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Summary

To apply mathematical models of decision making in psychological research, researchers

need ways to extract model parameters from behavioural studies. The expansion of the

drift diffusion model to conflict tasks (DMC) (Ulrich, Schröter, Leuthold, & Birngruber,

2015) resulted in the model being non-differentiable, which means that the parameters

of DMC can only be estimated.

The current methods for recovering parameters from DMC rely on comparing reaction

time (RT) distributions. Such methods will struggle to recover all DMC parameters well

due to the of the solution space of DMC, which means that some parameters can be

confused with others when RT distributions are compared.

Following that, five global optimization algorithms from different optimization fami-

lies were compared to create a benchmark for parameter recovery from DMC. The

results revealed that differential evolution outperformed the other four optimization

algorithms in recovery of parameters from both distributions with high and low trial

numbers.

Even though differential evolution is capable of recovering parameters well, it is very

expensive in computational time, which means that researchers who do not have access

to vast computational resources cannot apply DMC in their research. Due to this, deep

learning was investigated in application of parameter recovery from DMC. The results

showed that deep learning recovered all model parameters exceptionally well from RT

distributions with large trial numbers, and as well as differential evolution from RT dis-

tributions with low trial numbers, which allows application of deep learning models in de-

ployment pipelines that take seconds rather than months.

Finally, deep learning models were applied in several experimental studies investigating

the effects of speed-accuracy trade-off (SAT) in response inhibition and perceptual de-

cision making tasks, and how the performance relates between the tasks and over two

different testing sessions, and demonstrated the effects of SAT on DMC parameters in

different tasks.
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1 Introduction

1.1 Impulsivity and response inhibition

Impulsivity, a trait that leads to individuals acting without foresight, is a personality

characteristic seen in healthy individuals. However excessive impulsivity has been asso-

ciated with many psychiatric disorders, such as attention deficit/hyperactivity disorder

(Winstanley, Eagle, & Robbins, 2006; Oades et al., 2008; Newcorn et al., 2001), ob-

sessive compulsive disorder (Grassi et al., 2015), bipolar disorder (Fears et al., 2015;

Newman & Meyer, 2014), autism (Carlisi et al., 2017; Richards, Moss, Nelson, & Oliver,

2016), pathological gambling (Steel & Blaszczynski, 1998; Alessi & Petry, 2003; Petry,

2001), internet gaming disorder (Kim et al., 2017), compulsive buying disorder (Black,

Shaw, McCormick, Bayless, & Allen, 2012), and Parkinson’s disease (Weintraub, David,

Evans, Grant, & Stacy, 2015). Impulsivity is also associated with suicidal behaviour

(Baca-Garcia et al., 2001; Gvion & Apter, 2017) and aggressiveness (Bousardt, Hoogen-

doorn, Noorthoorn, Hummelen, & Nijman, 2016).

Even though impulsivity can be adaptive and advantageous in circumstances where it is

important to respond rapidly and to take advantage of unexpected opportunities, most

often it is associated with negative aspects of human behaviour, as even some defini-

tions of impulsivity focus on the negative maladaptive aspects, such as “actions which

are poorly conceived, prematurely expressed, unduly risky or inappropriate to the situ-

ation and that often result in undesirable consequences” (Durana, Barnes, Johnson, &

Shure, 1993). Dalley, Everitt, and Robbins (2011) deconstructed this definition to sug-

gest that impulsivity, like many behavioural constructs, is multifaceted, as the definition

describes behaviour that has not adequately sampled sensory evidence (“reflection im-

pulsivity”), a failure of motor inhibition (“impulsive action”), a tendency to accept small

immediate or likely rewards versus large delayed or unlikely ones (“impulsive choice”)

and risky behaviour, in the context of decision-making. Constructs of impulsivity de-

pend on measures (Robbins, Gillan, Smith, de Wit, & Ersche, 2012), and conversely,

different measures of impulsivity have been developed to assess certain impulsivity con-

structs.

The three most general approaches to measuring impulsivity in humans are self-report

measures of impulsivity, impulsive choice, and impulsive action. Self-report measures of

impulsivity are usually assessed with questionnaires, for example, the Barratt Impulsivity
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Scale (BIS-11) (Stanford et al., 2009), the UPPS-P Impulsive Behaviour Scale (UPPS)

(Lynam, Smith, Whiteside, & Cyders, 2006), the Impulsivity Rating Scale (Lecrubier,

Braconnier, Said, & Payan, 1995), or the Eysenck Personality Questionnaire (EPQ)

(Eysenck & Eysenck, 1985). Self-report measures of impulsivity are easy to administer

and display highly stable trait-like characteristics (Weafer, Baggott, & de Wit, 2013),

however the questionnaires tend to be more reflective of the subjective view that an

individual has of his own behaviour (Robbins et al., 2012).

Impulsive choice describes a situation when an individual chooses an immediately avail-

able small reward over a larger one in future (Bickel, Odum, & Madden, 1999; Weafer

et al., 2013). Impulsive choice in humans is often measured with delay tasks or proba-

bility discounting tasks, in which participants choose between small, immediate rewards

and large, delayed or probabilistic rewards. In order to evaluate impulsive choice in

laboratory settings, risk-taking tasks, such as the Balloon Analogue Risk Task (BART),

have also been employed. However, interpreting delayed discounting and its relation to

impulsivity needs to be done with caution, as Anokhin, Golosheykin, Grant, and Heath

(2017) reported that lower socioeconomic status of the families of participants predicted

the tendency of adolescents to place higher value on immediate reward. However, im-

pulsive choice tasks seem to have good test-retest stability (White, Lejuez, & de Wit,

2008; Beck & Triplett, 2009; Smits, Stein, Johnson, Odum, & Madden, 2013), indicat-

ing that it might be a stable construct of impulsivity. Moreover, impulsive choice has

been reported to correlate with other aspects of impulsivity, such as BIS (de Wit, Flory,

Acheson, McCloskey, & Manuck, 2007).

Impulsive action (also known as behavioural inhibition) refers to the ability to inhibit

inappropriate or unwanted behaviours (Weafer et al., 2013). Impulsive action is easy

to evaluate in experimental settings, however it is typically thought thought to assess

fluctuating states of impulsivity (Dick et al., 2010). Impulsive action is often assessed

using response inhibition tasks. Response inhibition is defined as the ability to cancel

a prepotent response or to suppress an action which is inappropriate, irrelevant, or no

longer required (Friedman & Miyake, 2004). Motor response inhibition includes go/no-go

(Iaboni, Douglas, & Baker, 1995) and stop-signal tasks (Logan, 1994), while interference

inhibition is tested by tasks like Simon (Simon & Rudell, 1967), Eriksen flanker task

(Eriksen & Eriksen, 1974) and Stroop task (Stroop, 1935). All these tasks measure the

ability to resolve response conflict due to interfering stimulus features that are irrelevant,

but might lead to incorrect responses if not suppressed correctly (Wöstmann et al.,
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2013).

Using response inhibition tasks instead of self-report measures is advantageous because

response inhibition tasks are less susceptible to social desirability biases. They are also

advantageous because they are sensitive to experimental state manipulations. Deficits in

response inhibition tasks have been consistently found among clinical populations defined

by impaired impulsivity, like ADHD (Wodka et al., 2007; Aron & Poldrack, 2005; Booth

et al., 2005), bulimia (Marsh et al., 2009; Wu, Hartmann, Skunde, Herzog, & Friederich,

2013), bipolar personality disorder (Hajek, Alda, Hajek, & Ivanoff, 2013), and autism

(Agam, Joseph, Barton, & Manoach, 2010; Kana, Keller, Minshew, & Just, 2007). How-

ever, relationship between performance in response inhibition tasks and trait impulsivity

(as measured by self-report questionnaires) has not been so straightforward to establish,

as some researchers report significant correlations between response inhibition tasks and

impulsivity questionnaires (Aichert et al., 2012; Enticott, Ogloff, & Bradshaw, 2006;

Reynolds, Ortengren, Richards, & de Wit, 2006); while others find no relationship (Horn,

Dolan, Elliott, Deakin, & Woodruff, 2003; Cheung, Mitsis, & Halperin, 2004; Cyders &

Coskunpinar, 2011; Sharma, Markon, & Clark, 2014).

The lack of relationship between self-reported measures of impulsivity and inhibitory

control translates even to research on impulsivity as endophenotype for highly heretable

disorders. Impulsivity can be an endophenotype of a disorder - meaning that those who

do not have disorder, but are at increased genetic risk (like twins, siblings, first-degree

relatives), also have affected impulsivity (Fortgang, Hultman, van Erp, & Cannon, 2016).

The researchers, using twin probands (meaning pairs of twins where at least one individ-

ual is affected by the disorder, or a proband) with bipolar disorder, schizophrenia, and

major depressive disorder, as well as healthy controls, found that even though bipolar

disorder is usually thought of having impulsivity as endophenotype, the same is true

for schizophrenia and major depressive disorder, probably due to shared genetic over-

lap between the disorders. This finding is interesting as both schizophrenia and major

depressive disorder are not usually considered impulse control disorders, or associated

with extreme and risky impulsive actions. Importantly, the researchers found that only

self-report measures of impulsivity were moderately heritable and patterned as endophe-

notypes for the three disorders, however impulsive action, as measured by stop signal

task, was not affected in twins of participants with schizophrenia and bipolar disorder,

even though the affected twins showed impaired performance in the task. The authors

concluded that impulsive action seemed genetically distinct from attentional, motor,
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and non-planning types of impulsivity, as measured by Barratt Impulsiveness Scale-11

(BIS-11) (Patton, Stanford, & Barratt, 1995) (which is one of the most commonly used

self-report questionnaires designed to assess the personality and behavioral construct of

impulsiveness), even though the former seemed to be more sensitive to clinical state than

the self-report measures.

Conversely to this view, Anokhin et al. (2017) investigated the heretability of neural

correlates of response inhibition using go/no-go task in adolescents with ADHD and their

unaffected twins, and found that the neural correlates were highly influenced by genetic

factors, throughout adolescence, with little change in heritability over age. However

this study only reported results for neural correlates of the go/no-go task, but not the

behavioural results, therefore it is unclear whether behavioural measures could also be

an endophenotype for ADHD.

The two studies by Anokhin et al. (2017) and Fortgang et al. (2016) investigated hered-

itability by examining performance of individuals suffering from an impulsive disorder

and their unaffected twins, and then modelling different genetic components of that

performance. Cummins et al. (2012), on the other hand, looked at the genetic vari-

ants in healthy individuals and investigated how variants associated with genes that are

involved in synthesis, degradation, transport and receptor signalling of dopamine and

noradrenaline relate to response inhibition in healthy individuals. The response inhi-

bition phenotype was measured by the stop signal task. The authors found significant

associations between dopamine transporter genotype and stop signal reaction time that

survived corrections for multiple comparisons. These associations were independent of

other associations with behavioural measures such as response speed and reaction time

variability. The results suggest that response inhibition could be a stable measure of

impulsivity if it is affected by DNA variations.

A big problem in response inhibition literature is that seemingly similar response inhi-

bition tasks with presumably similar underlying constructs do not correlate when be-

haviour is compared within the same individuals using different tasks. Even studies

with relatively large samples assessing relationships between performance in different

response inhibition tasks has not provided good results. For example, Aichert et al.

(2012) has investigated the relationship between trait impulsivity as assessed by the

BIS-11 questionnaire and four different response inhibition tasks (Stroop, antisaccade,

go/no-go, and stop signal task) while also controlling for gender and intelligence, in a

large (N=504) healthy sample. They found only very modest correlations between anti-
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saccade error rates and go/no-go commission error rates; and antisaccade error rates and

Stroop interference score. The performance in the stop-signal task was not related to

performance in any other response inhibition task. Presumably this resulted from stop-

signal task requiring a cancellation of a response that is already being initiated, unlike

other response inhibition tasks where an automatically activated interfering information

needs to be suppressed before response is being activated. Kertzman, Vainder, Aizer,

Kotler, and Dannon (2017) found that multiple different response inhibition measures

(go/no-go, Stroop, Matching Familiar Figures) showed different means between patho-

logical gamblers and healthy controls, yet the measures themselves were not correlated

in the same groups.

The lack of correlations between tasks are difficult to interpret, according to Friedman

and Miyake (2004), because there are multiple reasons for such results. It could be

that inhibition is a multifaceted construct and different response inhibition tasks tap

into different aspects of inhibition. There could also be a lack of construct validity -

Friedman and Miyake (2004) argue that the negative priming effect is frequently used

as an inhibition measure, but that it is not universally agreed that the negative priming

effect is due to inhibition. Another reason could also come from the difference scores as

Hedge, Powell, and Sumner (2018) discussed, the difference between two measures is less

reliable than the individual measures themselves when the measures are highly correlated

and have similar variance, which is usually the case with measures in response inhibition

tasks. Finally, no task can solely measure just inhibition, so only a small percentage of

variance of the task may be attributable to inhibitory processes (Hedge, Powell, Bompas,

Vivian-Griffiths, & Sumner, 2018).

1.2 Speed-Accuracy trade-off in response inhibition tasks

Another reason for low reliability of response inhibition tasks could be that researchers

rarely take into account how task performance is affected by speed-accuracy trade-offs

(SAT). SAT describes a phenomenon where under speed pressure, responses are made

faster but are more prone to errors, compared to decisions which are more accurate

but take much longer time to make. SAT has been studied extensively in perceptual

decision making (J. Zhang & Rowe, 2014; B. U. Forstmann et al., 2010; Rae, Heathcote,

Donkin, Averell, & Brown, 2014; Pote et al., 2016; Winkel et al., 2012), however the

effects of SAT have not been studied much in inhibitory control. Even a study by
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Mulder et al. (2010), investigating the impairments in regulating the speed-accuracy

trade-off in individuals with ADHD, used a perceptual decision making task rather than

a response inhibition task. The main reasons for that is because it is difficult to see what

strategies individuals choose when performing tasks, as SAT is almost never explicitly

evaluated.

Only a few studies so far have looked at these behaviour adjustments in response inhibi-

tion. One of them, by Wylie et al. (2009), looked at the effect of speed-accuracy strategy

on Eriksen flanker task performance in individuals with Parkinson’s disease and healthy

controls. The participants in this study were instructed to either respond as accurately

as possible or as fast as possible to the stimuli, and found that both response times and

accuracy of responding differed in both individuals with Parkinson’s disease and healthy

controls depending on the instruction set. Another study by Leotti and Wager (2010)

investigated response strategies in the stop signal paradigm and found that individuals

varied in strop signal performance as some complied with regular stop signal paradigm

instructions that emphasize speed, while others do not comply with instructions and

prefer slower but more accurate style of responding. When the researchers manipulated

speed and accuracy by varying rewards for either fast or accurate responses, individuals’

behaviour adapted to these situations. A study by Van Wouwe et al. (2014) looked into

the effects of Parkinson’s disease on the ability to resolve conflicts in Simon task under

speed and accuracy pressures. The researchers found that both healthy controls and

individuals with Parkinson’s disease showed typical performance under SAT conditions:

when instructions emphasized response speed, participants responded faster and made

more errors than when response accuracy was emphasized. They also found that pa-

tients with Parkinson’s disease struggled to suppress incorrect response impulses during

speed but not accuracy conditions, suggesting that specific patterns of impulsivity could

be revealed by manipulating SAT during response inhibition tasks. Even though these

studies provide evidence that individuals’ inhibitory behaviour does vary with task de-

mands, there are no studies yet investigating whether this ability is stable in time and

between different response inhibition tasks.

Another issue in evaluating impulsivity in response inhibition tasks is that reaction

times and error rates are not ideal measures of impulsivity, as they say little about

underlying cognitive processes in decision making and are not pure measures of of any

one single cognitive process. Response inhibition tasks record performance in terms of

both reactions times and error rates, and increases in either tend to reflect increased task
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difficulty. These two measures are used interchangeably in research, even though there

is evidence that reaction times and error costs from the same tasks do not correlate well

(Hedge, Powell, Bompas, et al., 2018).

1.3 Diffusion model for conflict tasks

All of the above issues could be addressed with the cognitive modelling framework. The

most popular class of cognitive models assumes that when decisions are made, noisy

samples of information are accumulated until a threshold of evidence is reached. Such

accumulation-to-threshold models are known as sequential sampling models. They pro-

vide a theoretical framework for dissociating underlying cognitive mechanisms from de-

cision making tasks while also accounting for speed-accuracy trade-offs (B. Forstmann,

Ratcliff, & Wagenmakers, 2016). Cognitive modeling is advantageous because it goes

beyond description of data and seeks to provide an explanation of behaviour while be-

ing designed to be much simpler and abstract versions of human cognition, as they

keep the essential features, but discard unnecessary details (Lewandowsky & Farrell,

2010).

The most famous of sequential sampling models is the drift diffusion model by Ratcliff

(1978). In the drift diffusion model, evidence about a stimulus accumulates from a start-

ing point to a boundary. There are two boundaries, one boundary for each choice, in

a two-choice task, which represent the amount of evidence that must be accumulated

before a response is made (Ratcliff, Smith, Brown, & McKoon, 2016). The drift diffu-

sion model has four key parameters: the quality of evidence (drift rate), the amount of

evidence needed for a decision (boundary separation), the duration of non-decision pro-

cesses (non-decision time), and bias towards one choice over other (starting point). The

illustration of the drift diffusion model is presented in figure 1.1 (from Lerche and Voss

(2017)), which demonstrates the evidence acuumulation process, where evidence starts

to accumulate at the starting point, and moves towards one of the response thresholds

with drift rate. Once the evidence reaches one of the response thresholds, the decision is

made. The drift diffusion model accounts for three dependent variables simultaneously

- accuracy and the shape of the correct and incorrect reaction time distributions, and

therefore helps to avoid inconsistencies from choosing to analyze only one of the depen-

dent variables (B. Forstmann et al., 2016). Application of the drift diffusion model to

experimental data has demonstrated boundary settings and drift rates are largely unre-

19



lated, and that accuracy mainly correlates with drift rate while reaction time correlates

with boundary separation, which could explain the lack of correlation between reaction

time and accuracy (Thompson, Ratcliff, & McKoon, 2016; Hedge, Powell, & Sumner,

2018). Moreover, boundary separation parameter in drift diffusion model supposedly rep-

resents the level of caution; as boundary separation increases, fewer errors are made, but

the responses also become slower. In this way, SAT is implemented in the drift diffusion

model via the boundary separation parameter (B. Forstmann et al., 2016). Boundary

separation and caution is interesting for impulsivity and response inhibition research, as,

in theory, boundary separation is the only parameter that should be under direct influ-

ence of the participant. Pote et al. (2016) manipulated the level of caution and response

threshold by subthalamic nucleus deep-brain stimulation in patients with Parkinson’s

disease, and induced impulsive action in patients when they were acting under speed

pressure. This provides evidence that speed-accuracy trade-off and boundary separation

is important in understanding impulsivity and caution.

.

Figure 1.1: Visual representation of the evidence accumulation in the drift diffusion
model. The figure illustrates how evidence starts to accumulate at the start-
ing point z, then moves with drift v towards the upper threshold a. When
the evidence reaches the threshold, the decision is made. Figure from Lerche
and Voss (2017).
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The drift diffusion model has been applied successfully to a wide range of decision mak-

ing tasks, but it cannot quite capture the patterns of data seen in response inhibition

tasks, such as fast errors in incongruent trials. There have been attempts to modify

the drift diffusion model to account for such data in the Eriksen flanker task (White,

Ratcliff, & Starns, 2011), but this adjustment cannot address other issues, like nega-

tive going delta plots (which indicate that experimental effects of congruency are more

pronounced in short responses than they are in longer responses) in Simon task (Ulrich

et al., 2015). Moreover, it cannot fit other response inhibition tasks. For this reason,

diffusion model for conflict tasks by Ulrich et al. (2015) is a good choice to use with

response inhibition tasks, as it still retains basic aspects of drift diffusion model but is

general enough to account for different response inhibition tasks. This model maps quite

well to drift diffusion model by including non-decision time, boundary separation, and

drift rate for controlled process, between-trial variability in starting point distribution

and variability of non-decision time, but also contains three parameters that describe an

impulse function: amplitude of automatic activation, time to peak automatic activation,

and shape of automatic activation.

A simple visualization of the diffusion model for conflict tasks is shown in figure 1.2 for

congruent and incongruent trials. The model postulates that the evidence accumula-

tion process consists of two processes, one controlled (which would be identical to the

accumulation process in the drift diffusion model), and another one that is automatic

(which makes the model suitable for inhibitory tasks). The controlled process mimics

the evidence accumulation process of the drift diffusion process, with main parameters

of drift rate (how fast the evidence accumulates), and the threshold (or boundary sep-

aration) - the amount of evidence to activate a decision. The automatic process, pulls

the evidence accumulation towards a specific response depending on the congruency of

the stimulus: for congruent stimuli, the automatic activation provides a boost towards

the correct response, while for the incongruent stimuli, the automatic activation pushes

the evidence towards the incorrect response. The automatic activation is influenced by

the impulsivity parameters of the models, which define how much of a boost the auto-

matic process provides (amplitude of automatic activation), when does the automatic

process peak in amplitude (time to peak automatic activation), and the shape of the au-

tomatic process (shape of automatic activation). The non-decision time is a parameter

shared between the two models, and corresponds to non-decision parts of the process,

such as perceiving the stimulus and making a physical response. Variability in the two

models is also encoded with same parameters: variability of non-decision time, and vari-
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ability of starting point between trials, implemented in the diffusion model for conflict

tasks as a general beta distribution that is symmetrically centered around zero (starting

point). The shape of this beta distribution is the shape of the starting point parameter

(for more details of mathematical implementation, refer to Appendix D in Ulrich et al.

(2015)).

Figure 1.2: Visual representation of the evidence accumulation in the diffusion model for
conflict tasks. The figure illustrates how evidence starts to accumulate at the
starting point X(0), then moves with drift towards the upper threshold a.
The controlled process is displayed in black, while the automatic process is
shown in grey. The automatic process is positive in congruent trials (moving
towards correct response threshold), while in incongruent trials, it is negative
(moving towards the incorrect response threshold). The two processes are
superimposed to produce a combined evidence accumulation, shown in green
for congruent trials, and in red for incongruent trials. The decision is made
when the colored trace reaches the decision boundary. Figure from Ulrich et
al. (2015).

1.4 Parameter recovery from non-differentiable models

Sequential sampling models are useful because they provide insights into human be-

haviour that cannot be obtained from behavioural measures alone. Application of the

drift diffusion model has helped to understand how cognitive processing is affected by

aging (Ratcliff, Thapar, & McKoon, 2010), or how emotional processing affects decision

making in individuals with depressive symptoms (White, Ratcliff, Vasey, & McKoon,

2009). But application of cognitive models to experimental studies is not straightfor-

ward, because parameter recovery from models can be complicated. In psychological

research, parameter recovery refers to finding the parameters of a model that provides

the best fit to the experimental data, because the true parameter values are unknown,

however, in ideal cases, true parameters and best fitting parameters should be the same.
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In most cases, the fewer parameters the model has, the easier it is to recover those param-

eters. Some models, like EZ diffusion model (Wagenmakers, Van Der Maas, & Grasman,

2007), are very easy to apply to experimental data because only minor calculations are

needed to recover parameters from reaction time distributions. Standard drift diffusion

model is a differentiable model, which means that a proven global minimum solution can

be found, even if the application of the differential equations are quite difficult. On top

of that, there are plenty of ready-to-use packages that allow parameter recovery from

drift diffusion model without much difficulty.

Parameter recovery from extension models, like the diffusion model for conflict tasks, be-

comes quite difficult, because the addition of automatic activation parameters makes the

model non-differentiable, meaning that the solution to the model (a set of parameters

that fits a reaction time distribution) cannot be calculated using mathematical equa-

tions. A lack of analytical solution means that in order to recover parameters from the

model, optimization algorithms need to be used. An optimization algorithm, in general

terms, is a process that compares solutions to a problem over multiple iterations, until a

satisfactory solution is found. Global optimization tries to locate the global minimum (or

maximum) of a function over a given set, where multiple local minima might be present.

Stochastic global optimization generates and uses random variables to solve optimization

problems. Stochastic methods that introduce randomness into the search process can

accelerate the optimization process and help the algorithm escape local minima. Even

with stochasticity, the application of global optimization algorithms is computationally

demanding, and it does not guarantee a global minimum solution. More details on dif-

ferent global optimization algorithms used in this thesis are provided in section 3. There

are currently no packages that offer quick parameter recovery from diffusion model for

conflict tasks. Even though some packages, like Hierarchical Bayesian (Wiecki, Sofer, &

Frank, 2013), which recover parameters from the drift diffusion and the linear ballistic

accumulator models, could also be extended to diffusion model for conflict tasks as the

package is implemented in python, it would still not be suitable to researchers who

are interested in individual differences, as a Bayesian hierarchical approach assumes a

general overall underling distribution of the sample.

There have been studies that looked into parameter recovery from non-differentiable

decision making models like the diffusion model for conflict tasks (White, Servant, &

Logan, 2018) or leaky competing accumulator (Miletić, Turner, Forstmann, & van Maa-

nen, 2017). Both studies found that parameter recovery worked well when parameters
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were constrained, but both studies also heavily constrained the search space. In real-

word situations, where experimental data comes from unknown parameter ranges, it is

difficult to predict how these methods would perform. This problem is exaggerated in

cases where human behaviour is pushed to the edges, like in SAT experimental designs

- when the behaviour becomes more extreme, the search space should in theory also

increase, which in turn could hinder parameter recovery.

There are many global optimization algorithms, broadly divided into four families by

their underlying mathematical, philosophical, and inspirational principles: evolutionary

algorithms, swarm intelligence algorithms, Bayesian optimization algorithms, Markov

Chain Monte Carlo based algorithms. Each of these families has a global optimization

algorithm that is the most suitable for numeric optimization problems, which is the

problem with parameter recovery from decision making models. There has not been

much work done to evaluate how different global optimization algorithms perform in

parameter recovery, especially in non-differentiable models. Hawkins, Forstmann, Wa-

genmakers, Ratcliff, and Brown (2015) suggested that differential evolution seemed to

perform better than particle swarm optimization and simplex algorithms in their study

that compared the drift diffusion model and some extensions, however the researchers

did not provide any results or benchmarking. Moreover, the algorithms from different

families are never evaluated against the most simple black box optimization algorithm,

which is random search, so it is unclear whether more complex mathematical implemen-

tations add anything to parameter recovery.

The issue with global optimization algorithms is that irrespective of the algorithm, the

comparison between reaction time distributions needs to be made in order to assess the

goodness of fit between sets of parameters. We do not know whether there are multiple

sets of different parameters that produce the same looking reaction time distributions.

Moreover, the process of making distributions is stochastic, in a way that there is a

randomness element in producing a single reaction time trial. Due to this, two reac-

tion time distributions computed with the same parameters could not look identical,

so the statistic to evaluate them will suffer. As the number of trials per distribution

becomes smaller, this problem increases. Finally, as already mentioned, applying global

optimization algorithms is very computationally expensive. This is the case because to

evaluate the goodness of fit of a single set of model parameters, a full reaction time

distribution from the model needs to be computed. Even with cython (Behnel et al.,

2011) optimizations, which compile python code to run in c, using global optimization
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algorithms for parameter recovery can take tens of hours. If researchers do not have

access to significant computational resources, then parameter recovery from a multitude

of participants becomes too time costly, as was emphasized by Ambrosi, Servant, Blaye,

and Burle (2019), who could not recover the parameters from diffusion model for conflict

tasks for each individual child in their study (from a sample of 53 children), because they

did not have enough computational resources.

1.5 Deep learning

Traditional machine learning algorithms have been used for decades to predict outputs

from sample data by building mathematical models. Machine learning has been used

for various tasks, both classification and regression, and also unsupervised clustering,

with specific algorithms tailored to each task and also to input sample characteristics.

Even though machine learning methods are very powerful in specific task performance,

they suffer from two major drawbacks: first, task performance in heavily influenced by

characteristics of input samples, which means that researchers need to be very skilled at

feature engineering; and second, as the number of input samples increases, the computa-

tional load of the algorithm also increases. Both of these drawbacks can be overcome by

deep learning methods, which are capable of performing supervised, unsupervised, clas-

sification, regression, clustering, and generative problems.

Even though traditional shallow machine learning methods have been applied in research

for a few decades now, deeper methods have only gained interest in the past decade.

Deep learning (or deep neural networks) is becoming a very popular machine learning

algorithm for learning from and making predictions on data in a variety of fields, such

as computer vision (Gebru et al., 2017; Cruz, Luvisi, De Bellis, & Ampatzidis, 2017),

natural language processing (Li, 2017), bioinformatics (Uziela, Menéndez Hurtado, Shu,

Wallner, & Elofsson, 2017), among many others, due to beating records in many artificial

intelligence problems (LeCun, Bengio, & Hinton, 2015). Deep learning methods can

automatically identify the optimal representation from the raw data without requiring

prior feature selection, which makes application of deep learning in different research

fields very straightforward.

Deep neural networks, as the name suggests, are based on artificial neural networks.

Artificial neural networks are loosely based on live neural architectures. Natural neurons

receive input signal from synapses. The signal from multiple synapses is then combined.
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If the combined signal is above a certain threshold, the neuron is activated and emits an

output signal. The output signal could be sent to another synapse, and could activate

other neurons. Similarly, artificial neural networks consist of an input layer, which

is a set of units (like synapses on a live neuron) that represents the inputs into the

model, then a hidden layer of units that takes the inputs in specific proportions and

combines them, and then applies a non-linear function to produce a signal that gets sent

to the output layer. Artificial neural networks are not impressive at solving complex

machine learning problems, because the limited architecture with a single hidden layer

cannot learn representations well. When artificial neural networks are expanded with

multiple hidden layers, where one hidden layer provides the input into another hidden

layer, they become deep neural networks. The hierarchical structure of the deep neural

networks, which involves the application of consecutive nonlinear transformations to

the raw data via the activation function, allows the models to solve quite complicated

problems (Vieira, Pinaya, & Mechelli, 2017).

The real power of deep learning comes not from the neural inspired deep architecture, but

from its ability to learn. Learning is achieved through an iterative process of adjustment

of the connections between the artificial neurons within the network (Bengio et al., 2009).

This ability to backpropagate the error of the performance, and to adjust the weights of

the network in such a way that it reduces the size of the error, implemented via stochastic

gradient descent (Bottou, 2012), allows deep neural networks to learn how to solve very

complicated problems. Because the networks are deep (have many hidden layers), they

can extract features from input data that are necessary for task performance. The ability

of the neural networks to learn feature representations by itself, instead of using input

features engineered by the researchers, makes the algorithm very universal and applicable

to almost all fields of research. However, the same aspect also makes deep learning

extremely difficult to interpret, which makes it challenging to use in fields where decisions

made by the algorithm have to be understood by humans.

Deep neural networks are usually quite large, as they consist of many hidden layers, with

each hidden layer having tens, hundreds, or even thousands of units. This results in the

models having a very large number of trainable parameters, as the weight of each indi-

vidual unit in each of the hidden layers needs to be learned for the solution of the given

problem. For example, the ImageNet classification model by Krizhevsky, Sutskever, and

Hinton (2012) contains over 60 million trainable parameters. Due to such a large num-

ber of trainable parameters, the deep learning models requite huge amounts of training
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data, which can be a big problem in fields where abundant amounts of data are hard to

come by, such as health care (Miotto, Wang, Wang, Jiang, & Dudley, 2017). However

in decision making modelling, lack of data is not an issue as samples can be created

very easily at will. This makes deep learning extremely suitable to solving problems in

decision making modelling, such as parameter recovery.

Deep learning methods are famed for computational complexity, which is well illustrated

by the fact the method only took off in the past 10-12 years, when the cost of computa-

tional hardware sharply decreased (LeCun et al., 2015). However there are two stages of

application of deep learning: first, the models need to be trained to solve the problem,

then they can be applied to unseen data. Only the training stage is computationally

expensive, as it depends heavily on the number of trainable parameters and the num-

ber of training samples, which usually go hand in hand. Application of the models is,

however, computationally cheap, provided that the inputs are not large (e.g., real time

video streams in ultra-high definition), and that the application of the models is not

pushed to edge devices with very limited computational resources. For this reason, ap-

plying deep learning to parameter recovery from the diffusion model for conflict tasks

could be beneficial as it would solve the biggest problem with the application of the

model to experimental data: the amount of time it takes to recover the parameters

using conventional global optimization methods.

