space. However, it does
not ensure the opposite case. Therefore, an extension to the GPLVM
is proposed by using an inverse parametric mapping that maps points
from the observation space to the latent space. This constrains points

that are close in the data space to be close in the latent space [52]:

ri =gy, W) (4.22)
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where W is the mapping parameter set of the back-constraint kernel
function. This is typically computed with a RBF network or multi-layer
perception (MLP). The maximisation in equation 4.21 is then changed
from optimisation with respect to the latent points X to optimisation

the parameters of the back-constraining mapping W'

{W, é\} = argmazw oP (Y|W,0) (4.23)

Dynamics.

An extension of the GPLVM was proposed by Wang [184]; this produces
a latent space that preserves sequential relationships between points on
the data variables, as well as on the latent variables. This is done by

specifying a predictive function over the sequence in latent space, x;:
Ty = h(l’t,1> -+ €dyn (424)

where €4y, ~ N (0,0'Jyln ). A GP prior can then be placed over the
function h(x), and marginalising this mapping results in a new objective
function. By optimising this objective function, the latent points that
preserve temporal relationships in the data are obtained. The new

objective function is given by:
P {)? Oy, édyn} — argmazx gy g, P (Y|X,0y) P (X|04y)  (4.25)

where 04, being the hyper-parameters of the dynamics kernel.
To construct a shared latent structure between two views, Y €
RN¥*Dy and Z € RV*Pz with a shared latent space X € RY*?, the

GPLVM is modified to learn separate sets of GPs for each of the differ-
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ent observation spaces from a shared latent space. The latent space is

given by maximising the joint likelihood of the two observation spaces:

P(Y,Z|X.,0,) = P(Y|X,0y) P (Z|X,0) (4.26)

where 05 = {0y,07} is two different sets of hyper-parameters.

In Ek et al. [52], the SGPLVM is used to learn a mapping between
silhouette and pose features; the pose ambiguities from the silhouette
observations are resolved by considering sequential data. This is done
by learning a dynamical model over the latent space to disambiguate
ambiguous silhouettes. Deena et al. [36] used the same SGPLVM ap-
proach to model coarticulation. First, placing a back constraint with
respect to auditory features ensures a smooth mapping from the latent
space to the observation space. Second, a dynamical model is placed
on the latent space to respect the data’s dynamics in the training and
inference phases. Canonical correlation analysis (CCA) coupled with
linear regression was used in Theobald and Wilkinson [173] to model
the relationship between auditory and visual features; it was also used
to predict visual features from the auditory features.

An extension of CCA proposed in Ek et al. [51], called the non-
consolidating components analysis (NCCA) model, is used to address
the ambiguities in a human motion dataset by decomposing the latent
space into subspaces whereby a private latent space for each of the
observation spaces is learned in addition to the shared latent space. The
NCCA model encodes the variance in the data separately, so that it does
not influence the inference procedure; this represents the advantage of

using this model compared to other conditional models. An NCCA
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model is also used for modelling and mapping human facial expression
space, represented by facial landmarks, to a robot actuator space [50].
The ambiguity in this case relates to robot poses, with multiple robot
poses that are most likely to be the solution to a facial expression in
the facial expression space. Figure 4.2 shows various types of graphical
GPLVMs. Recently, Damianou et al. [34] used a manifold relevance
determination (MRD) framework to predict a 3D human pose from a
silhouette in an ambiguous setting. To perform disambiguation, they
include latent space priors that incorporate the dynamic nature of the

data.

- @0 i 0
) bt

\ ' W

(a) The criginal model of (b) SGPLVM with a back constraint with
Lawrence's (2003). respect to ¥ and a dynamic model
on X Ek (2007).
Xz 1 x5 | X¥
¥ ¥
0 60
{c) NCCA model Ek (2008).

Figure 4.2. The structure of different GPLVM models. (a) In
Lawrence’s (2005) original model the observed data Y is represented
using a single latent variable X. (b) The SGPLVM with a dynamic
model on the latent points and with a back constraint with respect to
the observation Y proposed by [52]. (c) Private latent spaces introduced

by [51] to explain variance specific to one of the observations.
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Sparse Approximations

The computational complexity of GP can be reduced from O(N?) to a
more tractable O(k*N), where k refer to the number of points retained
in the sparse representation. The sparse approximations require aug-

NxD - and

menting the function values at the training points, F € (R)
the function values at the test points, F, € (R)**” by an additional
collection of variables called the “active points”, “support points” or
“inducing variables”, U € (R)**P. There are different approximations
considered in the context of the GPLVM in order to make training and
inference tractable [102]. The techniques in sparse Gaussian process re-
gression (GPR) that applied to the GPLVM were deterministic training
conditional (DTC) approximation, fully independent training condi-
tional (FITC) approximation and partially independent training con-
ditional (PITC) approximation. Deena [39] found that training shared
Gaussian process dynamical model (SGPDM) with sparse approxima-

tion FITC using k& = 100 as proposed by Lawrence [102] give better

performance than PITC and DTC for LIPS dataset.

4.7 Switching Shared Gaussian Process Dynamical Model

The above SGPDMs assume a single dynamics in the latent space.
Chen et al. [19] proposed the switching shared Gaussian process dy-
namical model (SSGPDM) to deal with composite types of dynamics
when jointly modelling silhouettes and 3D pose data, this model is a
non-parametric switching state-space model which multiple SGPDMs
are indexed by switching states 7w = [my, -+ - ,n]7 . Deena et al. [38]
suggested the SSGPDM approach to learn the mapping from auditory

to visual features. In their method auditory and visual signal from a
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talking head corpus are jointly modelled, then variable length Markov
models (VLMMSs) trained on labelled phonetic data in order to get the
switching states. The graphical model of the SSGPDM is shown in

Figure 4.3, where the three layers of an SSGPDM are represented

Switching state

Latent space

Figure 4.3. Graphical model for SSGPDM by Deena et al. [38].

4.7.1 Variable Length Markov Model

Training an nth-order Markov model is infeasible as the size of Markov
chain grows exponentially, and needs large number of data to estimate
their parameters. Ron et al. [148] suggested a robust extension of nth-
order Markov models which allow the memory length to vary locally
based on the specific realisation of backward states. A VLMM was for-
mulated as a probabilistic finite state automation (PFSA). The PFSA
is a 5-tuple (@, X, 7, 7, s), where @ is a finite set of states, ¥ is
a finite alphabet. Each VLMM state corresponds to a string of to-
kens of at most length N, representing the memory in the conditional
transition of the VLMM. 7 : @ x ¥ — (@ is the transition function,
v @Q x X — [0,1] is the output probability function, and s : @Q — [0, 1]
is the probability distribution over the initial states, s. A VLMM of

order N can be trained on a stream of discrete collections of symbols
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from 3, resulting in a predictive model that can predict a symbol o
using a previous string of symbols or context w of maximum length V.
A predictive model can be obtained by training a VLMM of order N
on a stream of discrete collections of symbols from > which can pre-
dict a symbol o utilising a previous context w of maximum length N.
Training a VLMM requires scanning through the training collections
and constructing a prediction suffix tree (PFT) in which each node
represents a string prefix (i.e., context) w of at most length N — 1. To
train a VLMM of maximum order N, w can be considered a prefix of
length N — 1 which can be utilised to predict the next character o’ ac-
cording to an estimate P(o’|w) of P(o’|w). Given a context ow and its
parent w, the amount of information gained is then measured utilising

weighted Kullback-Leibler divergence (KL):

AH(ow,w) = p(aw)EJ/P(U’\Uw)logM (4.27)
P(o’|w)

The longer memory cw is retained, when AH(ow,w) exceeds a
given threshold e, otherwise the shorter memory w is sufficient. Con-
verting the suffix tree to a PFSA which representing the trained VLMM

is the final stage of training. For more details refer to [74,148].

4.8 Inference utilising the SGPDM

Z can be inferred from Y, by first obtaining the corresponding latent
points, X. The optimisation of latent points needs to be performed with
respect to both the GP mapping from X to Y and the dynamical GP,
this is done by formulating a joint likelihood as given in equation 4.28.

Using conjugate gradient optimisation, the likelihood is then optimised
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to find the most likely latent coordinates for a sequence of auditory
features.

A

X = argmaz,, P(Y, X,|Y, X, 0y, O4yn) (4.28)

Where X, refer to the initialisation of the latent points. Then the
observation space Z can be found utilising the mean prediction of the

GP from the latent space X to the visual space Z:

Z=k(X,X)TK'Z (4.29)

4.9 Auditory-visual mapping using SGPLVM

The SGPLVM [39] can be utilised to combine auditory and visual in-
formation through a shared latent space. The advantage of utilising
the SGPLVM over HMMs are that the state-space is continuous and
offers a richer representation, thus bypasses the need to interpolate
between discrete states to synthesis image signal. Moreover, the gener-
ative process of speech is represented by utilising a shared latent space
that maps to both the auditory and image modalities, which is more
appropriate than training a HMM on image signal then remapping it
to auditory signal as done by Brand [12]. The better performance of
SGPLVM as compared to shared LDS can be explained by the fact that
the observation and dynamical mappings are non-linear GPs. The dy-
namics of speech are highly non-linear and a shared LDS only provides
a linear approximation to the dynamics. Moreover, the SGPLVM can
be utilised to satisfy the many-to-one mapping between phonemes and

visemes.
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4.10 Experiments

Our motivation is to improve the performance of SGPLVM [38], by
building an AAM on a larger dataset with more facial landmarks iden-
tified for each frame to represent different visual realisations of sounds.
Experiments described in Subsection 4.10.1 are performed to compare
our SGPLVM method with Deena’s method [38] using the same dataset
for training and synthesis. The dimensionality of the latent space is
fixed to be 5, as Deena [39] found that the optimal latent space is 5 for
LIPS dataset. The training time would be affected negatively when us-
ing higher latent spaces especially in the case of introducing dynamics
and back-constraints. The SGPLVMs are trained on the training set,
then the inference is performed utilising only auditory signal from the
test collection with the sequence optimisation approach described in
Section 4.8. In addition experiments described in Subsection 4.10.2 are
performed to investigate the effect of increasing the landmark points
around the mouth to have a smoother lip boundary. Experiments de-
scribed in Subsection 4.10.3 are conducted to investigate that construct-

ing AAM on a larger dataset can improves the performance accuracy.

4.10.1 Experiment 1: Objective evaluation for the SGPLVM

In this work we want to improve the accuracy of SGPLVM [38] by train-
ing AAM on a large number of sequences with more landmarks around
the mouth and compare our approach with Deena’s method [39]. The
maximum number of images used is 6000 due to the O(N?) complexity
of SGPLVM training. Deena [39] conducted experiments and com-
pared two back-constraint approaches, called KBR [9] and MLP [§]

and examined the effect of varying their parameters. They showed
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that for LIPS dataset, utilising a KBR back-constraint produces bet-
ter results than not utilising it. In addition, the results showed that
the MLP back-constraints lead to worse results than not utilising back-
constraints at all. So that having a proper back-constraint allows them
to model the many-to-one relationship from phonemes to visemes. In
addition, in their experiments they found that 5 is the optimal latent
space, and the performance of the sparse approximation FITC was
better than PITC and DTC utilising £ = 100 support points, as pro-
posed by Lawrence [102]. Such that, in our experiments we used KBR
back-constraints with respect to auditory signal and an autoregressive
dynamical model on the latent space, and fix the dimensionality of la-
tent space and the sparse approximations accordingly. Moreover, we
used both ASM (refer to Chapter 5) and AAM features for visual repre-
sentation and RASTA-PLP for audio representation. Deena [39] train
the AAM choosing 184 prototype images, which was done by selecting
4 random frames throughout the dataset, from each of the 45 sounds
plus breathing and silence. Afterwards, 56 markup points were located
around the lips, face and nose in each of the example images. An AAM
was built on the shapes and images, then the remaining images was
projected to AAM parameters.