Deep learning seems to be the most fashionable machine learning algorithm at the mo-

ment, probably due to its very impressive and heavily publicized achievements, such as

the success of AlphaGo (Silver et al., 2017), with an increasing number of fields trying

to achieve the same level of success. However, it is often stated that classical machine

learning algorithms can achieve similar results, without having to use huge computa-

tionally excessive architectures. However shallow methods rely heavily on feature en-

gineering, which is specific to each field and takes considerable skill of the researcher

to master. Also in order for shallow machine learning methods to perform well, it is

necessary to know a priori whether the problem would benefit from linear or non-linear

methodology. This knowledge is hard to come by in the field of decision making models,

as machine learning, as of the time of the writing, has not been applied to parame-

ter recovery from any decision making model. Deep learning, although computation-

ally excessive, does not care about either feature engineering, or linearity/non-linearity

of the problem, therefore it can be applied to parameter recovery with few complica-

tions.
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1.6 Thesis outline

The work presented in the following chapters will cover two main topics: parameter

recovery from diffusion model for conflict tasks, and investigating stability of perfor-

mance in response inhibition tasks using SAT and modelling approaches. The first half

of the thesis will start by investigating the solution space of the diffusion model for

conflict tasks, in order to determine what effect do individual parameters of diffusion

model for conflict tasks have on reaction time distributions from two-choice response

inhibition tasks, and to establish whether each parameter can subsequently be recov-

ered by global optimization algorithms. In order to investigate how well optimization

algorithms can recover parameters from diffusion model for conflict tasks, five different

optimization algorithms, each from a different stochastic optimization algorithm family,

will be compared. Irrespective of how well global optimization algorithms perform in

parameter recovery, they are still exceptionally limiting in application time, as recovery

of parameters from a single reaction time distribution takes hours if not days. For this

reason, the two subsequent chapters will investigate whether deep neural networks can

learn to predict parameters from conflict diffusion model using distributions with large

number of trials, and then try to adapt deep learning models to work with data from

experiments with human participants, which tend to have much lower trial number per

reaction time distribution.

The second half of the thesis will apply the deep learning models from the first half in

experimental studies of response inhibition aimed to investigate the whether response

inhibition is stable within two different tasks, and also over a period of time, when par-

ticipant behaviour is measured with SAT in mind. As reaction time and error rates are

not optimal measures of performance in response inhibition tasks, the diffusion model

for conflict tasks (Ulrich et al., 2015) is going to be applied to the results of the re-

sponse inhibition tasks, using trained deep learning models to recover parameters from

experimental data. Are model parameters from diffusion model for conflict tasks sta-

ble across different response inhibition tasks and over a period of time? Finally, the

same analysis is going to be applied to an experiment in which participants performed

a response inhibition task and a perceptual decision making task without impulsivity

elements. This will allow to establish whether the relationship between behavioural

measures and model parameters between different response inhibition tasks result from

decision making, rather than inhibitory processes. The differentiation between general

decision making and inhibitory processes can be achieved, because the use of the diffu-
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sion model for conflict tasks allows direct comparison with drift diffusion model, as they

share same parameters that underlie general decision making, while the diffusion model

for conflict tasks contains inhibition-specific parameters.
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2 Solution space of diffusion model for conflict tasks

2.1 Introduction

The diffusion model for conflict tasks (Ulrich et al., 2015), an adaptation of drift diffusion

model (Ratcliff et al., 2016) that allows better fits to response inhibition tasks, has a

major disadvantage in using non-differentiable equations to compute responses from two-

choice reaction time (RT) tasks. When functions are differentiable, in majority of the

cases it is relatively easy to find a global minimum of those functions using differential

equations. For decision making models, having differentiable functions translates into

straightforward parameter recovery from experimental data. When non-differentiable

models, like diffusion model for conflict tasks, are fitted to experimental data, global

optimization algorithms have to be utilized instead, without any guarantees that they

are able to find a global minimum of the objective function.

The goal of this chapter is therefore to investigate what effect individual parameters of

diffusion model for conflict tasks have on RT distributions from two-choice RT tasks,

and to establish whether each parameter can subsequently be recovered by global op-

timization algorithms. If a change in one parameter from diffusion model for conflict

tasks has unique effect on RT distribution, it should not be confused with changes in

other parameter or combination of parameters. Conversely, if effects of one parameter

can be mimicked by some other parameters, then recovery of that parameter might be

difficult.

Some research has already investigated parameter recovery from non-differentiable deci-

sion making models like diffusion model for conflict tasks (White et al., 2018) or leaky

competing accumulator (LCA; Miletić et al. (2017), but they employ global optimiza-

tion algorithms for this task. The approach in this chapter instead takes a step back

and considers the objective function response surface that the global optimization func-

tions later explore. Therefore instead of presuming that if there are global minimum

in response surface, the global optimizer should find it, the work presented here will

look at the response surface and establish whether global minimum does indeed exist,

and whether global optimization of parameter recovery from diffusion model for conflict

tasks is a worthwhile pursuit.

The most intuitive and arguably the most widely used approach in global optimization
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when objective function is non-differentiable is grid search. In grid search, a set of values

is chosen for each parameter comprising the function, and the function is evaluated at

each combination of all the chosen parameter values. Grid search allows to equally cover

the response surface by all parameters. Choosing the values of parameters, however,

involves some manual optimization. Grid search has some big advantages, including low

technical overheads, simple to implement parallelization, reliable performance, and hav-

ing no approximations or underlying assumptions about the response surface. However,

grid search has a huge disadvantage of the curse of dimensionality (Bellman, 1961): as

the number of parameters increases, and as the sampling rate within each parameter

increases, the number of evaluations increases exponentially. There are also arguments

that lack of underlying assumptions and the systematic covering of the search space

can be a disadvantage in global optimization due to its inefficiency compared to other

approaches (Bergstra & Bengio, 2012).

Even though grid search is not the most advanced or the most efficient approach to

global optimization, it allows evaluation of the response surface of objective function

and provides insight into whether parameter recovery is possible from diffusion model for

conflict tasks given current optimization procedures. Using any optimization algorithms

to recover parameters from non-differentiable models like diffusion model for conflict

tasks involves computing an RT distribution with given set of model parameters and

comparing that distribution to an “experimental” RT distribution (the RT distribution

from which the parameters need to be recovered). The comparison can involve any

function, like maximum likelihood estimation (Myung, 2003), Kolmogorov-Smirnov test

of equality (Voss, Rothermund, & Voss, 2004), or any other deviance-based method. This

process continues until a set of parameters is found that produces an RT distribution

closely matching that of the “experimental” RT distribution. How the optimization

algorithm chooses a set of parameters to evaluate is the main difference between different

optimization algorithms, however they all include comparison of RT distributions. Due

to this, if two or more sets of parameters from diffusion model for conflict tasks produce

RT distributions that are similar enough for a comparison function to judge them as

same, no optimization algorithm can discriminate between these sets of parameters to

fit “experimental” data.

Grid search is therefore a good method to inspect whether diffusion model for con-

flict tasks objective function response surface has a global minimum that can be later

detected by optimization functions, or whether the response surface is comprised of a
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number of similar-looking local minima with no discernible global one. As diffusion

model for conflict tasks has a high number of free-varying parameters, evaluating how

each combination of parameters can trade-off in grid search approach is computationally

unfeasible, therefore only changes in single parameters will be inspected in this chapter.

This will be done by taking a set of parameters called “benchmark” parameters, varying

one parameter at a time, and seeing whether the resulting change in RT distribution

can be mimicked by changing remaining six parameters while keeping the former one

the same as in benchmark set. If single parameters can be mimicked by combinations

of other parameters, it is highly likely that changes in two or more parameters will be

equally hard to distinguish from other sets of parameters, because that would mean that

the effects individual parameters have on reaction time distributions is not unique. If,

however, individual parameters do have distinguishable effects on reaction time distri-

butions, changes in two or more parameters would be harder to mimic than changes in

single parameters.

The drawback of this approach is that because diffusion model for conflict tasks has

seven free-varying parameters (due to shape of atomatic activation being fixed to the

same value throughout this thesis, as in Ulrich et al. (2015)), using only seven values of

each parameter creates a huge number of grid intersections, but the step sizes between

consecutive values of each parameter are relatively big. Due to the crudeness of the

constructed grid, a finding that change in one parameter cannot be matched by other

parameters is not a definite conclusion that no matching distributions exist. Conversely,

finding a few matching distributions might mean that there are hundreds or thousands

of others, given that the overall response surface is continuous while grid search only

evaluates discrete points on the response surface.

2.2 Methods

2.2.1 Parameter space of diffusion model for conflict tasks

In order to see how parameter values and resulting RT distributions translate to response

surface, seven values of seven main parameters of the diffusion model for conflict tasks

were selected, equally spaced between chosen limits. The values for each parameter are

given below:

• Upper threshold (β1): [20, 26.667, 33.333, 40, 46.667, 53.333, 60]
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• Non-decision time (µR): [200, 233.333, 266.667, 300, 333.333, 366.667, 400]

• Standard deviation of non-decision time (σR): [20, 25, 30, 35, 40, 45, 50]

• Drift rate for controlled process (µC): [0.4, 0.5833, 0.7667, 0.95, 1.1333, 1.3167, 1.5]

• Amplitude of automatic activation (A):[10, 16.667, 23.333, 30, 36.667, 43.333, 50]

• Time to peak automatic activation (τ): [40, 73.333, 106.667, 140, 173.333, 206.667, 240]

• Shape of starting point distribution (α): [1, 1.333, 1.667, 2, 2.333, 2.667, 3]

The shape of automatic activation was fixed to 2 as that was the case in Ulrich et al.

(2015). The diffusion constant was set to 4. The parameter limits were chosen manually

to cover a large space while maintaining plausible parameter values. Every possible

combination of parameter values was used, which resulted in 77 = 823, 543 unique set of

parameters. Each of these sets was then used to compute an RT distribution comprising

of 5,000 trials per condition, for three conditions: congruent, incongruent, and neutral.

The difference between conditions was determined by the value of the amplitude of

automatic activation parameter; in neutral condition, this value was set to 0, while in

incongruent condition it was set to -A. This resulted in RT distributions of 15, 000 trials

each. The decision process was limited to 1,000 milliseconds, and sampling was done ten

times every millisecond, which resulted in 10,000 evidence accumulation points in every

trial. If the evidence has not reached either boundary in this time, the trial outcome

was recorded as NaN . This corresponds to data collected in chapters section 6 and

section 8, where decisions were limited to 1.5 seconds. The cython code to compute a

single trial of the conflict diffusion model for conflict tasks with given model parameter

values is provided in https://github.com/SolVG/pyCDM/blob/master/maketrial.pyx
1.

One distribution in the “middle” of the parameter space was chosen as the bench-

mark distribution (with parameters β1 = 40, µR = 300, σR = 35, µC = 0.95, A =

30, τ = 140, α = 2). Then, 42 distributions were chosen in such a way that each

distribution deviated from the benchmark distribution in one parameter only by a cer-

tain step. There were six possible steps that the distribution could make, noted as

[+3,+2,+1,−1,−2,−3] in following text and figures. The sign indicates whether the

parameter in question was higher [+] or lower [−] compared to the same parameter of

1Clickable links in PDF
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the benchmark distribution. The number indicates the size of the difference between

the parameters in comparison distribution and the benchmark distribution. As the pa-

rameters were chosen from a selection of seven possible values, +3 indicates the largest

parameter value, −2 indicates the second to smallest parameter value and so on. So for

example, β + 2 distribution means that the upper threshold parameter was moved two

steps up from 40 in the benchmark distribution to 60 in the comparison distribution.

As each parameter could take six possible steps, and there were seven parameters, this

resulted in 42 comparison distributions.

Then, each of the comparison distributions was compared against every other distribu-

tion in the parameter space, except for the ones that deviated in the same parameter

as the comparison distribution. For example, β + 3 distribution was compared to every

other distribution in which the upper threshold parameter was the same as the upper

threshold parameter value of the benchmark distribution. This allowed to investigate

whether a change in one parameter could be mimicked by a change in other parame-

ters but the parameter in question, for example, can a change in the upper threshold

parameter be mimicked by one or multiple other parameters other than upper thresh-

old?

2.2.2 Reducing the number of trials per distribution

In order to see what influence does the trial number per condition has on recovery of

parameters, subsampling was performed on distributions with 5,000 trials per condition

to create distributions with lower trial numbers. This was accomplished by iterating

through the distributions in the search space (823,543 in total), separating each one into

congruent, incongruent, and neutral conditions, and randomly subsampling a smaller

number of trials per condition with replacements. The smaller number of trials were

chosen as 50, 75, 100, 125, 150, 200, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500,

4000, and 4500. Each subsample was chosen independently for each number of trials,

condition, and distribution in the search space. This method was chosen over creating

new distributions of smaller numbers of trials as it was computationally more efficient

while providing sufficient randomness in data.
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2.2.3 Objective function

In order to make comparisons between distributions, Kolmogorov-Smirnov test (KS)

(Encyclopedia of Mathematics, Kolmogorov–Smirnov test , n.d.) was employed. KS test

of equality of distributions is a good choice for decision making modelling as it allows

comparing whole distributions without splitting them into bins, and also allows combin-

ing correct trials and error trials into a single distribution by giving the errors a negative

RT (Voss et al., 2004).

Three separate KS values were calculated for congruent, incongruent, and neutral condi-

tions, and then summed to produce a single KS output. In order to determine what KS

test value could represent no difference between two distributions, a thousand distribu-

tions sharing the same parameters as the benchmark distribution was computed, and KS

test was performed between the benchmark distribution and each of the thousand distri-

butions. This resulted in one thousand KS values that compare the same distribution.

The maximum of these values was chosen. Then, the process was repeated one hundred

times to account for randomness in computations, resulting in one hundred maximum

KS values. The 95th largest value was chosen as a cutoff value to call two distributions

as matching.

Similarly, for distributions with lower number of trials, the KS statistic was computed

by generating the benchmark distribution once with the lower number of trials, and

then the same benchmark distribution 1,000 times with 5,000 trials per condition, then

the process repeated one hundred times. This was done because number of trials in

experimental data are hard to increase in certain study designs, while the number

of trials in simulated data can be selected as needed. Moreover, as fitting “experi-

mental” data to theoretical distributions presumes that the theoretical distribution is

known, simulating large numbers of trials allows for more stable, theoretical-like distri-

butions.

Finally, for low number of trials in experimental conditions, fitting with large theoretical

distributions might not be the most computationally efficient if very large numbers of

trials (say 5,000) do not offer any advantage over fitting with just a large numbers of

trials (say 1,000). For this reason, for distributions with trial numbers below 1,000,

two other sizes of simulated distributions were used: 1,000 trials per condition (fixed

size) and 4× the number of trials per condition in ”experimental” data (variable size).

Four was chosen as the multiplier to have a reasonably large effect on the resulting
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size of the distribution. The cutoff KS values for all these conditions are presented in

table 2.1.

Table 2.1: KS value cutoffs to evaluate whether RT distributions are the same for varying
number of trials per condition in the benchmark distribution (1st column, and
different number of trials in comparison distributions.

Trials in
bench-
mark
distribu-
tion

5,000
trials
in com-
parison
distribu-
tion

1,000
trials
in com-
parison
distribu-
tion

4x trials
in com-
parison
distribu-
tion

50 0.5074 0.6460 0.7600
75 0.4121 0.4684 0.5534
100 0.3726 0.3700 0.4425
125 0.3232 0.3320 0.3880
150 0.3129 0.3397 0.3634
200 0.2592 0.3010 0.3138
250 0.2510 0.2870 0.2780
500 0.1902 0.2180 0.1970
750 0.1748 0.1770 0.1387
1000 0.1546 - -
1500 0.1323 - -
2000 0.1173 - -
2500 0.1136 - -
3000 0.1040 - -
3500 0.1019 - -
4000 0.0969 - -
4500 0.0954 - -
5000 0.0930 - -

2.3 Results

2.3.1 Do diffusion model for conflict tasks parameters have unique effects on RT

distributions?

A KS test statistic was computed between each comparison distribution and the rest

of the parameter space, as described in section 2.2.1. If the KS value was equal to or

below the KS value for 5,000 trials in benchmark distribution and 5,000 in comparison

36



distribution as reported in table 2.1, the distribution in parameter space was considered

as a matching distribution to the comparison distribution. The parameter values for all

matching distributions are reported for each diffusion model for conflict tasks parameter

separately in figure 2.1 to figure 2.5. The figures show the number of matching distribu-

tions on the y axis that were found for each comparison distribution (horizontal panels)

and the difference between the parameter values of the matching distributions and the

benchmark distribution on the x axis, in facets for each model parameter. Non-decision

time and drift rate for controlled process had no matching distributions, therefore they

have no figures. If there is no panel in a figure for a specific comparison distribution,

that means that there were no matching distributions found for that comparison distri-

bution.

These figures do not display all the combinations of parameters from the matching

distributions, but some insights about parameters can be made. For example, in fig-

ure 2.1 upper facets, it can be observed that all the matching distributions for β − 1

comparison distribution had non-decision time that was the same as in the benchmark

distribution (upper leftmost facet, single bar histogram at 0), but the values for am-

plitude of automatic activation (4th upper panel from the left) and time to peak au-

tomatic activation (5th upper panel from the left) were approximately uniformly dis-

tributed.

Out of seven diffusion model for conflict tasks parameters, changes in two parameters

were always unique: the non-decision time and drift rate for controlled process. For

each comparison distribution that varied either one or the other parameter, there were

no matching distributions in the parameter space. Therefore it is likely that these two

parameters should be easily recovered by global optimization algorithms. Other five

parameters did have some matching distributions, as shown in figure 2.1 to figure 2.5.

Upper threshold and variability of non-decision time had matching distributions in the

smallest step conditions (+1 and -1), while other three parameters had matching distri-

butions in more extreme steps as well. Even though the number of matching distributions

are small given possible search space (exact number of matching distributions are re-

ported in table 2.2), the proportion of possible matches is not that important given that

this was done in a grid space with discrete parameter values, whereas in parameter re-

covery situation the search space is continuous, therefore it is likely that each matching

distribution would in fact produce clouds of thousands of distributions with very similar

parameter values. Therefore recovery of these five parameters could be problematic for

37



µR σR µC A τ α

β
1 −

1
β

1 +
1

−3−2−1 0 +1+2+3 −3−2−1 0 +1+2+3 −3−2−1 0 +1+2+3 −3−2−1 0 +1+2+3 −3−2−1 0 +1+2+3 −3−2−1 0 +1+2+3

0

10

20

30

40

0

10

20

30

40

Step in parameter value

N
um

be
r 

of
 d

is
tr

ib
ut

io
ns

 w
ith

 p
ar

am
et

er
 v

al
ue

Figure 2.1: Parameter values of matching distributions for upper threshold comparison
distributions.
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Figure 2.2: Parameter values of matching distributions for non-decision time variability
comparison distributions.
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Figure 2.3: Parameter values of matching distributions for amplitude of automatic acti-
vation comparison distributions.
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Figure 2.4: Parameter values of matching distributions for time to peak automatic acti-
vation comparison distributions.
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global optimization algorithms.

The figure 2.1 to figure 2.5 also display the values that the parameters in matching

distributions take. As evident in the vertical panels representing each parameter that

was allowed to change, some parameters always have to take certain values (e.g. non-

decision time always has to be the same as in the benchmark distribution), some have

minimal variability across all comparison distributions (like variability of non-decision

time and drift rate for controlled process), while others can take multiple values spread

across search space to produce matching distributions (e.g. time to peak automatic

activation, shape of starting point distribution). This could point to the possibility that

parameters with the most uniform distributions (e.g. time to peak automatic activation,

shape of starting point distribution) could be the most difficult to recover for global

optimization algorithms.

Table 2.2: Number of matching distributions per comparison distribution.

Comparison
distribution

Number of
matches

Comparison
distribution

Number of
matches

Comparison
distribution

Number of
matches

β-3 0 σR-3 0 A-3 5
β-2 0 σR-2 0 A-2 37
β-1 46 σR-1 0 A-1 53
β+1 11 σR+1 0 A+1 25
β+2 0 σR+2 0 A+2 10
β+3 0 σR+3 0 A+3 2
total β1 57 total σR 0 total A 132

µR-3 0 µC-3 0 τ -3 0
µR-2 0 µC-2 0 τ -2 7
µR-1 15 µC-1 0 τ -1 18
µR+1 27 µC+1 0 τ+1 34
µR+2 0 µC+2 0 τ+2 43
µR+3 0 µC+3 0 τ+3 43
total µR 42 total µC 0 total τ 145

α-3 7
α-2 17
α-1 15
α+1 34
α+2 34
α+3 33
total α 140

One issue with these results is that RT distributions of 15,000 trials each represent close
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to “perfect” data. In reality, RT distributions obtained from human studies are very

unlikely to have more than 500 to 1,000 trials per condition (given an average 1.5s

per trial for speeded reaction time tasks, 1,000 trials would take 25 minutes with no

breaks to administer), and clinical samples usually have even smaller trial numbers (e.g.

J. Zhang et al. (2015) had 300 trials of Go/NoGo task per session with Parkinson’s

patients; Dillon et al. (2015) had 350 trials in total for two conditions of flanker task in

patients with clinical depression; in Karalunas and Huang-Pollock (2013) study children

with ADHD performed 200 trials of Logan Stopping Task). Therefore the problem of

matching distributions is likely to be more severe when parameter recovery from real

experimental data is attempted. For this reason, constraining some parameters is neces-

sary in order to make the rest recoverable to global optimization algorithms.Section 2.3.3

is going to discuss this issue for distributions with smaller number of trials per condi-

tion.

2.3.2 Randomness in computation and variability in distributions

It must be noted that there is inherent variability in the computation of the distributions

that comes from randomness in computing individual trials. This could have an effect

on the results of matching distributions as they might be due to chance because each

comparison distribution was only calculated once. This should not be an issue of the

parameter space distributions, as there were 823543 of them, therefore a few random

extreme distributions should not have an impact on the overall outcome. However, there

were only 42 comparison distributions, and any statistical deviation in them could have

big subsequent effects on the results. Due to this, the comparison distributions were

computed five times to see whether resulting matching distributions were different, and

consequently whether randomness could introduce enough variability to make results

unstable. Figure 2.6 to figure 2.10 shows that fortunately randomness in trial compu-

tation does not have big effect on the results, as all five distributions match almost

exactly. Therefore only one of the comparison distribution sets was used in the following

sections.
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Figure 2.5: Parameter values of matching distributions for shape of starting point dis-
tribution comparison distributions.
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Figure 2.6: Parameter values of matching distributions for upper threshold comparison
distributions over five independent samples of comparison distributions.
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Figure 2.7: Parameter values of matching distributions for non-decision time variabil-
ity comparison distributions over five independent samples of comparison
distributions.
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Figure 2.8: Parameter values of matching distributions for amplitude of automatic acti-
vation comparison distributions over five independent samples of comparison
distributions.
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Figure 2.9: Parameter values of matching distributions for time to peak automatic acti-
vation comparison distributions over five independent samples of comparison
distributions.
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Figure 2.10: Parameter values of matching distributions for shape of starting point dis-
tribution comparison distributions over five independent samples of com-
parison distributions.
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2.3.3 Constraining parameters

In order to compare the number of matching distributions for distributions with varying

number of trials per condition, sampling with replacements was performed from the RT

distribution with 5,000 trials per condition to obtain RT distributions with 50, 75, 100,

125, 150, 200, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, and 4,500

trials per condition. Sampling was done independently for each condition. The KS

values chosen as cutoffs to judge whether two distributions were matching or not are

shown in table 2.1.

In order to choose which diffusion model for conflict tasks parameters to constrain,

the relative importance of each parameters needs to be considered. Upper threshold,

non-decision time and drift rate for controlled process are the three main parameters

underlying any DDM-based model. The amplitude of automatic activation is one of

the parameters that discriminates the diffusion model for conflict tasks from DDM, and

therefore very important when considering response inhibition tasks. Time to peak

automatic activation is also quite important, as it is the parameter that discriminates

between different response inhibition tasks (Ulrich et al., 2015). However, when only one

task is considered, this parameter could be fixed to a value that approximates the mean

for that task. Standard deviation of non-decision time provides better fit of real data,

however is not a very interesting parameter in itself to describe the decision making

process. Finally, the shape of starting point distribution is difficult to interpret as a

cognitive process, and therefore should probably be the first parameter considered for

constraining.

Three parameters were chosen for constraining: shape of starting point distribution, time

to peak automatic activation, and standard deviation of non-decision time. When each

of the parameters was constrained, the parameter search space was reduced in such a way

that each comparison distribution was evaluated against every distribution in parameter

space where the varied parameter in comparison distribution matched the benchmark

distribution, and the constrained parameter matched the benchmark distribution. For

example, to evaluate the effects of constraining the shape of the starting point distribu-

tion on upper threshold recovery, β − 1 comparison distribution was evaluated against

every other distribution in the parameter space where β1 = 40 and α = 2 (same values

as benchmark distribution).

To examine the effects of constraining multiple parameters, two combinations were cho-
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sen: constraining the shape of the starting point distribution and time to peak automatic

activation, and the shape of the starting point distribution and standard deviation of

non-decision time. The calculations were similar to constraining one parameter, for ex-

ample, to evaluate the effects of constraining the shape of the starting point distribution

and time to peak automatic activation on upper threshold recovery, β−1 comparison dis-

tribution was evaluated against every other distribution in the parameter space where

β1 = 40, α = 2, and τ = 140 (same values as benchmark distribution). Figure 2.11

displays results of constraining parameters (x axis) on the the number of matching dis-

tributions per comparison distribution (y axis) for varying number of trials per condition

(colours in the figure). As the results are difficult to see for higher number of trials per

condition, they are displayed in figure 2.12. The figures show that as the number of

trials per condition decreases, the number of matching distributions increases. This is

true when no parameters are constrained (leftmost group in figure 2.11) and when ei-

ther one or two parameters are constrained (all remaining groups). Exponential decay

functions fitted to the data to demonstrate that as trial number per condition increases,

the number of matching distributions per comparison distribution decays to zero for all

constraint conditions. This is shown in figure 2.13.

It is also evident from the figure 2.11, figure 2.12, and figure 2.13 that the number of

matching distributions per comparison distribution is higher when no parameters are

constrained compared to when one or two parameters are constrained. This means that

recovery of parameters should become harder with decreasing number of trials per con-

dition and when no constraints on parameters are imposed.
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Figure 2.11: Proportion of matching distributions for different constraints and trial
types. Note that outliers are not displayed.
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Figure 2.12: Number of matching distributions for different constraints and trial types,
shown for the larger number of trials only to see details. Note that outliers
are not displayed.
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Figure 2.13: Exponential decay functions fitted to number of matching functions as num-
ber of trials per condition increases for each constraint.

Note that comparison between constraining one and two parameters versus no con-

straints is difficult because the parameter space is larger with no constraints compared

to one parameter or two parameters constrained, therefore figure 2.11 and figure 2.12

can be scaled by the number of distributions in the parameter space. The results of

this are shown in figure 2.14 for all data and figure 2.15 for higher number of trials per

distribution.

Figure 2.14 and figure 2.15 show that when the proportion of matching distributions to

the size of parameter space is considered, constraining one or two model parameters does

not reduce the proportion (median bars in boxplots), and appears to increase variability

of proportion of matching distributions per comparison condition (size of boxplots and

size of whiskers). Whether the proportion of matching distributions or the actual number

of matching distributions is more relevant for global optimization algorithms is discussed

in section 2.4.
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Figure 2.14: Number of matching distributions for different constraints and trial types,
scaled per size of available distribution pool
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Figure 2.15: Number of matching distributions for different constraints and trial types,
shown for the larger number of trials only to see details, scaled per size of
available distribution pool
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2.3.4 Is high number of trials needed for small distributions?

When diffusion model for conflict tasks parameters need to be estimated from data

with small numbers of trials per condition, simulating distributions in the solution space

with 5,000 trials per condition might not be computationally most efficient if such large

distributions do not offer any advantage over smaller distributions. Therefore in this sec-

tion three different sizes of simulated distributions, 5,000 and 1,000 trials per condition,

and four times the number of trials per condition in “experimental” data, were com-

pared to investigate whether the size of the simulated distribution has an effect on the

number of matching distributions for ”experimental” data with small number of trials

(< 1, 000). This effect was inspected in conditions with no parameter constraints, single

parameters constrained, and two parameters constrained. The results are displayed in

figure 2.16.

Figure 2.16 demonstrates that for all constraint conditions, when “experimental” data

has low trial numbers per condition, simulating distributions during fitting procedure

with 5,000 trials per distribution offers little advantage over simulating distributions with

1,000 trials per condition. On the other hand, determining simulated distribution size by

multiplying the number of trials from ”experimental” data by four seems to increase the

number of matching distributions for datasets with very low trials per condition (< 250).

This suggests that there might be computational advantages to reducing the size of sim-

ulated distributions from 5,000 trials per condition to any number up to 1,000 trials per

condition when the “experimental” data contains low trial numbers, without much detri-

ment to the accuracy of the global optimization algorithms.
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2.4 Conclusions

This section has used grid search methodology to inspect the solution surface of the

diffusion model for conflict tasks parameter space and found that changes in five out

of seven diffusion model for conflict tasks parameters can be mimicked by changes in

other parameters. This means that any global optimization algorithm will struggle to

find a solution to the objective function of the diffusion model for conflict tasks fitting

procedure.

Two out of the seven diffusion model for conflict tasks parameters, non-decision time

and drift rate for controlled process, had no matching distributions when each of these

parameters was varied. This could imply that both of these parameters have unique

effects on RT distributions that are impossible to mimic with combinations of other pa-

rameters, and hence they should be easily recoverable by global optimization algorithms.

Alternatively, no matches for these two parameters could have resulted from the crude-

ness of the grid space itself that was used: with only seven values per parameter, and

relatively large parameter limits, there could be matching distributions if the resolution

of the grid was finer.

Moreover, it is also unclear to what extent changes in one parameter can be confused

with different changes in the same parameter plus some others. This is one of the main

differences between the grid search procedure used in this chapter to evaluate matching

distributions, and that of any global optimization algorithm. Therefore in reality when

parameters need to be estimated from data, the solution surface of the diffusion model

for conflict tasks objective function is likely to be even harder for finding the global

minimum.

In order to see whether limiting the dimensions of the solution space by constraining

one or two parameters of the diffusion model for conflict tasks to a fixed value might

aid recovery of other parameters, several single parameters (shape of starting point dis-

tribution, time to peak automatic activation, standard deviation of non-decision time)

and combinations of two parameters (shape of starting point distribution and time to

peak automatic activation, or shape of starting point distribution and standard devi-

ation of non-decision time) were fixed in the parameter space. At the same time, to

investigate the effects of the size of the “experimental” data on parameter recovery, the

above investigation was repeated on distributions with trial numbers that varied from 50

to 4,500 per condition. The results showed that constraining at least one parameter was

52



beneficial to recovery of other parameters as the number of matching distributions de-

creased when parameters were constrained. At the same time, reducing the trial number

per condition of the “experimental” data has severely increased the number of matching

distributions, meaning that studies with low trial numbers would have difficulties in es-

timating diffusion model for conflict tasks parameters due to the surface of the solution

space.

Selection of which parameters to constrain should be at the discretion of the researcher.

Time to peak automatic activation parameter (τ), although hard to recover, might be

of interest to some researchers who are investigating the differences between two or

more response inhibition tasks, as this parameter was found to discriminate between

flanker and Simon tasks in the paper by Ulrich et al. (2015). Moreover, it could be of

interest to researchers investigating individual differences in inhibition, due to its’ effect

on delta plots, which are used in examining the effects of inhibition and impulsivity

(Ambrosi et al., 2019; Suarez et al., 2015; de Bruin & Della Sala, 2017). Therefore,

if time to peak automatic activation is fixed, the value that should ideally correspond

to the values comparable with the response inhibition task in mind. Similarly, the

variability of non-decision time parameter (σR) might be of interest to researchers who

are investigating the variability of responding, but are not that concerned with true

estimations of time to peak automatic activation. Therefore either of these parameters

can be chosen to be fixed. Alternatively, shape of starting point activation does not

seem to offer any meaningful interpretations of cognitive processes, and appears to be

the most straightforward choice for constraining.

An interesting result that came from this section was that although the actual number

of matching distributions decreased with constraining parameters, this was not the case

when proportion of matching distributions to the size of the parameter space was con-

sidered. This could have resulted from the fact that when high-dimensional spaces are

considered, the importance of some parameters to the surface of the solution space is

much more pronounced than others (Bergstra & Bengio, 2012). Nevertheless, it is still

unknown whether the proportion of matching distributions is as important as the actual

number of matching distributions when it comes to parameter recovery from global op-

timization functions. Response surface of the objective function in diffusion model for

conflict tasks is continuous. Given that the most commonly implemented precision for

floating point numbers is 64 bits, each parameter of diffusion model for conflict tasks

can be coded in 16 digits, meaning 1,000,000,000,000,000 values that each parameter

53



can take. Allowing one less digit to vary to account that some values of the parameters

need to fall within specific limits to make sense, means that at least 1097 possible unique

combinations of parameters exist in the solution space, which is more than the estimated

number of atoms in the known universe. Constraining that space in a few axes, even

though it would reduce the total number of possible solutions, would not make much

actual difference.

Finally, the chapter showed that when parameters are estimated from data with low trial

numbers, reducing the number of trials in simulated data does not have a big detrimental

effect to the solution space and hence parameter recovery. Therefore to increase the com-

putational efficiency of global optimization algorithms, smaller simulated distributions

could be considered.

The next chapter will use the findings from this section and will further investigate the

parameter recovery from the diffusion model for conflict tasks in a continuous space.

Multiple global optimization algorithms will be compared for precision and speed of

performance when trying to estimate parameters from large and small datasets, with

and without constrained parameters.
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3 Optimization algorithms for model parameter recovery

3.1 Introduction

To apply mathematical models of decision making in psychological research, researchers

need ways to extract model parameters from behavioural studies. The process of param-

eter extraction from drift diffusion class of models is difficult. Even though the classical

drift diffusion model (Ratcliff, 1978) is differentiable (which means that a solution can

be found using analytic-, or calculation-, based means), approximation, or optimization

methods are used instead, due to the complexity of the analytic equations. The expan-

sion of the drift diffusion model to conflict tasks (Ulrich et al., 2015) resulted in the

model being non-differentiable, which means that the parameters of the diffusion model

for conflict tasks can only be estimated using optimization algorithms. Optimization al-

gorithm, in general terms, is a process that compares many solutions to a problem over

multiple iterations, until a satisfactory solution is found.

There are many optimization algorithms, each with its own strengths and weaknesses.

Choosing which optimization algorithm to apply for a given problem is difficult, because

suitability for a specific problem needs to be weighed against computational time (how

long does it take to execute the algorithm), and also against researcher time (how long

does it take for the researcher to implement the algorithm): even if an algorithm is

excellent at finding global minimum of a problem, but takes weeks, months, or even

years to run the total calculations to find that solution, the runtime is going to be

unacceptable for practical applications. Likewise, researcher time is very costly, so even

if an algorithm is good at finding the global minimum of a problem, and runs in an

acceptable timeframe, but takes researchers months or years to implement in production

pipelines, it will not be practical to implement it over another, less well performing

algorithm that is much cheaper in implementation time.

The diffusion model for conflict tasks does not have an analytic solution, because the

derivative of the objective function cannot be calculated. Therefore we cannot rely

on classical optimization techniques (which are proven to find a global minimum or a

maximum of the problem) to recover parameters from the model, and instead need to

apply metaheuristic algorithms, which are used in solving non-linear non-differentiable

objective functions to find suboptimal solutions (because is it yet to be proven that

the solution found is a global minimum or maximum). The metaheuristic optimization

55



algorithms balance two strategies to search for the global minimum of a function, explo-

ration and exploitation (Civicioglu & Besdok, 2013). Exploration is the process of an

algorithm visiting new regions of a search space, and exploitation refers to the process

of an algorithm visiting those regions of a search space that are in the neighborhood of

previously visited points (Črepinšek, Liu, & Mernik, 2013). In order to be successful, a

metaheuristic optimization algorithm needs to establish a good balance between these

two processes.

In order to investigate how well optimization algorithms can find parameter solutions

from diffusion model for conflict tasks, five different optimization algorithms were se-

lected in such a way as to cover different stochastic optimization algorithm families.

First, random search was chosen to serve as the baseline for the optimization solution.

Random search is arguably the most basic algorithm, as all it does is pick a random

point in the search space, check the objective function value for that particular point,

and repeat the process over multiple iterations. The point in solution space with the

lowest value of the objective function is then the overall global solution. Random search

is incredibly cheap in implementation time, but on the other hand it becomes computa-

tionally expensive with increasing solution space.

Evolutionary programming algorithms were first proposed by Fogel, Owens, and Walsh

(1966); in these algorithms the principles of biological genetic evolution are applied to

solve optimization problems. One of the algorithms belonging to the class of evolu-

tionary algorithms is differential evolution, first introduced by Storn and Price (1997).

Differential evolution algorithm was developed for the solution of real-valued numerical

optimization problems (Storn & Price, 1997), therefore it is very well suited for parame-

ter recovery from diffusion model for conflict tasks, which is also a real-valued numerical

optimization problem. Differential evolution works by initializing a population of solu-

tions, and then creating a new generation of solutions by combining the members of the

initial population that have the lowest objective function values. The population of ini-

tial solutions is combined into subsequent generations using mathematical expressions for

mutation, crossover, and selection strategies of the genetic algorithm. The most impor-

tant difference of the differential evolution algorithm from the standard genetic algorithm

is the strong mutation strategies it has (Storn & Price, 1997). Differential evolution al-

gorithm treats the optimization problem as a black box and therefore does not need the

gradient of the problem, which makes it very suitable for non-differentiable problems,

such as diffusion model for conflict tasks. Due to its simple mathematical structure, dif-
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ferental evolution algorithm is relatively simple to implement. The algorithm has a great

balance between exploitation and exploration, through the implementation of crossover

and mutation strategies respectively.

Swarm optimization belongs to category of Swarm Intelligence algorithms (J. F. Kennedy,

Kennedy, Eberhart, & Shi, 2001), and was first developed by James Kennedy and Rus-

sell Eberhart in 1995 (J. Kennedy, 2011). The Particle Swarm Optimization algo-

rithm is a population-based, stochastic, and multi-agent parallel optimization algorithm

(Civicioglu & Besdok, 2013), similarly to the differential evolution algorithm. How-

ever, unlike the differential evolution algorithm, particle swarm optimization has no

crossover or mutation. Instead, the particle swarm optimization algorithm has mathe-

matical implementation of cognitive components and social components of a “swarm”

of solutions, which are modelled on the behaviours displayed by social collections of

living creatures, such as swarms of insects and flocks of birds. Such collections display a

trade-off between the individual knowledge, as each individual knows the best locations

for discovering food from its own personal experience, but also the social knowledge of

the swarm as a single system, where the whole swarm or flock can move in a space to

locate the best food sources. The mathematical implementation of how both social and

cognitive aspects move the swarm over a solution space allows the particle swarm opti-

mization algorithm to cover both exploration and exploitation aspects of metaheuristic

optimization.

Another class of optimization algorithms is Markov Chain Monte Carlo (MCMC) based

algorithms, which use sampling from a probability distribution. Basin-hopping is one

of the most advanced algorithms in the MCMC class as it combines a stochastic global

algorithm with deterministic local searches. Basin hopping belongs to a class of stochas-

tic optimization methods, which unlike many other global optimization algorithms, not

only finds a local minimum with ease, but is also able to hop between the local minima.

The most significant feature of this method is the allowance for the system to navigate

between local minima, in particular, from a lower energy minimum to a higher one,

enabling the system to hop among them (Zhan et al., 2004). Therefore it should be well

suited for parameter recovery from diffusion model for conflict tasks, which has a solu-

tion space with many local minima (as described in section 2). However, basin hopping

is quite difficult to implement in production pipelines.

Finally, Bayesian global optimization (Močkus, 1975) is a black box global optimization

algorithm that is built upon Bayesian inference and Gaussian processes. Bayesian global
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optimization is particularly suited to optimization problems where the cost function is

high, so that the optimum balance is required between exploration and exploitation of

the search space. Bayesian optimization algorithm starts with no assumptions about the

solution space, and initiates random sampling of the space. Random sampling has been

shown to be more efficient than grid search for parameter optimization by (Bergstra

& Bengio, 2012). As the sampling progresses, the posterior is altered as some samples

result in a lower loss function value than others, which has an effect on the selection of

the subsequent samples. Once the exploration stage is completed, regions of the function

which are worth to explore for the optimum solution are identified, at which point the

exploitation of the suggested solution space can begin. Bayesian optimization is very

well suited to problems where the objective function is costly, such as the diffusion model

for conflict tasks, as the calculation of a reaction time distribution of hundreds of trials

is a very computationally costly process. Bayesian optimization computes a probability

model of the objective function that maps the samples to a probability of a loss, which

is easier to optimize than the actual objective function.

It is difficult to predict which one of the five chosen algorithms would return the best

parameters for the diffusion model for conflict tasks, because performance of optimization

algorithms does not transfer between different optimization problems. This was proposed

by Wolpert and Macready (1997) as ”No free lunch” theorem, which postulates that

for both static and time-dependent optimization problems, the average performance

of a single optimization algorithm across all possible problems is identical to another

optimization algorithm.

This chapter will investigate how well these five different optimization algorithms per-

form in recovering parameters from diffusion model for conflict tasks, when considering

reaction time distributions with high number of trials, and reaction time distributions

with low number of trials. In particular, we are interested in whether any of the five

algorithms performs better than the rest, and whether the performance of any of the

more advanced algorithms is better than simple random search. The performance of

the algorithms will be assessed in the context of constrained computational time: each

of the algorithm will be allowed the same time frame (72 hours for distributions with

high number of trials and 24 hours for distributions will low number of trials). Three

different scenarios will be considered: recovering either seven, six, or five parameters

from the diffusion model for conflict tasks, with either zero, one, or two parameters

constrained to a fixed value respectively. This will allow investigation of how the per-
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formance of the optimization algorithms changes as the dimensionality of the solution

space decreases.

3.2 Methods

3.2.1 Distributions to recover parameters from

Twenty distributions were computed with parameters from the diffusion model for con-

flict tasks, which are displayed in table 3.1. These parameters were obtained from

published studies that used the diffusion model for conflict tasks (Ulrich et al., 2015;

Servant, White, Montagnini, & Burle, 2016), and from our own lab, obtained from

fitting experimental data from the flanker and Simon tasks. Two reaction time distri-

butions were computed for each set of parameters, one with 5000 trials per condition,

and another with 200 trials per condition, as the former represents ideal reaction time

distributions, while the latter is a realistic dataset from a (relatively long) experiment

with human subjects. The two distributions will later be referred to as distributions

with large (high) and small (low) number of trials respectively. Three conditions were

used for the datasets, congruent, incongruent, and neutral; the only difference between

the conditions being the value of the amplitude of automatic activation parameter, with

positive value for congruent trials, negative one for incongruent trials, and zero for neu-

tral trials. The additional parameters used for computations were set as 2 for the shape

of automatic activation, 4 for the diffusion constant, 700 milliseconds for decision mak-

ing process (how long the evidence is allowed to accumulate until a decision threshold is

reached), and the sampling rate was 10 per millisecond.

The reaction time distributions were then passed individually to the optimization algo-

rithms to recover the parameters of diffusion model for conflict tasks. The optimization

was run three times, each time trying to recover different number of parameters: all

seven, six parameters (excluding the shape of the starting point distribution), and five

(excluding the shape of the starting point distribution and the standard deviation (vari-

ability) of non-decision time).
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Table 3.1: Values of the parameters from diffusion model for conflict tasks used to com-
pute the reaction time distributions for parameter recovery studies. β1 -
upper boundary, µR - non-decision time, σR - variability (standard deviation)
of non-decision time, µC - drift rate for controlled process, A - amplitude of
automatic activation, τ - time to peak automatic activation, α - shape of the
starting point distribution.

β1 µR σR µC A τ α

75 300 30 0.5 20 30 2
51.3 331.79 36.61 0.69 19.2 118.26 2.15
54.56 322.81 38.58 0.69 15.99 34.94 2.8
62.36 302.55 40.86 0.5 14.7 104.26 2.89
40.05 313.28 40.33 0.77 17.02 192.5 3.02
46.26 287.06 33.89 0.57 16.74 46.9 1.04
39.23 303.45 30.42 0.56 19.27 63.85 3.02
72.13 310.61 22.71 0.77 25.66 111.32 3.58
60.71 321.8 24.21 0.63 27.96 39.62 2.71
48.3 296.38 35.31 0.68 12.65 97.32 2.39
39.86 252.26 44.25 0.59 17.4 131.78 1.06
63.32 349.2 45.12 0.65 22.75 130.34 1.35
54.05 334.99 35.18 0.89 29.37 59.19 2.51
49.01 299.73 35.6 0.74 23.62 155.88 1.14
42.42 328.98 33.31 0.55 30.68 161.43 2.15
61.9 369.28 20.31 0.85 37.15 180.28 3.4
49.44 356.39 29.78 0.67 25.7 111.06 3.15
63.04 303.4 22.1 0.79 26.75 119.69 2.56
52.68 282.9 32.15 0.62 25.99 247.01 1.06
37.18 287.46 32.56 1.06 16.55 125.85 0.73

3.2.2 The search space

In order to implement all of the global optimization algorithms in this chapter, the search

space of the solution had to be defined. Previous papers that investigated parameter

recovery from sequential sampling models looked at the same search space boundaries as

they did to compute the reaction time distributions (White et al., 2018). This approach

makes parameter recovery unnaturally easy, especially if the boundaries chosen for the

parameters are relatively constrained. Moreover, this approach could hinder the recov-

ery of parameters from distributions that might have more extreme parameter values,

such as when investigating the performance in clinical samples or in individual differ-

ences research with more extreme behaviour. Another approach is to use a much larger
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search space and see whether the optimization algorithms are capable of finding the

correct parameters. This approach not only allows investigating the true power of the

optimization algorithms, but also does not unnecessarily exclude the application of the

decision making models from experimental studies with populations that may display

extreme values for some of the model parameters. For these two reasons, the search

space for global optimization algorithms was constrained with parameter values shown

in table 3.2.

Table 3.2: Limits for each of the parameter from diffusion model for conflict tasks to
constrain the search space.

Parameter Parameter abbre-
viation

Lower limit Upper limit

Upper boundary β1 20 120
Non-decision time µR 150 500
Variability of non-decision time σR 10 60
Drift rate for controlled process µC 0.0001 2
Amplitude of automatic activation A 0.0001 70
Time to peak automatic activation τ 10 300
Shape of starting point distribution α 0.0001 4

3.2.3 Algorithm implementation

Every algorithm was implemented using python programming language, with the ex-

tension of cython to speed up the computation of reaction time distributions from the

diffusion model for conflict tasks. Random search was implemented manually, differen-

tial evolution and basin-hopping were implemented with native scipy package (Jones,

Oliphant, Peterson, et al., 2001–). Bayesian optimization was implemented with the

Bayesian Optimization package (https://github.com/fmfn/BayesianOptimization)
2. Particle swarm optimization was implemented with the pyswarm package (https://

pythonhosted.org/pyswarm/).

Each optimization algorithm selected a potential solution to the problem, which was a set

of parameter values selected from the search space. This set of parameter values was then

used to compute a reaction time distribution from diffusion model for conflict tasks, with

congruent, incongruent, and neutral trials. The number of trials per condition depended

2Clickable links in PDF
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on the size of the distribution that needed parameters recovered. For distributions with

large number of trials, the optimization algorithms computed reaction time distributions

with 5000 trials per condition, while for the distributions with small number of trials, the

optimization algorithms computed 1000 trials per condition. These numbers were chosen

considering the findings from section 2. The distributions with large number of trials

were matched in size to emulate ideal conditions for parameter recovery in the level of

noise in trials. The number of trials for the distributions with small number of trials was

increased to 1000 trials per condition, as it offered a good balance between computational

time and level of noise in the distributions. The goodness of the solution was evaluated

by comparing the computed reaction time distribution with the problem reaction time

distribution. The comparison was performed individually for congruent, incongruent,

and neutral trials, using Kolmogorov-Smirnov (KS) test for comparing distributions.

The returned KS values were then added together to a single sum value, which was the

objective function to minimize (as KS values closer to zero denote distributions that

look more alike).

The random search algorithm simply chose a set of parameters randomly from a pre-

defined range, computed a reaction time distribution with those parameters, and then

compared the resulting distribution with the initial one. If the value of the objective

function was lower than the one from the previous best set of parameters, the previ-

ous best set of parameters was replaced with the current ones, otherwise, the previous

best set of parameters remained unchanged. This process was iterated 500 times for

distributions with large number of trials, and 3500 times for distributions with small

number of samples. These values were chosen so that the algorithms would finish in

72 hours and 24 hours respectively, with 72 hours being the upper limit for computa-

tions set by the High Performance Computing clusters in Cardiff University. The 24

hour limit for the distributions with small number of trials was chosen to reflect the re-

duced computational time requirements resulting from computing smaller reaction time

distributions.

Unlike the other optimization algorithms used in this chapter that look for a minimum

of a function, the Bayesian optimization algorithm, as implemented in the Bayesian

Optimization package, is a global maximizer. For this reason, the objective function

was inverted, so instead of trying to find the smallest sum of Kolmogorov-Smirnov (KS)

values for congruent, incongruent, and neutral conditions, the algorithm tried to find the

largest value, defined as 3− sum of KS values. Formulated in this way, the algorithm
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was still trying to minimize the sum of KS values. For distributions with large number of

trials, the number of exploratory iterations was 1,500, while the number of exploitatory

iterations was 1,500. For distributions with low number of trials, both the exploratory

and the exploitatory iterations were set to 750 each. The number of iterations was chosen

for the same reasons as described above, to allow the algorithm to complete in 72 hours

and 24 hours respectively.

The population size for the differential evolution algorithm was set to 10. The number of

iterations for recovery of parameters from distributions with large number of trials was

set to 50, while for distributions with low number of trials it was set to 200, again to allow

the algorithm to finish within 72 and 24 hours respectively. Similarly, for the particle

swarm optimization algorithm, the population size was set to 10, while the number of

iterations were set to 350 and 1000 for distributions with high and low number of trials

respectively.

Parameters from each distribution were only recovered once by each optimization algo-

rithm. This was done for two reasons. First reason was the time constraint: as each

recovery algorithm already took so long, running it multiple times would have increased

the runtime costs linearly. Secondly, even though the runtime can be optimized by

choosing the best starting points for some algorithms, this strategy is difficult to imple-

ment in population-based algorithms, which would make comparison between different

algorithms difficult.

3.3 Results

3.3.1 Comparison of the global optimization algorithms

The results from four out of five global optimization algorithms were compared. The

basin hopping algorithm was excluded from the comparisons due to sub-par performance,

as described in the detailed results on each individual algorithm.

In order to see whether there was a difference between algorithms in the objective func-

tion value of recovered parameters, a two-way ANOVA was performed, with the number

of recovered parameters and the optimization algorithm as independent within-subjects

variables, for the data with 5,000 trials per condition. The ANOVA results suggest

that there was no interaction between the number of recovered parameters and the op-
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timization algorithm (F (4, 76) = 1.44, p = 0.230). Further investigation into the main

effects revealed that the number of recovered parameters did not have an effect on the

objective function values (F (2.38) = 2.23, p = 0.121), while the type of the optimization

algorithm did (F (2, 38) = 31.71, p=7.9 × 10−9). This difference comes from the differ-

ential evolution performing better than the other algorithms. These results are shown

in figure 3.1.

When the results from the distributions with low number of trials were investigated,

similar pattern emerged: there was no interaction between the number of recovered

parameters and the optimization algorithm used (F (4, 76) = 0.25, p = 0.910). When

the main effects where investigated, once again the number of recovered parameters

had no effect on the objective function values: F (2, 38) = 0.11, p = 0.893, while

the optimization algorithm had a significant effect: F (2, 38) = 66.41, p=4.0 × 10−13.

This difference came from the differential evolution algorithm producing lower objec-

tive function values (better performance of the algorithm) than the remaining three

algorithms.

These results indicate that irrespective of the size of the distribution and the number of

recovered parameters, differential evolution results in the best parameter recovery from

the diffusion model for conflict tasks.

Another way to compare the algorithms is to evaluate whether any of the algorithms

resulted in correlation coefficients between actual and recovered parameters that were

consistently higher for all of the model parameters compared to other optimization al-

gorithms. This is different than looking at objective function values, because a small

objective function value could result from good recovery of some parameters while other

parameters were not recovered well. Inspecting correlation coefficients for each param-

eter separately allows to investigate whether any algorithm recovered all model pa-

rameters better than other algorithms. For this purpose, each model parameter was

treated as a sample, the optimization algorithms as independent variable, and the cor-

relation coefficient as dependent variable. Kruskal-Wallis test was performed to see

whether the difference in the average correlation coefficient was statistically signifi-

cant, which is a non-parametric equivalent of ANOVA. This was done due to the vi-

olation of assumptions underlying ANOVA. The results of comparison are shown in

figure 3.2. Even though it appears that differential evolution provided the highest

correlation coefficients with the least amount of variance, the Kruskal-Wallis test per-

formed on this data showed that there was no significant difference in the correlation
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Figure 3.1: Comparison of KS values from recovery of parameters by different optimiza-
tion algorithms for different number of recovered parameters (columns) for
both small (top row) and large (bottom row) reaction time distributions.
Dots indicate outliers.
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Figure 3.2: Comparison of correlation coefficients for all parameters from four optimiza-
tion algorithms. Dots indicate the full distribution of data points.
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coefficients between the four different optimization algorithms for any combination of

the number of recovered parameters and the number of trials in the distributions (all

χ2(3) < 4.7, p > 0.19). This could be the result of a very small “sample size” of five to

seven correlations.

3.3.2 Random search

When data was limited to 200 trials per condition, and when trying to recover parameters

with distributions with 1,000 trials per condition, the recovered parameters look like

displayed in figure 3.4. The Pearson correlation coefficients between actual and recovered

parameter values are shown in table table 3.3.

Table 3.3: Correlation coefficients (p values) between actual parameter values and recov-
ered parameter values using the random search algorithm. Dashes indicate
the parameters that were not recovered in that condition. Values displayed
in bold indicate statistically significant correlations (not adjusted for multiple
comparisons).

5,000 trials
Parameters 5 6 7

β1 0.69 (7.1 × 10−4) 0.79 (3.7 × 10−5) 0.67 (0.001))
µR 0.91 (3.1 × 10−8) 0.82 (8.9 × 10−6) 0.87 (7.7 × 10−7)
σR - 0.28 (0.230) 0.63 (0.003)
µC 0.63 (0.003) 0.23 (0.323) 0.35 (0.133)
A 0.50 (0.024) 0.63 (0.003) 0.42 (0.063)
τ 0.33 (0.152) 0.11 (0.635) 0.09 (0.694)
α - - 0.56 (0.010)

200 trials
5 6 7

β1 0.63 (0.003) 0.69 (8.4 × 10−4) 0.51 (0.021)
µR 0.88 (3.5 × 10−7) 0.84 (3.0 × 10−6) 0.89 (1.7 × 10−7)
σR - 0.62 (0.004) 0.40 (0.083)
µC 0.51 (0.021) 0.54 (0.013) 0.23 (0.325)
A 0.44 (0.050) 0.59 (0.007) 0.32 (0.166)
τ -0.20 (0.386) 0.22 (0.357) 0.38 (0.103)
α - - 0.50 (0.025)

The table 3.3 shows that the random search algorithm managed to recover some param-

eters of the diffusion model for conflict tasks reasonably well in all conditions (upper
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boundary, non-decision time), while others were recovered less well, as the strength and

significance of the correlations for other parameters varied between conditions. Time

to peak automatic activation was never recovered appropriately. The correlations be-

tween recovered parameters from distributions with large number of trials is shown in

figure 3.3. The differences between actual and recovered parameter values are shown in

figure 3.6 and figure 3.5 respectively.

Recovering different number of model parameters made no difference to the objective

function values for distributions with large number of trials (5,000 trials per condition):

F(2,38)=0.0009, p=0.997; and for distributions with low number of trials (200 trials per

condition): F(2,38) = 0.02, p = 0.895. This result implies that when using the random

search algorithm, focusing on fewer model parameters does not seem to provide any

benefit in the recovery of the remaining model parameters.

3.3.3 Differential evolution

Differential evolution performed very well in recovering upper boundary and non-decision

time parameters of diffusion model for conflict tasks in all conditions, returning high and

significant correlations, which are shown in table 3.4. The algorithm also recovered time

to peak automatic activation and the variability of non-decision time well from distribu-

tions with low trial numbers. All parameters were recovered well when two parameters

were fixed in the distributions with low trial numbers. The correlations between actual

parameter values and recovered parameter values are displayed in figure 3.7 for distribu-

tions with high number of trials and figure 3.8 for distributions with low number of trials.

The differences between actual and recovered parameter values are shown in figure 3.9

and figure 3.10 respectively.

Recovering different number of model parameters with differential evolution algorithm

from distributions with large number of trials affected the objective function values:

F(2,38)=13.62, p=0.002. The difference in objective function values resulted from the

recovery of seven parameters being worse than the recovery of either five or six model pa-

rameters (the difference between five and six model parameters: t(19) = -0.32, p=0.750,

the difference between five and seven model parameters: t(19) = -3.69, p=0.002, the dif-

ference between six and seven model parameters: t(19) = -3.26, p=0.004; p values were

not adjusted for multiple comparisons). This result implies that for distributions with

high number of trials, recovering fewer parameters with differential evolution results in
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Figure 3.3: Correlations between actual (x axis) and recovered (y axis) parameter values
using the random search algorithm from distributions with large number of
trials. Purple line indicates identity line, while the black line is the correlation
between recovered and actual parameters.
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Figure 3.4: Correlations between actual (x axis) and recovered (y axis) parameter values
using the random search algorithm from distributions with small number of
trials. Purple line indicates identity line, while the black line is the correlation
between recovered and actual parameters.
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Figure 3.5: Difference between actual and recovered parameter values using the random
search algorithm from distributions with small number of trials. Dots indi-
cate outliers.
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Figure 3.6: Difference between actual and recovered parameter values using the random
search algorithm from distributions with large number of trials. Dots indicate
outliers.
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Figure 3.7: Correlations between actual and recovered parameter values using the dif-
ferential evolution algorithm from large distributions. Purple line indicates
identity line, while black line is the correlation between recovered and actual
parameters.
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Figure 3.8: Correlations between actual and recovered parameter values for differential
evolution of small distributions. Purple line indicates identity line, while
black line is the correlation between recovered and actual parameters.
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better recovered parameter values.

This was not the case for distributions with low trial numbers, as there was no differ-

ence in the objective function values when trying to recover five, six, or seven model

parameters: F(2,38) = 0.22, p=0.645.

Table 3.4: Correlation coefficients (p values) between actual parameter values and re-
covered parameter values using the differential evolution algorithm. Dashes
indicate the parameters that were not recovered in that condition. Values
displayed in bold indicate statistically significant correlations (not adjusted
for multiple comparisons).

5,000 trials per condition
Parameters 5 6 7

β1 0.87 (7.1 × 10−7) 0.93 (4.5 × 10−9) 0.82 (1.1 × 10−5)
µR 0.98 (2.0 × 10−13) 0.95 (6.2 × 10−11) 0.91 (4.0 × 10−8)
σR - 0.66 (0.001) 0.27 (0.259)
µC 0.64 (0.002) 0.46 (0.039) 0.40 (0.082)
A 0.71 (4.3 × 10−4) 0.64 (0.002) 0.38 (0.093)
τ 0.12 (0.625) 0.24 (0.300) 0.30 (0.202)
α - - 0.66 (0.002)

200 trials per condition
5 6 7

β1 0.84 (4.6 × 10−6) 0.86 (8.9 × 10−7) 0.61 (0.004)
µR 0.89 (1.6 × 10−7) 0.93 (2.3 × 10−9) 0.96 (2.4 × 10−11)
σR - 0.75 (1.3 × 10−4) 0.77 (7.1 × 10−5)
µC 0.48 (0.031) 0.36 (0.115) 0.23 (0.339)
A 0.66 (0.001) 0.36 (0.123) 0.58 (0.008)
τ 0.62 (0.003) 0.47 (0.039) 0.71 (4.0 × 10−4)
α - - 0.30 (0.201)

3.3.4 Particle swarm optimization

The particle swarm optimization algorithm recovered the non-decision time parameter

well from all conditions, as evaluated by the correlations between the actual and re-

covered parameter values table 3.5. Otherwise, the algorithm struggled to recover the

model parameters well, as shown in figure 3.11 for distributions with high trial num-

bers and figure 3.12 for distributions with low trial numbers. The differences between

recovered and actual parameter values are displayed in figure 3.13 and figure 3.14 re-
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Figure 3.9: Difference between actual and recovered parameter values using the differ-
ential evolution algorithms from large distributions. Dots indicate outliers.
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Figure 3.10: Difference between actual and recovered parameter values using the differ-
ential evolution algorithms from small distributions. Dots indicate outliers.
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spectively.

There was a difference between recovering different numbers of parameters for distri-

butions with large number of trials, but it did not reach significance: F(2,38) = 3.05,

p=0.097. This difference resulted from recovery of five parameters being slightly bet-

ter than recovery of six or seven parameters: the difference between six and seven

parameters: t(19)=0.05, p=0.959, the difference between five and seven parameters:

t(19)=-1.75, p=0.097, the difference between five and six parameters: t(19)=-1.46,

p=0.161.

For small distributions, there was no difference between recovering different number of

model parameters: F(2,38)=0.68, p=0.419.

Table 3.5: Correlation coefficients (p values) between actual parameter values and re-
covered parameter values from the particle swarm optimization algorithm.
Dashes indicate the parameters that were not recovered in that condition.
Values displayed in bold indicate statistically significant correlations (not ad-
justed for multiple comparisons).

5,000 trials per condition
Parameters 5 6 7

β1 0.63 (0.003) 0.28 (0.228) 0.09 (0.712)
µR 0.95 (3.4 × 10−10) 0.90 (7.7 × 10−8) 0.73 (2.4 × 10−4)
σR - 0.27 (0.258) -0.14 (0.544)
µC 0.42 (0.065) 0.57 (0.009) 0.54 (0.015)
A 0.68 (0.001) 0.43 (0.060) -0.09 (0.706)
τ 0.01 (0.960) 0.09 (0.700) 0.03 (0.904)
α - - 0.34 (0.148)

200 trials per condition
Parameters 5 6 7

β1 0.52 (0.020) 0.57 (0.009) 0.29 (0.208)
µR 0.85 (2.3 × 10−6) 0.78 (4.8 × 10−5) 0.90 (4.3 × 10−8)
σR - 0.23 (0.329) 0.31 (0.182)
µC 0.71 (4.6 × 10−4) -0.10 (0.687) 0.27 (0.241)
A 0.14 (0.570) 0.32 (0.174) 0.21 (0.369)
τ -0.31 (0.191) -0.38 (0.103) 0.21 (0.368)
α - - -0.25 (0.292)
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Figure 3.11: Correlations between actual and recovered parameter values for particle
swarm optimization of large distributions. Purple line indicates identity
line, while black line is the correlation between recovered and actual pa-
rameters.
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Figure 3.12: Correlations between actual and recovered parameter values for particle
swarm optimization of small distributions. Purple line indicates identity
line, while black line is the correlation between recovered and actual pa-
rameters.
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Figure 3.13: Difference between actual and recovered parameter values for particle swarm
optimization of large distributions. Dots indicate outliers.
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Figure 3.14: Difference between actual and recovered parameter values for particle swarm
optimization of small distributions. Dots indicate outliers.
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3.3.5 Basin hopping

Basin hopping appeared to be extremely unsuitable for parameter recovery from diffusion

model for conflict tasks due to the very long algorithm computation time. As the algo-

rithm managed only 15 iterations over 72 hour period for distributions with high number

of trials, the recovery of parameters was very poor, as evident by the very high objective

function values (average sum of KS values for distributions with high trial number: 1.29;

compare to values in figure 3.1). The correlations between actual parameter values and

recovered parameter values are displayed in table 3.6, and illustrated in figure 3.15. As

is evident from the table, not a single correlation for any parameter reached significance,

irrespective of the number of fitted parameters. There was no difference between fitting

five, six, or seven parameters: F(2,38) = 0.62, p=0.433.

Table 3.6: Correlation coefficients (p values) between actual parameter values and re-
covered parameter values using the basin hopping algorithm. Dashes indicate
the parameters that were not recovered in that condition. Values displayed
in bold indicate statistically significant correlations (not adjusted for multiple
comparisons).

5,000 trials per condition
Parameters 5 6 7

β1 0.12 (0.616) 0.19 (0.432) -0.13 (0.588)
µR 0.15 (0.520) -0.13 (0.587) -0.08 (0.752)
σR - -0.05 (0.840) -0.04 (0.875)
µC 0.06 (0.816) 0.03 (0.891) 0.40 (0.081)
A 0.08 (0.747) -0.35 (0.129) 0.04 (0.868)
τ 0.09 (0.713) -0.41 (0.072) 0.03 (0.885)
α - - 0.37 (0.104)

200 trials per condition
Parameters 5 6 7

β1 0.52 (0.020) 0.57 (0.009) 0.29 (0.208)
µR 0.85 (2.3 × 10−6) 0.78 (4.8 × 10−5) 0.90 (4.3 × 10−8)
σR - 0.23 (0.329) 0.31 (0.182)
µC 0.71 (4.6 × 10−4) -0.10 (0.687) 0.27 (0.241)
A 0.14 (0.570) 0.32 (0.174) 0.21 (0.369)
τ -0.31 (0.191) -0.38 (0.103) 0.21 (0.368)
α - - -0.25 (0.292)

Similar results were observed with the parameter recovery from distributions with low

trial numbers with the basin hopping algorithm. Even though more function evaluations
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Figure 3.15: Correlations between actual and recovered parameter values for basin hop-
ping of large distributions. Purple line indicates identity line, while black
line is the correlation between recovered and actual parameters.