In our experiments, we have used the same number of sequences
for training and testing as by Deena [39], such that the training and
testing collections do not overlap and trained AAM on a large num-
ber of sequences with more landmarks around the mouth. Due to the
complexity of GPLVM training, optimisation of a GPLVM likelihood
becomes intractable when the amount of training frames exceeds a few

thousand frames. Therefore a repeated random subsampling method
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for choosing about 10 sets, each set of approximately 55 sequences
from the 236 auditory-visual collection pairs is utilised for training ten
SGPLVMs, giving an average of 6000 frames for each of ten training
sets. Two sets of about 21 utterances for each set from the remaining
of the auditory-visual collection pairs is utilised for testing of all ten
SGPLVMs, such that the training and testing sets do not overlap.

Moreover, Deena [39] used mean-centering normalisation for LIPS
corpus to obtain normalised data varying around the zero baseline.
Hence, mean-centering AAM parameters which is discussed in more
detail in Section 3.15 are used in the following experiments. AAMs
are trained on each of the 55 sequences from the 236 auditory-visual
sequence pairs, with 97 facial landmarks identified for each frame; 38
of them described the inner and outer mouth shape.

In assessing the results of this method, we used the average mean
squared error (AMSE) between test feature vectors and ground truth,
as this is the most commonly used error for multivariate data [39]: this

is shown in equation 4.30,

I
1 N2

K
k=1 i=1
Table 4.1 shows the AMSE between the ground truth and synthesised
AAM features, obtained from our method and Deena’s et al. [38] ap-
proach. The results show that the AMSE error obtained from our
method is lower than Deena’s approach, due to modelling AAM using
larger visual dataset and using more landmarks around the mouth.
Figures 4.4 and 4.5 show typical examples of the mouth landmark

parameter reconstructed from the AAM parameters against ground

truth and synthesised output shape parameters against ground truth
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parameters respectively. The synthetic trajectories are calculated us-
ing two test sequences of LIPS dataset. The comparisons of synthesised
trajectories to ground truths gives a good overall representation of a
talking faces lip-synch ability. However, the results show that the tra-
jectories are smoothed out as compared to the ground truth. This may
be due to the absence of a Bayesian formulation so that the dimension-
ality of the latent spaces is not allowed to be estimated automatically.
As a result, model selection experiments were performed by Deena [39]
to determine the optimal latent dimensionality and other free parame-
ters in the model.

The goal is to produce synthetic video indistinguishable from real
video. So that to learn an efficient latent space, in the next chapter
a novel method to visual speech synthesis utilising a joint probabilis-
tic model is introduced, namely the Gaussian process latent variable
model trimmed with manifold relevance determination model. This is
a fully Bayesian latent variable model that uses conditional non-linear
independence structures.

More results and comparison to manifold relevance determination are
presented in Chapter 6.

Table 4.1. Quantitative evaluation of our SGPLVM using a more
accurate AAM vs. Deena’s methods.

Method Audio representa- | Visual rep- | AMSE

tion resentation
Our method (SG- | Continuous AAM 0.01826+0.0053
PLVM)
SSGPLVM |[38] Continuous AAM 0.0413+£0.0063
SGPLVM ([38] Continuous AAM 0.053540.0090
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4.10.2 Experiment 2: Increasing the number of landmark points

In this experiment, the effects of the number of landmarks on the
AAM performance are considered. We want to investigate that
increasing the number of landmark points can improve the accuracy
of AAM. For visual processing of the LIPS dataset Deena et al. [38]

placed 56 landmark points around the face, lips and nose in each
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of the 184 images. Then an AAM was built using this number of
prototype images. A more accurate active appearance model, with
97 facial landmarks identified for each frame is built to improve the
performance of SGPLVM [38]: 38 of them described the inner and
outer mouth shape. In this section, experiments are conducted to
compute the performance accuracy of increasing landmarks around
the mouth shape. We use only mouth shapes because most of the
important visual speech information is contained in the mouth shapes.
Figure 4.6 shows the bar chart of root mean squared error (RMSE)
in shape normalised images compared to the ground truth lip images
for the 85 frames of the sequence (m0056): “The boy a few yards
ahead is the only fair winner”. It can be seen from the figure that the
RMSE value decreases with the increasing of the number of landmarks.
This means that increasing landmarks around the mouth can give
better results and improve the performance accuracy. Figure 4.7
shows the ground truth mouth and several shape normalised mouth
images obtained using different number of landmarks. It can be shown

that a smoother lip boundary can obtained using more landmark points.

In these experiments, the eigenspaces are computed using the
eigenvalue decomposition (EVD) of the covariance matrix of the data,
which is a standard approach. Suppose there is a set of N data
samples; each n dimensional where n/2 is number of the landmark
points in an image. The samples coordinates are combined into a
matrix of size N x n. The EVD of the covariance of the data can be
defined by

(X — pl)(X — p1)' = (1/N)UAUT (4.31)
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i is the observations mean, 1 is a row N 1’s, U is composed of eigen-
vectors of size n x n, and A is an n X n diagonal matrix of eigenvalues.
The covariance matrix of the data samples N X n is of size n X n,
it is often supposed that only those eigenvectors that correspond to p
largest eigenvalues are of interest, the others are discarded by deleting
columns from the eigenvector matrix.
In these experiments, 38 landmark points around the mouth for each
image were used giving n = 76. A set of 5982 data samples was used
giving N = 5982. The covariance matrix will be of size 76 x 76, while it
will become 38 x 38 when we use 19 landmark points. In these experi-
ments 6 eigenvectors were kept to retain a 99% of energy. The resulting
eigenvectors matrices will be of size 76 x 6 and 38 X 6 respectively. It can
be found that increasing the size of the landmark points to 38 have little
effect on computer memory. Therefore, we conclude that we can gain
considerable accuracy when increasing the number of landmark points
around the mouth with trivial memory problems. Refer to Chapter 6

for more details on the EVD method.



Section 4.10. Experiments 94

0.405
0.4
0.395

0.39

0.385
0.3
0.375
0.37
4 10 13 12 27 38

Number of landmarks

RMSE

ca

Figure 4.6. RMSE in shape normalised images compared to the

ground truth lip images against different number of landmarks.
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Figure 4.7. Ground truth mouth and several shape normalised mouth

images obtained using different number of landmarks.

4.10.3 Experiment 3: Building AAM on different number of im-
ages

The aim of the experiments is to investigate that building active ap-
pearance model (AAM) on larger dataset can improve its accuracy.
In our experiments we built AAMs using 1000, 2000, 3000, 4000 and
5000 prototype images. A non-overlapping subset of 20 sequences to-

talling 2756 prototype images were chosen and then projected to AAMs
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parameters. Figures 4.8 and 4.9 show the bar charts of RMSE and cor-
relation coefficient (CC) between ground truth and synthesised AAM
features. These figures show that building AAMs on larger dataset
gives better results.

In our experiments low-dimensional approaches are utilised to de-
termine eigenspace models and are necessary when the dimensionality
of the dataset is very large compared to their number. Therefore, they
can be utilised to determine eigenspace models that would otherwise be
inappropriate. Determining an eigenspace model needs that we built
an n X n matrix, where n is the dimension of each sample in the dataset.
In practice the model could be determined by utilising an N x N ma-
trix, where N is the number of samples. This method is efficient in
applications such as, image processing where the number of samples
is less than the number of dimensions in each image N << n. The
covariance matrix of the 5000 texture vectors of dimension 318753 is
of size 318753 x 318753. Since N << n we use the inner product ap-
proach [157]. Typically, only p of the n eigenvectors required to be kept
where p eigenvalues are significant. To keep the p largest eigenvectors
we set out p = 100 as a specified integer and thus retain the 100 largest
eigenvectors. Constructing eigenspace for texture dataset 5000 x 318753
or more is difficult because storing such matrix of pixels in memory is
intractable and need a machine with high RAM capacity. Therefore, we
investigate incremental approaches in Chapter 6 which not require all
observations at once thus decreasing storage requirements and making

large problems computationally simpler. Refer to Chapter 6 for more

details on the EVD method.
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4.11 Limitations of the SGPLVM method

The SGPLVM is intractable for large training sets. For a training set
of N frames, the SGPLVM has O(N?) space complexity. Without us-
ing sparse approximations, the time complexity for each iteration of

the training and inference algorithm is O(N?), and it becomes O(k*N)
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when using sparse approximations, where k is a support points. Al-
though using sparse approximations, the SGPLVM comes with a high
computational complexity. In addition, the SGPLVM has a large num-
ber of free parameters that need to be adjusted to obtain the optimal

parameters.

4.12 Summary

This chapter has presented a review of various probabilistic models
utilised in speech animation, using the structure of graphical models.
The SGPLVM was described, which allows the coupling of two data
spaces. In addition, experiments were performed to examine the hy-
pothesis of increasing the number of landmark points can increase the
accuracy of the AAM. Moreover, experiments were conducted to exam-
ine that building an AAM on larger dataset can improve the accuracy.
The quantitative results show that modelling an AAM on large number
of visual data and using more landmarks around the mouth give the
best results and higher correlation with ground truth.

In this work, the performance of the SGPLVM that is used to jointly
model the auditory and visual features was improved using a more
accurate AAM. An AAM was constructed on a large number of video
frames with more landmark points for each frame. Objective results
were introduced for the SGPLVM. Our objective results revealed that
our model performs better than comparable method of visual speech

synthesis.



Chapter 5

MANIFOLD RELEVANCE
DETERMINATION FOR
AUDIO VISUAL MAPPING
BASED ON ACTIVE SHAPE
MODEL

To abtain a successful speech driven facial animation system, the syn-
thesised visual speech has to be smooth and stay within the limits
allowed by the facial articulators. In this and the next chapter we con-
tinue addressing the problem of producing accurate and realistic videos
of talking faces using audio signal as input. Here we hypothesise that
we can improve the accuracy of produced videos of talking faces if we
use manifold relevance determination for audio visual mapping instead
of shared Gaussian process latent variable model (SGPLVM). Manifold
relevance determination (MRD) has not been used previously for gen-
erating videos of talking faces. Here, MRD is used to represent audio
and visual data as a set of factorised latent spaces. Objective evalua-
tion is presented for MRD and compared results by SGPLVM [38]. In

98
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this chapter, we shall refer to ground truth as the features or videos
corresponding to real visual speech sequences parameterised with the
active shape model (ASM). Some of the work in this chapter appeared
in Dawood et al. [35]. An overview of the proposed approach for visual

speech synthesis is illustrated in Figure 5.1.

Extract

Audio-visual active shape xisua!gﬂcrs audio parameters
corpus ol iae | iR |
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Learn mapping

m between audio and

visual using MRD
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Acoustic speech Extract i
parameters ElCeree
gecance from audio

Figure 5.1. An overview of the proposed approach for visual speech
synthesis. Training process is marked using the blue arrows, and syn-

thesis process is marked by the orange arrows.