80



α

5

α

6

α

7

τ

5

τ

6

τ

7

A

5

A

6

A

7

µC

5

µC

6

µC

7

σR

5

σR

6

σR

7

µR

5

µR

6

µR

7

β1

5

β1

6

β1

7

1 2 3 1 2 3 1 2 3

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

20 30 20 30 20 30

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

20 25 30 35 40 45 20 25 30 35 40 45 20 25 30 35 40 45

250 275 300 325 350 375 250 275 300 325 350 375 250 275 300 325 350 375

40 50 60 70 40 50 60 70 40 50 60 70
0

50

100

150

100

200

300

400

20
30
40
50
60

0.0

0.5

1.0

1.5

2.0

20

40

60

100

200

300

0

1

2

3

4

0

50

100

150

200

100

200

300

400

500

20
30
40
50
60

0.0

0.5

1.0

1.5

2.0

0

20

40

60

100

200

300

50

100

150

200

300

400

500

0.0

0.5

1.0

1.5

2.0

0
10
20
30
40
50

0

100

200

Actual parameter value

R
ec

ov
er

ed
 p

ar
am

et
er

 v
al

ue

Figure 3.16: Correlations between actual and recovered parameter values for basin hop-
ping of small distributions. Purple line indicates identity line, while black
line is the correlation between recovered and actual parameters.
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were possible (150 were made within 24 hour window), the algorithm still struggled to

achieve objective function values low enough to be comparable to other global optimiza-

tion algorithms (average sum of KS values for distributions with low trial number: 1.16;

compare with KS values in figure 3.1). Some parameters, like the non-decision time, were

recovered well by the basin hopping algorithm (reported in table 3.6 and illustrated in

figure 3.16). There was a difference between recovering different number of parameters

from distributions with low trial numbers: F(2,38) = 3.57, p = 0.04. This difference

came from the recovery of seven parameters being worse than the recovery of six or five

parameters: the difference between five and seven parameters: t(19) = 1.75, p = 0.10,

the difference between five and six parameters: t(19) = -0.97, p = 0.34, the difference

between six and seven parameters: t(19) = -2.70, p = 0.01, p values not adjusted for

multiple comparisons.

3.3.6 Bayesian optimization

The Bayesian optimization algorithm recovered the upper boundary and the non-decision

time parameters well in all conditions, as displayed in table 3.7. The recovery of other

parameters depended on condition. The correlations between actual and recovered pa-

rameter values are shown in figure 3.17 for distributions with high trial number, while

for distributions with low trial number the correlations are shown in figure 3.18. The

differences between actual and recovered parameter values are shown in figure 3.20 and

figure 3.19 respectively.

There was no difference between recovering seven, six, or five parameters from distribu-

tions with small number of trials: F(2,38) = 0.07, p=0.94. There was also no difference in

objective function values between recovering different number of parameters from distri-

butions with high number of trials: F(2,38) = 3.12, p = 0.06.

3.4 Discussion

In this chapter, five global black-box optimization algorithms covering different families

of global optimization methods were used to recovered parameters from twenty reaction

time distributions obtained from diffusion model for conflict tasks. The distributions

were computed with large (5000 per condition) and small (200 per condition) number of

trials, and the number of parameters recovered from the distributions were either seven
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Figure 3.17: Correlations between actual and recovered parameter values using the
Bayesian optimization algorithm from distributions with large number of
trials. Purple line indicates identity line, while black line is the correlation
between recovered and actual parameters.
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Figure 3.18: Correlations between actual and recovered parameter values using the
Bayesian optimization algorithm from distributions with small number of
trials. Purple line indicates identity line, while the black line is the correla-
tion between recovered and actual parameters.
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Figure 3.19: Difference between actual and recovered parameter values using the
Bayesian optimization algorithm from distributions with small number of
trials. Dots indicate outliers.
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Figure 3.20: Difference between actual and recovered parameter values using the
Bayesian optimization algorithm from distributions with large number of
trials. Dots indicate outliers.
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Table 3.7: Correlation coefficients (p values) between actual parameter values and re-
covered parameter values using the Bayesian optimization algorithm. Dashes
indicate the parameters that were not recovered in that condition. Values
displayed in bold indicate statistically significant correlations (not adjusted
for multiple comparisons).

5,000 trials per condition
Parameters 5 6 7

β1 0.70 (5.3 × 10−4) 0.75 (1.4 × 10−4) 0.80 (2.1 × 10−5)
µR 0.94 (4.9 × 10−10) 0.85 (1.8 × 10−6) 0.78 (4.2 × 10−5)
σR - 0.45 (0.045) 0.07 (0.773)
µC 0.56 (0.011) 0.53 (0.017) 0.42 (0.064)
A 0.69 (7.2 × 10−4) 0.26 (0.276) 0.73 (2.8 × 10−4)
τ -0.05 (0.840) 0.46 (0.040) 0.34 (0.139)
α - - -0.17 (0.470)

200 trials per condition
Parameters 5 6 7

β1 0.47 (0.038) 0.80 (2.4 × 10−5) 0.73 (2.6 × 10−4)
µR 0.82 (9.9 × 10−6) 0.85 (1.6 × 10−6) 0.81 (1.7 × 10−5)
σR - 0.67 (0.001) 0.44 (0.054)
µC 0.45 (0.049) 0.41 (0.073) 0.66 (0.002)
A 0.52 (0.018) 0.08 (0.724) 0.26 (0.264)
τ 0.28 (0.236) 0.09 (0.707) 0.11 (0.640)
α - - 0.36 (0.114)

(all parameters), six (with the shape of the starting point distribution fixed), or five

(with the shape of the starting point distribution and the variability of non-decision time

fixed). The optimization algorithms had limited number of time to recover parameters:

72 hours for distributions with large number of trials, and 24 hours for distributions

with small number of trials. The results from all of the algorithms suggest that some

parameters, like upper boundary and non-decision time, are easier to recover, given that

all algorithms (except for basin hopping) managed to recover parameter values that had

high and significant correlations with actual parameter values. The recovery of other

parameters varied between algorithms and conditions, suggesting that they are harder

to recover using global optimization algorithms.

The algorithm that performed the best in recovering parameters of diffusion model for

conflict tasks from distributions with both high and low number of trials, was the differ-

ential evolution algorithm. This result came from comparing objective function values
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returned by the different optimization algorithms. When comparing correlation values

between recovered and actual parameters, differential evolution seemed to recover more

parameters well compared to other optimization algorithms, however this difference was

not statistically significant. The finding that differential evolution seems to outperform

other global optimization algorithms in parameter recovery is consistent with Hawkins

et al. (2015), who found that differential evolution provided better parameter recovery

from drift diffusion model than particle optimization and simplex algorithms. The re-

sult is also consistent with research outside of the decision making modelling field, as

Civicioglu and Besdok (2013) found that differential evolution outperformed other global

optimization algorithms, such as particle swarm optimization and artificial bee colony,

in 50 benchmark numerical optimization functions.

Constraining the number of parameters to be recovered did not have any effect on the

performance of the algorithms. There were some differences when investigating the

performance of individual algorithms, but the only significant difference was found in

differential evolution algorithm, while recovering parameters from distributions with

large number of trials, where performance in recovering all seven parameters was worse

than the performance in recovering five or six parameters. There was no difference

in performance of differential evolution when recovering parameters from distributions

with small number of trials. This result suggests that when trying to recover parameters

from experimental studies, which tend to contain lower number of trials, constraining

the number of parameters to be recovered is not necessary.

One drawback with comparing different global optimization algorithms in this chapter

was the differences in runtimes of the algorithms. Some algorithms were computationally

quicker than others, in that they performed more function evaluations in the given

time than others (for example, basin hopping only managed 15 function evaluations

compared to 750 function evaluations performed by Bayesian optimization in the same

time frame). In this chapter, all algorithms were allowed to continue the search of the

best solution for approximately 72 hours for distributions with large number of trials,

and 24 hours for distributions with small number of trials. This time limit of 72 hours

was selected in accordance with maximum time limit imposed by Cardiff University High

Performance Computing cluster usage policies. If time is no constraint, or if time is even

more constrained, the selection of the best performing algorithm might differ. A clear

example is the basin hopping algorithm. Although it is a very powerful algorithm, it only

managed to perform fifteen iterations of the algorithm, which was not nearly enough to
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find a solution on par with the other algorithms, as evident by the very high objective

function values.

Another issue that needs highlighting is that all global optimization algorithms in this

chapter were run with default hyperparameter settings (except for the number of itera-

tions that was adjusted to fit into specific time frame). Because of this, some or all of

the algorithms may not have performed as well as they potentially could, if hyperpa-

rameters were tuned appropriately. Every algorithm used in this section has potential

adjustments and improvements that might make them better at recovering parameters

from the diffusion model for conflict tasks, however, hyperparameter optimization is

extremely time-costly due to the fact that each reaction time distribution is fit indepen-

dently. When different versions of the algorithms are also considered, the task becomes

computationally unjustifiable without prior knowledge of what would work best. There-

fore the conclusions that differential evolution is the best investigated global optimization

algorithm for parameter recovery from diffusion model for conflict tasks should be ad-

justed to highlight that it is only true when comparing out-of-the-box, default algorithms.

If global optimization algorithms were compared with appropriate hyperparamers opti-

mized, differential evolution might not come out on top.

It is worth noting that none of the global optimization algorithms investigated in this

chapter did exceptionally well. Even though differential evolution performed the best

in recovering parameters from distributions with both large and small number of trials,

it needs to be stressed that the correlations between recovered and actual parameters

varied significantly for different parameters. Even though the correlations were as high

as 0.98 for some parameters like the non-decision time, for others like the time to peak

automatic activation they were as low as 0.12. Therefore if differential evolution is

used in fitting reaction time distributions to obtain parameters from diffusion model

for conflict tasks, caution needs to be taken when interpreting any results relating to

parameters that are more difficult to recover.

A huge disadvantage of all the global optimization algorithms is that they do a lot of ob-

jective function evaluations to fit a single reaction time distribution, but do not store or

remember any of this information when fitting the next one. As computing large reaction

time distributions is the most computationally expensive process in all global optimiza-

tion algorithms, this is a very wasteful approach. Global optimization algorithms are

also very slow to run. If hundreds or thousands of distributions need to be fitted, it might

take weeks and months of computational time. Even when allowing 72 hours for param-
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eter recovery, if all twenty distributions are evaluated in a serial manner, that would take

60 days. This speed was also achieved by using cython implementations for computing

reaction time distributions, which is very expensive in researcher time. Recovering pa-

rameters from the diffusion model for conflict tasks is so computationally expensive, that

researchers cannot apply the model in their research to individual participants if they

do not have access to High Performance Computing facilities (Ambrosi et al., 2019). For

this reason, the next chapter will investigate whether deep neural networks can learn

representations between reaction distributions and parameters from diffusion model for

conflict tasks, and therefore could very quickly and accurately predict parameters from

diffusion model from conflict from unseen data.
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4 Deep learning for parameter recovery from diffusion model

for conflict tasks

4.1 Introduction

Deep learning is becoming a very popular machine learning algorithm for learning from

and making predictions about data in a variety of fields, such as computer vision (Gebru

et al., 2017; Cruz et al., 2017), natural language processing (Li, 2017), bioinformatics

(Uziela et al., 2017), among many others, due to beating records in many artificial in-

telligence problems (LeCun et al., 2015). In the simplest form, deep learning refers to

artificial neural networks with multiple hidden layers to learn representations of data

using backpropagation. Even though deep learning is not a new development in ma-

chine learning, it has only started gaining popularity in the last decade. This is because

artificial neural networks were for many years wrongfully presumed to be exceptionally

susceptible to local minima (LeCun et al., 2015), and because deep architectures were

hard to implement given limited computational power. Due to increasing access to cheap

but powerful specialist computing resources, the methodology has benefited greatly from

developments in different architectures like convolutional neural networks (Krizhevsky et

al., 2012), recurrent neural networks (Mikolov, Karafiát, Burget, Cernockỳ, & Khudan-

pur, 2010), long short term memory cells (Hochreiter & Schmidhuber, 1997), generative

adversarial networks (Goodfellow et al., 2014), increasingly being applied to new areas.

On top of hardware accessibility, artificial intelligence methods are becoming more ac-

ceptable due to a move away from explanatory to predictive science, even in psychology

(Yarkoni & Westfall, 2016). However, neither machine learning nor deep learning has

been applied in decision making models yet.

One area where machine learning could be useful in decision making modelling is param-

eter recovery. As seen from section 2 and section 3, parameter recovery from diffusion

model for conflict tasks (Ulrich et al., 2015) can be tricky, even when imposing constraints

on the solution space. Deep learning seems to be particularly suited to parameter re-

covery from non-differentiable functions, because the power of deep learning algorithms

comes from harnessing very large amounts of training data. Application of deep learning

can be very problematic in areas where data is either limited or hard to collect, such as

clinical health care (Miotto et al., 2017), however, in decision making modelling, unlim-

ited amount of data can be generated very easily. Deep learning could also be advanta-
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geous for parameter recovery because parameters can be recovered independently from

each other, unlike with global optimization algorithms, where the whole set of parame-

ters is recovered at once. In this way, a set of parameters mimicking change in another

parameter, like reported in section 2, would not have an effect on parameter recovery.

Moreover, unlike with global optimization algorithms, deep neural networks learn rep-

resentations of thousands of reaction time distributions at once, therefore local minima

are not an issue. Moreover, fitting thousands of distributions at once allows defining the

prediction error, so even when single distributions are fitted, it is possible to know the

approximate error of the recovered parameters, which would be very time consuming and

difficult to achieve with global optimization algorithms.

Finally, the biggest advantage of deep learning over global optimization algorithms in

parameter recovery from diffusion model for conflict tasks is that once a deep learning

model is trained to predict parameters from diffusion model for conflict tasks, it can be

deployed and applied for prediction as a simple calculation, therefore making parameter

recovery a task that takes seconds. This would allow researchers who do not have access

to significant computational resources to apply the diffusion model for conflict tasks to

research where individual differences are important.

There are a lot of differences in how parameters from the diffusion model for conflict

tasks are recovered using deep learning and global optimization algorithms. The main

difference is that deep learning models need to be trained with engineered features and

not reaction time distributions that were used with global optimization algorithms. Even

though one of the biggest advantages of deep statistical learning methods over shallow

ones is that feature engineering is not necessary as the models can use raw data for inputs

(LeCun et al., 2015), treating reaction time distributions as inputs in deep learning

models is problematic for multiple reasons. First of all, unlike in convolutional neural

networks, reaction time distribution data is not spatially correlated. This means that

if a trial sequence in reaction time distributions were reshuffled, the distribution itself

would not change. This makes neural networks with convolutions unsuitable. Secondly,

even though we know there are temporal dependencies in reaction times in decision

making, decision making models like the diffusion model for conflict tasks treat each

trial as independent, therefore recurrent network architectures are also unsuitable. For

this reason, a network with fixed engineered meaningful inputs needs to be employed.

Therefore the reaction time distributions will be converted to input features, as described

in section 4.2.
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The purpose of this chapter is to see whether deep learning can be applied to parameter

recovery of models with non-differentiable objective functions, and if so, whether the use

of deep learning brings improvements over using global optimization algorithms. Dif-

ferently from global optimization algorithms, the deep learning models will be trained

on thousands of distributions, and assessed in two ways: first, as in section 3, using

the twenty test distributions, and secondly, as is customary in artificial intelligence

research, using test data of 50,000 distributions, that are excluded from the model un-

til the final testing phase, to allow evaluating the predictive performance of the mod-

els.

The deep learning models in this chapter will be trained with input data from reaction

time distributions with a high number of trials (each reaction distribution consisting

of 15,000 trials, 5,000 trials in each congruent, incongruent, and neutral trials). This

will evaluate whether deep learning is capable of learning representations between input

features describing a reaction time distribution, and model parameters from the diffusion

model for conflict tasks. The deep learning models will then be evaluated using data

with a large number of trials and data with a small number of trials. It is unlikely that

models trained with data with a large number of trials will be good at predicting data

with a low number of trials, as deep learning models are very data-specific (Najafabadi

et al., 2015). If this is the case, the next chapter (section 5) will examine how the

predictive power of the deep learning models can be improved from inputs with low

number of trials.

4.2 Methods

All deep learning models were designed using the Keras library (Chollet et al., 2015) for

python with TensorFlow backend (Abadi et al., 2015). Some data preprocessing re-

quired scikit-learn (Pedregosa et al., 2011) functionality.

4.2.1 Data

The training dataset consisted of 150,000 reaction time distributions of 15,000 tri-

als each (5,000 trials per condition, three conditions: congruent, incongruent, and

neutral). These were computed from randomly chosen sets of parameters from the

diffusion model for conflict tasks, from uniform distributions with the following lim-
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its:

• Upper threshold (β1): [20, 120]

• Non-decision time (µR): [150, 500]

• Standard deviation of non-decision time (σR): [10, 60]

• Drift rate for controlled process (µC): [0.01, 2]

• Amplitude of automatic activation (A):[0.01, 70]

• Time to peak automatic activation (τ): [10, 300]

• Shape of starting point distribution (α): [0.01, 4]

These limits corresponded to the search space defined in section 3 for all global optimiza-

tion algorithms. The data from section 2 could not be reused here as each parameter

could take only one of seven values, making the data unsuitable for deep learning models,

which need to learn the representation of the whole search space.

Each model parameter was chosen independently from all other parameters, and the

probabilities of parameter values were uniform, as is confirmed in figure 4.1. Each

reaction time distribution was used to calculate 92 input features that would act as the

predictors in the deep learning models: 23 unique features calculated four times for the

whole distribution, congruent condition only, incongruent condition only, and neutral

condition only. The 23 features were:

• mean reaction time of correct trials

• mean reaction time of incorrect trials

• proportion of correct trials

• mean of the normal distribution for correct trials

• standard deviation of the normal distribution for correct trials

• exponential decay parameter for correct trials
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• mean of the normal distribution for incorrect trials

• standard deviation of the normal distribution for incorrect trials

• exponential decay parameter for incorrect trials

• minimum reaction time value of correct trials

• maximum reaction time value of correct trials

• minimum reaction time value of incorrect trials

• maximum reaction time value of incorrect trials

• reaction time of five bins of conditional accuracy function

• accuracy of five bins of conditional accuracy function.

A large number of input features were chosen to fully describe a reaction time distri-

bution. The inclusion of all of these features is most likely unnecessary, as they are

highly correlated, however, the number of features is not large enough to have a no-

ticeable impact on computational speed for the deep learning models. The inclusion of

some features, particularly the ex-Gaussian parameters, could be questioned, as there

is evidence to suggest that ex-Gaussian parameters have no unique relationship with

drift diffusion model parameters (Matzke & Wagenmakers, 2009). However, the diffu-

sion model for conflict tasks has additional “impulsivity” parameters to the standard

drift diffusion model, therefore they might still be useful. Moreover, as deep learning

models are non-linear, they might be able to use information from ex-Gaussian param-

eters to find high-dimensional interactions with other input features that are not easily

detectable with simple linear correlations.

The test dataset was 50,000 reaction time distributions of 15,000 trials each, computed

in an identical way to the training dataset. The test dataset was computed after the

hyperparameter optimization was completed, and introduced only for the final evalua-

tions of the predictive performance of the deep learning models 3. Even though there is a

possibility that some samples in the test dataset have appeared in the training dataset as

3Please note that the final evaluation means the final training of the model across all epochs. The test
data does not have any effect on the training itself, but is used to evaluate the model performance
throughout the whole process.
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Figure 4.1: Distribution of parameter values in the training dataset
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well, the inherent randomness in computation of each trial in the reaction time distribu-

tions should make the input features slightly different, even when the sets of parameters

to compute the reaction time distributions are the same.

Additionally, to allow comparison with global optimization algorithms, the twenty sam-

ples from section 3 were also used in this chapter to evaluate deep learning model perfor-

mance. The data contained in the twenty samples was identical to that in the section 3,

the only difference being that input features were extracted from raw reaction time

distributions as described above.

To see whether deep learning models can predict outputs from data with low trial num-

bers after being trained on data with high trial numbers, smaller datasets of 600 trials

each (200 in each conguent, incongruent, and neutral conditions) were computed. The re-

action time distributions were created from sets of parameters from the diffusion model

for conflict tasks that comprised the training and the test datasets. In this way, the

datasets with low trial numbers had exactly the same diffusion model for conflict tasks

parameters in the training and the test datasets as the datasets with high trial num-

bers. For the test dataset of twenty distributions, the data with low trial numbers was

identical to that used in section 3.

4.2.2 Hyperparameter optimization

Hyperparameters are parameters of machine learning algorithms that need to be set

(as opposed to learned) before the machine learning models are trained. Hyperparame-

ters have a huge effect on how the machine learning algorithm will perform with given

input data. In deep learning, the weights of the layers are the parameters that are

being learned by the deep learning model, whereas parameters like the number of hid-

den layers, the size of each hidden layer, the learning rate, any regularization, dropout

values, etc, are hyperparameters that need to be set before the model starts train-

ing.

As mentioned in section 1.5, deep learning can be decomposed into two main parts:

prediction of the outputs (feed-forward) and learning of the weights (backpropagation).

Prediction of the outputs consists of taking the inputs into the model, multiplying them

by the weights, summing the results, applying a non-linear transformation to the output,

and repeating the process over all hidden layers until the output layer is reached. A very
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simplified illustration of the process is provided in figure 4.2. The weights of the layers

are first initialized randomly, and therefore the predictions from such a model are going

to be random as well. The difference between the actual and the predicted outputs 4 is

called the error. In order for the model to learn the appropriate weights to predict the

outputs correctly, a process called backpropagation is needed, which propagates the error

between the predicted and the actual outputs and changes the weights in the direction

of the gradient of the cost function. The actual computations for this process are quite

complex, however in simple terms, a gradient descent optimization algorithm is used to

calculate the gradient of the error, and then the weights are moved in the direction of

the gradient by an amount specified by the learning rate. A small learning rate means

that it is going to take a very long time to train the model, as the weights are changed by

very small amounts, however a large learning rate means that the weights can overshoot

the minimum and not converge. This adjustment of weights is an iterative process; a

single iteration (a complete pass over the whole training dataset) in deep learning is

called an epoch. The number of epochs has an effect on how well a deep learning model

learns to predict the data: not enough epochs will result in poor performance as the

weights will not be set to their optimum values, while too many epochs can result in

overfitting, affecting the generalization of the model. There are many different gradient

descent optimization algorithms; the overview is provided in Ruder (2016). The gradient

can be calculated over the whole set of inputs, however this is a very computationally

expensive approach if the number of inputs is substantial. Alternatively, the gradient

can be calculated for a subset of inputs, which speeds up the computation time without

affecting the model performance significantly. The size of the subset of inputs that is

used to calculate the gradient is called batch size. Finally, to prevent the model from

overfitting, regularization can be applied to the weights of the model. In simple terms,

regularization makes the weights more consistent, therefore reducing the chance that the

model will learn direct input-output mappings.

As deep learning has never been applied to parameter recovery and prediction from de-

cision making models, it is unknown what hyperparameter values should be chosen for

this problem. Finding the values of hyperparameters for optimal model performance

is called hyperparameter optimization (also known as hyperparameter tuning). Hyper-

parameter optimization evaluates how the deep learning models perform with different

hyperparameter values, and then selects the hyperparameter values that give the best

4There are multiple ways to calculate the difference between actual and predicted outputs, which will
depend on the type of outputs, for example, cross entropy for categorical outputs and mean squared
error for numerical outputs. This is called a loss function.
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Figure 4.2: Illustration of the deep learning calculations. This illustrates a very simple
model with a single hidden layer of size 1 and a single output.

performance by the deep learning model.

Hyperparameter optimization was performed on the training dataset with high trial num-

bers for each deep learning model individually, to find the most suitable set of hyperpa-

rameters. A combination of manual search and systematic optimization was performed,

the latter with the help of the hyperas library (http://maxpumperla.github.io/hyperas/),

a wrapper of hyperopt package (Bergstra, Yamins, & Cox, 2013) for keras. A few

parameters for the model were chosen by manual search, such as root mean square prop-

agation (rmsprop) optimization function, batch size of 75 samples, L1 regularization

function, and rectifier linear unit (ReLU) activation in layers. ReLU is a very simple but

effective activation function that nulls all negative values, while keeping the positive val-

ues as is. The approximate width of hidden layer architecture was also predetermined by

manual search. Other parameters, like the learning rate and the L1 regularization value,

came from pilot work with automatic hyperparameter optimization. The learning rate of

0.0001 was chosen as the best rate of learning for all of the models every time, therefore

it was not optimized further. L1 regularization value was set to 0.0001 as any value

between 0 and 0.1 did not affect model performance much, but adding L1 regularization

resulted in less erratic performance on the test dataset during model training. Although

dropout rate (explained further in the Overall Model Architecture section) was initially

considered as a simple way to prevent model overfitting, it was not necessary due to the
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narrowness of the final deep learning model architectures.

Finally, the number of hidden layers, and the size of each hidden layer, were opti-

mized using hyperas. The automated optimization procedure started by defining

the possible model architectures with either three of four hidden layers and the size

of each hidden layer (chosen independently from 64, 128, 256, or 512 units). The

models were evaluated after running for 25 epochs five times for each different test-

ing split (see next section). The number of different evaluations was set to 50 per

model.

4.2.3 Cross validation

When hyperparameter optimization algorithms are searching for the best set of hyperpa-

rameters to solve a given problem, they are given only the training dataset to evaluate the

performance of hyperparameters. Because machine learning models are quite powerful,

they can easily learn how to fit noise in the data in order to improve model performance.

For this reason, having a training dataset split into fixed parts for training and evaluat-

ing the model can produce results that will not translate well to unseen test data. One

way to avoid this is to cross-validate the performance of the model on multiple validation

datasets.

Cross validation, in simple terms, tries to define a dataset to test the model in the training

phase (including hyperparameter optimization) in such a way that the model generalizes

well to unseen test data. One approach to this is called K-fold cross validation. K-fold

cross validation splits the training dataset into equal K parts (for example, five-fold cross

validation would split the training datasets into five equal parts). Then the model is

trained on K-1 parts, and tested on one part. As there are K possible parts to act as

a test dataset now, this process is repeated K times, each time a different split acting

as a test dataset. The model evaluation is then averaged over K splits. In this way,

the model that is more likely to fit noise should perform less well than a model that is

more likely to fit signal, as noise changes in each test split, while the signal remains the

same.

The number of folds in K-fold cross-validation is the choice of the researcher, however

there are some issues to consider. The more folds are chosen, the longer it is going

to take to train the model, therefore if computational time is an issue, a high num-
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ber of folds is going to negatively affect the time to train the model. Conversely,

lower number of folds increases the chances of model being able to overfit training

data.

K-fold cross validation was performed during hyperparameter optimization. Five folds

of data were chosen as a good balance between computational time and coverage of data.

Therefore the training sample of 150,000 was split into five batches of 30,000 samples for

each selection of hyperparameters. The split was random for each set of hyperparameters.

Data in four training folds was then used to create a scaler to scale the input features,

which was subsequently applied to training and testing splits independently. In this way,

the testing fold had no input in creation of the scaled features. Then, the deep learning

model was trained five times; each time a different fold of the data acted as the test

dataset. The average R2 of all five test datasets (folds) was then used as the evaluation

metric for a set of hyperparameters.

4.2.4 Overall model architecture

Seven different models were trained, one for each of the seven parameters from the

diffusion model for conflict tasks as the output. The same input data was used in all

seven models. The model architecture consisted of:

• sequential model

• dense layers

• bias term included in all layers

• ReLU activation in all hidden layers

• RMSprop optimization function with parameters ρ = 0.9, ε = 1e− 08, decay=0.0

• batch size of 75 samples

• L1 regularizer on activation in each layer (set to 0.0001).

• mean square error as loss function

• learning rate set to 0.0001
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Dropout is a technique that allows models to control overfitting of the training data

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). This was not added

to the models in this chapter as the chosen network architecture was too shallow to ensure

that the networks would recover from dropout layers. It was also less necessary as the

models were only trained for 25 epochs until a sufficiently good model performance was

reached.

The number of hidden layers and size of each hidden layer was optimized separately for

each model. They are reported in table 4.1. Models with fewer hidden layers imply that

the parameter is easier to recover, as simpler low level features seem sufficient to map

the inputs and the outputs.

Table 4.1: Optimized hidden layer sizes for deep learning models using input data with
high trial numbers. If only three hidden layers were used, Layer 4 size is
reported as ”-”. The R2 values come from evaluating the best performing
model chosen by hyperas on 150,000 samples of the training dataset.

Parameter R2 value Layer 1 Layer 2 Layer 3 Layer 4

β1 0.983 256 512 512 128
µR 0.999 512 64 512 -
σR 0.998 512 512 256 512
µC 0.974 512 256 64 128
A 0.990 256 512 512 128
τ 0.962 256 512 512 256
α 0.976 256 512 512 64

Each model was trained for 25 epochs, with mean square error between actual and

predicted parameters as a loss function. To evaluate the performance of the predictive

models, R2 between outputs and targets, mean absolute deviance from the target, and

mean error between output and target 5, were also calculated in each epoch. These were

not used to train the models in any way.

5Mean error can help reveal bias in the model if it does not center around zero, which could indicate
issues with the training dataset.
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4.3 Results

4.3.1 Predicting the diffusion model for conflict tasks parameters from data with a

high number of trials

The performance of all the final deep learning models was evaluated on a test dataset

of 50,000 randomly computed reaction time distributions of 15,000 trials. Three per-

formance measures were used: R2, mean absolute difference, and mean difference be-

tween the predicted outputs and the targets. Pearson correlations were also com-

puted between predicted and target outputs. All final trained models are available

on https://github.com/SolVG/pyCDM.

Table 4.2: Final values of all four measures used in model fitting for the test dataset.

Parameter Mean square
error

R2 Mean error Mean absolute
error

β1 32.19 0.97 0.53 3.03
µR 55.41 0.995 -2.69 4.41
σR 2.52 0.988 0.86 1.16
µC 0.0099 0.971 -0.027 0.063
A 33.30 0.925 0.32 3.37
τ 1656 0.763 4.56 25.54
α 0.14 0.898 -0.13 0.26

Table 4.3: Correlation coefficients and p values between actual parameter values and
recovered parameter values from deep learning models trained with and tested
on data with high number of trials.

Parameter Correlation coefficient p value

β1 0.986 p = 2.2 × 10−16

µR 0.998 p = 2.2 × 10−16

σR 0.996 p = 2.2 × 10−16

µC 0.987 p = 2.2 × 10−16

A 0.963 p = 2.2 × 10−16

τ 0.878 p = 2.2 × 10−16

α 0.957 p = 2.2 × 10−16

The history of all the models training over 25 epochs is displayed in figure 4.3 for mean

square error, R2, mean error, and mean absolute error. The mean square error, R2,

mean error, and mean absolute error values for predicting test data are also reported
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in table 4.2. The model fitting history figure shows that all the models converged to a

good R2 value quickly.

The correlations between target and predicted parameter value for each parameter are

displayed in figure 4.4. As evident in the figure, the models predicted each parameter very

well. The correlation coefficients and p values are reported in table 4.3. All correlation

coefficients were above 0.95, except for time to peak automatic activation, which had

correlation coefficient of 0.88. This indicates that the model for time to peak automatic

activation might benefit from further hyperparameter optimization or changes in model

architecture.

For the twenty test distributions that were used in section 3, trained deep learning models

were used to predict the parameters from diffusion model for conflict tasks. The resulting

correlations between recovered and target parameters are reported in table 4.4 and visu-

alized in figure 4.5. The figure and table show that unlike the tested global optimization

algorithms, the deep learning models were able to predict the twenty test distributions

with high trial numbers exceptionally well, with all correlations between predicted and

target parameters having R values of 0.95 and higher.

Table 4.4: Correlation coefficients (and p values) between actual and recovered param-
eter values from twenty datasets from section 3 using deep learning models
from high and low trial number input data.

Parameter Correlation
coefficient
- dataset
with large
number of
trials

p value - dataset
with large number
of trials

Correlation
coefficient
- dataset
with small
number of
trials

p value - dataset
with small number
of trials

β1 0.995 p = 2.2 × 10−16 0.875 p = 4.5 × 10−7

µR 0.996 p = 2.2 × 10−16 0.976 p = 1.9 × 10−13

σR 0.998 p = 2.2 × 10−16 0.903 p = 5.0 × 10−8

µC 0.958 p = 3.2 × 10−11 0.768 p = 7.7 × 10−5

A 0.969 p = 2.0 × 10−12 0.633 p=0.003
τ 0.947 p = 2.5 × 10−10 0.766 p = 8.1 × 10−5

α 0.981 p = 2.3 × 10−14 0.829 p = 6.2 × 10−6

Since there were seven deep learning models to predict each diffusion model for con-

flict tasks parameter individually, it is unclear whether the seven parameters as a whole

would be a good fit to the reaction time distribution from which the parameters were pre-
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Figure 4.3: History of model training for predicting parameters from the diffusion model
for conflict tasks of four measures: mean square error (used as a loss function,
outer left column), R2 (inner left column), mean error (inner right column),
and mean absolute error (outer right column). The seven parameters from
the diffusion model for conflict tasks are reported in seven rows of the fig-
ure. The purple line represents training data, while the black line represents
evaluation of the test data.
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Figure 4.4: Correlation between predicted (y axis) and target (x axis) parameters from
diffusion model for conflict tasks for data with large trial numbers (15,000
trials per RT distribution) when the model was trained with data with large
trial numbers. White solid lines display fitted regression lines, while solid
purple lines display identity lines.
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Figure 4.5: Correlation between predicted (y axis) and target (x axis) diffusion model
for conflict tasks parameters from twenty datasets from section 3 for input
data with large trial numbers (15,000 points per distribution), when the deep
learning models were trained on data with large number of trials. Black solid
lines display fitted regression lines, while solid purple lines display identity
lines.
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dicted. In order to evaluate that and whether deep learning models were able to recover

parameters of the diffusion model for conflict tasks better than the global optimiza-

tion algorithms from section 3, the parameters predicted by the deep learning models

were used to produce a reaction time distribution consisting of 15,000 trials (5,000 in

each congruency condition). Then, the reaction time distribution was compared to the

original reaction time distribution from which the parameters were predicted using the

Kolmogorov-Smirnov method, as in section 3. The sum of three KS values was reported.