5.1 Our proposed model

Deena et al. [38] introduced a framework that jointly models audi-
tory and visual features using a shared latent points. To cater for the
various dynamics involved in speech, they augmented the model with

switching states by training a variable-length Markov model [149] on
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phonetic labels. In this work, we present a new generative method for
speech-driven facial animation using a joint probabilistic model of audio
and visual features, which explicitly models coarticulation. The pro-
posed framework to jointly model speech and visual features is based
on Bayesian techniques. The latent variable is factorised to represent
private and shared information from audio and visual features. To
obtain a smooth, continuous representation, a relaxation of the struc-
tural factorisation of the model is introduced, where a latent variable
might be more important to the shared space than the private space.
In contrast to previous methods, using this model allows the dimen-
sionality of the latent space to be estimated automatically. MRD is a
powerful and flexible approach to capture structure within very high
dimensional spaces [34], it models raw images with many thousands of
pixels. In addition, this method has been applied successfully in several
multiple-views tasks, such as human pose prediction in an ambiguous
setting. The disambiguation is performed by including latent point pri-
ors, which combine the dynamic nature of the data. In this section, we
describe the model and the variational approximation.

Two observation spaces of a dataset, Y € R¥XPv and Z € RV*Pz,
are assumed to be generated from a single latent point X € RV*@
through the non-linear mappings (fY, ..., fgy) and (fZ, ..., fgz) Q<
D), giving a low-dimensional representation of the data. The as-
sumption is that the observation is generated from a low-dimensional

manifold and corrupted with Gaussian distributed observation noise

Y2 o N(0, 67 D)

Ynd = f(}/ (Xn) + 53;1 (51)
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Znd = de (Xn) + ng (5-2>

where nd represents the dimension d of point n. This leads to the joint
likelihood under the model, P(Y, Z|X,6), where 8 = {6",6%}, repre-
senting two different sets of hyper-parameters of the mapping functions
and the noise variances oY and 0Z. A GP prior distribution is proposed
to place over the mappings [100]; the resulting models are known as
Gaussian process latent variable models (GPLVMs). In the GPLVM
approach, each generative mapping is modeled as a product of D sepa-
rate GPs parameterised by a covariance function k{¥'4} evaluated over

the latent points X:

p(FY|X,07) =[NV (£]]0,K") (5.3)

d=1
where F¥' = (f{', ..., f},) with f}, = f7 (x,), and the same definitions
for '#. The non-linear mapping can be marginalised out analytically,

obtaining a joint likelihood:

Py, z|Ix,0)= ]] /p (K|F*) p (F¥| X, 0%) dF* (5.4)
K={Y,Z}

To obtain a fully Bayesian treatment, integration over the latent
representation X is required. This is intractable, because X appears
non-linearly in the inverse of the covariance matrices { K¥, K#} of the
GP priors over the mapping { Y, f? } By variationally marginalising
out X, an approximated Bayesian training and synthesis procedure can

be obtained. The automatic relevance determination (ARD) priors can
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then be introduced, such that each observation is allowed to estimate
a separate vector of ARD parameters. In this case, the observations
are allowed to set the private and shared latent subspaces relevant to
them.

In the following, we can summarise how MRD has its origins in principal

component analysis (PCA),

e GPLVMs can be acquired after generalising PCA to be nonlinear

and probabilistic.

e A SGPLVMs can be acquired when GPLVMs are generalised to

the case of multiple views of the information.

e When private subspaces to shared GPLVMs are found, then a
factorisation of the latent representation that encodes variance

specific to each view is recovered.

e Lastly, the dimensionality and factorisation of the latent vari-
able can be automatically determined when the latent space is

marginalised instead of optimised.

Automatic determination of the dimensionality and structure of the
nonlinear latent variable from multiple views can be known as manifold

relevance determination.

5.1.1 Manifold Relevance Determination

Damianou et al. [34] tried to improve factorised latent spaces so that the
variance shared (i.e. correlated) between different data spaces can be
aligned and disjointed from variance that is private (i.e. independent).

In this model, the variance contained in the data space does not need
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to be governed by geometrically orthogonal subspace, as supposed in
[154]. The manifold model has the ability to treat non-linear mappings
within a Bayesian approach. In particular, the latent functions f
that are selected to be separate draws with a zero-mean GP, and ARD
covariance function, which is given by:

k;Y (Xia Xj) — (O'Y )2 @*% 26(1221 sz(xi,q*xj»q)Q (55)

ard

and analogously for f4. A common latent space can be learned; how-

Q

and w? =
q=1

ever, the two groups of ARD weights w¥ = {w}
{qu }(;?:1 are allowed to automatically infer the responsibility of every
latent dimension to produce points in the Y and Z spaces, respectively.
After that, the segmentation of the latent points X = {XYX*X?%}
can be recovered, where X¥ and XZ are private spaces, X° € RV*@s
is a shared space defined by a group of dimensions ¢ € [1,...,Q] and

Y Z
wq ,wq

> ¢ with 0 is a number near to zero, ), < (). This allows
for softly shared latent points, if the two sets of weights together are
greater than J and they are different. The two subspaces XY and X?

are inferred automatically:

XY = {x}2 (5.6)

X7 = {x,}9% (5.7)

where Qy and ), are the dimensionality of XY and X?Z respectively,
X, € X, wg/ > 0, qu < 0. Figure 5.2 shows the graphical model of MRD.
In this figure, the ARD weights w{¥'?} are separated from the full set

of model hyper-parameters 1Y%} = {aéy’z}, ULEZ;Z}, wir? }} to describe
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the utilisation of ARD covariance functions. The latent variable X is
marginalised out and a distribution of latent points is learned for which
additional hyperparamters encode the relevance of each dimension in-
dependently for the observation spaces, then, a factorisation of the data
is automatically defined. The distribution p (X) = p (X|6%) placed on
the latent variable allows the incorporation of prior knowledge about
its structure. Despite the similarity with the graphical model of a fully
shared latent space, in this figure the role of X is totally different. The
latent space X is marginalised out and, both with the additional weight

parameters, runs in a Bayesian factorised model.

Bayesian training

The fully Bayesian training technique needs maximisation of the loga-

rithm of the joint marginal likelihood
p(v.216) = [ p(Y.Z1X.0)p(X)dX (58)

where a prior distribution is located on X. This prior might be a stan-
dard normal distribution or might rely on a group of parameters 6.
From equation 5.4 it can be seen that the integral is intractable because
of the nonlinear way in which X represents in p (F Wz x, 9tv2 }). In
this situation standard variational approximations are intractable as
well. A non-standard approach will be reported here to obtain an an-
alytic solution.

Damianou et al. [34] tried to maximise a variational lower bound
F, (g, 0) on the logarithm of the true marginal likelihood depending on a
variational distribution which factorises as ¢(0)q(X), where ¢(X) ~ N

(i, S) can be assumed. In this method ¢(©) is a distribution which
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relies on additional variational parameters © = {@Y,@Z } such that
q(0) = q(0Y)q(6%). These additional parameters © and the exact
form of ¢(©) form the most crucial ingredient of non-standard varia-
tional method. For simplicity, hyperparameters 6 is dropped from the
expressions and Jensens inequality is used to obtain a variational bound

F,(q) <logp(Y, Z):

Fy(q) = /q<6)CI(X)l0g (p(Y!)égggi))gp(X)) X

=Ly + Lz — KL [q(X)]|p(X)]

(5.9)

where Ly = fq(@yq(X)logZ((}gf)) dX and analogously for L. “data

augmentation” principle is applied to expand the joint probability space
with M extra samples UY and U? of the latent functions f¥ and f?
estimated at a group of pseudo-inputs namely “inducing points” XY
and X7 respectively. UY € RMy*xDy % ¢ RMzxDz XY ¢ RMyxQ
X% € RM2x@ and M = My + M. The expression of the joint proba-

bility becomes:

PYIXXY) = [ [P )p(FY |07 X X (0 | X )iF au”
(5.10)
and analogously for p(Z|X). It can be seen that the inducing points are
variational rather than model parameters. Now, ¢(©) = ¢(0Y)q(6%)

can be represented as

¢©)= [ a@Mp(F*IU*, X, X% (5.11)
K={V,2}

where g(U*) are free from distributions. The final objective function

can be obtained by replacing equations 5.11 and 5.10 back to 5.9. This
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function is jointly maximised with respect to the model parameters, in-
cluding the latent space weights w¥ and w# and the variational param-
eters { w, S, X } This incorporates additional strength to the model,
since previous methods depend on maximum-a-posteriori (MAP) ap-

proximations for the latent points.

Dynamics

For the dynamic version, the model can represent the correlations be-
tween datapoints of the same output space, for instance when Y and
Z are multivariate time-series. In this case the prior on the latent
representation is chosen to depend on the observation times t € R,
for example a GP with a covariance function & = k(t,¢'). As in stan-
dard variational inference, this optimisation gives an approximation of
p(X|Y, Z) by q(X), in other words, a distribution over the latent space
is obtained.

Damianou et al. [34] consider a collection of human poses and as-
sociated silhouettes. They utilised the MRD model to synthesis the
poses corresponding to the test silhouette features. This is a challeng-
ing because the data are multi-modal. The silhouette features might
be created from more than one pose. Damianou et al. compare the
method with the SGPLVM [50, 51| which optimises the latent space
utilising MAP. They showed that the MRD performs better than the
SGPLVM method in the task of predicting human pose in an ambiguous
setting.

Our novel method for audio-visual mapping is based on the MRD
framework. Utilising a softly shared latent space, the non-linear rela-

tionship between auditory and visual dynamics during speech can be
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automatically modelled. MAP estimates utilised in SGPLVM model
mean that the structure of the latent space cannot be automatically
calculated. For the MRD model, ARD priors are introduced to calcu-
late which of the emerging private latent space and shared latent space
are relevant to the views. The model learns a distribution over the
latent space variationally which allows the dimensionality of the latent
representation automatically and incorporate prior knowledge about
the structure to be determined. The model forces the whole collection

of training and test inputs to generate smooth paths in the latent space.

5.1.2 Training

MRD is learned between Y, represented by the relative spectral
transform-perceptual linear prediction (RASTA-PLP) feature vector,
and Z, represented by the ASM feature vector. The obtained latent
space is a non-linear embedding of both audio and visual features that
can generate the two spaces Y and Z. Probabilistic principal compo-
nent analysis (PPCA) is used as an initialisation of the latent space
variational means; this is done by performing PPCA on each dataset
separately and then concatenating the two low dimensional representa-
tions to initialise X. We perform experiments to compare this method

with Deena’s SGPLVM approach in Section 5.4.

5.1.3 Inference

Given a trained model that jointly represents the audio features Y and
the ASM parameters Z with a single but factorised input space X,
we wish to infer a new set of output points Z* € RV *Pz given a

set of test points Y* € RV *Pv_  The inference procedure is done in
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three steps; first, the sequence of latent points X* € RN X that is
most likely to have inferred Y* is predicted. An approximation to the
posterior p(X*|Y*,Y), which has the same form as for the standard
Bayesian GPLVM is used [176] and given by a variational distribution
q (X, X*) . In order to find ¢ (X, X*), the variational lower bound on
the marginal likelihood p (Y, Y*) which has analogous form with the
function 5.9 is optimised. Precisely, Z is ignored and Y is replaced
with (Y,Y*) and X with (X, X*). Second, the training latent points
Xnyn that are nearest to X* in the shared latent representation are
found. Finally, the output sequence Z from the likelihood p(Z|Xny) is
determined. To infer novel outputs, the recovered information has to

propagate. Algorithm 1 summarise the MRD inference procedures.
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Algorithm 1 MRD Inference Algorithm, assuming two views audio

(Y) and visual (Z)

1.

Given a trained MRD model on views (Y, Z) representing audio

and visual features respectively to obtain factorised latent space

X = (XY, XYZ X7).

. Given test point from audio features y*.

. Do optimisation ¢(X, z*) ~ p(X, z*|Y, y*).

*Y xYZ
)

The marginal ¢(z*) with mean 2* = (z*", z *Z)

T is obtained.

K points xynk) from a K —nearest neigbour search between Yz

and XY < is found.

for k=1,... . K do

. :U}‘VN(k) = (x*Y,x*YZ,xJZ\,N(k)) is generated by joining zyy(x) and
r*.
Z(y) 1 generated from the likelihood p(z|z}yy))-

. All test audio points Y* are treated together using dynamical

MRD version, such that the variational distribution ¢(X, X*) will

form a timeseries.

5.2

Applications of MRD

Following is a potential application suggested by other researchers for

MRD method:

The work of Bekiroglu et al. [7] applied MRD to the problem of trans-

ferring between stable and unstable robot grasps. Bekiroglu et al. used
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MRD for correcting unstable robot grasps to stable robot grasps. The
key characteristic of this method is the utilisation of a factorised latent
space which individually models the data that is shared between the
views. The factorisation permits to achieve efficient inference in am-
biguous setting where the observations are not sufficient to select the
required output.

Damianou et al. [34] applied MRD method to the Yale dataset [66,104]
which contains images of human faces under various poses and 64 illu-
mination conditions to model very high-dimensional spaces. A single
pose for each subject was considered so that the only variations were the
location of the light source and the subjects appearance. The model
was directly applied to the raw pixel values such that image feature
extraction to process the data was not needed, and novel outputs can
be directly sampled. The information about the position of the light
source and not the face characteristics was encoded successfully by the
shared space.

The work of Trautman [177] presents possible applications of MRD
in sensor fusion, multi-agent SLAM, and “human-appropriate” robot
movement. In his work Trautman show how MRD can be utilised to
construct the underlying models in a data driven manner, instead of

directly using first principles theories for example physics and psychol-

ogy.

5.3 Data and pre-processing

We use a phonetically balanced LIPS corpus [171] consisting of 278
high-quality sequences featuring a female British subject speaking sen-

tences from the Messiah corpus [169]. The sentences were spoken in a
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neutral speaking style (no expression). The original LIPS corpus con-
sists of images of 50 Hz video stream with 576x720 pixels. Figure 5.3
shows video frames from the LIPS corpus. In addition, high-quality
audio in the form of WAV files and the phonetic annotation for each
frame have been made available. Using the British English Example
Pronunciation Dictionary (BEEP), the LIPS dataset has been phonet-
ically aligned. The DEMNOW dataset [55] has also been used which
is closer to natural speech, as this dataset has been acquired in a real

world setting of a newsroom.

Visual parameters Audio parameters

Figure 5.2. Graphical model of the MRD method.

Figure 5.3. Video frames from the LIPS dataset.

5.3.1 Audio proccessing

Deena et al. [39] performed experiments to determine which speech
parameterisation technique out of linear predictive coding (LPC), line
spectral frequencies (LSF), Mel-frequency cepstral coefficient (MFCC)

and RASTA-PLP is better for predicting visual features. They found
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that RASTA-PLP processed at 25 Hz is a better predictor of vi-
sual features for LIPS, whilst MFCC coefficient downsampled using
polyphase quadrature filtering gives the best results for the DEMNOW
dataset [54]. In this work, we used RASTA-PLP features to parame-
terise speech to represent the acoustic variability within and between
the different phonemes. To satisfy the requirement of having a window
where the speech signal is stationary, a window size of 25 ms and a
hop size of 10 ms is typically used, resulting in an audio processing
frequency of 100 Hz. The speech parameters need to be downsampled
to match the visual processing rate of 25 fps used for LIPS video se-
quences, so we use an auditory window of 50 ms and a hop window
of 40 ms to obtain speech features at 25 Hz. In addition, we use 20
parameters to represent the RASTA-PLP features. The speech features
required to be downsampled to match the visual processing rate 29.97
fps utilised for the DEMNOW dataset. Therefore, we use an auditory
window of 50 ms and a hop window of 33 ms to get the speech features

at 29.97 Hz.

5.3.2 Visual processing

We use an ASM [25] for visual parameterisation, because such models
capture the statistical variation in shape and build a generative model
to obtain novel shapes. A training set of annotated prototype face
images is required. For the LIPS dataset we use 97 landmark points
around the face, eyebrows, lips and nose in each of the prototype images
as shown in Figuer 3.1.

For the DEMNOW dataset, 12922 images corresponding to 70 se-

quences were annotated automatically with 68 facial landmarks iden-
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tified for each frame; 20 of them described the inner and outer mouth
shape using open source tool (OpenFace). Figure 5.4 shows an image
from the DEMNOW dataset with landmark points.

An ASM has been built on the shapes in several steps. First, the
shape vectors have been normalised by removing rotations and transla-
tions, and then aligned with respect to the mean shape using Procrustes
analysis. Following this, PCA has been applied to the normalised shape
vectors. After training the PCA model and retaining 95% of the vari-
ance of the shape, ASM parameters can be obtained from novel shapes
by projecting the shape vectors to the corresponding retained eigenvec-

tors.
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Figure 5.4. A labeled training image from the DEMNOW dataset.

5.3.3 Computational complexity

GP models are intractable for large datasets and have a time complex-
ity scales and storage of O (N3) and O (N?) respectively, where N is
the number of training examples. To overcome this limitation, several
approximation approaches have been described in the literature to con-
struct a sparsification dependent on a small set of M inducing points

to reduce the typical time complexity from O (N?3) to O (NM?) [175],
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where N and M are the total numbers of training and inducing vari-
ables, respectively. In the MRD model [34], the datasets with very
large numbers of features can be modelled because the objective func-
tion involves the matrices Y and Z in expressions of the form YY7 and
Z 7T, which illustrates that the model does not rely on the number of

features {Dy, Dz} in the datasets.

5.4 Experiments on auditory and visual signal

MRD and SGPLVM models are trained on ASM and RASTA-PLP
data for both LIPS and DEMNOW datasets because we want to assess
the approaches using two different datasets. The LIPS dataset is pho-
netically balanced whereas the DEMNOW dataset is closer to natural
speech, as this dataset has been obtained from a real world setting of a
newsroom. In Subsection 5.4.1 experiments are presented for training
MRD and SGPLVM methods using LIPS shapes for visual representa-
tion and RASTA-PLP features for audio representation. In Subsection
5.4.2 experiments are performed using the same methods for audio-
visual mapping with DEMNOW shapes for visual and RASTA-PLP
features for audio representations respectively. The results of MRD are

compared with these of the SGPLVM.

5.4.1 Experiment 1: Quantitative evaluation for LIPS dataset

Due to the complexity of MRD training, we trained an MRD model
on 50 training sequences from LIPS dataset, totaling 5332 frames, by
taking Y as the RASTA-PLP features and Z as the mean-centering
ASM features; the obtained latent space was represented by six dimen-

sions. In our experiment, we set the inducing points to 100. We then
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used a validation set of 10 sequences totalling 1234 frames to predict
visual parameters from audio parameters. As illustrated in the infer-
ence subsection 5.1.3, given test point y*, one of the N* audio tests,
the model optimised a variational distribution and found a sequence of
K candidate initial training data (xg\%\,, ,x%&), these were ordered
according to their similarity to x*, and only the shared dimensions were
taken into account. Based on these initial latent points, a sorted series
of K mnovel visual features (21, ..., 2) were found. In our experiments,
we performed PPCA on each dataset separately and then concatenated
the two low-dimensional representations to initialise X. The results of
the MRD were compared against the SGPLVM method [36]. Table 5.1
shows the average mean squared error (AMSE) and average correla-
tion coefficient (ACC) for our approach using MRD and Deena et al’s
method [36]. The table demonstrates that there was a distinction be-
tween the errors obtained using MRD and those using Deena’s approach
(SGPLVM). In addition, Figure 5.5 shows the shape frames obtained
from the ground truth, MRD and SGPLVM. The corresponding audio
contained a sentence from the LIPS dataset. We found that the shape
uttering /b/ from the MRD method showed proper lip synchronisation
with the audio and appeared to be the best, whilst the SGPLVM gave
lip synchronisation with a few jerks in the animation. It can be seen
that the difference between the quality of mouth articulation between
real and MRD synthetic videos was non-significant. In addition, we
observe smooth lip movements compared with the ground truth and
the SGPLVM methods. Figure 5.6 shows the shape frames obtained
from the ground truth, MRD and the SGPLVM. The phonemes cor-

respond to six different visemes of the words (“house”, “had”) from
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the test audio sentence (The big house had large windows with very
thick frames). It can be found that the shapes uttering /aw/ from
MRD and the SGPLVM methods showed proper lip synchronisation
with the auditory and the differences of the quality of mouth articu-
lation among real and both of MRD, the SGPLVM synthetic videos
were non-significant. Also, it can be observed smooth lip movements of
MRD synthetic videos compared with the ground truth and SGPLVM
approaches. Figure 5.7 shows the results normalised between 0 and
1 obtained across the ten runs of the experiment. The results show
a noteworthy difference between the errors obtained from MRD and
Deena’s method. Generally, the AMSE errors for MRD are distinctly
lower than those for the SGPLVM, mostly due to a softly shared latent
space. In addition, the results are in higher correlation with the ground

truth as compared to other method.
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Figure 5.5. Example frames of the shapes obtained from the LIPS
synthesis results using ground truth (top row), MRD (middle row) and
SGPLVM (bottom row). The phonemes correspond to six different
visemes of the words (“the”, “boy”, “fair”) from the test audio sentence

(The boy a few yards ahead is the only fair winner).
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Figure 5.6. Example frames of the shapes obtained from the LIPS
synthesis results using ground truth (top row), MRD (middle row) and
SGPLVM (bottom row). The phonemes correspond to six different
visemes of the words (“house”, “had”) from the test audio sentence

(The big house had large windows with very thick frames).
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Figure 5.7. AMSE errors obtained between ground truth ASM feature
vectors and 1- MRD 2- SGPLVM.
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Table 5.1. Objective measure computed between original ASM param-
eters and the corresponding synthesised parameters using LIPS dataset.

Method | Audio repre- | Visual rep- | AMSE ACC
sentation resentation

MRD Continuous ASM 54.8216 0.7095

SGPLVM | Continuous ASM 78.7457 0.7071

5.4.2 Experiment 2: Quantitative evaluation for DEMNOW
dataset

In this experiment we asses the proposed approaches on another dataset
which is closer to natural speech, as this dataset has been acquired in
a real world setting of a newsroom.