The results are displayed in table table 4.5, together with the KS values from each of

the global optimization algorithm from recovering seven parameters. The smallest KS

value from all optimization algorithms is displayed in bold. The table shows that on

average, deep learning recovered parameters better than any optimization algorithm,

when looking at the KS values for each of the twenty test distributions, while differential

evolution was not far behind (0.091 for deep learning compared to 0.094 for differential

evolution). This difference was not statistically significant (t(19) = −0.26, p = 0.801).

When individual distributions were inspected, twelve out of twenty distributions were

recovered the best by deep learning, seven out of twenty by differential evolution, and

the remaining one by particle swarm optimization. This shows that in most cases, the

highest number of distributions were recovered by deep learning better than any other

optimization algorithm tested in section 3, but differential evolution was not far be-

hind.

When comparing correlation coefficients between actual and recovered parameters, deep

learning also trumps differential evolution as the correlation coefficients between ac-

tual and recovered parameters were higher when recovered by deep learning compared

to differential evolution: mean R for differential evolution was 0.53 while mean R for

deep learning was 0.98, this difference was statistically significant (Z=28, p=0.016).

The difference between KS values and R2 values from the same models most likely

comes from the fast that deep learning models were trained to predict model parame-

ters independently of each other, and KS values in themselves had no effect on model

training (whereas they were value that was minimized by the global optimization algo-

rithms).
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Table 4.5: Comparison of KS values between actual and recovered RT distributions by
global optimization algorithms and deep learning using datasets with large
number of trials.

Dataset Random
search

Particle
swarm opti-
mization

Differential
evolution

Bayesian
optimiza-
tion

Deep learn-
ing

1 0.150 0.161 0.129 0.182 0.083
2 0.145 0.071 0.050 0.165 0.093
3 0.132 0.154 0.102 0.138 0.093
4 0.176 0.127 0.089 0.196 0.167
5 0.125 0.162 0.074 0.094 0.066
6 0.149 0.164 0.103 0.194 0.057
7 0.203 0.098 0.111 0.179 0.078
8 0.173 0.331 0.129 0.152 0.057
9 0.232 0.322 0.152 0.210 0.140
10 0.116 0.080 0.087 0.135 0.058
11 0.183 0.178 0.055 0.153 0.114
12 0.118 0.134 0.066 0.179 0.067
13 0.135 0.221 0.119 0.157 0.058
14 0.148 0.292 0.095 0.137 0.105
15 0.121 0.360 0.073 0.188 0.186
16 0.202 0.164 0.114 0.188 0.058
17 0.111 0.072 0.079 0.091 0.083
18 0.137 0.167 0.117 0.179 0.113
19 0.147 0.289 0.067 0.161 0.097
20 0.137 0.243 0.068 0.225 0.052

mean 0.152 0.190 0.094 0.165 0.091

4.3.2 Predicting model parameters from datasets with low number of trials

When models are trained with data with large number of trials, and then predict data

with large number of trials, they perform very well. However, it is not known how they

would perform with testing data with low number of trials. This section will examine

this issue. Firstly, the deep learning models were used to predict the test dataset that

was identical to the test dataset with large number of trials in terms of diffusion model

for conflict tasks parameter (target) values, but differed in the number of trials in each

RT distribution (600 compared to 15,000), thus introducing noise in the input data. The

results are displayed in figure 4.6. The correlation coefficients and corresponding p values

are reported in table 4.6. The results show that some parameters were predicted quite
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well (upper threshold, non-decision time, standard deviation of non-decision time, and

drift rate for controlled process). The prediction of shape of automatic activation was

mediocre, while the remaining parameters, both “impusivity” parameters (amplitude of

automatic activation and time to peak automatic activation) could not be recovered at

all. The correlations are still reported as statistically significant from zero because of

the size of the testing dataset.

Table 4.6: Correlation coefficients and p values between target and recovered parameter
values from the diffusion model for conflict tasks from deep learning models
trained with data with large number of trials and tested with noisy data.

Parameter Correlation coefficient p value

β1 0.726 p = 2.2 × 10−16

µR 0.922 p = 2.2 × 10−16

σR 0.827 p = 2.2 × 10−16

µC 0.847 p = 2.2 × 10−16

A 0.088 p = 2.2 × 10−16

τ 0.059 p = 2.2 × 10−16

α 0.457 p = 2.2 × 10−16

Secondly, the deep learning models were tested by predicting the diffusion model for

conflict tasks parameters from twenty test datasets from section 3 that contained 600

trials per RT distribution. The results are presented in figure 4.7 and table 4.4. They

show that the predictive power of the deep learning models has dropped significantly

for all parameters from the diffusion model for conflict tasks, though none was below

R=0.63.

Since there were seven deep learning models to predict each diffusion model for con-

flict tasks parameter individually, it is unclear whether the seven parameters as a single

group would be a good fit to the reaction time distribution from which the parameters

were predicted. In order to evaluate that, and whether deep learning was able to recover

parameters of the diffusion model for conflict tasks better than the global optimiza-

tion algorithms from section 3, the parameters predicted by the deep learning models

were used to produce a reaction time distribution consisting of 3,000 trials (1,000 in

each congruency condition). These numbers were chosen to maintain consistency with

the global optimization algorithms, where 1,000 trials per condition were computed in

each comparison. Then, the resulting reaction time distribution was compared to the

original reaction time distribution from which the parameters were predicted using the

Kolmogorov-Smirnov method, as in section 3. The sum of three KS values are reported
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Figure 4.6: Correlation between predicted (y axis) and target (x axis) parameters from
the diffusion model for conflict tasks for noisy (600 trials per RT distribu-
tion) data when the deep learning models were trained with data with large
number of trials. White solid lines display fitted regression lines, while solid
purple lines display identity lines.
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Figure 4.7: Correlation between predicted (y axis) and target (x axis) the diffusion model
for conflict tasks parameters for noisy (600 points per distribution) input
data, when the model was trained on data with large number of trials. Black
solid lines display fitted regression lines, while solid purple lines display iden-
tity lines.
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in table table 4.7, together with the KS values from each of the global optimization

algorithm from recovering seven parameters. The table shows that deep learning was

worse at recovering parameters for distributions with few trials when the models were

trained on distributions with high number of trials compared to four global optimization

algorithms. The average KS value for differential evolution was the smallest (0.131)

compared to deep learning’s value of 0.340. This difference was statistically significant

(t(19) = 10.37, p = 2.9 × 10−9). Out of twenty test distributions, nineteen of them

were recovered the best by differential evolution, while the remaining one was recov-

ered best by the particle swarm optimization algorithm. This shows that deep learning

models trained on datasets with large number of trials perform worse than optimization

algorithms that are non-specific to input data.

When comparing correlation coefficients between actual and recovered parameters, deep

learning performed much better at recovering parameters than differential evolution,

as the difference between correlation between actual and recovered parameters (0.59

for differential evolution and 0.82 for deep learning) was statistically significant (Z=28,

p=0.016). This is an interesting result, as looking at correlations between recovered

and actual parameters indicates that deep learning outperforms differential evolution,

however when RT distributions are constructed from recovered parameters, the similar-

ities between actual RT distributions and recovered RT distributions are much greater

with differential evolution than deep learning for RT distributions with small number of

trials.

4.4 Conclusions

This chapter investigated whether deep learning algorithms can be employed to re-

cover parameters from diffusion model for conflicts (Ulrich et al., 2015) when trained

on data with large number of trials. The results showed that deep learning models

are capable of recovering diffusion model for conflict tasks parameters almost per-

fectly, both when evaluated on 50,000 testing samples, and the twenty testing distri-

butions from section 3, given that the testing data also contained large number of tri-

als.

One reason why deep learning models performed so much better than any global opti-

mization algorithm could be that seven models were trained in deep learning, each one

predicting a different parameter from diffusion model for conflict tasks. In this way,
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Table 4.7: KS comparisons noisy data.

Dataset Random
search

Particle
swarm opti-
mization

Differential
evolution

Bayesian
optimiza-
tion

Deep learn-
ing

1 0.206 0.132 0.159 0.247 0.491
2 0.241 0.182 0.154 0.266 0.409
3 0.176 0.150 0.113 0.218 0.301
4 0.190 0.216 0.118 0.228 0.380
5 0.203 0.196 0.138 0.196 0.370
6 0.260 0.178 0.132 0.218 0.408
7 0.211 0.157 0.120 0.216 0.482
8 0.135 0.130 0.127 0.177 0.208
9 0.273 0.372 0.120 0.299 0.325
10 0.204 0.151 0.126 0.176 0.439
11 0.224 0.159 0.117 0.231 0.328
12 0.217 0.241 0.141 0.275 0.245
13 0.233 0.171 0.130 0.192 0.258
14 0.242 0.222 0.179 0.233 0.282
15 0.317 0.183 0.136 0.287 0.250
16 0.256 0.458 0.125 0.263 0.270
17 0.195 0.155 0.122 0.240 0.473
18 0.198 0.191 0.116 0.253 0.221
19 0.250 0.269 0.128 0.202 0.393
20 0.157 0.348 0.111 0.232 0.268

mean 0.219 0.213 0.131 0.232 0.340

there were no trade-offs between parameters from diffusion model for conflict tasks that

could influence the performance of the deep learning models. Another possible expla-

nation of the superiority of deep learning could be the sampling rate of the algorithm:

deep learning is able to evaluate hundreds of thousands of reaction time distributions,

while global optimization algorithms deal with only thousands of reaction time distri-

butions. Moreover, the evaluation of the deep learning performance is not related to

any method of comparing RT distributions, and as thousands of distributions are fit-

ted at once, the algorithm can fit a few distributions poorly while not sacrificing the

overall good fit. To investigate whether it is the former, a deep learning model could

be compiled that predicts all seven diffusion model for conflict tasks parameters at

once.

A huge advantage of deep learning over any global optimization algorithm is the speed of
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estimating parameters. Even with time-consuming hyperparameter optimization, train-

ing of the deep learning models takes hours instead of days. However, once the deep

learning models are trained, predicting parameters from any number of reaction time

distributions takes seconds, while global optimization algorithms take hours or days per

reaction time distribution. In theory, once a model is trained, it then can be used by any-

one to estimate parameters with a known margin of error.

As mentioned before, hyperparameter search is the most time consuming aspect of deep

learning. Computing huge datasets that the deep learning model can use for training is

also a computationally expensive task. This is however the result of deep learning having

never been applied to parameter recovery from sequential sampling models. As more

researchers start training deep learning models in this area, approximate model architec-

tures will become more available, as will training datasets.

The biggest issue with using deep leaning in parameter recovery is that because it has

not been done before, the model architecture is quite difficult to determine. The way

the model architecture was chosen in this chapter (narrow and long) was because it

seemed to produce good enough R2 values with most parameters from diffusion model

for conflict tasks, but this does not mean that better architectures do not exist. For

more complicated parameters, like amplitude of automatic activation, and time to peak

automatic activation, wider models could be of benefit.

Conversely, it might be that there is not enough signal in input features to predict

some parameters from diffusion model for conflict tasks. This could be the result of

feature engineering: the signal from parameters like shape of starting point distribution

or time to peak automatic activation could just not be captured well by the features

that were engineered for deep learning model inputs, and there could be better input

features.

Feature engineering is a huge issue for deep learning in itself. The advantage of deep

learning over shallow machine learning methods is that deep learning does not require

feature engineering, as technically the models should be able to take in raw data to

predict outcomes. This is quite complicated with the way the raw data is collected in

decision making models. The number of trials (raw data inputs) is variable, the features

(raw data trials) do not follow a specific order, so there is no temporal sequence, and that

makes using raw trials as input features very difficult. This could be solved by introduc-

ing temporal dependencies in the decision making models.
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Even though the recovery of parameters from data with large number of trials is nearly

perfect, the recovery from noisy data when the model is trained with data with large

number of trials is not so good, though still not worse than any global optimization algo-

rithm. Therefore models trained with data with large number of trials will generally not

offer good parameter predictions from experimental data, which usually has low trial

numbers per condition (and hence noisy input features). Therefore other approaches

will need to be used. There are three possible ways to improve parameter recovery

from noisy data: first, retraining models, including hyperparameter optimization, us-

ing noisy data as deep learning model inputs; second, using transfer learning, adding

a few hidden layers on the already trained models, then only training those; third, us-

ing autoencoders to de-noise noisy data. All of these will be investigated in the next

chapter.

To conclude, there is no reason why deep learning should not be used over any global

optimization algorithm for parameter recovery from the diffusion model for conflict tasks,

or any other sequential sampling model. Deep learning is able to recover parameters

better than global optimizers, it is able to do it quicker, it can take advantage of huge

data availability, it can provide error of predictions, thousands of RT distributions can

be fitted at once, and finally, as computational power increases, these calculations will

become even more sophisticated and fine-tuned. Finally, decision making models can

become more complex to account for human behaviour more precisely (like adding time-

dependencies that we know exist in human behaviour, like post-error slowing, long-term

slow down of behaviour, etc), yet deep learning will be able to adapt to that without

much trouble.
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5 Deep learning for parameter recovery using noisy input data

5.1 Introduction

Deep neural networks are very powerful at learning representations between input and

output data when presented with input data that contains little noise, as seen in sec-

tion 4. Data that is prevalent in the real world however contains a lot of noise in both

the inputs and the output labels. This is also true in mathematical models of decision

making. In section 4, we have seen that deep neural networks could recover parame-

ters from the diffusion model for conflict tasks very well when the deep learning models

were trained and tested on data with large number of trials (which contain little noise

in RT distributions, which are then used to create input features). However, when the

same deep learning models were asked to predict parameters from the diffusion model

for conflict tasks from data that contains a much smaller number of trials, more akin

to data that could be obtained from studies with human participants, the performance

of the deep learning models dropped significantly, especially for more difficult to re-

cover parameters like time to peak automatic activation and shape of starting point

distribution.

Most of the applications of the diffusion model for conflict tasks and sequential sampling

models are done on experimental data where there is considerable noise in RT distri-

butions due to limited number of trials that are collected in experiments with humans.

The number of trials per experimental condition is even lower when more challenging

populations are tested, like children (Ambrosi et al., 2019) or people with Parkinson’s

disease (Servant, van Wouwe, Wylie, & Logan, 2018). Therefore in order to consider

deep neural networks as a good method for parameter recovery from the diffusion model

for conflict tasks, we need to evaluate whether we can train the deep learning models to

perform well with input features computed from reaction time distributions that contain

much fewer trials (more noise).

Fortunately, this problem is not unique to the diffusion model for conflict tasks. Noisy

input features are also prevalent in speech processing (Lu, Tsao, Matsuda, & Hori, 2013),

image recognition (Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010), biomedical

signal processing (Min, Lee, & Yoon, 2017), health care data (Miotto et al., 2017), among

other areas, and deep learning has been applied to all of them relatively successfully.

There are various methods that can be used to overcome noise in input datasets, and
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a few will be explored in this chapter to see how successfully can the parameters from

the diffusion model for conflict tasks be recovered from reaction time distributions with

a small number of trials.

The most straightforward approach to recovering parameters from noisy input data

would be to train deep learning models using noisy input data. This is usually a hard

task in other areas where deep learning methods are applied, as large samples of la-

belled data are hard to come by, especially when the input data is noisy. If input data

contains more noise, the deep neural networks might need to increase in size in order

to separate the signal from the noise in the input data, and subsequently more input

samples would be needed to account for the increase in trainable parameters. This how-

ever is not a problem for mathematical models of decision making, because true-labelled

input data can be computed very easily. The method for training the deep learning

models would be identical to section 4.2, except that now we have an idea of approxi-

mate areas for the hyperparameter search, therefore the search should be easier. We can

also presume that more hidden layers will be needed to account for noise in the input

data.

A second approach involves using the information already present in deep learning mod-

els trained with clean data in section 4. This approach is called transfer learning, and

is very prevalent in computer vision. In computer vision, it is hard to come by a huge

amount of training samples for each specific vision problem, given that the architectures

usually employed in image recognition and classification tasks, convolutional neural net-

works, contain millions of trainable parameters. For example, the ImageNet classifica-

tion model by Krizhevsky et al. (2012), was trained on 15 million labelled images and

contained over 60 million trainable parameters. However, irrespective of the specific

problem that the deep learning models are trying to solve, low level visual properties

extracted by neural networks are the same, therefore they can be transferred from al-

ready trained networks to new problems, with only a few additional layers required for

problem-specific solution. Transfer learning therefore allows researchers to utilize much

smaller sample sizes for training, as shown in Oquab, Bottou, Laptev, and Sivic (2014).

Transfer learning is not unique to computer vision, as Google have just recently released

a pre-trained network model for natural language understanding (Devlin, Chang, Lee,

& Toutanova, 2018), which allows creation of a wide range of models for tasks such

as question answering and language inference with fine tuning only a single additional

layer, which means that much smaller input samples are sufficient for state-of-the art

117



model performance.

The same principles of transfer learning can be applied to dealing with noisy input data.

If we presume that input features that come from reaction time distributions with large

number of trials contain both low level and high level features that are extracted from

input data and used for predicting parameters from diffusion model for conflict tasks,

some of these extracted features may not be affected by noise and thus still valuable

when input data is noisy (comes from reaction time distributions with low number of

trials). Therefore we can potentially use the models trained with clean input data in

section 4 to transfer learning to models when the input data is noisy. In this way,

the transfer learning models will have layers with frozen (non-trainable) weights with

additional layers with trainable weights to specifically deal with noise in the input data.

As the number of trainable weights in transfer models is much lower than in models

that are trained from scratch, they should be less prone to overfitting, where the models

learn only the mapping between input and output features in the training samples and

do not generalize at all to testing samples.

The final approach for dealing with noisy input data involves processing of the input data

before it is being passed into the deep learning models. Noise in input data is prevalent

in all fields, as the way data is acquired tends to add noise to the inputs. In vision prob-

lems, images can include superimposed objects, such as writing, that needs to be ignored

in classification problems, while in speech recognition, samples of speech patterns can

come with background noise, recording distortions, or accents that need to be dealt with.

In order to map noisy data to clean input features, a specific architecture of deep neural

networks can be used. Even though unsupervised deep learning methods are not as com-

monly used in real-world problems, they are very powerful in extracting useful features

from unlabelled data, detecting and removing input redundancies, and preserving essen-

tial aspects of the data (Masci, Meier, Cireşan, & Schmidhuber, 2011). An encoder is a

type of unsupervised deep learning architecture that learns representation (encoding) for

a set of data. Most encoders are also stacked with decoders, so that the encoding of the

data can be decoded back into input data. Such encoder-decoder architectures are called

autoencoders (Huang, Boureau, LeCun, et al., 2007).

Autoencoders consist of encoder and decoder components. In the encoder part, layers

of neural networks are stacked in such a way that deeper layers have progressively lower

number of neurons compared to the previous layer. Because of this architecture, the

input data is forced into a smaller dimensionality of representations, which allows the
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encoder to ignore small disturbances (noise) in the data. Then the encoded data can

be used as input into a decoder model, which translates the data encoded in smaller

dimensions (than the original input data) back to the same dimensions as the input

data. The decoded data then contains no disturbances (noise) but only useful features

(or signal). Even though autoencoder models seem to propose a good generic data com-

pression algorithm, in reality it is not that useful as data-specific compression algorithms

perform much faster and require fewer resources than training deep learning networks.

However the autoencoders have been applied extensively to cleaning noisy input data,

especially in computer vision (Xie, Xu, & Chen, 2012; Vincent et al., 2010; Masci et

al., 2011) and speech problems (Lu et al., 2013). In such models, noisy data is used

as input into encoders, and cleaned data as output from decoders. This chapter will

investigate whether autoencoder models can be used to reduce the noise of reaction time

distributions with low number of trials, which could then be used as inputs into deep

learning models trained on clean data (reaction time distributions with large number of

trials).

As shown in section 4, deep learning models are very capable of recovering parameters

from diffusion model for conflict tasks, however they do not perform that well when

the input data into the models comes from reaction time distributions with low number

of trials. This is a very common situation when trying to apply mathematical models

of decision making to experimental data obtained from studies with humans, as the

number of trials per condition is limited due to experimental time. Therefore for deep

learning to be a useful technique for parameter recovery, the models need to be able to

deal well with noisy input data. This chapter will investigate whether transfer learning,

autoencoders, or training deep learning models with noisy data from scratch can help

improve parameter recovery from noisy data as compared to deep learning models trained

with clean data.

5.2 Training deep learning models with noisy data

5.2.1 Data

In order to maintain consistency of methods and data in section 4, the dataset to train

models with noisy data was computed in the identical way as the noisy test dataset in

section 4.2. This was done by subsampling the trials that comprised reaction time dis-
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tributions with large number of trials. For each sample (reaction time distribution) with

15,000 trials, a random sample of 200 trials was chosen for each condition (congruent,

incongruent, and neutral), thus producing reaction time distributions of 600 trials and

introducing variability (noise) in the input features. Due to subsampling of the clean

training dataset, the data that made the noisy training dataset was identical to that of

the clean dataset, with the exception of variability in reaction time distributions. The

targets (output) features remained identical as those in section 4.2. The test dataset

was also identical to the one used in section 4.2. As a reminder, the parameters from the

diffusion model for conflict tasks were sampled from a uniform distribution, limits and

distribution of parameter values are described in figure 4.1.

The inputs into the deep learning models trained with noisy data were 92 input fea-

tures computed for each RT distribution. All the features are listed in section 4.2. The

methods for computing the input features were identical to those described in section 4.2.

There was a slight difference between using reaction time distributions with a large num-

ber of trials and reaction time distributions with a small number of trials for computing

input features, in that some features could result in Not-a-Number/non-valid-numeric

(NaN) 6 values when computed from reaction time distributions with low number of

trials (e.g. if there were no incorrect responses among the 200 trials in congruent condi-

tion, the mean RT for incorrect trials in incongruent condition would be a NaN due to

zero-division). NaN features are not acceptable to deep learning models, therefore they

were replaced with zeros in input features.

5.2.2 Hyperparameter search

The hyperparameter search was easier for training deep learning models with noisy

data, because similar architectures as with training models with clean data could be

applied. For this reason, hyperparameter values were inspired by the final models in

section 4. The learning rate was not optimized for deep learning models trained with

noisy data, and was set to 0.0001, same as in section 4.2. Similarly, L1 regularization

was not optimized, but instead set to 0.0001 for all layers. Finally, Dropout was also not

included in the new deep learning models trained with noisy data, due to narrow model

architectures.

In order to deal with noise in the input data, two more hidden layers were added to the

6A common example of this is when an attempt is made to divide by zero
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hyperparameter search. Even though it seems like a small number, two extra hidden

layers would increase the number of trainable weights by 50%. As the number of train-

ing samples would remain the same as in deep learning models trained with clean data,

increasing the number of hidden layers even more could potentially hinder the gener-

alization of the deep learning models to test data due to increasing imbalance between

number of trainable parameters and number of training samples. The choices for the

hyperparameter search were:

• number of hidden layers: [4, 6]

• size of each hidden layer (chosen independently): [64, 128, 256, 512]

The hyperparameter search was performed in the same way as in section 4.2, with five-

fold cross-validation over the training dataset. The models were evaluated after running

for 25 epochs five times for each different testing split. The number of different model

evaluations was 25. The resulting best deep learning model for each parameter from

diffusion model for conflict tasks is presented in table 5.1, together with R2 values for

each model evaluated on the full training dataset. As is evident from the table, for all

parameters from diffusion model for conflict tasks (except diffusion rate for controlled

process and variability of non-decision time), deeper architectures with six hidden layers

resulted in better performing deep learning models. What is also evident from the table

is preference for larger number of neurons per hidden layer, revealing the need for higher

number of trainable weights to improve model performance. Finally, there appears to be

a similarity between the architectures of deep learning models for different parameters

from diffusion model for conflict tasks, indicating that a single deep learning model might

be sufficient at predicting all model parameters at once.

5.2.3 Results

Overall model architecture Seven different deep learning models were trained, one for

each parameter from the diffusion model for conflict tasks as the output. The same input

data was used in all seven models. The model architecture consisted of:

• sequential model

• dense layers
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Table 5.1: Optimized architectures of deep learning models trained with noisy input
data. If only four hidden layers were used, Layer 5 and Layer 6 sizes are
reported as ”-”. The R2 values come from evaluating the deep learning model
chosen by hyperas on 150,000 samples of the training dataset.

Parameter R2 value Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

β1 0.897 256 512 512 256 512 512
µR 0.994 256 512 512 256 512 512
σR 0.950 256 512 512 512 - -
µC 0.902 256 512 64 64 - -
A 0.826 256 512 512 256 512 512
τ 0.600 256 512 512 256 512 512
α 0.788 256 512 512 256 512 512

• bias term included in all layers

• ReLU activation in all hidden layers

• RMSprop optimization function with parameters ρ = 0.9, ε = 1e− 08, decay=0.0

• batch size of 75 samples

• L1 regularizer in each layer, 0.0001

• mean square error as model error

• learning rate of 0.0001

Each model was trained for 25 epochs. All final trained models are available on

https://github.com/SolVG/pyCDM. To evaluate the performance of the predictive mod-

els, R2 values between outputs and targets, mean absolute deviance values from the

target, and mean error values between outputs and targets, were also calculated in each

epoch. These were not used to train the models in any way. The history of training

deep learning models for each parameter from the diffusion model for conflict tasks is

presented in figure 5.1. As can be seen in the figure, most deep learning models min-

imized the loss function well. Some overfitting could be observed for upper threshold,

drift rate for controlled process, and shape of starting point distribution parameters,

indicating that they may benefit from further regularization of weights, Dropout layers,
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or early stopping callbacks 7. Two parameters, amplitude of automatic activation and

time to peak automatic activation, could not be recovered at all as the models failed to

minimize the loss function. Even though R2 of the training dataset for these parameters

was above zero, the performance of the test dataset was at zero, meaning that the models

only learned to map input features to outputs without learning any representations in

the data.

The results of evaluating the performance of the deep learning models in recovering

parameters from the diffusion model for conflict tasks from the test dataset are re-

ported in table 5.2. The models were evaluated by calculating the Pearson correlation

coefficients between actual and recovered parameter values from the test dataset. The

correlations are displayed in figure 5.2. The results show that all deep learning models,

except for amplitude of automatic activation, and time to peak automatic activation

models, had high positive correlations between actual and recovered parameter values.

Surprisingly, given the huge generalization errors shown in figure 5.1, even amplitude

of automatic activation and time to peak automatic activation resulted in non-zero cor-

relations between actual and recovered parameter values. The results show that all

non-impulsivity parameters from diffusion model from conflict tasks can be recovered

with deep learning models trained on reaction time distribution data with low number

of trials.

Table 5.2: Correlation coefficients and p values between actual parameter values and
recovered parameter values from deep learning models trained with and tested
on data with low number of trials.

Parameter Correlation coefficient p value

β1 0.909 p = 2.2 × 10−16

µR 0.988 p = 2.2 × 10−16

σR 0.953 p = 2.2 × 10−16

µC 0.861 p = 2.2 × 10−16

A 0.286 p = 2.2 × 10−16

τ 0.280 p = 2.2 × 10−16

α 0.750 p = 2.2 × 10−16

The performance of the deep learning models was also evaluated on 20 test datasets

used in section 3. The twenty datasets contained reaction time distributions of 600

7in deep learning, not completing the full number of pre-specified training epochs if the learning plateaus
is acceptable and widely used, which is commonly implemented by allowing the model itself to stop
the learning process via early stopping callbacks
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Figure 5.1: History of deep model training with noisy data for predicting parameters
from diffusion model for conflict tasks of four measures: mean square error
(used as a loss function, outer left column), R2 (inner left column), mean
error (inner right column), and mean absolute error (outer right column).
The seven parameters from diffusion model for conflict tasks are reported in
seven rows of the figure. The purple line represents training data, while the
black line represents evaluation of the test data.
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Figure 5.2: Actual and predicted parameter values from diffusion model for conflict tasks
from deep learning models trained with noisy data and tested on 50,000 test
distributions. Purple lines indicate identity lines, while white lines display
best fit lines between actual and predicted values.
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trials, making them noisy. The performance of the deep learning models in recovering

parameters from these twenty distributions is reported in table 5.3 and the correlations

between actual and recovered parameter values are displayed in figure 5.3. The results

show that all parameters could be recovered well from noisy realistic distributions, even

the “impulsivity” automatic activation parameters. This indicated that deep learning

models trained on noisy reaction time distribution data are capable of recovering pa-

rameters from diffusion model for conflict tasks.

Table 5.3: Correlation coefficients (and p values) between actual and recovered param-
eter values from twenty test distributions, when the deep learning models
trained with noisy data.

Parameter Correlation coefficient p value

β1 0.935 p = 1.6 × 10−9

µR 0.942 p = 5.7 × 10−10

σR 0.989 p = 2.2 × 10−16

µC 0.870 p = 6.2 × 10−7

A 0.724 p = 3.1 × 10−4

τ 0.710 p = 4.6 × 10−4

α 0.710 p = 4.6 × 10−4
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Figure 5.3: Correlation coefficients between actual (x axis) and recovered (y axis) pa-
rameter values from twenty test distributions, when the deep learning models
trained with noisy data (reaction time distributions with 600 trials). Black
solid lines display fitted regression lines, while solid purple lines display iden-
tity lines.

5.3 Transfer learning from deep learning models trained on clean data

5.3.1 Model architecture

The deep learning models trained in section 4 were used as the basis for transfer learning

models. The last two layers (the output layer, and the last hidden layer of the network)

of each of the deep learning models were removed. The weights of the remaining layers

were frozen, so that the weights in these layers would not be adjusted during the model

training process. Then, three additional hidden layers with trainable weights were added

to the models, as well as final output layer. The three hidden layers contained 256, 512,

and 512 neurons in this order. Finally, a linear output layer was added. Then the

resulting deep learning models were trained with input data that was identical to the

data used in section 5.2. The testing data was also identical to that in the previous

section. The only difference between training the deep learning models in this section
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was that the number of epochs was limited to 20, to account for only three hidden layers

that had trainable weights.

5.3.2 Predicting the diffusion model for conflict tasks parameters

The history of training of the transfer models is displayed in figure 5.4. The figure shows

that all seven models trained well over the twenty epochs, however all models displayed

overfitting to varying degree. This indicates that the models architectures were not

optimal for recovery of parameters from unseen test data.

The evaluation of the transfer models in recovery of the parameters from the diffusion

model for conflict tasks is reported in table table 5.4. The correlations between actual

and recovered parameter values are shown in figure 5.5. The results show that all model

parameters were recovered reasonably well by deep learning models pre-trained with

clean data, except for automatic activation parameters. However, the performance of the

transfer models was not as good as the performance of the deep learning models trained

with noisy data from scratch. This was true for all parameters except the amplitude of

automatic activation, which was recovered better by transfer models than models trained

with noisy data. This could indicate that pre-training of the deep learning model for

amplitude of automatic activation preserved some low-level features in data that could

be picked up from noisy data.

Table 5.4: Correlation coefficients and p values between actual parameter values and
recovered parameter values from transfer models trained with and tested on
data with low number of trials.

Parameter Correlation coefficient p value

β1 0.876 p = 2.2 × 10−16

µR 0.974 p = 2.2 × 10−16

σR 0.922 p = 2.2 × 10−16

µC 0.758 p = 2.2 × 10−16

A 0.317 p = 2.2 × 10−16

τ 0.202 p = 2.2 × 10−16

α 0.657 p = 2.2 × 10−16

The performance of the transfer models was also evaluated on the twenty test datasets,

same as in section 5.2. The results of correlations between actual and recovered pa-

rameters from the twenty test distributions are reported in table 5.5 and shown in
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Figure 5.4: History of transfer model training with noisy data for predicting parameters
from diffusion model for conflict tasks of four measures: mean square error
(used as a loss function, outer left column), R2 (inner left column), mean
error (inner right column), and mean absolute error (outer right column).
The seven parameters from diffusion model for conflict tasks are reported in
seven rows of the figure. The purple line represents training data, while the
black line represents evaluation of the test data.
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Figure 5.5: Actual and predicted parameter values from the diffusion model for conflict
tasks from transfer learning models trained with noisy data and tested with
50,000 test distributions. Purple lines indicate identity lines, while white
lines display best fit lines between actual and predicted values.
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figure 5.6. The table shows that the correlations between actual and recovered parame-

ters were high for all parameters from diffusion model for conflict tasks, except for drift

rate for controlled process. There seems to be some differences in recovery of param-

eters between transfer models and the deep learning models trained with noisy data,

however they are minor. The two automatic activation parameters and the shape of

starting point distribution parameter appear to be recovered better by transfer mod-

els.

Table 5.5: Correlation coefficients and p values between actual parameter values and
recovered parameter values from deep learning models pre-trained on data
with high number of trials and tested on twenty test distributions with low
number of trials.

Parameter Correlation coefficient p value

β1 0.882 p = 2.7 × 10−7

µR 0.975 p = 2.8 × 10−13

σR 0.913 p = 1.9 × 10−8

µC 0.105 p = 0.659
A 0.809 p = 1.6 × 10−5

τ 0.744 p = 1.7 × 10−4

α 0.869 p = 6.5 × 10−7

5.4 Autoencoders for data denoising

5.4.1 Data

The data for autoencoders was the same training data as used in 4 and in 5.2. The

reaction time distributions in both datasets were theoretically the same, as they came

from the same sets of parameters of the diffusion model for conflict tasks. The only

difference was the number of trials per distribution (15,000 for distributions with high

number of trials and 600 for distributions with low number of trials). Because of the

difference in trial numbers, there was some variation in reaction time distributions,

which added variability to 92 input features. The 92 input features computed from the

datasets with large number of trials were considered as features with low noise, whereas

the input features from the dataset with low number of trials contained more noise, as

individual trials had more of an effect on the overall reaction time distribution shape,

and the resulting input feature measures. As in 5.2, input features from datasets with
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Figure 5.6: Correlation between predicted (y axis) and target (x axis) the diffusion model
for conflict tasks parameters for noisy (600 points per distribution) input
data, when the deep learning models were pre-trained with data with large
number of trials. Black solid lines display fitted regression lines, while solid
purple lines display identity lines.

low trial numbers that were NaNs were replaced with zeros to be compatible with the

deep learning models.

5.4.2 Autoencoder architecture

The input into the autoencoder model were the features generated from the dataset

of reaction time distributions with low number of trials. The output of the autoen-

coder model were the features generated from reaction time distributions with large

number of trials. The autoencoder followed an encoder-decoder pattern, where input

features were compressed to smaller and smaller dimensionality, and then decompressed

back into the same dimensionality as inputs. As the number of input features in this

dataset was 92, the autoencoder was created with four encoding layers and four de-

coding layers, going from 92, to 75, to 50, to 25, and finally to 12 features, and then

all the way back from 12 to 25, to 50, to 75, and finally back to 92 features. The
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model architecture is summarized in figure 5.7. This architecture was selected from

manual hyperparameter search, as it performed better (returned higher R2 values) than

architectures with more compression (encoding dimensions lower than 12), and also as

compared with architectures with more encoding and decoding layers, as they did not

bring any improvement in R2 values compared to architecture with four encoding and

decoding layers.

Figure 5.7: Summary of autoencoder model architecture.

5.4.3 Predicting clean input data

To assess whether autoencoders help to denoise data, we first need to evaluate the rela-

tionship between data with large number of trials and data with small number of trials.

To allow easier comparison with deep learning models, we are going to use R2 value.

When deep learning models are trained, the data used in training is scaled so that each

feature has the same mean and standard deviation. This is especially important for au-

toencoders, because if the features are not scaled, then the models will prioritize features

with larger numerical values over features with smaller numerical values. Therefore the

comparisons are going to be made between scaled inputs.
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R2 calculations between input (data with low number of trials) and output (data with

large number of trials) were implemented using sci-kit learn package in python. The

R2 between the noisy and clean scaled input features was 0.71.

The autoencoder model was trained for 100 epochs. The training history is reported in

figure 5.8. The final R2 value between clean input features and decoded input features

was 0.42. This indicates that autoencoder could not improve the relationships between

clean and noisy input data and therefore was not useful for recovering parameters from

noisy data.
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Figure 5.8: History of autoencoder model training.

5.5 Recommendations for use with experimental data

In order to see which method should be used when recovering diffusion model for con-

flict tasks parameters from reaction time distributions with low number of trials, we

can compare correlations between recovered and actual parameter values from different

methods. The four methods examined were differential evolution, deep learning mod-

els trained with clean data, deep learning models trained with noisy data, and transfer

models. To allow comparison with differential evolution, which is a global optimization
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algorithm that resulted in the best performance for parameter recovery in section 3,

correlations between actual and recovered parameter values from twenty test distribu-

tions were be inspected. The correlations are reported table 5.6. The highest correlation

value for each parameter from diffusion model for conflict tasks is reported in bold. The

table shows differential evolution does not recover any of the parameters better than any

deep learning method. Out of the three deep learning methods, neither came as a clear

winner, however the deep learning model trained with noisy data recovered three out of

seven parameters the best.

Table 5.6: Comparison of different methods for parameter recovery from diffusion model
for conflict tasks as evaluated on 20 test distributions. The best method for
each parameter is displayed in bold.

Parameter Differential
evolution

Deep leaning -
clean data

Deep leaning -
noisy data

Deep leaning -
transfer

β1 0.61 0.875 0.935 0.882
µR 0.96 0.976 0.942 0.975
σR 0.77 0.903 0.989 0.913
µC 0.23 0.768 0.870 0.105
A 0.58 0.633 0.724 0.809
τ 0.71 0.766 0.710 0.744
α 0.30 0.829 0.710 0.869

To compare the different deep learning methods, the performance on the test data with

50,000 samples was examined. The correlations between actual and recovered parameter

values for each of the parameter from diffusion model for conflict tasks are reported

in table 5.7. The three methods compared were deep learning models trained with

clean data, deep learning models trained with noisy data, and transfer models. The

highest correlation between recovered and actual parameter values for each parameter is

shown in bold. The table shows that the deep learning models trained with noisy data

outperformed the other two methods. This result, combined with the results in table 5.6,

suggest that the most appropriate method for parameter recovery from experimental

data is deep learning models trained with noisy data.

The only outlier from the comparison of deep learning methods was the amplitude of au-

tomatic activation parameter, which was best recovered by the transfer learning model.

This result was also true when investigating the correlations from the twenty test distri-

butions. Though the differences between correlation coefficients were not huge, transfer

learning could be considered as a more suitable method for recovering amplitude of
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Table 5.7: Comparison of different deep learning methods for parameter recovery from
diffusion model for conflict tasks as evaluated on 50,000 test distributions.
Correlations in bold represent the highest correlation value between actual
and recovered parameter values for each parameter.

Parameter Deep leaning -
clean data

Deep leaning -
noisy data

Deep leaning -
transfer

β1 0.726 0.909 0.876
µR 0.922 0.988 0.974
σR 0.827 0.953 0.922
µC 0.847 0.861 0.758
A 0.088 0.286 0.317
τ 0.059 0.280 0.202
α 0.457 0.750 0.657

automatic activation from experimental data.

In order to recover parameters from diffusion model for conflict tasks using deep learning,

the following steps should be taken:

• First step: prepare and clean experimental data. Exclude any trials or whole

datasets that do not meet inclusion criteria.

• Step two: separate the data into any experimental conditions that were present.

So if speed-accuracy was manipulated in a study, there should be two datasets per

participant (one for speed trials and one for accuracy trials).

• Step three: separate the datasets into congruent, incongruent, and neutral trials.

In this way, each dataset should contain three subsets.

• Step four: pass datasets through feature extractor, to obtain features used in deep

learning models.

• Step five: Do feature preprocessing: load in data, convert to numpy arrays 8,

replace any NaNs with zeros.

• Step six: scale the features using a pickled scaler.

• Step seven: load in the trained models.

8inputs to keras models need to be of numpy array type
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• Step eight: predict diffusion model for conflict tasks parameters using loaded mod-

els.

If a condition (most likely neutral trials) is missing, the models will need to be retrained

with fewer input features. There should not be much reduction in predictive power as

all input features were heavily correlated, however the models will need to be retrained

to cope with different input dimensions.

5.6 Conclusions

This chapter investigated three different approaches in improving recovery of parameters

from diffusion model for conflict tasks using deep learning when input features come from

reaction time distributions with low number of trials. Such datasets contain more noise,

so when deep learning models are trained with clean datasets that contain reaction time

distributions with high number of trials, the models do not perform well. The three

different approaches to improve the performance of the deep learning were training deep

learning models with noisy input data, using transfer learning to pre-train models with

clean data before finalizing training with noisy data, and using autoencoders for input

data denoising.

Out of the three methods, autoencoders did not perform at all. Denoising data of reaction

time distributions with low number of trials with the autoencoder model returned data

that was correlated with the data of reaction time distributions with high number of trials

to a lesser degree than the correlation between the two datasets without any denoising.

This result could be explained by limited number of inputs into the autoencoder model.

In essence, the autoencoder model was presented with only one example of noise per set

of diffusion model for conflict tasks parameters. If there were multiple examples of noise

per the same set of parameters, the models might have been able to start discriminating

between noise and signal in reaction time distributions. Another explanation could be

that stacked autoencoder architectures, as described in (Huang et al., 2007), can only

deal with mild disturbances in data, while the disturbances in reaction time distributions

with low number of trials might have contained too much noise for the autoencoders to

correct.

The other two methods, training deep learning models with noisy data, and using deep

learning models pre-trained on clean data for transfer learning, both performed very
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well at recovering parameters, and outperformed the deep learning models trained with

cleaned data. This suggests that if parameters from diffusion model for conflict tasks

need to be recovered from reaction time distributions with low number of trials, deep

learning models that have been tuned with such noisy inputs should be preferred over

deep learning models that were trained with clean data only. Interestingly, all deep

learning methods outperformed differential evolution in recovery of parameters. Coupled

with huge amount of computational time that is needed to recover parameters using

differential evolution, this suggests that deep learning methods are superior to global

optimization algorithms.

An interesting result is that the deep learning models trained on clean data could not

recover “impulsivity” parameters (amplitude of automatic activation and time to peak

automatic activation) from diffusion model for conflict tasks from data with low number

of trials, suggesting that the noise in reaction time distributions mask the signal that

is necessary for recovery of those parameters. However, the recovery improved slightly

when deep learning models were either trained with noisy data or pre-trained with

clean data only, suggesting that some signal remains if models are allowed to learn

from noisy data. Looking at the history figure, it is evident that the model overfitted

significantly and just learned to predict noise. However, when twenty test distributions

were evaluated, the “impulsivity” parameters were recovered very well, as indicated by

high correlations between actual and recovered parameter values. This indicates that

the twenty test distributions could be different from the set of 50,000 distributions used

as a large test dataset. The main difference could be that the sets of parameter values

chosen for the twenty test distributions make realistic reaction time distributions. This

could be tested by inspecting whether the noise pattern is different in realistic reaction

time distributions.

One of the biggest differences between the datasets with low and high number of tri-

als comes in NaN values in the input features. The dataset of reaction time distribu-

tions with large number of trials did not contain a single NaN value in either of the

92 input features for all 150,000 train and 50,000 test samples. However the datasets

of reaction time distributions with low number of trials contained a lot of NaN val-

ues in the input features. In this chapter, the NaN values were replaced with zeros,

which could affect the model performance significantly. It would be interesting to see

whether training the models without the input features that contain the most amount

of NaNs would improve the performance of deep learning models trained with noisy
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data.

To conclude, the best approach to using deep learning models in order to recover param-

eters from diffusion model for conflict tasks seems to be training the models with noisy

input data. Pretraining models with clean data also seems to work quite well with the

exception of drift rate for controlled process.

As deep learning seems to provide good and very quick parameter estimates from dif-

fusion model for conflict tasks, the model can now be easily applied to experimental

studies employing response inhibition tasks. The next three chapters will investigate

the stability of impulsive behaviour in individuals over time and between different re-

sponse inhibition tasks and decision making tasks, while also manipulating the speed

and accuracy of responding. Using such complicated study designs would previously

limit researchers to only examining the behaviour of individuals by using behavioural

measures alone, such as response times and accuracy rates, as application of complex

models, such as diffusion model for conflict tasks, would be computationally unfeasible.

Due to the work described in the last two chapters, deep learning models can be used

to estimate model parameters from hundreds of individual reaction time distributions

with very little effort, even if the models were not tuned for particular tasks (such as

decision making task in the last chapter). Deep learning will therefore allow to in-

vestigate the stability of impulsive behaviour by allowing the examination of cognitive

processes associated with individual parameters from the diffusion model for conflict

tasks.
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6 Response inhibition tasks with speed-accuracy trade-off

6.1 Introduction

If response inhibition tasks are to offer a valuable contribution to understanding of both

the positive and the negative aspects of impulsive behaviour in healthy and clinical pop-

ulations, they need to provide precise and valid measurements using reliable paradigms

(Wöstmann et al., 2013). There are multiple response inhibition paradigms being used

(e.g. motor response inhibition includes go/no-go and stop-signal tasks, while interfer-

ence inhibition is tested by tasks like the Simon (Simon & Rudell, 1967), Eriksen flanker

(Eriksen & Eriksen, 1974), and the Stroop (Stroop, 1935) tasks). Even though there

is a general assumption that similar response inhibition tasks measure similar underly-

ing response control mechanisms (Friedman & Miyake, 2004), and that all these tasks

measure the ability to resolve response conflict due to interfering stimulus features that

are irrelevant (Wöstmann et al., 2013), the correlations between different response task

measures have been low or absent (Aichert et al., 2012). Moreover, test-retest reliability

of these tasks needs to be reasonable to allow any inferences about endophenotypes or

traits.

The speed-accuracy trade-off (SAT), is a principle that governs all human behaviour:

decisions that are fast are error prone, and decisions that are accurate tend to be slow

(Heitz, 2014). SAT is however rarely manipulated in response inhibition tasks. In

experimental tasks, participants need to decide what level of speed and accuracy is the

most suitable to them and to the task, and these levels may differ in different testing

sessions and different tasks, and as well as vary between individuals. Although SAT

has been studied extensively in perceptual decision making (J. Zhang & Rowe, 2014;

B. U. Forstmann et al., 2010; Rae et al., 2014; Pote et al., 2016; Winkel et al., 2012),

studies on the effect of SAT on inhibitory control are sparse.

Only a few studies so far have looked at how SAT affects task performance in response

inhibition paradigms. One of them, by Wylie et al. (2009), looked at the effect of speed-

accuracy strategy on Eriksen flanker task performance in individuals with Parkinson’s

disease and also in healthy controls. The participants in this study were instructed to

either respond as accurately as possible or as fast as possible to the stimuli, and the

researchers found that both the response times and the accuracy of responding differed

in both individuals with Parkinson’s disease and the healthy controls depending on the
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instruction set. Another study by Leotti and Wager (2010) investigated the strate-

gies that participants use in the stop signal task and found that individuals varied in

the stop signal performance, as some complied with regular stop signal paradigm in-

structions that emphasize speed, while the other participants did not comply with the

instructions and preferred slower but more accurate style of responding. When the re-

searchers manipulated speed and accuracy by varying rewards for either fast or accurate

responses, the participants changed their behavior in accordance to the SAT instruc-

tions. A study by Van Wouwe et al. (2014) looked into the effects of Parkinson’s disease

on the ability to resolve conflicts in the Simon task under speed and accuracy pressures.

The researchers found that both healthy controls and individuals with Parkinson’s dis-

ease showed typical performance under SAT conditions: when instructions emphasized

response speed, participants responded faster and made more errors than when accuracy

was emphasized. They also found that patients with Parkinson’s disease struggled to

suppress incorrect response impulses during speed but not accuracy conditions, suggest-

ing that specific patterns of impulsivity could be revealed by manipulating SAT during

response inhibition tasks. Even though these studies provide evidence that individu-

als’ inhibitory behavior does vary with task demands, there are no studies yet investi-

gating whether this ability is stable in time and between different response inhibition

tasks.

This chapter will therefore evaluate the performance in two response inhibition tasks:

the Eriksen flanker task and the Stroop task, in two experimental sessions, separated by

four weeks, while also manipulating SAT. The flanker task and the Stroop task were cho-

sen as they both include interference inhibition, where participants need to suppress the

activation that results from task-irrelevant stimuli that interfere with the task-relevant

stimuli because of their similarity. The SAT will be manipulated with instructions, as

participants will be asked to perform as fast as possible, as accurately as possible, or

both fast and accurately in different blocks of the task. The participants will also be re-

tested in four weeks time. This study design allows answering four questions. First, do

individuals show speed-accuracy trade-offs in response inhibition tasks? The expected

finding is that the speed-accuracy trade-offs will be observed in the two response inhi-

bition tasks, as they were present in studies by Leotti and Wager (2010), Van Wouwe

et al. (2014), and Wylie et al. (2009). The second experimental question, whether in-

dividuals’ ability to change responses to different speed-accuracy demands is consistent

between different response inhibition tasks, will be assessed by looking at correlations

in performance measures between two response inhibition tasks. The existing evidence
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for this question is sparse, and inconsistent between a multitude of response inhibition

tasks. If the Stroop and flanker tasks both reflect similar aspects of individuals’ inhibi-

tion, the performance of the two tasks will correlate between the tasks, provided that

the behavioural measures are sensitive enough to reveal the inhibition of performance.

The two tasks might even correlate if they only reflect similarities in decision making

aspects of the two tasks that are not specific to inhibition. However, no correlations

between the tasks will be observed if the behavioural measures are not sensitive rep-

resentations of the decision making and/or inhibitory processes, or if the tasks do not

reflect the same aspects of inhibition. Third question is, does the change in responding

induced by speed-accuracy manipulations remain stable over time within the same task?

If the tasks measure stable traits of inhibition (and/or decision making), we could poten-

tially see correlations between task performance in time, provided that the behavioural

measures are sensitive enough to reveal these traits. If, however, response inhibition

tasks do not measure any stable traits, or if there are any stable traits, but they are

not revealed by behavioural measures, no correlations will be observed in time. The

main reason to include speed and accuracy manipulations in the experimental studies

of response inhibition is that speed and accuracy manipulations tend to have an effect

on behavioural measures, by introducing more range in individuals responses: under

speed pressure, faster but more erroneous responses are expected, whereas under accu-

racy pressures, the responses should become slower but more accurate. This increased

range in behaviour might help to reveal correlations between response inhibition tasks

and within response inhibition tasks between sessions, as relationships are easier to dis-

tinguish from a wider range of potential response space. The final question is, does

the difference in responses between speed and accuracy conditions (SAT effect) remain

stable in time or between the tasks? This question is specifically investigating whether

individuals’ change between fast and accurate responding is a trait that is maintained

either within the same task over time, or between different tasks. The study by (Leotti

& Wager, 2010) suggested that individuals choose strategies in responding under speed

pressure, with some individuals complying, and others not complying to instructions.

If those strategies are consistent over time, correlations within the same task but over

time would be expected, provided that the behavioural measures are sensitive enough to

reveal these strategies. If the strategies in speed an accuracy compliance are consistent

over multiple tasks, correlations between the Stroop and the flanker tasks might also be

expected, provided that the behavioural measures are sensitive enough to reveal these

strategies.
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6.2 Methods

6.2.1 Participants

Fifty-seven students from Cardiff University School of Psychology were recruited to

participate in the study in exchange of course credit or payment, 6 male (mean age 20.5

years old) and 51 females (mean age 20.7 years old). Forty-eight participants returned

for the second testing session (6 male and 42 female, mean ages 20.5 years and 20.6 years

respectively).

Two participants were excluded from the analysis: one due to ill health during ex-

periment that resulted in the premature termination of study (excluded from the first

session), and another one due to failure to concentrate on the task and the inability to

complete both tasks in a single session (excluded from both sessions) - the participant

only completed 2755 trials in both sessions (compared to 6960 trials in the full study

that most participants completed), and 13% of the trials that were completed had to be

removed as described in the data cleaning section below.

6.2.2 Design

The design consisted of within-subjects instruction condition (speed, accuracy, or both

speed and accuracy emphasis), and within-subjects trial congruency condition (congru-

ent, incongruent, or neutral trials). All participants completed both tasks and both

sessions, but they were not analysed as factors.

6.2.3 Apparatus

The experiment took place in a dimly lit room; it was run on a Macbook Air computer

connected to a 36.5cm by 27.5cm colour display (60Hz, resolution 1280px by 1024px)

and an external keyboard. The tasks were programmed in PsychoPy version 1.73.04

(Peirce, 2009). Participants were seated at a distance of about 60 cm in front of the

external display screen. Responses were made on the keyboard by pressing the ’z’ and ’m’

keys for left and right flanker responses respectively. For the Stroop task, participants

responded by pressing ’z’, ’x’, ’n’, or ’m’ keys to indicate ’red’, ’blue’, ’green’, or ’yellow’
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responses respectively.

6.2.4 Tasks and Procedure

Two response inhibition tasks were completed in one session: the computer version of

the Stroop task (Stroop, 1935) and the Eriksen flanker task (Eriksen & Eriksen, 1974).

In the Stroop task, a word is shown on a black computer screen written in coloured ink.

The participant’s task is to respond to the colour of the ink of the word by pressing

one of four keyboard keys, each corresponding to a colour. In the neutral congruency

trials, the word meaning is unrelated to colours (e.g.: ‘advice’, ‘cross’, ‘ship’, or ‘lot’);

in congruent trial condition, the word spells the same colour to that of the ink (e.g.:

‘green’ written in green ink, ‘blue’ written in blue ink); while in the incongruent trial

condition, the word meaning and the ink colour are mismatched (e.g.: ‘green’ written in

yellow ink, ‘blue’ written in red ink).

In the Eriksen flanker task, the participants are shown an arrow in the middle of the

screen, and their task is to respond to the direction of that arrow only by pressing a

keyboard key, corresponding to either left or right direction. In the neutral congruency

trials, the central arrow is flanked by two dashes below and two dashes above. In the

congruent trials, the central arrow is flanked by four other arrows that point to the

same direction as the central arrow; while in the incongruent trial condition, the flanker

arrows point in the opposite direction as the central arrow.

Three different instructions were given to participants throughout the study in both tasks

before the beginning of each block. In Speed instructions, participants were asked to

respond as fast as possible while still being correct, in the Accuracy blocks, participants

were told to respond as accurately as possible without losing too much speed, while in the

Both Speed and Accuracy blocks 9, participants were told to be both fast and accurate.

On top of that, participants were given different feedback in each instruction condition:

in the speed condition, participants saw “Too slow” written on the screen if they re-

sponded to the trial after the cut off period for each task (600ms for the Stroop task and

500ms for the Eriksen flanker task); in the accuracy condition, “Incorrect” was displayed

on the screen if participants made an error, while no feedback was given in the both speed

and accuracy conditions. Participants were also given feedback if they responded too

quickly irrespective of instruction condition (faster than 200ms for the Stroop task and

9called “neutral instructions” in figures and tables
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150ms for the Eriksen flanker task). After each block, participants were shown their

average RT and accuracy rate for the previous block.

Participants completed 12 blocks in each task, four were speed, four accuracy, and four

neutral (both speed and accuracy). Each block consisted of 144 trials, 48 were congru-

ent, 48 incongruent, and 48 neutral. The order of the blocks was random and the order

of trials within each block was also randomized for each participant. At the end of each

session, participants completed the paper version UPPS-P impulsive behaviour scale

(Lynam et al., 2006), which consists of 59 questions and measures 5 subsets of impulsiv-

ity. The questionnaire data was not analysed in this thesis.

The experimental session was completed by participants twice; the two sessions were

separated by at least 4 weeks. Participants took 1.5 hours to complete each session

(3 hours in total), with the flanker task taking approximately 40 minutes to complete,

the Stroop task – approximately 45 minutes, and the questionnaire – approximately 5

minutes.

6.2.5 Data preparation

Before any analysis, data was cleaned by removing responses that were longer than 1.5

seconds, and the anticipatory responses (<150ms). All participants had some trials

removed - the values ranged from 0.8% to 3.1% of trials per participant, mean 1.5%. No

other trials were removed. All analyses relating to reaction times only report reaction

times of the correct responses, while measures relating to accuracy looked at both correct

and incorrect responses.

6.3 Results

6.3.1 Does SAT affect task performance?

In order to see whether SAT affected the task performance, the reaction times, the ac-

curacy of responses, the reaction time costs, and the accuracy costs in both the flanker

and the Stroop tasks were inspected in both experimental sessions. The results relat-

ing to the reaction times are shown in figure 6.1, revealing that overall, participants

responded faster in the flanker task than in the Stroop task, which was expected given
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that the Stroop task was slightly harder due to four response options. The figure also

demonstrates that both the congruency of trials, and the SAT instructions of the blocks,

had an effect on the reaction times of the correct responses. These effects were statisti-

cally significant for both tasks and both sessions (all F values and p values reported in

table 6.1 outer left column).
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Figure 6.1: Effects of congruency (colour) and SAT instructions (x axis) on reaction
times (y axis) in the flanker (upper row) and the Stroop (lower row) tasks
in both experimental sessions (different columns). “Both fast and accurate”
instructions are reported as “neutral”. Dots indicate outliers.

Similarly, the accuracy of all of the responses is shown in figure 6.2. The figure shows

that accuracy was overall lower in the Stroop task than in the flanker task, once again

reflecting that the Stroop task was harder due to having four response options rather than

the two response options in the flanker task. The SAT instructions affected the accuracy

of responses in a predictable way, as the responses in speed instruction blocks were less

accurate than in the accuracy instruction blocks. This pattern was more pronounced for

the incongruent trials than the congruent trials. The interaction between SAT condition

and congruency was statistically significant for both tasks and sessions (see table 6.1,

inner left column).
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Table 6.1: F values (p values) for the SAT x congruency interaction on reaction time
and accuracy, and SAT effects on reaction time costs and accuracy costs. Sig-
nificant results are shown in bold at the level of 0.006 (corrected for multiple
comparisons). Stars next to p values indicate Greenhouse-Geisser correction
for Mauchy’s test of sphericity. The degrees of freedom were (4, 212) for ses-
sion 1 and (4, 188) for session 2 for interaction effects, and (2, 106) for session
1 and (2, 94) for session 2 for the cost effects.

Task and session Reaction time Accuracy Reaction time
costs

Accuracy
costs

Flanker Session 1 34.5 (5.5 ×
10−18)*

25.0 (1.6 ×
10−10)*

45.5 (5.5 ×
10−15)

36.0 (1.1 ×
10−10)*

Flanker Session 2 24.2 (1.0 ×
10−12)*

11.2 (3.3 ×
10−6)*

28.2 (2.5 ×
10−10)

15.6 (6.1 ×
10−6)

Stroop Session 1 34.5 (6.9 ×
10−20)*

3.9 (0.005) 53.0 (9.2 ×
10−17)

6.9 (0.001)

Stroop Session 2 35.5 (4.6 ×
10−18)*

5.5
(3.5 × 10−16)*

60.5 (1.7 ×
10−17)

9.7
(2.9 × 10−4)*
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Figure 6.2: Effects of congruency (colour) and SAT instructions (x axis) on accuracy
(y axis) in the flanker (upper row) and the Stroop (lower row) tasks in
both experimental sessions (different columns). “Both fast and accurate”
instructions are reported as “neutral”. Dots indicate outliers.
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Another performance measure of interest was the congruency costs: the difference in

reaction times and accuracy between congruent and incongruent trials. Were congru-

ency costs affected by the SAT manipulation? The results are shown in figure 6.3 for

the reaction time costs and figure 6.4 for the accuracy costs, for both tasks and both

sessions. The figures show that the congruency costs in reaction times were lower in

the speed condition when compared to the accuracy condition, whereas the congruency

cost in accuracy was higher in the speed condition when compared to the accuracy

condition. This effect was statistically significant for all tasks and sessions (see table

table 6.1 inner right column for reaction time costs and outer right column for accuracy

costs).

6.3.2 Between-task correlations

As we have shown that SAT has an effect on performance in the flanker and the Stroop

tasks, we can now investigate whether SAT manipulations also affect the correlations

of task measures between the two different tasks performed in the same session. The

correlations for reaction time costs are shown in figure 6.5 and for accuracy costs in

figure 6.6. The figures show that for both measures, both sessions, and all three SAT

conditions, correlations between the flanker and the Stroop task were very low. They are

reported in table 6.2. The table shows that no between task correlations were significant

for any session or SAT manipulation, suggesting that SAT manipulation does not help

increase the correlations between the Stroop and the flanker tasks when compared to

the standard instructions of “Be both fast and accurate”.

Table 6.2: Correlation coefficients(p values) between the reaction time costs and the
accuracy costs in the flanker and the Stroop tasks, for all SAT manipulations
and both sessions 1 and 2. Statistically significant correlations at the level of
0.008 (adjusted for multiple comparisons) are shown in bold.

SAT condition and session Reaction time costs Accuracy costs

Speed Session 1 0.15 (0.289) -0.08 (0.556)
Speed Session 2 0.37 (0.011) 0.06 (0.693)
Accuracy Session 1 0.32 (0.017) 0.04 (0.784)
Accuracy Session 2 0.20 (0.172) -0.00 (0.989)
Neutral Session 1 0.30 (0.026) 0.12 (0.400)
Neutral Session 2 0.25 (0.092) -0.17 (0.242)
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Figure 6.3: Effects of SAT instructions (x axis) on reaction time costs (y axis) in the
flanker (left panel) and the Stroop (right panel) tasks in both experimen-
tal sessions (colour). “Both fast and accurate” instructions are reported as
“neutral”. Dots indicate outliers.
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Figure 6.4: Effects of SAT instructions (x axis) on accuracy costs (y axis) in the flanker
(left panel) and the Stroop (right panel) tasks in both experimental sessions
(colour). “Both fast and accurate” instructions are reported as “neutral”.
Dots indicate outliers.
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Figure 6.5: Correlations between the reaction time costs in the flanker and the Stroop
tasks for session 1 (left column) and session 2 (right column) for different SAT
instructions (rows). Black lines indicate the best fit lines for the correlations,
while the purple lines display identity lines.
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instructions (rows). Black lines indicate the best fit lines for the correlations,
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6.3.3 Between-session correlations

To see whether task performance was stable over time, the reaction time costs and the

accuracy costs from session 1 were correlated with the same measures from session 2.

The results are shown in figure 6.7 for the reaction time costs and figure 6.8 for the

accuracy costs. The figures indicate that for both accuracy costs and the reaction time

costs, there seems to be a stronger relationship between sessions in the same tasks than

between different tasks in the same session. The correlation coefficients are reported in

table 6.3. It appears that the reaction time costs correlate between sessions in the flanker

and the Stroop tasks, however the accuracy costs correlate only in the flanker, but not the

Stroop task. Adding the speed and accuracy manipulations does not seem to increase the

correlations between sessions. This suggests that the reaction time costs are relatively

stable over time, even without the SAT adjustments.

Table 6.3: Correlations (p values) between reaction time and accuracy costs between
two testing sessions, for all SAT manipulations and both Stroop and flanker
tasks. Correlations significant at the level of 0.008 (adjusted for multiple
comparisons) are shown in bold.

SAT condition and task Reaction time costs Accuracy costs

Speed Flanker 0.43 (0.003) 0.55 (7.3 × 10−5)
Speed Stroop 0.40 (0.005) 0.38 (0.009)
Accuracy Flanker 0.47 (0.001) 0.42 (0.003)
Accuracy Stroop 0.47 (0.001) 0.19 (0.205)
Neutral Flanker 0.59 (1.5 × 10−5) 0.45 (0.001)
Neutral Stroop 0.41 (0.005) 0.25 (0.096)

6.3.4 SAT costs between tasks and between sessions

The last question that was investigated in this chapter was whether the differences

between congruency effect in reaction time and accuracybetween the speed and accuracy

instructions (SAT cost; the difference between two difference scores) displayed stability

across different testing sessions and between the two response inhibition tasks. The

results for the SAT costs between the two tasks are shown in figure 6.9 and the results

for the SAT costs between two experimental sessions - in figure 6.10. The figures show

that there were was very little relationship between the SAT costs between either the

flanker and the Stroop task or the two experimental sessions. The actual correlations are
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reported in table 6.4. The table shows that the only significant correlation between the

SAT costs was in the reaction time costs in the Stroop task between the two experimental

sessions.

Table 6.4: Correlations (p values) between the SAT costs in the reaction time costs and
the accuracy costs between two testing sessions and two tasks. Correlations
significant at the level of 0.0125 (adjusted for multiple comparisons) are shown
in bold.

Condition Reaction time costs Accuracy costs

Between task session 1 0.07 (0.626) -0.07 (0.620)
Between task session 2 0.17 (0.261) 0.32 (0.022)
Between session flanker task -0.04 (0.768) 0.36 (0.013)
Between session Stroop task 0.39 (0.006) 0.20 (0.179)
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Figure 6.7: Correlations between the reaction time costs in session 1 and session 2 for
the flanker (left column) and the Stroop (right column) tasks for different
SAT instructions (rows). Black lines indicate the best fit lines for correlation,
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6.4 Discussion

This chapter investigated whether SAT has an effect on task performance in two different

response inhibition tasks (the flanker task and the Stroop task), measured in two different

points in time. The findings were consistent with the current sparse literature on the SAT

manipulations in response inhibition tasks: individuals changed their behaviour when

instructions emphasized either the speed or the accuracy of responding. The participants

were the most accurate but also the slowest in the accuracy condition; while the opposite

was true for the speed condition, as this resulted in the fastest response times but also

the largest amount of errors. The congruency effects were also replicated: participants

were slowest and made the most errors when responding to incongruent trials compared

to congruent trials. Also, there was in interaction between the congruency of the trials

and the SAT manipulation: the increase in errors between congruent and incongruent

trials was greater in the speed condition compared to the accuracy condition, and the

difference between the reaction times in congruent and incongruent trials was greater in

the accuracy condition compared to the speed condition. Even though the overall pattern

of performance was slightly different between the tasks (participants in the Stroop task

were slightly slower and less accurate than in the flanker tasks), the results showed the

same pattern in both tasks, and both experimental sessions.