For the DEMNOW dataset ASMs are built on 50 training sequences,
totaling 9199 frames. By retaining 99% of the variance of the shape
a 6 dimensional vector of ASM parameters is obtained. The speech
features need to be downsampled to match the visual processing rate
29.97 fps utilised for the DEMNOW dataset. Therefore, we utilise an
auditory window of 50 ms and a hop window of 33 ms to get the speech
features at 29.97 Hz.

For the DEMNOW dataset MRD and SGPLVM models are trained
on 50 training sequences, totaling 9199 frames. Then, a validation set
of 20 sequences totaling 3723 frames is used to predict visual param-
eters from auditory. The models are learned between RASTA-PLP
feature vector and the ASM feature vector. Table 5.2 shows the AMSE
and ACC for our approach and Deena’s method using the DEMNOW
dataset. Again, as for the LIPS dataset, the results show that the
MRD model gives better results. The trajectories of the first mouth
landmark (y-coordinate) feature reconstructed from the active appear-

ance model (AAM) features of the two methods against ground truth
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are also compared as shown in Figure 5.8. The synthetic trajectories
are calculated utilising three test utterances of DEMNOW dataset. The
results for MRD approach show that the trajectories are smoothed out
as compared to the SGPLVM method.

The DEMNOW corpus contains more variability than the LIPS
dataset. These dataset contains large variations in pose and expression
within a particular sequence as well as the variability across sequences.
Moreover, the DEMNOW dataset includes an American speaker pre-
senting news with a fast speaking rate. In our experiments, z-score
AAM parameters normalisation and RASTA-PLP parameters method
are used for DEMNOW dataset. Other normalisation and speech pa-
rameterisation methods could be used to address the issues of large
variability and hyper-articulated that is happened because of the fast
speaking rate.

Table 5.2. Objective measure computed between original ASM param-
eters and the corresponding synthesised parameters using the DEM-

NOW dataset.

Method | Audio repre- | Visual rep- | AMSE ACC
sentation resentation

MRD Continuous ASM 22.5922 0.6701

SGPLVM | Continuous ASM 37.2289 0.6398
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More experiments and analysis on MRD are presented in Chapter

5.5 Summary

This chapter presented a new factorised latent variable model for syn-
thesising visual speech from auditory signals. We showed how MRD
can be utilised for auditory-visual mapping. A compact and intuitive
representation of audio-visual data was learned, represented by the syn-
thesis of novel shapes by sampling from the latent space in a structured
manner. Objective results were presented for both MRD and the SG-
PLVM. We then presented training and synthesis approach for MRD.
Experiments were finally dealt with. Two datasets were utilised in our
experiments the first one was LIPS dataset [171] and the second was
DEMNOW dataset [55]. It can be found that using MRD method to
modelling auditory and visual features decreased the AMSE error of the
resulting animation compared to the SGPLVM approach for both the
LIPS and DEMNOW datasets. The results were in higher correlation
with the ground truth as compared to other method. In addition, syn-
thesis of facial animation using MRD produced visuals with the correct

facial dynamics and proper synchronisation with the audio signal.



Chapter 6

THE MANIFOLD RELEVANCE
DETERMINATION FOR
AUDIO VISUAL MAPPING
BASED ON APPEARANCE
FACIAL MODEL

We have seen in the previous chapter how flexible the manifold rele-
vance determination (MRD) approach is at using a shape model as a
representation of the face. In this chapter, we continue addressing the
problem of producing accurate and realistic videos of talking faces from
audio signal. A generative model of the face that captures the shape
and texture variation is used for training the MRD model. In Chap-
ter 4 we showed that building active appearance models (AAMs) using
larger dataset and more facial landmarks leads to more precise models.
However, batch learning includes processing of the whole dataset which
is restricted to its applications as batch learning methods are more time
consuming and needs the whole dataset prior to training. This means
that the computers with low resources cannot be used for building such

124
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models from all data simultaneously.

Our motivation for this chapter arose in the context of constructing
eigenspace models for many images. Nonetheless, method for incremen-
tal learning of models exists [76,77]. Furthermore, in online learning al-
gorithm, AAM parameters can be updated when a new dataset arrives.
It can be shown in this chapter that such method produces models
almost as good as the ones trained on all the data simultaneously.

An eigenspace model includes the number of observations, their
mean, the support vectors (eigenvectors) over the observations, and a
measure of the spread of the observations (eigenvalues) through each
support vector. Eigenspace models can be computed utilising either
eigenvalue decomposition (EVD) of the covariance matrix of the data
(also named as principal component analysis) or singular-value decom-
position (SVD) [76,77]. In an incremental computation, an eigenspace
model can be updated utilising new observations. Incremental ap-
proaches do not require all observations at once so, they decrease stor-
age requirements and making large problems computationally tractable.

An overview of the basic method that we utilise is as follows. The
first stage is to build a 2D appearance-based model of the face using
a larger dataset which allows different facial poses to be represented
utilising a small number of parameters. The auditory data is param-
terised utilising relative spectral transform-perceptual linear prediction
(RASTA-PLP). MRD is then learnt on the audio and visual data. MRD
using batch and incremental approaches for visual representation are
compared. Moreover, two approaches are investigated for visual nor-
malisation, namely mean-centering of AAM parameters and z-score

normalisation. Quantitative evaluation including the analysis of the
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error and correlation measures between ground truth and synthetic
features is performed to compare our proposed approach against other
related state-of-the-art approaches. Qualitative evaluation with hu-
man volunteers has been performed to evaluate the perceptual charac-
teristics of the synthesised animations. The proposed approach using
MRD is compared with other related approaches such as the shared
Gaussian process latent variable model (SGPLVM) [38], bidirectional
LSTMs (BLSTMs) [60], and hidden Markov models (HMMs) [80]. In
addition, experiments to determine the optimal latent space initialisa-

tion are performed.

6.1 Memory problems

Given a set of facial images, an appearance model needs to be built for
these images. In this work, we try to construct a more accurate active
appearance model using a larger dataset. But several problems arise
when constructing this kind of models because of the size of training
dataset and the subsequent effect on computer memory, and also within
online learning applications. For instance, the training set in our ex-
periments consists of 5982 texture vectors of dimension 106251 by 1.
Implementing principal component analysis (PCA) on this collection is
very costly in terms of memory. Moreover, the addition of colour data
increase the dimension to 318753. Colour is incorporated into appear-
ance model by determining texture vectors as concatenated Red, Green
and Blue (RGB) data vectors [170]. For example, the texture of the

J —th face image, t;, can be defined by a vector concatenating the RGB
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value of every pixel that lies inside the mean shape:

t] = (th R]Q, ce aRjUa Gjl; Gj?a c. 7GjU7 th Bj27 ce ,BjU) (6].)

where j =1,2,------ ,J and U is the total number of pixels in the face
region. In our work we utilise eigenspace addition algorithm proposed
by Hall et al. [77] to solve the computer memory problem and allow

online learning.

6.2 Adding eigenspaces

The principle behind this approach is that eigenmodels may be added
together. So, given memory constraints in a system, building and fol-
lowing that addition of several smaller PCA models is more efficient
than building of one large model. Let X = [x1,...,Xxy] be a collection
of N observations, each n dimensional. The EVD of the covariance of

the observations is determined by

(X — pl)(X — p1)' = (1/N)UAUT (6.2)

i is the observations mean, 1 is a row N 1’s, U is an eigenvectors of
n X n matrix, and A is an eigenvalues of n x n diagonal matrix.

Only the eigenvectors that correspond to large eigenvalues are of in-
terest, the others are ignored. Typically, only p(n, N) of the support
vectors have considerable spread values and, consequently, only p of the
n support vectors need to be retained. This reduction leaves p support
vectors in a n X p matrix U,,, and p spread values in a diagonal matrix

A,p. After the reduction, p eigenvectors in a n X p matrix U,, and p
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eigenvalues in a diagonal matrix A,, can be obtained; p can be consid-

ered as the dimension of the eigenspace. Because of the reduction, we

can have
(X = )X = )" = UnpAppUp, (6.3)
Ul Unp =1 (6.4)
UnpUT # 1 (6.5)

An eigenspace model €2 can be defined as the mean, a reduced collection
of eigenvectors, their eigenvalues, and the number of observations which

is specified as:

Q(X) = (X)), U(X)np, A(X)pv N(X)) (6.6)

where p(X) is the mean of data points; U(X),, is a p column eigen-
vectors; A(X), is a vector of p eigenvalues, and N is the number of
observations.

If there is another set of data points Y = [yi1, -+ ,yun], the EVD

eigenspace can be defined as

This set generally differs from X, however this difference is not a re-
quirement. In general ¢ # p even when Y = X, because PCA reduction
may happen in different ways.

For addition utilising EVD, the eigenspace for the concatenated pair

Z = [X,Y] is determined



Section 6.2. Adding eigenspaces 129

Generally, the number of eigenvectors and eigenvalues r differs from
both p and ¢. Incremental computation of N(Z) and wu(Z) can be

defined as follows

N(Z) = N(X) + N(Y) (6.9)

w(Z) = (N(X)u(X) + N(Y)u(Y))/N(2) (6.10)

Eigenvectors U(Z) should support all data in both sets X and
Y, both U(X) and U(Y) should be subspaces of U(Z). Gener-
ally, these subspaces might be expected “intersect” in the sense that
U(X)TU(Y) # 0. The null space of each of U(X) and U(Y") might con-
tain some component of the other, H = U(Y) — U(X)(U(X)TU(Y)) #
0. U(Z) can still be of larger dimension, even if U(X) and U(Y") sup-
port the same subspace. This is since some component h of the vector
joining the means p(X) — p(Y) might be in the null space of both sub-
spaces, simultaneously. Putting issues relating to changes in dimension,
adding data acts to rotate the eigenvectors and scale the values relating
to spread of the data. The new eigenvectors should be linear combi-
nation of the old. Hall et al. [77] deal with a change in dimension
by building a basis sufficient span U(Z), for which they used U(X)
augmented by v, v spans [H, h|, which is in the null space of U(X).
Note that v spans a t-dimensional subspace, t < ¢ + 1. Then the new

eigenvectors can be obtained

U(Z) = [U(X),v]R (6.11)

where R is an orthonormal matrix. Addition for eigenspaces diverge
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only in the manner in which R is determined.
A more detailed description of the algorithms for adding eigenspaces
is given by Hall et al. [76,77]. Algorithm 2 and Figure 6.2 summarise

adding eigenspaces with eigenvalue decomposition procedures.

Algorithm 2 A sequence of instructions for adding eigenspaces.

1. Given two sets of observations,

X =[x1,..,xn|, and Y = [y1, ..., Y i]

2. Calculate an eigenspace for X,

QX) = ((X), U(X)p, A(X), N (X))

3. Calculate an eigenspace for Y,

QY) = (Y ), U(Y Jng, A(Y)q, N(Y))

4. Calculate an eigenspace for the concatenated pair, Z = [X, Y],
Q2Z) = (w(2), U(Z)nrs MZ)r, N(2)) = UX) & QY)

steps 5 to 7 represent the process.

5. Compute the number of the data points in eigenspace 2(Z)
N(Z)=N(X)+ N(Y)

6. Compute the data mean in eigenspace 2(Z2)
u(2) = (N(X)u(X) + N(Y)u(Y))/N(Z)

7. Compute eigenvectors U(Z) which should support all data in both
sets X and Y, both U(X) and U(Y") should be subspaces of U(Z).
U(Z)=1[U(X),v|R
where R is an orthonormal matrix, v spans a t-dimensional sub-

space; t < g+ 1.
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Figure 6.1. Adding eigenspaces with eigenvalue decomposition.
6.3 Visual data pre-processing

In our method, we utilise the AAM [25] for visual parameterisation.
An AAM is constructed on the shapes and images, by first aligning the
shapes then computing a mean shape. Using a piecewise affine warp al-
gorithm, the texture sampled from within the convex hull of the shape
for each image is warped to the mean shape. The warping is performed
using Delaunay triangulation on image landmark data in both origi-
nal and target prototypes, and affine warping corresponding triangles.
Principal component analysis is applied to the shape and texture sepa-
rately and then to the concatenation of the PCA parameters for shape
and texture.

As mentioned in Chapter 4 that Deena et al. [38] chose 184 images by
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selecting 4 random frames throughout the dataset, from each of the
45 sounds plus silence and breath for training the AAM. 56 landmark
points were used in each of the example images, then AAM was con-
structed on the shapes and images. After that, they projected the
remaining corpus to AAM parameters. Our motivation is to build
AAM on a larger dataset in order to find better visual realisations

of phonemes.

6.4 Experiments

The experiments which are conducted in this section are organised as
follows. Subsection 6.4.1 compares the performance of two methods for
building eigen models using adding eigenspaces and not using it. The
purpose of this experiment is to use an online learning algorithm to add
AAMs as they do not need retraining whenever new training data ar-
rives and asses our MRD approach using these models. Subsection 6.4.2
investigates two initialisation approaches to initialise the latent space,
namely: PCA and probabilistic principal component analysis (PPCA),
because the training process has to proceed with appropriate initiali-
sation of the latent space. Subsection 6.4.3 performs experiments that
examine feature improvement approaches to reduce speaker variability
and compare two normalisation technique using mean-centering AAM

parameters and a z-score normalisation.

6.4.1 Experiment 1: Adding eigenspaces

We have chosen 55 sequences from the LIPS dataset giving 5982 images,
and more markup points are utilised with 97 facial landmarks identified

for each frame; 38 of them described the inner and outer mouth shape
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in order to have a smoother facial boundary for training the AAM.
PCA cannot be applied on the texture, because there are too many
images to store into memory at once, so incremental approaches are a
prerequisite to our method. Such that, this dataset is partitioned into
two collections. PCA is applied to the texture for each set, then the two
constructed models are merged. The number of eigenvectors retained in
any model, including a merged model, is set to be 100 to obtain a 90%
of the variance of the texture because we find that utilising more prin-
cipal components will not lead to further performance improvement.
Subsequently, the PCA is applied to the concatenated shape and tex-
ture merged PCA parameters. By retaining 95% of the variance of
the combined parameters, a 95-dimensional vector of normalised AAM
parameters using z-score normalisation, and 34-dimentional vector of
mean-centering of AAM parameters are obtained. We decided to retain
this number of parameters in order to obtain the visual and auditory
spaces of comparable dimension as the audio dimension is 20.

Figure 6.2 displays AAM features synthesised by our proposed ap-
proaches using both adding eigenspace models and one eigenspcae
model for a test sequence “The boy a few yards ahead is the only
fair winner” and those obtained from ground truth. The frames corre-
spond to three words consisting of eight different visemes from the test
auditory sentence. The corresponding phonetic labels are shown below
each frame.

Table 6.1 shows the average mean squared error (AMSE) and av-
erage correlation coefficient (ACC) between the ground truth and the
synthesised mean-centering AAM features, obtained from MRD using

adding eigenspaces and without using it approaches across the 20 test
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utterances, such that the training and testing sets do not overlap. We
will call the approach based on the adding eigenspaces MRD-ADD and
the approach without using adding eigenspaces MRD. The results show
that the AMSE errors for MRD-ADD are slightly higher than those
for MRD. This means that the addition of eigenspaces provides only
slightly less accurate results than batch approaches.

Figure 6.3 shows trajectory comparisons among MRD, MRD-ADD,
and ground truth for the sentence “The boy a few yards ahead is the
only fair winner”. The Figure shows how the synthetic trajectories for
MRD and MRD-ADD follow the same general pattern as the ground
truth trajectories. Figure 6.4 highlights selected frames from the ani-
mation. The trajectories at frames 14 to 16 associated with the artic-
ulation of “b”, the ground truth mouth and the MRD-ADD synthetic
mouth are both closed, while the MRD synthetic mouth is slightly
opened. The differences which do happen between the MRD synthetic
and ground truth signals in this period appear in terms of signal ampli-
tude. Frames 18 and 20 refer to the articulations “oy” from the word
boy and “a” respectively. It can be shown that the trajectories at point
20 are very close and both the synthetic and ground truth mouths are
opened. The results at the period 14 to 20 show that the MRD-ADD
model gives the better results, and follow approximately the same gen-
eral pattern as the ground truth trajectories. The trajectories at frames
36 to 39 associated with the articulation of “eh” from the word “head”,
the ground truth mouth and both of the MRD, MRD-ADD synthetic
mouths are opened, which can be shown in Figure 6.2. It can be shown
that the trajectories for MRD and MRD-ADD at this period follow the

same pattern as the ground truth trajectories.
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It can be seen from Figure 6.4 that the difference between the quality
of mouth articulation between real and MRD-ADD synthetic videos in
frames 14, 18, 19 is non significant. The lip uttering /b/ from the
MRD-ADD method showed proper lip synchronisation with the audio
and appeared to be the best, whilst the MRD gave lip synchronisation
with a few jerks in the animation. We observe that the MRD-ADD
could estimate the form of lip movements reasonably. The trajectories
show that the performance of MRD-ADD approximately the same of
MRD.

PCA building steps
The process for building PCA models is as follows

1. Given a training set of 2857 frames, compute the eigenvectors and
eigenvalues using PCA. We have used this number of frames due

to the memory constraint.
2. Define this model as Q(X).

3. Given another collection of 3125 frames, perform PCA on the

dataset.
4. Build Q(Z) = Q(X) & QYY)

After increasing the RAM capacity in the machine to 32 GB, active
appearance model has been built using about 6000 images, so that we
did experiments to compare the two approaches. As shown in Figure
6.2, there is very little difference in the accuracy of the synthesised
images using adding eigenspace models and those without using this
procedure.

The outcomes of MRD-ADD results are almost as good as when
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training MRD on all data together. However, our approach can deal
with patch input perhaps over several months/years without the need
to rebuilt model from scratch it is tractable when machine memory

limited.

Suppose there is a collection of N data samples, each n dimen-
sional (N X n), where n is the number of pixels in an image and N
is the number of images. The covariance matrix is of size n x n.
In practice the eigenspace model could be computed by utilising an
N x N matrix, where N is the number of samples in the dataset. This
method is efficient in image processing where the number of samples
is less than the number of dimensions in each image N << n. Since
N << n we use in our experiments the inner product method [157].
It is often supposed that only those eigenvectors that correspond
to p largest eigenvalues are of interest, the others are discarded by
deleting columns from the eigenvector matrix. Different standards for
discarding eigenvectors and eigenvalues available and these fit different
applications and different approaches of computation. Three popular

approaches are:

1. Set out p as a specified integer and thus retain the p largest eigen-

vectors [128].

2. Retain the p eigenvectors whose size is larger than an absolute

threshold [18].

3. Retain the p eigenvectors such that a fixed portion of energy is

kept.

In our experiments for batch approach the training set consists of 5982
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texture vectors and for incremental approach we used two batches of
2857 and 3125 texture vectors of dimension 318753. To keep the p
largest eigenvectors we used the first approach and set p = 100. Con-
ventional batch approaches cannot be utilised to build an eigenspace
because there are too many images to store in memory at once, so in-
cremental approaches are essential methods. Constructing eigenspace
for texture dataset 5982 x 318753 is difficult because storing such ma-
trix of pixels in memory is intractable and need a machine with high
RAM capacity. In contrast incremental approaches do not require all
observations at once thus decreasing storage requirements and making

large issues computationally appropriate.

Figure 6.2. Example frames of the AAM features obtained from the
Lips synthesis results using ground truth (top row), MRD approach
using adding PCA models (middle row), MRD approach without using
adding PCA models (bottom row). The phonemes correspond to the
words (ahead, is, the) from the test audio sentence (The boy a few
yards ahead is the only fair winner).
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Frame 14 Frame 18 Frame20

Figure 6.4. Selected frames of the AAM features obtained from the
Lips synthesis results using ground truth (top row), MRD approach
using adding PCA models (middle row), MRD approach without using
adding PCA models (bottom row). The phonemes correspond to the
words (boy, a) from the test audio sentence (The boy a few yards ahead
is the only fair winner.)
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6.4.2 Experiment 2: Latent space initialisation

The quality of the optimisation is relying upon many things, especially
initialisation, numerical errors and the optimiser used because the op-
timisation procedure is gradient based, which means that there is no
analytic form to a unique solution. Random number initialisation and
initialised to zero cannot be used. Random number initialisation and
initialised to zero might lead to the MRD training algorithm becoming
stuck in local minima or longer convergence that does not recover the
true embedded space. Damianou [34] initialised the latent space by
concatenating two datasets, each consisting of images corresponding to
a set of three different faces, under 64 different illumination conditions
and performing PCA. An alternative method was to perform PCA on
each dataset individually and then concatenated the two low dimen-
sional subspaces to initialise the latent space X. They found that both
initialisations obtained similar results.

In order to avoid bad local minimum, we try to control the initialisa-
tion by using appropriate initial variational distribution and signal to
noise ratio (SNR). In this experiment, we set the iterations for initial-
ising the variational distribution to 300 and the initial SNR to 150 in
order to obtain high SNR of the optimised model. We also investigate
two initialisations approaches to initialise the latent space variational
means, namely: PCA and PPCA. PCA is performed on each dataset
(audio and visual data) separately and then concatenated the two low-
dimensional representations to initialise latent space X. This is also
done with PPCA. The results are shown in Figure 6.5, it can be seen
that PPCA initialisation gives better results than PCA. This is because

that PPCA finds a latent space X which maximises the correlation be-
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tween the two features and therefore better mappings are learnt from
the latent space to each representation. In the next experiments, the
initialisation approach is fixed to PPCA. More detail is described in

section 6.5.

6.4.3 Experiment 3: Normalisation procedure

In this thesis, we attempt to minimise the effects of the face pose vari-
ability in the visual features and thus enhance the discriminative power
of the visual features. Feature enhancement approaches considered in-
clude z-score normalisation and mean-centering AAM Parameters dis-
cussed in more detail in Section 3.15. We compare the trajectories of
shape parameters for ground truth against synthesised output shape
parameters obtained utilising the MRD and that gave best quantita-
tive results than SGPLVM [38]. The plots for three test sequences of
LIPS using mean-centering AAM parameters and z-score normalisa-
tion as a normalisation of visual features are shown in Figures 6.6 and
6.7 respectively. The Figures clearly show the high correlation between
shape parameters trajectories obtained from MRD and ground truth as
compared to another method, which is supported by the quantitative
results. However, the MRD trajectory in Figure 6.6 shows some dif-
ferences which do happen between the two signals (MRD and ground
truth) appear in terms of signal amplitude. It can be seen that the
differences in amplitude tended not to affect the perceived accuracy of
the lip-synch.