The next question that this chapter tried to answer was whether the congruency ef-

fects were stable between the two different response inhibition tasks, by looking at the

correlations between reaction time costs and accuracy costs from the Stroop and the

flanker tasks. The results showed that neither the reaction time costs nor the accu-

racy costs correlated between the two tasks. The correlations did not improve when

speed and accuracy manipulations were added to the instructions. This result was

consistent for both experimental sessions. This suggests that the aspects of impul-

sivity captured by the two response inhibition tasks are not stable between the two

tasks.

There could be several possible explanations for this finding. First, the Stroop task

and the flanker task might be too dissimilar to expect similar performance from the

participants. The Stroop task used in this study was quite different to the classical

Stroop due to its adaptation as a computer task. This resulted in a four choice task,

where participants were asked to make two decisions: which hand to use and then which

finger to use for responding, which is different to just deciding on the colour to respond
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to. The two-decision process required to complete the Stroop task might have masked

the stable aspects of impulsive behaviour if any exist.

Alternatively, the lack of correlations between the tasks could be explained by using

difference scores (congruency costs as the difference between congruent and incongru-

ent trials). This is explained well in Hedge, Powell, and Sumner (2018), where the

researchers demonstrated that the difference scores do not consistently distinguish be-

tween individuals within a population, meaning that they would be difficult to use in

correlational studies where differences between individuals is of interest, as in this chap-

ter. Therefore the difference scores (reaction time costs and accuracy costs) might not

be sensitive enough to reveal individual differences, and therefore correlations, between

the two tasks.

The final question that this chapter intended to examine was whether behaviour in re-

sponse inhibition tasks is stable in time. This was investigated by inspecting correlations

between the reaction time costs in one session and another session within the same re-

sponse inhibition task. The results showed that the performance in the flanker task was

stable between the two experimental sessions, as measured by correlations in both the

reaction time costs and the accuracy costs. The Stroop task only showed stability in time

in reaction time costs, but not the accuracy costs. The speed and accuracy instructions

did not increase the correlations when compared to regular instructions, for either the

significant or insignificant effects, suggesting that the stability in time is unaffected by

the SAT manipulations.

These findings in general are very interesting, because using difference measures did not

hinder the reveal of the correlations between individuals in the different sessions. The

lack of correlations between the accuracy costs while the correlations were there for the

reaction time costs in the Stroop task is interesting, because the two measures, the re-

action times and the error rates, are generally used interchangeably in the literature to

show inhibitory control. This is consistent with Hedge, Powell, Bompas, et al. (2018),

who showed very low correlations between the two measures, even though they suppos-

edly measured the same thing. The same study showed that the correlations between

the measures were more pronounced under speed instructions than under regular or ac-

curacy instructions, however the SAT manipulations in the same sample did not improve

the between-session correlations of either of the measures.

The next chapter will investigate whether the above issues can be addressed with the
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cognitive modelling framework. Cognitive modelling provides a theoretical framework for

dissociating underlying cognitive mechanisms from the decision making tasks while also

accounting for speed-accuracy trade-offs (B. Forstmann et al., 2016). Cognitive modeling

is advantageous because it goes beyond description of data and seeks to provide an

explanation of behaviour while being designed to be much simpler and abstract versions

of human cognition (Lewandowsky & Farrell, 2010). The use of a decision making

model specifically designed for response inhibition tasks, the diffusion model for conflict

tasks (Ulrich et al., 2015), will allow to investigate not just whether the performance is

stable between tasks and sessions, but also whether the aspects of behaviour that are

related to impulsive decision making specifically, are stable between the tasks and the

sessions.
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7 Applying the diffusion model for conflict tasks to

experimental data

7.1 Introduction

Section 6 has demonstrated that speed-accuracy trade-off (SAT) affects the performance

in two response inhibition tasks, the Stroop task and the flanker task, and interacts with

congruency to influence reaction time and accuracy measures. Even though there were

clear effects of SAT on the reaction time and accuracy measures, it is difficult to make

interpretations about impulsive behaviour from those measures alone, as outwardly they

only reflect the speed of responding and the accuracy of responding. The two measures,

even though supposedly reflecting the same outcomes, tend to not correlate well with

each other (Hedge, Powell, Bompas, et al., 2018).

Both of these issues can be addressed with the cognitive modelling framework. Cognitive

modelling provides a theoretical framework for dissociating underlying cognitive mech-

anisms from decision making tasks while also accounting for speed-accuracy trade-offs

(B. Forstmann et al., 2016), therefore it is very suitable for the tasks in the previous

chapter. For overview of the drift diffusion model by Ratcliff (1978) and the diffu-

sion model for conflict tasks by Ulrich et al. (2015), please refer back to the introduc-

tion.

Application of a cognitive model to experimental data from section 6 allows investigation

of multiple interesting questions, due to elaborate study design. First, application of the

diffusion model by conflict tasks to the data would reveal how different speed-accuracy

strategies affect model parameters. Boundary separation and caution is interesting for

impulsivity and response inhibition research as in theory boundary separation is the only

parameter that should be under direct influence of the participant. Pote et al. (2016)

has managed to manipulate the level of caution and response threshold by subthalamic

nucleus deep-brain stimulation in patients with Parkinson’s disease, and induced im-

pulsive action in patients when they were acting under speed pressure. This provides

evidence that speed-accuracy trade-off and boundary separation is important in under-

standing impulsivity and caution. Even though historically only boundary separation

has been assumed to be under direct control of participant (Voss et al., 2004), recently

Rae et al. (2014) has challenged this assumption by demonstrating that changes in drift

rate and non-decision time can also vary with distinct speed and accuracy pressures.
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It is yet unknown whether drift rate and non-decision time would also vary under dif-

ferent speed and accuracy instructions in response inhibition tasks using the diffusion

model for conflict tasks. It is also unknown whether different speed and accuracy pres-

sures would have any influence on impulse function related parameters. If speed and

accuracy pressures only have an effect on the general decision making aspects of the

response inhibition tasks, then SAT manipulations should reveal different parameter

values for different SAT conditions for the parameters shared between the drift diffusion

model and the diffusion model for conflict tasks. The effects could be revealed for the

automatic activation parameters, if the SAT manipulations also have an effect on the

inhibitory aspects of the behaviour. Which specific parameters should vary with SAT

manipulations is difficult to predict. The expectation is to at least observe an effect

on the upper threshold parameter, as it is presumed to be under direct control of the

individual.

Secondly, investigating model parameters from the data in section 6 would allow us to

see whether it is impulsive behaviour, or just decision making overall, that results in

correlations between different response inhibition tasks, if model parameters do indeed

correlate between different response inhibition tasks. If impulsivity were to drive the

correlations between the tasks, then we should see correlations between impulse param-

eters (amplitude of automatic activation and time to peak automatic activation) of the

diffusion model for conflict tasks between the Stroop and the flanker tasks from section 6.

Note that we did not find any correlations between the Stroop and the flanker tasks, in

either the reaction time costs, or the accuracy costs. But this could have resulted from

multiple reasons: either there being no relationship between the two tasks in either deci-

sion making or inhibitory aspects, or from the behavioural measures not being sensitive

enough to reveal the relationships between the decision making and/or inhibitory pro-

cesses. Looking at model parameters instead of behavioural measures therefore might

offer more insight into the relationship between the Stroop and the flanker tasks. If SAT

manipulations do affect model parameters, the relationship between the tasks might be

easier to observe in the speed or the accuracy conditions as they might introduce more

variance in the parameter values.

Finally, the design of section 6 allows us to inspect whether any of the parameters from

the diffusion model for conflict tasks are stable in time. The behavioural results showed

that the flanker task performance remained relatively stable over the four week period,

whereas the Stroop task only showed stability when reaction time costs, but not accuracy
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costs, were considered. Which model parameters reflect this finding? We expect to see

correlations between the two sessions in at least the upper threshold parameter, as it is

firstly presumed to be affected by SAT manipulations, and would therefore offer more

variance to reveal a relationship, and secondly, because the upper threshold parameter

has an effect on reaction time of responding, and therefore should translate well between

the findings in section 6 and this chapter. It is unknown whether the impusivity specific

parameters should correlate within the tasks between the two different experimental

sessions. If the impulsivity parameters are recovered well and if they reflect stable traits

in task performance, then correlations between the parameter values in two experimental

sessions might be observed.

7.2 Methods

7.2.1 Experimental data

The experimental data used in this chapter was identical to that from section 6, therefore

please refer to the methods section of section 6 for details on participants, procedure,

tasks, apparatus, design, and data preparation.

7.2.2 Model fitting

Experimental data was separated by participant, session, task, and SAT condition. This

resulted in 612 sets of data that were fitted: ((55 + 47) × 3 × 2), where 55 and 47

is the number of participants in session 1 and session 2 respectively, 3 is the number

of SAT manipulations, and 2 is the number of tasks. In total, seven parameters were

fitted (upper threshold, non-decision time, standard deviation of non-decision time, drift

rate for controlled process, amplitude of automatic activation, time to peak automatic

activation, and shape of starting point distribution), while shape of automatic activation

was fixed to 2 and diffusion constant was fixed to 4.

Deep learning models were used to estimate parameters from experimental data. The

models that we used were the same as in section 5: the models trained with reaction

time distributions with low number of trials. For this, the input features were extracted

from each dataset, as described in section 4.2, then scaled according to the scaler fitted
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to the training dataset from section 5, and then applied individually for each diffusion

model for conflict tasks parameter.

7.3 Results

7.3.1 What effect does speed-accuracy trade-off have on model parameters?

To ensure that deep learning recovered the parameters from the experimental data well,

the model parameter sets were used to produce RT distributions of 1000 trials from each

of congruent, incongruent, and neutral conditions. The accuracy, and the 25th, 50th,

and 75th quantiles of RT were calculated for both correct and incorrect responses. Same

measures were also calculated for the actual RT distributions obtained from participant

responses. They are plotted in figure 7.3 to figure 7.6 for Stroop Session 1, Stroop

Session 2, Flanker Session 1, and Flanker Session 2 respectively. The figures show

that deep learning recovered the parameters very well as the predicted measures appear

very closely matched to actual measures, with exception to very few participants. Note

that individual dots in the figures represent an RT distribution for a SAT condition, so

there will be three distributions (with speed, accuracy, and both speed and accuracy

conditions) represented in each panel of the figure.

The recovered parameter values from the diffusion model for conflict tasks are shown

in figure 7.1 for the flanker task and figure 7.2 for the Stroop task. As can be seen in

the two figures, SAT did have an effect on parameter values. In the speed condition,

the upper threshold is reduced, compared to accuracy condition, which is consistent

with SAT account in drift diffusion model framework. However it looks like SAT does

affect other parameters, not just the upper threshold, particularly the non-decision time

parameters. This means that individuals seem to be able to change their response

execution time when pressed for speed as opposed to accuracy, with non-decision time

going down in speed condition, but variability of non-decision time going up. Shape

of starting point distribution is also affected, but it is difficult to make interpretations

about this parameter.

As differences between parameters themselves are not interesting, only main effects of

SAT are going to be inspected. The results of the ANOVAs (with Greenhouse-Geisser

corrections when Mauchy’s test of sphericity was violated) are reported in table 7.1. The

table shows that SAT instructions affected upper threshold, non-decision time, variability
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Figure 7.1: Effect of SAT on the diffusion model for conflict tasks parameters in flanker
task. Results from session 1 are shown in black while results from session
two are shown in purple. Dots indicate outliers.
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Figure 7.3: Predicted and actual accuracy, 25th RT quantile, 50th RT quantile, and 75th
RT quantile (columns) of RT distributions for Stroop task Session 1, for both
correct (black dots) and incorrect (pink dots) responses. The rows separate
the trials by congruency.
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Figure 7.4: Predicted and actual accuracy, 25th RT quantile, 50th RT quantile, and 75th
RT quantile (columns) of RT distributions for Stroop task Session 2, for both
correct (black dots) and incorrect (pink dots) responses. The rows separate
the trials by congruency.
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Figure 7.5: Predicted and actual accuracy, 25th RT quantile, 50th RT quantile, and 75th
RT quantile (columns) of RT distributions for flanker task Session 1, for both
correct (black dots) and incorrect (pink dots) responses. The rows separate
the trials by congruency. The accuracy is measured in proportion, while the
RT quantiles in seconds.
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Figure 7.6: Predicted and actual accuracy, 25th RT quantile, 50th RT quantile, and 75th
RT quantile (columns) of RT distributions for flanker task Session 2, for both
correct (black dots) and incorrect (pink dots) responses. The rows separate
the trials by congruency. The accuracy is measured in proportion, while the
RT quantiles in seconds.
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of non-decision time, and shape of starting point distribution. The results were the same

for both Stroop and flanker tasks, and for both experimental sessions. There was no

effect of SAT instructions on impulsivity parameters (amplitude of automatic activation

and time to peak automatic activation), or the drift rate for controlled process. The only

impulsivity-related parameter affected by SAT manipulations appears to be the upper

threshold.

Table 7.1: F values (p values) indicating the statistical difference between model pa-
rameter values from different SAT conditions for flanker and Stroop tasks for
both session 1 and session 2. Star after p value indicates Greenhouse-Geisser
correction when Mauchy’s test for sphericity was violated. The significant re-
sults are shown in bold (at corrected for multiple comparisons level of 0.002.
Degrees of freedom for session 1 were (2,108), and for session 2 they were (2,
92).

Parameter Flanker Session
1

Flanker Session
2

Stroop Session Stroop Session
2

β1 40.2
(6.7 × 10−12)*

10.3
(2.1 × 10−4)*

122.3 (1.5 ×
10−21)*

98.1
(5.6 × 10−21)*

µR 40.8
(6.4 × 10−12)*

36.9
(2.4 × 10−11)*

20.7
(1.0 × 10−6)*

12.0
(7.3 × 10−5)*

σR 57.8
(8.4 × 10−18)

35.6
(3.5 × 10−12)

15.0
(1.8 × 10−6)

23.3
(6.4 × 10−9)

µC 0.2 (0.791)* 1.0 (0.379)* 2.8 (0.075)* 4.8 (0.012)*
A 5.8 (0.004) 2.0 (0.152)* 3.2 (0.045) 0.2 (0.756)*
τ 0.6 (0.920) 0.4 (0.645) 5.9 (0.004) 5.4 (0.006)
α 77.8

(1.2 × 10−21)
87.7
(4.8 × 10−22)*

82.7
(2.7× 10−18))*

78.7
(1.2 × 10−20))

7.3.2 Between task correlations of model parameters

The correlations between model parameters from the flanker task and the Stroop task

are shown in figure 7.7 for session 1 and figure 7.8 for session 2, for all SAT in-

struction conditions. The correlation coefficients (with p values) are reported in ta-

ble 7.2.

When the neutral instruction condition is considered by itself, only the upper threshold

parameter showed a correlation between tasks in session 1, but not session 2. In ses-

sion 2, only the non-decision time parameter correlated between the two tasks. When
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Figure 7.7: Correlations between model parameters from Stroop task (x axis) and model
parameters from flanker task (y axis) from session 1 of the first study, for
speed (left column), accuracy (middle column), and neutral (right column)
instruction conditions. Black line shows actual correlation between the two
tasks, whereas purple line indicates the identity line.
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Figure 7.8: Correlations between model parameters from Stroop task (x axis) and model
parameters from flanker task (y axis) from session 2 of the first study, for
speed (left column), accuracy (middle column), and neutral (right column)
instruction conditions. Black line shows actual correlation between the two
tasks, whereas purple line indicates the identity line.
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the speed and accuracy conditions were inspected, it appeared that the non-decision

time also correlated between the two tasks in speed condition in both sessions, but

only in session 1 was a correlation revealed in the accuracy condition. In session

2, in the accuracy condition, drift rate for controlled process also correlated between

tasks.

The impulsivity parameters (amplitude of automatic activation and time to peak auto-

matic activation) did not correlate between tasks, neither in neutral SAT instructions,

nor in the speed or the accuracy instructions.

It must be noted that correlations in session two are harder to spot as the number of

participants who came back for session two was lower. Also, very strict criteria for

significance were applied to adjust for multiple comparisons, making correlations even

harder to spot.

However, overall, it appears that very few parameters from the diffusion model for

conflict task correlate between the Stroop and the flanker tasks. Moreover, adding SAT

manipulations to the experiments does not seem to help with correlations between tasks

for model parameters.

7.3.3 Between session correlations of model parameters

The correlations between model parameters from session 1 and session 2 of the tasks

are shown in figure 7.9 for the flanker task and figure 7.10 for the Stroop task for all

SAT instruction conditions. The correlation coefficients (with p values) are reported in

table 7.2.

The figures and table show that in the neutral condition, flanker task displayed moder-

ate significant correlations between session 1 and session 2, even after harsh adjustments

for multiple comparisons, for all parameters but drift rate for controlled process (which

resulted from the harsh cutoff for significance set at 0.0024, while the actual value for

drift rate was 0.003). This was true for all drift diffusion parameters, as well as auto-

matic activation parameters. Therefore adding SAT manipulations is not necessary for

correlation between sessions for the flanker task, if anything, most correlations seem to

be lower and non-significant in the speed condition.

The results are similar for the Stroop task: four out of seven diffusion model for conflict
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Figure 7.9: Correlations between model parameters from Session 1 (x axis) and Session 2
(y axis) from flanker task, for speed (left column), accuracy (middle column),
and neutral (right column) instruction conditions. Black line shows actual
correlation between the two tasks, whereas purple line indicates the identity
line.
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Figure 7.10: Correlations between model parameters from Session 1 (x axis) and Session
2 (y axis) from Stroop task, for speed (left column), accuracy (middle col-
umn), and neutral (right column) instruction conditions. Black line shows
actual correlation between the two tasks, whereas purple line indicates the
identity line.
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Table 7.2: Correlation coefficients (p values) between parameter values from flanker and
Stroop tasks for both session 1 (top) and session 2 (bottom)

Session 1
SAT instructions Speed Accuracy Neutral

β1 0.47 (2.8 × 10−4) 0.45 (5.1 × 10−4) 0.49 (1.6 × 10−4)
µR 0.53 (2.9 × 10−5) 0.45 (5.7 × 10−4) 0.25 (0.070)
σR 0.29 (0.031) 0.36 (0.012) 0.22 (0.101)
µC 0.07 (0.632) 0.11 (0.420) -0.01 (0.918)
A 0.05 (0.727) 0.22 (0.109) -0.07 (0.635)
τ -0.10 (0.457) 0.00 (0.974) -0.12 (0.399)
α 0.42 (0.001) 0.30 (0.024) 0.12 (0.393)

Session 2
Speed Accuracy Neutral

β1 0.36 (0.012) 0.56 (4.2 × 10−5) 0.25 (0.092)
µR 0.58 (1.9 × 10−5) 0.39 (0.006) 0.56 (4.8 × 10−5)
σR 0.05 (0.756) 0.27 (0.067) 0.31 (0.037)
µC 0.26 (0.080) 0.44 (0.002) 0.33 (0.022)
A -0.03 (0.864) -0.21 (0.152) -0.26 (0.077)
τ -0.19 (0.201) 0.17 (0.261) -0.14 (0.343)
α 0.33 (0.026) 0.20 (0.188) 0.34 (0.019)

task parameters show significant correlations in the neutral instruction condition, only

three in the accuracy condition, and only one in the speed condition, indicating that

adding SAT manipulation to experimental procedures does not help with improving

correlations between model parameters. The variability of non-decision time was the

only drift diffusion model parameter that did not correlate between sessions in the Stroop

task. Unlike with the flanker task, the impulsivity parameters did not correlate between

sessions in the Stroop task.

7.3.4 SAT costs in model parameters between tasks and between sessions

The results reported in section 6 revealed that there did not seem to be a relation-

ship between the difference in reaction time or accuracy costs between the speed and

accuracy conditions between the two experimental sessions, while only the SAT dif-

ference in reaction time costs in the Stroop task showed significant correlation. Do

parameters from the diffusion model for conflict tasks show better stability in SAT costs

either between tasks or between sessions? As five of the seven model parameters were
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Table 7.3: Correlation coefficients (p values) between parameter values from session 1
and session 2 for both flanker (top) and Stroop (bottom) tasks

Flanker task
SAT instructions Speed Accuracy Neutral

β1 0.41 (0.004) 0.64 (1.1 × 10−6) 0.63 (1.7 × 10−6)
µR 0.77 (3.0 × 10−10) 0.81 (7.2 × 10−12) 0.79 (5.3 × 10−11)
σR 0.42 (0.003) 0.45 (0.002) 0.49 (4.4 × 10−4)
µC 0.54 (0.002) 0.56 (4.3 × 10−5) 0.43 (0.003)
A 0.44 (0.024) 0.59 (1.4 × 10−5) 0.52 (1.7 × 10−4)
τ 0.34 (0.020) 0.56 (4.1 × 10−5) 0.50 (3.4 × 10−4)
α 0.25 (0.095) 0.07 (0.619) 0.58 (1.7 × 10−5)

Stroop task
Speed Accuracy Neutral

β1 0.32 (0.030) 0.53 (1.3 × 10−4) 0.52 (1.5 × 10−4)
µR 0.72 (1.4 × 10−8) 0.58 (1.9 × 10−5) 0.50 (4.0 × 10−4)
σR 0.17 (0.247) 0.42 (0.003) 0.25 (0.090)
µC 0.29 (0.046) 0.46 (0.001) 0.50 (3.7 × 10−4)
A 0.14 (0.359) 0.37 (0.010) 0.28 (0.056)
τ 0.17 (0.244) 0.32 (0.030) 0.26 (0.078)
α 0.39 (0.006) 0.21 (0.160) 0.50 (3.7 × 10−4)

affected by SAT manipulations, do the same parameters show stability in the change be-

tween the speed and accuracy conditions? The results are shown in figure 7.11 for SAT

costs between the two tasks and in figure 7.12 for the results between two experimen-

tal sessions. The figures show that there were was very little relationship between the

SAT costs between either the flanker and the Stroop task or the two experimental ses-

sions. The actual correlations are reported in table 7.4. The table shows that the only

two parameters that showed consistent effects in the change between SAT conditions

were upper threshold and non-decision time. The non-decision time was significantly

correlated only between the two sessions, as between task correlations failed to reach

significance due to strict adjustments for multiple comparisons. Neither variability of

non-decision time nor the shape of starting point distribution showed consistent effects

in SAT differences, even though the parameters themselves were affected by SAT ma-

nipulations.
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Table 7.4: Correlation coefficients (p values) between differences in parameter values
between speed and accuracy conditions between tasks in session 1 (outer left)
and session 2 (inner left) and between sessions in the flanker task (inner
right) and the Stroop (outer right) tasks. Significant correlations at the level
of 0.0035 are displayed in bold (adjusted for multiple comparisons).

Parameter Between
task S1

Between task
S2

Between ses-
sion flanker

Between ses-
sion Stroop

β1 0.42
(0.001)

0.50
(3.7 × 10−4)

0.51
(2.6 × 10−4)

0.54
(9.8 × 10−5)

µR 0.37
(0.006))

0.41 (0.004) 0.55
(6.2 × 10−5)

0.60
(7.3 × 10−6)

σR 0.19 (0.162) -0.16 (0.277) 0.24 (0.112) 0.41 (0.004)
µC -0.03

(0.837)
0.32 (0.028) 0.27 (0.064) 0.16 (0.284)

A -0.04
(0.769)

-0.24 (0.109) 0.30 (0.041) -0.01 (0.965)

τ 0.08 (0.548) -0.10 (0.497) 0.40 (0.005) 0.16 (0.283)
α 0.25 (0.060) 0.24 (0.104) 0.08 (0.610) 0.39 (0.006)
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Figure 7.11: Correlations between SAT costs in model parameters (different rows) be-
tween two tasks for both session 1 (left column) and session 2 (right column).
Black line indicates the best fit line for correlation, while the purple lines
display identity lines.
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7.4 Discussion

In this chapter, the diffusion model for conflict tasks was applied to behavioural data col-

lected from participants who performed Stroop and flanker task twice over two sessions

separated by four weeks. The main purpose of investigating parameters from conflict dif-

fusion model was to examine whether they provide any additional insights into questions

from section 6 that were not present in behavioural data, namely, whether model param-

eters show more stability between response inhibition tasks and between experimental

sessions than behavioural measures; on top of examining how speed-accuraccy trade-offs

affect model parameters in response inhibition tasks.

The results showed that out of seven parameters from the diffusion model for conflict

tasks that were recovered from experimental data, four were affected by SAT manipu-

lation: upper threshold, non-decision time, variability of non-decision time, and shape

of starting point distribution. This suggests that similarly to the drift diffusion model,

the SAT affects more than just boundary separation (upper threshold), and has signif-

icant effects on other parameters in the diffusion model for conflict tasks as well. The

idea that SAT only affects boundary separation has been challenged by many findings,

for example, J. Zhang and Rowe (2014); Rae et al. (2014); Dambacher and Hübner

(2015), who all found effects of SAT on non-decision time, drift rate, or both, on top

of the expected variations in boundary separation. The results of the current study

however did not find any differences in drift rate (for controlled process), which could

be a mark of two aspects: the current study used response inhibition, rather than per-

ceptual decision making tasks; as well as using the diffusion model for conflict tasks,

rather than the drift diffusion model, which provides additional parameters to account

for the decision making process. This result was replicated in two different tasks, as

well as two different experimental sessions, making it unlikely to be a result of statistical

noise.

The finding that SAT affects non-decision time in response inhibition tasks using the dif-

fusion model for conflict tasks is consistent with the literature from sequential sampling

models that use perceptual decision making. This study however expands the findings

by revealing differences in all non-decision process related parameters: variability of non-

decision time and the shape of starting point distribution. The impulsivity parameters

of the diffusion model for conflict tasks, the amplitude of automatic activation, and the

time to peak automatic activation, were not affected by SAT manipulation in this study,
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suggesting that speed and accuracy pressures do not alter processes of decision making

that are automatic to the stimuli.

Applying the diffusion model for conflict tasks to two response inhibition tasks allowed

investigation into whether model parameters show stability between the two tasks, as

behavioural measures in section 6 showed no relationship between the two tasks. Re-

placing behavioural measures with model parameters when investigating the relationship

between the Stroop and the flanker tasks did not deliver great results: there were some

correlations between model parameters, namely upper threshold (boundary separation)

and non-decision time, as well as a few other spurious looking correlations that did

not replicate between the two experimental sessions. SAT manipulation only brought

very minimal advantage over using neutral instructions that emphasize both speed and

accuracy. There was no relationship between the impulsivity parameters in the two

tasks.

In section 6, all of the behavioural measures from the flanker task, namely reaction time

costs and accuracy costs, correlated between the two experimental sessions. Therefore

it was not unexpected that all parameters from the diffusion model for conflict tasks

correlated between sessions in the flanker task as well, including the impulsivity param-

eters. The manipulation of SAT, just like in section 6, did not seem to add much benefit

to between-session correlations, as the relationships between model parameters did not

improve with either speed of accuracy emphasis. The results from the Stroop task were

different to those of the flanker task, in that only a few model parameters, like boundary

separation (upper threshold), non-decision time, and drift rate (for controlled process),

correlated between sessions. However, it must be noted that none of the correlations

between model parameters in the Stroop task, under neutral instructions that emphasise

both speed and accuracy, were negative or zero. This suggests that model parameters

are stable within the same response inhibition task, but they might be more difficult to

reveal in some tasks compared to others.

The limitations regarding the use of the four-choice Stroop task that were discussed in

section 6 apply to an even greater extent here, as the drift diffusion model and subse-

quently the diffusion model for conflict tasks, are both two-alternative-choice models.

As the Stroop task in the current study had four alternative choices, it is unknown how

well the model is capable of explaining the performance in the task as if it were a two-

choice task. However to fit the model, the responses were coded as binary in a correct

vs incorrect choice manner. This overall should not make the application of the model
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itself to the task invalid, as Krajbich and Rangel (2011) found that the brain uses similar

computational processes to make binary and trinary choices by applying extension of the

drift diffusion model, but it might affect the recovery of the parameters to some extent

anyway. This could explain the worse correlations between parameters between sessions

in the Stroop task compared to the standard two-choice flanker task, and also a lack of

correlations between the two response inhibition tasks.

Application of the diffusion model for conflict tasks to experimental data in this chap-

ter was very easy, which was the result of using trained deep learning models from

section 5 to recover parameters from the diffusion model for conflict tasks, using very

little compute resources. The whole process took no more than a few minutes, to ex-

tract parameters from 612 individual sets of data. If traditional global optimization

algorithms were used instead, the process would have taken over one and a half years

with significantly more compute resources. The application of deep learning models al-

lowed not having to put any constraints on the data itself, like presuming that some

parameters should be stable between sessions as they come from the same individuals,

instead, the data was allowed to speak for itself and reveal the similarities if there were

any.

Even though deep learning models struggled to recover the impulsivity parameters from

the diffusion model for conflict tasks in section 5 well, the impulsivity parameters seemed

to remain stable in time in the flanker task. This suggests that the deep learning models

were able to fit more than noise in the data, as it is very unlikely that noise patterns in

individuals would remain stable in time. Nonetheless, the results regarding impulsivity

parameters should be interpreted with caution until the deep learning models are better

able to recover those parameters.

The correlations between parameters from the diffusion model for conflict tasks from

different tasks might reflect similarities in decision making in these tasks that may or

may not be related to response inhibition at all. For example, boundary separation is

supposedly important in impulsive decision making (lower threshold - more impulsive

decisions), whereas other parameters, like non-decision time, are general to any decision

making, so correlations in this parameter would reflect similarities in decision making

that are not related to impulsive behaviour. This will be investigated in section 8, by

comparing performance in two tasks, the flanker task that has response inhibition, and

a perceptual decision making task of motion coherence that does not have a response

inhibition element.
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8 Response inhibition and perceptual decision making with

speed-accuracy trade-off

8.1 Introduction

In order for response inhibition tasks to be useful as an endophenotype of impulsive be-

haviour or impulsive disorders, they need to be stable over time and reflect some aspects

of impulsive decision making. Section 6 and section 7 have shown that the performance

in the flanker task is relatively stable over time, however, they have also demonstrated

how the performance of the task is affected by manipulations in speed and accuracy pres-

sures. The effects of SAT on simple decision making tasks without impulsivity elements

are well established, in that responses are more accurate but slower under accuracy

pressures and conversely faster but more error prone under speed pressures (see Heitz

(2014) for a review). The exact same pattern of behaviour is also found in the sparse

literature on the effects of SAT on response inhibition tasks (Leotti & Wager, 2010;

Wylie et al., 2009; Van Wouwe et al., 2014). The studies by (Wylie et al., 2009) and

(Van Wouwe et al., 2014) also demonstrated how speed pressure affects Parkinson’s pa-

tients and healthy controls differently in the interference effects of response inhibition

tasks, suggesting that SAT strategies have a larger effect in response inhibition tasks

in individuals who are more prone to impulsive decision making. However all response

inhibition tasks have elements that overlap with general decision making tasks without

the response inhibition aspect. This poses a question: does speed-accuracy trade-off

affect just the general decision making process, or does it also affect impulsive decision

making specifically?

Investigating this question in the cognitive modelling framework is beneficial, as it al-

lows decomposing the performance in decision making and response inhibition tasks

into individual cognitive elements, some of which are universal across decision making

(e.g. non-decision time and drift rate), while others are specific to response inhibition

(e.g. amplitude of automatic activation and time to peak automatic activation). As

the diffusion model for conflict tasks by Ulrich et al. (2015), applied in section 7, is

an adapted version of the drift diffusion model, it makes comparison between model

parameters from response inhibition and simple decision making tasks very straightfor-

ward.

In section 6 we have demonstrated how behavioural measures, namely reaction time
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costs and accuracy costs, did not correlate between two response inhibition tasks - the

flanker task (Eriksen & Eriksen, 1974) and the computer version of the Stroop task

(Stroop, 1935). Inspection of parameters from the diffusion model for conflict tasks in

section 7 revealed very few correlations between model parameters. While adding speed

and accuracy pressure to participants did not affect the correlations in section 6, there

were some effects in section 7 where correlations between some parameters were either

only present under speed or accuracy, but not both speed and accuracy pressures, or

were slightly larger with SAT manipulations. However it is unknown how much the

complexity of the Stroop task affected these results. The task was a four-choice rather

than a two-choice task, with a lot more complex response mappings than the flanker task.

Rather than trying to find which, if any, response inhibition tasks display similarities in

either behavioural or cognitive construct measures between the tasks, we can first try to

establish whether there are similarities in task performance irrespective of whether the

tasks contain response inhibition elements or not, and whether SAT manipulations help

to reveal them.

This is going to be investigated in the current chapter. The research presented here

had participants perform two tasks, one response inhibition (Eriksen flanker, (Eriksen &

Eriksen, 1974)), and one perceptual decision making task (random dot kinematogram,

RDK) (Britten, Shadlen, Newsome, & Movshon, 1992) without the response inhibition

element. Both tasks contained same speed-accuracy instruction manipulations as in

section 6. The two tasks were chosen as they were relatively similar, but one without

response inhibition element, and one with. Both flanker and RDK tasks have similar

stimulus response bindings (stimulus either goes left or right, responses are made with

left or right finger respectively), they are both two-choice tasks, and RDK allows for

varying difficulty to mimic congruency without the inhibition element. Firstly, we ex-

pect to see the SAT manipulations have an effect on both the behavioural measures of

the two tasks, as well as some model parameters (upper threshold, non-decision time,

variability of non-decision time, and the shape of the starting point distribution). As

section 7 did not find that SAT affected the drift rate for controlled process in the re-

sponse inhibition tasks, we should also not observe this in the flanker task in this chapter.