In Figure 6.7 we found that there are no differences in signal am-
plitude between the MRD synthetic trajectories and the ground truth

trajectories and it follows the same general pattern as the ground truth
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trajectories. This is may be because all parameter values lie within a
stable bound of £2 standard deviations from the mean. The differ-
ences that happen between the two signals appear in terms of noise.
This might occur because we have restricted ourselves to the limited
amount of training data since the MRD is a non-parametric model
using Gaussian processes, the size of the model grows with the data.
Such that there is no use of the full variance of the visual data. In
addition, there is a wide range of highly non-linear dynamics because
of the phenomenon of coarticulation which when modelled utilising a

single model produces an over-generalised predictive model.

Initialisation method

u —

PPCA PCA

Figure 6.5. Varying latent space initialisation approaches.
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6.5 Objective evaluation for the MRD

In this Section quantitative evaluation is performed using AMSE and
ACC measures with the standard deviation errors. We evaluate our
MRD approach against multiple approaches of visual speech synthesis.
The visual features are extracted using an AAM.

Due to the complexity of MRD training, optimisation of MRD like-
lihood becomes intractable when the number of data points exceeds a
few thousand. In our experiments, a repeated random subsampling
approach for choosing about 10 sets, each set of approximately 55
sequences from the 236 auditory-visual collection pairs is utilised for
training, giving an average of 6000 frames for each set. Two sets of
about 21 utterances from the remaining of the auditory-visual collec-
tion pairs is utilised for testing, such that the training and testing sets
do not overlap. We have restricted ourselves for choosing these number
of sequences from the 236 auditory-visual sequence pairs due to the
O(N M?) complexity of MRD training, where N is the number of data
points and M is the inducing points in the model.

In their experiments Damianou et al. [34] set inducing points to 100,
so that we set M = 100 in our experiments to reduce the complexity of
the MRD training. The visual features used are the normalised AAM
parameters and the auditory features are RASTA-PLP processed at
25H z. It is important when learning our fully Bayesian latent variable
model of auditory and visual features to have the auditory dimension
as being comparable to the visual dimension. As illustrated in the in-
ference Subsection 5.1.3, given y*, one of the N* test speech features,
a test latent point x* is optimised and a series of K candidate initial

. . . . 1 K . . .
training inputs is found Xy, ..., Xyy, ordered according to their sim-
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ilarity to z*, and only the shared dimensions is considered. A sorted
series of K novel visual speech z™), ..., z(5) is then generated depend-
ing on those initial latent points. We have used Deena et al’s work [36]
as a benchmark.

Objective methods include computing the error or correlation be-
tween ground truth and synthetic visual features in addition to com-
paring the evolution of their trajectories. Error metrics such as AMSE,
root mean squared error (RMSE) and ACC, provide a measure of the
static evaluation between ground truth and synthetic visual parame-
ters.

We show quantitative results from our experiments. AMSE and
ACC between synthesised AAM features vectors for the test sequences
and ground truth is computed with the standard deviation of the errors.

The ACC is given by

ACC = ii (s = 1) (s = 1) (6.12)

S e 0i0i

where p; is the mean of the ith dimension of z across the frames

from 1 to K and o; is the corresponding variance and fi; is the mean

of the ith dimension of Z across frames from 1 to K and &; is the
corresponding variance.

The results are compared against the SGPLVM method [36] utilising
the same training and test collections. The AMSE error for MRD is
lower than those for SGPLVM, mostly due to a smoother shared latent
space obtained from fully Bayesian model, allowing estimation of both
the dimensionality and the structure of the latent spaces to be achieved

automatically. Table 6.1 presents the AMSE and ACC between the

ground truth and synthesised AAM features, obtained from MRD and
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SGPLVM approaches across the test utterances.

To test the statistical significance of the results we performed paired-
sample t-test on the AMSE error values for the results of the methods
tested [39]. The paired-sample ¢-test assumes that the two samples
are dependent. Because the two samples of the error values obtained
from the two methods MRD and the SGPLVM are dependent, the
paired-sample t-test is the appropriate test to be utilised. This test
gave a significance value of 0.00048 for the results which is lower than
0.05 value commonly utilised to determine statistical significance and
consequently proves its statistical significance.

Our MRD approach also compared to the method followed by Havell
et al. [80]. In their work, hidden Markov models are utilised to find the
most likely sequence of appearance states given the auditory and visual
training data. Using cluster analysis, a set of possible states was found.
A structure based on Gaussian mixture models (GMMs) was proposed
to model each phoneme separately to solve the problem of multiple
possible visemes representing each phoneme and improved the quality
of the HMM produced. Another method used by Havell et al. [80]
to generate facial animations is based on coupled HMMs (CHMMs).
A CHMM is a combination of multiple HMM chains coupled through
cross-time and cross-chain conditional probabilities. In [196], a CHMM
consist of two HMM chains describing the audio and video respectively
and permitting for asynchronous progression of the chains, which is
required in auditory-visual speech modelling. A number of CHMMs
with different numbers of clusters were trained and a model with 10
states were build. The root mean squared error in shape normalised

pixel values was compared to the ground truth images for the 750 frames
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of 5 utterances. The RMSE is given by:

N e )2
pizelerror = \/Zi:l(xlj’\} X2i) (6.13)

where x; refer to the ground truth and xs refer to the reconstructed
pixels for N pixels. The results are summarised in Table 6.1. The
results show that the MRD model gives the best result. Only some
implementations for the methods we compare to in Table 6.1, are
available. The stated results of GMMs and CHMM have been obtained
from the respective publication. This explains the omissions in the

table.

In addition, our MRD method is compared to the methods followed
by Fan et al. [60]. Two network topology using LSTMs are used in our
experiments, a BLSTM and a deep BLSTM network. LSTMs network
are trained utilising the same training and test sets. Table 6.1 presents
the AMSE and ACC between the ground truth and synthesised AAM
features, obtained from MRD, BLSTM, and DBLSTM across the test
utterances. It can be seen that MRD performs better than LSTMs
network, this is because the LIPS dataset is small and deep learning
required a sufficiently dataset. Fan et al. [60] shows that for speech-
driven talking head, the best network topology is with 64 nodes per
layer. In our experiments we also used 64 nodes per layer. Figure 6.8
shows trajectory comparisons among MRD, BLSTM, and ground truth.
The synthetic trajectories are calculated utilising three test utterances
of LIPS dataset. The resultant synthesised parameter trajectories using
MRD and the BLSTM follows the same general pattern as the ground

truth trajectories. It is clear that the synthesised parameter trajecto-
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ries using MRD slightly more closely follows the original ground-truth
parameters than the BLSTM.

It should be noted from the results that the objective measures used
in this work confirmed by qualitative evaluation obtained in Section
6.6, because a synthesiser that give more favourable objective results is

found to be perceptually better based on subjective tests.
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Table 6.1. Mean + standard deviation objective measures of different

approaches.
Method AMSE ACC Average Pixel error
MRD 20.8847£4.5896 | 0.76231+0.0253 2.05
MRD-ADD 21.9897+4.8673 | 0.75761+0.0398 2.09
BLSTM 24.6471£7.1507 | 0.7517+0.024 2.21
SGPLVM 25.8953£5.7799 | 0.725940.0439 2.26
DBLSTM 27.4647£7.9427 | 0.71431+0.0224 2.34
GMMs - - 6.41
CHMM - - 6.62

6.6 Qualitative evaluation

In terms of validating this work, the objective comparisons might be not
enough; performing auditory-visual perceptual experiments is another
useful way to evaluate our work.

Subjective tests with human volunteers are performed to evaluate
the facial animation. Image frames are generated from the synthesised
AAM parameters, then the frames are encoded to video at the suitable
frame rate and mixed with the test auditory file to produce a speech-
synchronised talking head video. The perceptual test involved showing
videos and asking volunteers to provide a score from 1 (poor) to 5 (ex-
cellent) on the quality of mouth articulation. The video utterances
were selected randomly and subsequently fixed for all volunteers to cal-
culate mean opinion scores (MOS) on the same utterances. MOS are
one of the procedures that recommended by International Telecommu-
nication Union Telecommunication Standardization Sector (ITU-T) for
conducting subjective evaluations of transmission quality, with a scale
from 1 to 5.

Many researchers have adopted MOS for evaluating the perceptual
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aspects of facial animation [38,91,107,169, 186]. When the videos are
shown to the volunteers, comparative mean opinion scores can be col-
lected which is suitable to compare different synthesis methods.

The volunteers were asked to assess 18 video sequences with 6 in
each of the following classes: LIPS synthetic using MRD, the BLSTM
and the SGPLVM. The sequences were selected randomly, they corre-

spond to the following sentences:

1. No matter how overdone her praise where Amy was concerned I

did not dare thank her.
2. The boy a few yards ahead is the only fair winner.
3. The crowd jeered as player from Greece chucked the ball away.
4. A burst pipe can cause damp carpets.

5. With artists trying to merge the courses prefer a job with Oxford

Press.
6. The boy oyster came here to find a far airier atmosphere.

There was no time limit and the volunteers could play and replay each
video any time they required. Some participants were native and most
of them were non-native English speakers, but it was ensured that all
volunteers had good command of the English language. The volunteers
were asked to report their opinion about how well the lips synchronised
with the audio and picked on a scale of 1 to 5 the quality of mouth
articulation.

After that, MOS is calculated for each video class per participant.
Table 6.2 gives MOS and standard deviations calculated over the 20

volunteers, mostly research students from the Schools of Engineering
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and Computer Science at the University of Cardiff. The results show
that MRD videos perform better than BLSTM and SGPLVM videos.
Moreover, the subjective tests for lip synchronisation have proved that

the objective evaluation are consistent with the subjective evaluation.

Table 6.2. MOS scores for perceptual test.

Class Mouth articulation
MRD-LIPS synthesis 3.79540.48
BLSTM-LIPS synthesis 3.235£0.49
SGPLVM-LIPS synthesis 2.95+0.3

6.7 Discussion

Adding eigenspaces is a powerful method that can be used to add sev-
eral smaller eigenmodels. Because of the memory constraints in a sys-
tem, it may be possible to use this method when it is not possible to
use the whole training set at once. Another advantage of this method
is that the eigenspace model can be updated with the new data, it
is therefore appropriate for real-world applications where the online
learning from real-time dataset is needed.

The improved results over the SGPLVM-based speech synthesis ap-
proach [36] can be accounted by the fact that MRD uses of automatic
relevance determination (ARD) covariance functions for the mapping
from the latent to the observation space which allows for automatic di-
mensionality detection. In addition, a different Gaussian process (GP)
mapping is utilised per output modality, each with a different set of
ARD hyperparameters. So that efficient initialisation and training of
such a model is allowed, and a soft segmentation for the latent space
is defined after optimisation the different sets of ARD hyperparamters.

As opposed to SGPLVM model that has a large number of free parame-
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ters which need to be modified to obtain the optimal model, because of
the absence of a Bayesian formulation. The quantitative results show
that using MRD to jointly model auditory and visual features results
in smaller error in comparison to ground truth as compared to another
method.

Since we use a joint probabilistic model of auditory and visual fea-
tures, then spurious pose variations in synthesis are produced because
of the correlations between the pose and the auditory. Therefore the
normalisation methods introduced in Section 3.15 had to be adopted.
Moreover, a standardised frame of reference to compute the errors be-
tween synthesised AAM parameters and ground truth can be obtained

using the normalisation procedure.

6.8 Limitations of the MRD method

Although the MRD method is elegant, it is intractable for large training
sets. Space and time complexity of training the model is increased.
Training such a model with a high number of frames takes more time
and requires larger storage to store the model. In our experiments
a repeated random subsampling approach for choosing about 10 sets,
each set of approximately 55 utterances from the 236 auditory-visual
collection pairs is utilised for training, giving an average of 6000 frames
for each set and two sets of about 21 utterances from the remaining
of the auditory-visual collection pairs is utilised for testing, such that
the training and testing sets do not overlap. Training such models
takes a long time. Thus, the MRD comes with a high computational
complexity. This could be an issue for very resource-limited devices,

but does not compromise the possibility of online learning.
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6.9 Summary

The main aim of this chapter was to construct a dynamic 2D
appearance-based model of the face utilising a large dataset which
allows different visual realisations of sounds to be represented using
a small number of parameters. A description of a method to add
eigenspaces, and visual data processing methods were presented. Be-
cause of the memory constraints in a system, it might be possible to
utilise the incremental approach when it is not possible to use the whole
training set at once. In addition, online learning methods are required
if not all training data are available all the time and preferred over
batch learning methods as they do not need retraining whenever a new
training data is received.

Two eigenspaces were built: one utilising batch approach and an-
other utilising incremental approach. The performance of our MRD
approach using those two models for visual representation were then
compared. The results show that there was very little difference in the
accuracy of the synthesised images and the difference between the errors
obtained using the two methods is quite small, which mean that MRD
using the addition of eigenspaces provides only slightly less accurate
results than using batch methods.

Moreover, two methods were presented for visual normalisation,
namely mean-centering of AAM parameters and z-score normalisation
to minimise the effects of the face pose variability in the visual pa-
rameters. Quantitative evaluation was used to compare our proposed
method using MRD with the current state-of-the-art methods. The
results reveal that the joint models of auditory and visual using MRD

perform better than the comparable methods of visual speech synthesis.
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Qualitative analysis with human participants has also been performed
to evaluate the perceptual characteristics of the synthesised facial mo-
tions. Qualitative analysis demonstrating the improved performance of
our MRD method. Furthermore, experiments to determine the optimal
latent space initialisation were dealt with to avoid bad local minimum.
Our MRD approach is an efficient model for modelling two views of the
same process, which are in this work the auditory and visual compo-
nents of speech. However, because our MRD model is a non-parametric,
the size of the model grows with the data. Training such a model be-
comes intractable when the number of frames exceeds a few thousand.
In addition, when a wide range of highly non-linear dynamics modelled
utilising a single dynamical model, an over-generalised predictive model

will be produced.



Chapter 7

CONCLUSION AND FUTURE
WORK

This thesis presented a number of improvements for generating realis-
tic speech animation of the human face using joint probabilistic models
of speech and face appearance. The auditory and visual signals were
represented as a collection of factorised latent spaces. To train the mod-
els two auditory-visual corpora were used, namely the LIPS [171] and
DEMNOW [54] datasets. The LIPS corpus features a female British
talker reading sentences from the Messiah corpus, while DEMNOW
features a female American anchor giving news presentations. The fa-
cial features were extracted utilising active appearance model (AAM).
Relative spectral transform-perceptual linear prediction (RASTA-PLP)
was used as speech parameterisation to obtain speech features match-
ing the visual frame rate. Quantitative evaluation of the proposed
approaches was presented and compared with the current state-of-the-
art methods. Furthermore, qualitative analysis with human volunteers
was performed to evaluate the synthesised animations.

Our motivation was to explicitly model the non-linearities in audio-
visual mapping utilising non-parametric, fully Bayesian latent variable

model which utilises conditional non-linear independence structures to
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learn an efficient latent space. In contrast to the shared Gaussian pro-
cess latent variable model (SGPLVM) [38] approach, which presumes
that a single latent variable is able of representing each modality, sug-
gesting that the modalities can be fully aligned. In this work, a smooth
continuous latent space, where a latent variable may be more important
to the shared representation than the private representation, namely
manifold relevance determination (MRD) was introduced. The model
was exploited to combine the audio and visual features using a softly
shared latent space. Our Bayesian approach allow us to automatically
estimate of both the dimensionality and the structure of the latent
space. In contrast to Deep Learning methods for auditory-visual map-
ping which required a sufficiently comprehensive dataset, because such
methods are generally highly under constrained, our MRD method can
be undertaken in smaller datasets.

A more accurate AAM, with more facial landmarks identified for
each frame and using a larger dataset was created. Quantitative eval-
uation revealed that utilising more landmark points around the mouth
and building an AAM using larger dataset can give better results and
a smoother facial boundary can be obtained. It was also shown that
SGPLVM produces more accurate results when using a more accurate
AAM.

For a visual representation, the active shape and active appearance
models [27] were utilised to extract visual parameters from images. To
cater for all possible speech-related facial expressions, the AAM was
trained using a large number of sequences. To overcome the limita-
tions of the batch learning methods, incremental approach was used.

This method is appropriate for real-world applications where the online
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learning from real-time dataset is needed. Two eigenspaces were con-
structed for visual representation: one utilising a batch approach and
another utilising an incremental approach [76,77]; experiments were
conducted to compare the two approaches. The incremental approach
was performed very efficiently and provided only slightly less accurate
results than the batch approach.

Quantitative evaluation results of the proposed approaches using
MRD were compared with other related methods such as the SG-
PLVM [38], bidirectional LSTMs (BLSTMs) [60], and hidden Markov
models (HMMs) [80]. Our MRD approach was found to give the better
quantitative results. Qualitative evaluation was also included demon-
strating the improved performance of our MRD method in comparison

to alternative methods.

7.1 Contributions

The contributions of this thesis are summarised below;

e A more accurate AAM of talking faces has been built:
We showed that using larger dataset and/or more landmarks for
building an AAM can produce a more accurate model. A more
accurate AAM, with 97 facial landmarks identified for each frame
was constructed; 38 of these landmarks described the inner and
outer mouth shape, which contains most variation in talk. Exper-
iments were performed to investigate the hypothesis that increas-
ing the number of facial landmarks can increase the accuracy of
AAM. Quantitative evaluation revealed that utilising more land-
mark points around the mouth can give more accurate model

and a smoother facial boundary can be obtained utilising more
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landmark points for each frame, details were given in Chapter
4. Furthermore, experiments were performed to investigate that
constructing an AAM on larger dataset can also improve the ac-

curacy, details were given in Chapter 4.

The accuracy of SGPLVM was increased by utilising a
more accurate AAM within the algorithm: This is the first
study to report that using a more accurate AAM within SG-
PLVM improves the accuracy of SGPLVM. Objective evaluation
via reconstruction error was performed to compare the proposed
approach against the previously existing methods. The quantita-
tive evaluation confirmed our hypothesis, with a full description

given in Chapter 4.

First application of MRD model for visual speech syn-
thesis: A new model for visual speech synthesis was presented,
namely manifold relevance determination model, which explicitly
models the non-linearities in audio-visual mapping. The accu-
racy of generating videos of talking faces using MRD instead of
the SGPLVM was improved. Statistical evaluation of synthesised
visual features against ground truth data was obtained and com-
pared with the current state-of-the-art visual speech synthesis
approach, with the analysis described fully in Chapter 5. This

was also presented at ECCV’2016 conference.

Facilitating the performance of MRD by utilising incre-
mental eigenmodels: Incremental procedure for learning eigen-
models was utilised, thus facilitating incremental updating of the

visual speech models in real world applications where online learn-
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ing is needed. The MRD methods utilising batch and incremental
AAMs were compared and demonstrated very similar accuracy.

Full details were given in Chapter 6.

7.2 Future work

Future work will be covered in this section, and focuses on areas in

which our approach could be further developed:

e This work utilised two datasets, the first one (LIPS corpus) con-
taining read sentences from the Messiah corpus by a single person
and the second one (DEMNOW corpus) featuring a female Amer-
ican anchor presenting news. Future work should include apply-
ing the approaches developed here to different groups of people
based on their ethnicity, age, gender, face shape dynamic, etc.
Moreover, applying these approaches to different contexts such
as conversational speech would produce different results. Emo-
tional data should be considered for conversational agents. Pos-
sible methods for combining emotion to the visual speech need

investigation.

e The results of this work could certainly be improved with a latent
model of phonetic context. The MRD method can be extended
by augmenting the model with switching states represented by
the phonetic context to model backward and forward coarticula-
tion. The switching states can be found utilising a variable length
Markov model trained on a phonetic data. The auditory and vi-
sual features corresponding to those switching states can then be

extracted and modelled utilising MRD.
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e Deep Learning is a recent direction in artificial intelligence and
machine learning research. Recently, new deep learning ap-
proaches are being born, outperforming state-of-the-art machine
learning and existing deep learning techniques. In terms of further
work, it would be useful to explore the use of deep learning ar-
chitectures, such as have found modern success in text to speech
synthesis [192]. The current overview of generative adversarial
network GANSs [70] has shifted the motivation of the machine
learning group to generative modelling. GANs contain two chal-
lenging networks: generative and discriminative networks. The
generator’s target is to generate realistic samples while the dis-
criminator’s target is to discriminate between the real and pro-
duced samples. This competition leads the generator to produce
robustly realistic samples. Vougioukas [180,182] proposed an end-
to-end model using temporal GANs for speech-driven facial ani-
mation, capable of generating a video of a talking head from an
audio signal. In future work, we would like to extend the network
architectures of [72,182,205] to generate high quality video using

GAN and compare these outputs to those describe in this thesis.

e The current model was built utilising 2D video image data. The
next stage is to extend the 2D photo-realistic talking face to
3D, using a 2D-to-3D reconstruction methods [5,200]. It may
be promising to use the landmark updating optimization strat-

egy [108] which can give high-quality 3D face models.

e Since the LIPS dataset includes expression-free visual speech

recordings displaying a neutral prosody, the synthesised visual
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speech shows neither expressions nor emotions. Adding expres-
siveness to the face could increase the naturalness of the synthetic
visual speech, but it will probably affect the visual speech quality:
when the expressions may not be perceived as natural or may not
be so well correlated with the speech. However, it should be noted
that expression is an important component of visual speech and
therefore needs incorporating for more realistic facial animation
models. In the past few years researchers such as [93, 138, 152]
tended to use deep neural networks(DNNs) in the field of ex-
pressive talking head. Human speech-based communication does
not only include a collection of gestures and speech sounds cor-
responding to the production of sentences. The realism of the
communication is enhanced by adding expressions to the utter-
ance. The BIWI audio-visual corpus [61] of effective speech and
corresponding dense dynamic 3-D face geometries can be utilised
for an expressive talking head. Fach emotional sentence in the
BIWI corpus was enriched by the states such as negative, anger,
sadness, stress, contempt, fear, surprise, excitement, confidence,

happiness and positive.

The work presented has focused on synthesising neutral speech
and it would also be interesting to extend the proposed meth-
ods to produce, in addition to more expressive speech, realistic
head and eye movements. A possible plan of future work is to
add additional modes to the MRD in order to combine prosodic
information such as eye blinks and head movements. Prosodic
information in both auditory and visual modalities would be cor-

related with the speech content.
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