However, we should see coherence levels affect the drift rate for controlled process in the

RDK task. However it is unclear whether SAT manipulations will further affect the drift

rate for controlled process parameter. Secondly, we will be able to investigate similarities

between the flanker task and the RDK task in the behavioural measures and the model

parameters. If both tasks rely on similar decision making processes, then we would ex-

186



pect to see a correlation between the accuracy costs and the reaction time costs between

the two tasks, provided that the behavioural measures are sensitive enough to reveal

the decision making processes. The same relationship can be investigated by inspect-

ing model parameters, as they reveal decision making process in more detail than the

behavioural measures. The speed and accuracy manipulations, as in section 6 and sec-

tion 7, might help to reveal these relationships as they should provide more range in both

the behavioural measures, as well as the model parameters.

8.2 Methods

8.2.1 Participants

Students from Cardiff University School of Psychology undergraduate courses were re-

cruited to participate in this study in exchange of course credit. Eighty one participants

(six males) completed the study. Six participants that participated in Study 1 also par-

ticipated in this study. All participants had normal or corrected-to-normal vision, and

reported no motion sickness when viewing moving visual stimuli as recruitment criteria

(due to random dot kinematogram task). Participant characteristics are reported in

table 8.1.

Table 8.1: Demographics of participants in the study

Participants Mean Age (Range) Handedness
Male 6 19.3 (18-20) 6(100%) right handed
Female 75 19.3 (18-26) 64(85%) right handed
Total 81 19.3 (18-26) 70(86%) right handed

8.2.2 Design

The design consisted of within-subjects instruction condition (speed, accuracy, or both

speed and accuracy emphasis), and within-subjects trial congruency condition (congru-

ent, incongruent, or neutral trials in the flanker task, and hard or easy trials in the

RDK task). All participants completed both tasks, but they were not analysed as fac-

tors.
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8.2.3 Apparatus

The experiment took place in a dimly lit room; it was run on a Mac Mini computer

connected to a 36.5cm by 27.5cm colour display (60Hz, resolution 1280px by 1024px)

and an external keyboard. The tasks were programmed in PsychoPy version 1.73.04

(Peirce, 2009). Participants were seated at a distance of about 60 cm in front of the

computer screen. Responses were made on keyboard by pressing the ’z’ and ’m’ keys for

left and right responses respectively.

8.2.4 Tasks and procedures

Two tasks were used in this study. The first task was a response inhibition task, already

used in first study. This was the Eriksen flanker task (Eriksen & Eriksen, 1974), where

participants saw a white arrow in the middle of the black screen. The central arrow

was flanked with either two other arrows or dashes above and two other arrows or

dashes bellow the central arrow. In total five objects were presented in each trial. In

congruent trials, the direction of flanker arrows matched the direction of the central

arrow. In the incongruent trials, the direction of the flanker arrows was opposite to

that of the central arrow. In neutral trials, the central arrow was flanked by dashes.

In half of the trials, the central arrow was pointing right, while in the other half is was

pointing left. There were 144 trials per block, 48 congruent, 48 incongruent, and 48

neutral.

The second task used was a random dot kinematogram (RDK) task (Britten et al.,

1992). RDK is a two-choice perceptual decision-making task, which requires participants

to decide whether a cloud of dots is moving to the left or the right of the screen. In

this task, white dots were presented in a central oval in the middle of a black screen.

There were 50 dots in the central oval, with proportion of the dots displaying a random

motion, while the rest moved coherently to the right or to the left of the screen. There

were two types of motion coherence - 0.15 (hard condition) and 0.30 (easy condition), as

in the hard condition fewer dots displayed a coherent motion pattern, while in the easier

condition more dots moved with the same pattern. The signal dots were moving left in

half the trials and right in other half of the trials. There were 120 trials per block, 60

hard and 60 easy. The details of the task are also provided in Hedge, Powell, Bompas,

et al. (2018).
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There were three types of blocks in both tasks, same as in section 6. The first type of

block asked participants to respond as fast as possible, the second type of block instructed

participants to respond as accurately as possible, while the last type of block asked

participants to be both fast and accurate. Different feedback was given in these blocks.

In speed blocks, participants received feedback if they responded too slow (feedback said

“Too slow” on the screen) (slower than 600ms for the RDK task and 500ms for the flanker

task), in accuracy blocks participants saw feedback saying “Incorrect” if they gave the

wrong answer. In neutral blocks, no feedback was given. If participants responded too

quickly (faster than 200ms for the RDK task and 150ms for the flanker task), they saw

feedback saying “Too fast” irrespective of the type of block. The presentation of blocks

within a task was random.

Participants completed four questionnaires after completing the tasks. The first was

UPPS-P questionnaire (Lynam et al., 2006), the second questionnaire was NEO-FFI

(Costa & MacCrae, 1992). Then two questionnaires on compliance were administered.

First, the Gudjonsson Compliance Scale (Gudjonsson, 1989), is intended to measure trait

compliance. This questionnaire consists of 20 statements, to which participants respond

by choosing “True” or “False”. Finally, a Situational Compliance Scale (Gudjonsson,

Sigurdsson, Einarsson, & Einarsson, 2008) was used to assess participants’ compliance

as a state measure. No analysis was performed on the questionnaire data in this the-

sis.

Participants took 1.5 hours to complete the session, with flanker task taking approxi-

mately 40 minutes to complete, RDK task – approximately 40 minutes, and the ques-

tionnaires – approximately 10 minutes.

8.2.5 Data preparation

Before any analysis, data was cleaned by removing responses that were longer than

1.5 seconds, and anticipatory responses (<150ms). One participant was removed from

the analysis of the flanker task as they had 19% responses removed from such clean-

ing. All of the remaining participants had some trials removed - the values ranged

from 0.6% to 14.7% of trials per participant, mean 2.8%. No other trials were re-

moved. All analyses relating to reaction times only report reaction times of the correct

responses, while measures relating to accuracy looked at both correct and incorrect

responses.
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8.2.6 Model fitting

Experimental data was separated by participant, task, SAT condition, and coherence

condition for the RDK task. This resulted in 726 sets of data that were fitted: ((81×2+

80) × 3), where 81 was number of participants in RDK, two coherence conditions, and

80 was participants in flanker, 3 was the number of SAT manipulations. In total, seven

parameters were fitted (upper threshold, non-decision time, standard deviation of non-

decision time, drift rate for controlled process, amplitude of automatic activation, time

to peak automatic activation, and shape of starting point distribution) for the flanker

task, and five parameters (upper threshold, non-decision time, standard deviation of non-

decision time, drift rate for controlled process, and shape of starting point distribution)

for the RDK task, while the shape of automatic activation was fixed to 2 and the diffusion

constant was fixed to 4.

Deep learning models were used for parameter fitting. The models that we used were

the same as in section 5, the models trained with reaction time distributions with low

number of trials. For this, the input features were extracted from each dataset, then

scaled according to the scaler from training dataset containing reaction time distributions

with low number of trials, and then fitted individually for each diffusion model for conflict

tasks parameter.

The models trained in section 5 could only be used with the flanker task as is, as they

were trained with input features that contain congruent, incongruent, and neutral tri-

als. As the RDK task only has neutral trials, the deep learning models were retrained

to only use those trials as input features. The training of the models and the archi-

tecture of the models was identical to section 5.2. The only difference was that only

the neutral input features were used to train the deep learning models. The resulting

deep learning models trained with neutral input features were then applied to recover

parameters from the RDK task, from low coherence and high coherence datasets indi-

vidually.
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8.3 Results

8.3.1 Does SAT affect performance in flanker and RDK tasks?

In order to see whether SAT affected the task performance, the reaction times, the

accuracy of responses, the reaction time costs, and the accuracy costs in both flanker

and RDK tasks were inspected. The results relating to the reaction times are shown

in figure 8.1 and to accuracy of responding - in figure 8.2. The figures show that the

participants were generally faster and more accurate in the flanker task than in the RDK

task, confirming that the RDK task was slightly more difficult. The effects of SAT are

also clearly visible in the figures: participants in both tasks were generally faster under

speed instructions than under accuracy instructions, but more accurate under accuracy

instructions than under speed instructions. The effects of trial congruency (and coher-

ence in the RDK task) are also visible: the participants were faster and more accurate

in congruent trials compared to incongruent trials.

The interaction between congruency/coherence and SAT manipulation was also tested,

and the results are shown in table 8.2. The results indicate that in both flanker and

RDK tasks and for both measures, interaction of SAT and congruency/coherence had

significant effects on performance.

Table 8.2: F values (p values) for the SAT x congruency interaction on reaction time
and accuracy, and SAT effects on reaction time costs and accuracy costs. Sig-
nificant results are shown in bold at the level of 0.006 (corrected for multiple
comparisons). Stars next to p values indicate Greenhouse-Geisser correction
for Mauchy’s test of sphericity. The degrees of freedom were (2, 160) for ses-
sion 1 and (4, 316) for session 2 for interaction effects, and (2, 160) for session
1 and (2, 158) for session 2 for the cost effects.

Task and session Reaction time Accuracy Reaction time
costs

Accuracy
costs

Flanker 29.7 (1.8 ×
10−14)*

5.5 (0.003)* 30.5 (2.9 ×
10−10)*

7.7 (0.002)*

RDK 50.8 (8.4 ×
10−18)

13.2 (5.1 ×
10−6)*

50.8 (8.4 ×
10−18)

13.2 (5.1 ×
10−6)

The congruency costs were also examined: the difference in reaction times and accuracy

between congruent and incongruent trials in the flanker task, and the difference between

low coherence and high coherence trials in the RDK task. The results are shown in
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Figure 8.1: Effects of congruency/coherence (colour) and SAT instructions (x axis) on
reaction times in both flanker (left column) and RDK (right column) tasks.
“Both fast and accurate” instructions are reported as “neutral”. Dots indi-
cate outliers.
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Figure 8.2: Effects of congruency/coherence (colour) and SAT instructions (x axis) on
accuracy of responding in both flanker (left column) and RDK (right column)
tasks. “Both fast and accurate” instructions are reported as “neutral”. Dots
indicate outliers.
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figure 8.3 for reaction time costs and figure 8.4 for accuracy costs, for both tasks. The

figures show that congruency costs in reaction time were lower in speed conditions when

compared to accuracy condition, whereas the congruency cost in accuracy was higher in

speed conditions when compared to accuracy conditions, but only in the flanker task.

The accuracy costs in the RDK task were lower in the speed condition than in the

accuracy condition. These effects were statistically significant for all tasks (see table

table 8.2 inner right column for reaction time costs and outer right column for accuracy

costs).

8.3.2 Does task performance correlate between response inhibition and perceptual

task?

As we have shown that manipulating SAT with instructions has an effect on performance

in the flanker and the RDK tasks, we can now investigate whether SAT manipulations

also affect the correlations between the measures from the two tasks. The correlations

for reaction time costs are shown in figure 8.5 and for accuracy costs in figure 8.6.

The figures show that during both speed and accuracy and accuracy only instructions,

correlations in both reaction time costs and accuracy costs were very low. They are

reported in table 8.3. The table shows that reaction time costs did not correlate between

the two tasks in any of the SAT condition, however the accuracy costs had a small but

significant correlation between the two tasks but only in under speed pressure. This

suggests that SAT manipulations help to reveal similarities between performance in two

tasks.

Table 8.3: Correlations (p values) between reaction time and accuracy costs between
the RDK and the flanker tasks. Correlations significant at the level of 0.008
(adjusted for multiple comparisons) are shown in bold.

SAT condition Reaction time costs Accuracy costs

Speed 0.20 (0.069) 0.33 (0.002)
Accuracy 0.10 (0.390) 0.11 (0.348)
Neutral 0.06 (0.564) 0.20 (0.078)
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Figure 8.3: Effects of SAT instructions on reaction time costs in both flanker (left col-
umn) and RDK (right column) tasks. “Both fast and accurate” instructions
are reported as “neutral”. Dots indicate outliers.
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Figure 8.4: Effects of SAT instructions on accuracy costs in both flanker (left column)
and RDK (right column) tasks. “Both fast and accurate” instructions are
reported as “neutral”. Dots indicate outliers.
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Figure 8.5: Correlations between reaction time costs in flanker and RDK tasks for dif-
ferent SAT instructions (columns). Black line indicates the best fit line for
correlation, while the purple lines display identity lines.
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Figure 8.6: Correlations between accuracy costs in flanker and RDK tasks for different
SAT instructions (columns). Black line indicates the best fit line for corre-
lation, while the purple lines display identity lines.
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Figure 8.7: Diffusion model for conflict tasks parameters in flanker (left column) and
RDK (right column) tasks. Parameters from different coherence levels in
the RDK task are represented as different colours. A and tau parameters are
empty in the RDK task as they only apply to response inhibition tasks. “Both
fast and accurate” instructions are reported as “neutral”. Dots indicate
outliers.
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8.3.3 SAT costs between tasks
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Figure 8.8: Correlations between SAT costs in reaction time costs (right column) and
accuracy costs (left column) between two tasks. Black line indicates the best
fit line for correlation, while the purple lines display identity lines.

The last question that was investigated in this chapter was whether the differences

between reaction time and accuracy costs between the speed and accuracy instructions

displayed stability between the two response inhibition tasks. The results for SAT costs

between the two tasks are shown in figure 8.8 . The figures show that there were was

very little relationship between the SAT costs between the flanker and the RDK task.

The actual correlations were r(78) = -0.04, p = 0.694 for reaction time costs and r(78)

= 0.26, p = 0.019 for accuracy costs, with the correlation between accuracy costs being

significant. This is inconsistent with results from section 6, which showed a correlation

in reaction time costs. It must be noted however that the correlations were low and could

have been driven by outliers, both here and in section 6.

8.3.4 How do model parameters relate in an impulsivity and non-impulsivity task?

To ensure that deep learning recovered the parameters from the experimental data well,

the model parameter sets were used to produce RT distributions of 1000 trials from each

of congruent, incongruent, and neutral conditions for the flanker task, and neutral trials
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but with two coherence levels for the RDK task. The accuracy, and the 25th, 50th, and

75th quantiles of RT were calculated for both correct and incorrect responses. Same

measures were also calculated for the actual RT distributions obtained from participant

responses. They are plotted in figure 8.9 and figure 8.10 for flanker task and RDK task

respectively. The figures show that deep learning recovered the parameters very well as

the predicted measures appear very closely matched to actual measures, with exception

to very few participants. The predictions for RDK task are particularly of interest,

given that the deep learning models were not tuned at all to predict parameters from

the drift diffusion task, but simply retrained to predict parameters from neutral trials

only. Even without extra tuning, the deep learning models seem to be doing a good job

of predicting the model parameters. Note that individual dots in the figures represent

an RT distribution for a SAT condition, so there will be three distributions (with speed,

accuracy, and both speed and accuracy conditions) represented in each panel of the

figures.

To examine whether model parameters are affected by SAT manipulation in the same way

in two types of task, response inhibition and perceptual decision making, the diffusion

model for conflict tasks parameters were predicted for the Flanker and the RDK task

using deep learning models as described in the methods. As the RDK task does not

have a response inhibition element, only five out of seven parameters were estimated,

excluding the automatic activation ones. The predicted parameters are presented in

figure 8.7.

Table 8.4: F values (p values) indicating the statistical difference between model param-
eter values from different SAT conditions for flanker and RDK tasks. Star
after p value indicates Greenhouse-Geisser correction when Mauchy’s test for
sphericity was violated. The significant results are shown in bold (at corrected
for multiple comparisons level of 0.004. Degrees of freedom were (2, 160) for
RDK task and (2,158) for flanker task.

Parameter Flanker task RDK task

β1 21.2 (3.5 × 10−8)* 86.3 (3.9 × 10−26)
µR 58.6 (3.3 × 10−15)* 63.5 (5.1 × 10−21)
σR 46.4 (9.7 × 10−16)* 7.5 (7.5 × 10−4)
µC 1.7 (0.192)* 6.1 (0.003)
A 5.6 (0.007)* -
τ 0.4 (0.667) -
α 129.5 (5.0 × 10−34) 50.2 (1.2 × 10−17)
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Figure 8.9: Predicted and actual accuracy, 25th RT quantile, 50th RT quantile, and
75th RT quantile (columns) of RT distributions for flanker task, for both
correct (black dots) and incorrect (pink dots) responses. The rows separate
the trials by congruency. The accuracy is measured in proportion, while the
RT quantiles in seconds.
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Figure 8.10: Predicted and actual accuracy, 25th RT quantile, 50th RT quantile, and
75th RT quantile (columns) of RT distributions for RDK task, for both
correct (black dots) and incorrect (pink dots) responses. The rows separate
the trials by RDK dot coherence. The accuracy is measured in proportion,
while the RT quantiles in seconds.
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As the differences between model parameter values are not important, the data from

each parameter was evaluated separately. First, we want to know whether SAT has

an effect on model parameters in the two tasks. The results are shown in table 8.4.

The table shows a similar pattern of results as the previous chapter, in that SAT had a

significant effect on upper threshold, non-decision time, variability of non-decision time,

shape of starting point distribution, and mildly the drift rate for controlled process in

the RDK task, but not flanker task. This is all consistent with the results in the previous

chapter.

On top of main effects of SAT, we can also investigate which parameters are affected by

coherence in the RDK task. We find that variability of non-decision time and drift rate

for controlled process is affected by coherence (F(1,80)= 8.6, p = 0.004 for variability

of non-decision time, and F(1,80) = 258.5, p = 8.9 × 10−27 for drift rate for controlled

process). Only drift rate for controlled process would be statistically significant when

adjusted for multiple comparisons. All other parameters were not affected by coherence

(all F < 3.7, p > 0.05). There was also an interaction between SAT and coherence on

the drift rate for controlled process (F(2,160) = 3.4, p=0.036), but it was not significant

when adjusted for multiple comparisons (due to five different comparisons for each model

parameter).

To see whether parameters in RDK correlate with parameters in the flanker task, the

relationship between the two tasks was visualized, once for low coherence trials, and

then second time for high coherence trials. The results are shown in figure 8.11 for low

coherence trials and figure 8.12 for high coherence trials.

The correlation coefficients are reported in table 8.5 for both low coherence and high

coherence correlations. The table demonstrates that all parameters correlate across the

two tasks to some degree, however, the shape of the starting point distribution could

be spurious as it did not replicate between the two coherence conditions. The upper

threshold only correlated between the tasks in the speed and accuracy conditions, not

the neutral condition, indicating that more extreme responding is needed to reveal the

correlations. The finding remained the same for both coherence conditions. The non-

decision time parameter correlated only in the neutral and speed condition, suggesting

that faster responses reveal the correlations. The correlations between non-decision time

seem stronger in the speed than in the neutral condition, suggesting that SAT is beneficial

in revealing the relationship between the tasks. Variability of non-decision time seems

to be correlated between the two tasks, but SAT manipulation does not seem to bring
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Table 8.5: Correlation coefficients (p values) between parameter values from flanker task
and RDK task for both low coherence (top) and and high coherence (bottom)
trials. Significant correlations at level of 0.003 adjusted for multiple compar-
isons are shown in bold.

Flanker task - RDK low coherence
SAT instructions Speed Accuracy Neutral

β1 0.33 (0.003) 0.53 (5.3 × 10−7) 0.20 (0.084)
µR 0.58 (2.3 × 10−8) 0.25 (0.027) 0.36 (9.7 × 10−4)
σR 0.29 (0.008)) 0.48 (9.7 × 10−6) 0.40 (2.4 × 10−4)
µC 0.41 (1.5 × 10−4) 0.38 (5.6 × 10−4) 0.39 (4.0 × 10−4)
α 0.20 (0.082) 0.11 (0.349) 0.26 (0.018)

Flanker task - RDK high coherence
Speed Accuracy Neutral

β1 0.37 (6.9 × 10−4)) 0.56 (8.2 × 10−8) 0.22 (0.048)
µR 0.60 (4.5 × 10−9) 0.26 (0.019) 0.39 (3.4 × 10−4)
σR 0.38 (6.5 × 10−4) 0.40 (2.3 × 10−4) 0.41 (2.1 × 10−4)
µC 0.31 (0.005) 0.35 (0.002) 0.23 (0.044)
α 0.19 (0.096) 0.34 (0.002)) 0.16 (0.151)

any improvement. The same is true for drift rate for the controlled process, but only in

low coherence condition, but no effect of SAT, suggesting that it is the coherence level

rather than SAT revealing the relationship.

8.3.5 SAT costs in model parameters between tasks and between sessions

Results reported in section 7 revealed that change in the upper threshold and the non-

decision time parameters between the speed and accuracy instructions correlated be-

tween two response inhibition tasks. Do the same parameters show relationship in sta-

bility between a response inhibition and a perceptual decision making task? The results

are shown in figure 8.13. The figure demonstrates that there were was very little relation-

ship between the SAT costs between the two tasks. The actual correlations are reported

in table 8.6. The table shows that only the non-decision time parameter demonstarted

consistent change between the SAT conditions, while all the other parameters, including

the upper threshold, did not. Even the correlations in non-decision time were much

lower compared to results in section 7.
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Table 8.6: Correlation coefficients (p values) between differences in parameter values
between speed and accuracy conditions between the two tasks. Data from
high coherence trials in RDK tasks is displayed in the left column, and data
from low coherence trials in the right column. Significant correlations at the
level of 0.005 are displayed in bold (adjusted for multiple comparisons).

Parameter High coherence trials Low coherence trials

β1 0.26 (0.018) 0.20 (0.083)
µR 0.32 (0.004) 0.33 (0.003))
σR 0.04 (0.702) 0.11 (0.329)
µC 0.09 (0.420) 0.22 (0.051)
α 0.05 (0.660) 0.13 (0.252)
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Figure 8.11: Correlations between parameter values in flanker task (y axis) and RDK
low coherence trials (x axis) for different SAT instructions (columns). Black
line indicates the best fit line for correlation, while the purple lines display
identity lines.
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Figure 8.12: Correlations between parameter values in flanker task (y axis) and RDK
high coherence trials (x axis) for different SAT instructions (columns).
Black line indicates the best fit line for correlation, while the purple lines
display identity lines.
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8.4 Discussion

The study presented in this chapter has replicated the results of section 6 by showing

that speed-accuracy trade-off affects performance of the flanker task, as the participants

changed their behaviour when instructions emphasize either speed or accuracy of re-

sponding. The participants were the most accurate but also the slowest in the accuracy

condition; while under speed pressure, responses were faster but more error prone. These

effects were also present in the task without response inhibition, the motion coherence

task.

Given that section 6 found no correlations between the performance in two response

inhibition tasks, even with SAT manipulations, we did not predict to find any relationship

between performance in a response inhibition and a perceptual decision making task, but

surprisingly, accuracy costs correlated between the two tasks, but only under accuracy

pressure. The reaction time costs showed no relationship between the two tasks. As

no correlations were found between the two response inhibition tasks in section 6, the

evidence that manipulating speed and accuracy might help reveal relationship between

different decision making tasks seems limited.

The choice of using the diffusion model for conflict tasks to examine model parameters

in section 7 allowed application of the model in this chapter as well, even on a task

without response inhibition element. As the diffusion model for conflict tasks utilizes

the same parameters as the drift diffusion model, it can be applied to decision making

tasks without inhibitory processes, by just omitting the impulsivity parameters. This al-

lowed investigations into how SAT affects the model parameters from the two tasks, and

whether the model parameters, rather than behavioural measures, relate in the two tasks.

The results from section 7 were replicated again, by finding that the same model param-

eters were affected by the SAT manipulation: upper threshold (boundary separation),

non-decision time, variability of non-decision time, and shape of starting point distribu-

tion. One notable exception was that in the RDK task, drift rate for controlled process

was affected by SAT manipulations, agreeing with J. Zhang and Rowe (2014); Rae et

al. (2014); Dambacher and Hübner (2015). However in the flanker task the drift rate

was not affected by SAT manipulations, suggesting that maybe the effects of SAT could

be different in response inhibition and perceptual decision making, as the finding was

replicated across three studies that used the flanker task.

Between task correlations of model parameters, just like in section 7, were sparse, but
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visible across more parameters: on top of boundary separation (upper threshold) and

non-decision time in section 7, variability of non-decision time and drift rate (for con-

trolled process) seemed to correlate between the two task. Correlations between some

of the model parameters were improved by the SAT manipulations, suggesting that

more extreme behaviour makes similarities between task performance more visible in

model parameters. This also suggests that looking into model parameters instead of

behavioural measures for establishing relationships between response inhibition tasks

could be beneficial, as they might reveal that the relationships come from similarities

in processes common to all decision making, and not just impulsive decision making in

itself.
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9 Discussion

The focus of this thesis was investigation of whether deep learning could be a viable al-

ternative to global optimization algorithms in the recovery of parameters from diffusion

model for conflict tasks by Ulrich et al. (2015), which is an extension of the drift diffu-

sion model (Ratcliff, 1978). The application of the diffusion model for conflict tasks to

experimental studies is not straightforward because the model is non-differentiable; for

this reason global optimization algorithms need to be utilized instead, without any guar-

antees that they would find a global minimum of the objective function. Even though

global optimization algorithms are capable of recovering some parameters from the dif-

fusion model very well (White et al., 2018), they are a huge drawback of the excessive

computational time. As each dataset (reaction time distribution) is treated in isolation

by the global optimization algorithms, parameter recovery from an individual dataset

takes hours, sometimes days. When researchers have hundreds of datasets to apply

the diffusion model for conflict tasks to, but no access to high performance computing

clusters, the application of the model becomes unfeasible (Ambrosi et al., 2019). For

this reason, alternative methods are needed that can recover the parameters as well as

global optimization algorithms, but without the computational overhead. Deep learning

methods could offer this alternative.

The main reason why global optimization algorithms are so computationally expensive is

that they need to compute reaction time distributions at each step of the optimization.

Even though the process of computing reaction time distributions is expensive, the

global optimization algorithms do not store or reuse this information in any way, and

the process has to be repeated for each dataset individually. The computation of reaction

time distributions is not avoidable, as all methods investigating the goodness of fit of

the proposed solution involve the comparison of the reaction time distributions of the

problem dataset and the proposed solution dataset. How and what information from

the reaction time distributions is used when comparing them is usually the focus of

investigations of different fitting approaches (White et al., 2018), rather than different

global optimization algorithms. Comparison of different global optimization algorithms

would allow to find what approach of finding a solution to the diffusion model of conflict

tasks is the most suited to the problem.

Instead of diving into the comparison of global optimization algorithms, this thesis first

examined the solution space of the diffusion model for conflict tasks resulting from com-
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paring reaction time distributions. When studies looking into parameter recovery from

the model find that some parameters are hard to recover (White et al., 2018), conclu-

sions cannot be made on whether the methods used in the study struggled to recover

the parameters, or whether the parameters themselves are not recoverable, therefore any

method would struggle. Investigation of the solution space allowed to answer this ques-

tion specifically, by just looking at the surface of the seven-dimentional solution space

(resulting from seven parameters from the diffusion model for conflict tasks). Section 2

showed that changes in five out of seven diffusion model for conflict tasks parameters

can be mimicked by changes in other parameters, meaning that any global optimiza-

tion algorithm will struggle to find a solution to the objective function of the diffusion

model for conflict tasks, when reaction time distributions are compared in the fitting

procedure.

The solution space of the diffusion model for conflict tasks contains many local minima.

This results from some of the parameters of the diffusion model for conflict tasks having

the same effects on the reaction time distribution as a combination of other parameters,

therefore making the reverse inference very hard (given this reaction time distribution,

what are the diffusion model for conflict tasks parameters that made it?). However

different global optimization algorithms might be better suited to the problem due to

the different approaches they employ to deal with the local minima. To examine how

well different classes of methods perform, section 3 compared the recovery of parameters

from the diffusion model for conflict tasks from five optimization methods. All five al-

gorithms were constrained in their runtime, which was limited by the High Performance

Computing cluster in Cardiff University. The results revealed that some algorithms,

like the basin hopping algorithm, could not solve the problem in the given time, while

the differential evolution algorithm outperformed all other algorithms in all experimental

conditions. The superior performance of differential evolution is consistent with Hawkins

et al. (2015), who found that differential evolution provided better parameter recovery

from drift diffusion model than the particle optimization and the simplex algorithms.

The result is also consistent with research outside of the decision making modelling

field, as Civicioglu and Besdok (2013) found that differential evolution outperformed

other global optimization algorithms, such as particle swarm optimization and artificial

bee colony, in 50 benchmark numerical optimization functions. Even though section 2

suggested that limiting the number of parameters recovered from the diffusion model for

conflict tasks could help with the recovery, this was not the case when investigating the

performance of the global optimization algorithms. This finding has implications for ap-
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plying global optimization algorithms as a method for parameter recovery from diffusion

model for conflict tasks in experimental situations, in that there is no need to constrain

parameter space as it does not improve parameter recovery.

Even though differential evolution recovered parameters very well when the resulting re-

action time distributions were compared, the recovery of each individual parameter from

the diffusion model for conflict tasks varied significantly. Only some parameters were

recovered well, as indicated by high and significant correlations between recovered and

actual parameter values, while other parameters were not recovered well, as the correla-

tions were low and not significant. This is an issue with applying differential evolution

(or any other global optimization algorithm as they all displayed similar performance

of only recovering some parameters well) to recover parameters from behavioural stud-

ies, as no conclusions about a whole set of parameters, or some specific parameters of

interest, could be made.

The biggest issue with all global optimization algorithms for parameter recovery is the

excessive computational time it takes to apply them. Even when considering recovering

parameters from distributions with a small number of trials, and limiting the runtime to

24 hours, applying global optimization algorithms to studies with even modest number

of participants takes a very long time. For example, studies with 80 participants, and six

different reaction time distributions per participant (assuming six different experimental

manipulations), would take 640 days - that is almost two years of computational time.

If researchers do not have access to high performance computing clusters, this makes

application of non-differentiable decision making models to psychological research un-

feasible.

For this reason, investigation into deep learning as an alternative to global optimization

algorithms was started. Deep learning has become very popular in the recent years as

the algorithm started beating records in many artificial intelligence problems (LeCun et

al., 2015) and perform as well as humans on some problems that once seemed unfeasible

for machines. The biggest limitation for applying deep learning is the vast number of

training samples it requires, which can easily exceed millions of samples. The training

data also needs to be labelled for supervised problems, which can be hard to achieve in

some fields. For this reason, applying deep learning models in some fields, like human

health research, has been very difficult (Miotto et al., 2017), because the sample sizes

can be very limited. This however is one of the advantages of decision making models,

as the data can be generated by the model very easily. Data generation is what happens
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in the recovery of parameters with global optimization algorithms, as the optimization

algorithms compute reaction time distributions; but then they are discarded. This is a

very wasteful approach, as if these reaction time distributions can be stored, and if we

know their ground truth labels (the parameter values that were used to make them),

they can be used as training data for deep learning models that try to predict parameter

values from reaction time distributions.

Deep learning also avoids another pitfall of global optimization algorithms, as deep

learning never actually compares reaction time distributions. Deep learning tries to

minimize the error between predicted and actual parameter values by changing the

weights of the deep learning model, which get multiplied by the input features (that

do come from reaction time distributions), but the reaction time distributions are never

compared themselves. This approach, coupled with the fact that thousands of reaction

time distributions are being recovered at once (rather than individual reaction time

distributions), might avoid the pitfalls of the local minima in the solution space of the

diffusion model for conflict tasks. The results in section 4 and section 5 showed that

deep learning was capable of recovering parameters from the diffusion model for conflict

tasks exceptionally well, even from reaction time distributions with a small number of

trials. The recovery of the trickier parameters, as identified by (White et al., 2018) and in

section 3, was not great, but also not worse than the best performing global optimization

algorithm, suggesting that deep learning can be a credible and, very importantly, a fast

alternative to global optimization algorithms.

Some people would argue that deep learning is famed for the computational complexities,

which would make the implementation of deep learning as computationally expensive as

the global optimization algorithms, however this is not the case in practice. The biggest

time cost in deep learning comes from creating the training data, but it only needs to

be done once, and then the data can also be shared between researchers. Even though

deep learning seems to have a reputation of being “hard to do”, in actual fact the im-

plementation of deep neural networks is very straightforward if the basic principles of

the algorithm are well understood, mainly due to the high level packages available in

python, such as keras and PyTorch. Both of the packages are very “pythonic” and

make the implementation of even the very complicated deep neural network architec-

tures quite straightforward - the tag line of the keras package is “Deep learning for

humans”. The training time of the deep neural networks implemented in section 4 and

section 5 was hours, compared to days for a recovering parameters from a single reaction
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time distribution using global optimization algorithms. Once deep learning models are

trained, their application in parameter recovery takes seconds for hundreds of thousands

of reaction time distributions AT ONCE, making them much faster overall than the

global optimization algorithms.

Deep learning models are generally known to not be a good choice for problems where

interpretability of the model is of high priority. As deep learning models contain hundreds

of thousands if not millions of trainable weights, and can create very complicated non-

linear features from the input data, this makes it really hard to then explain why certain

decisions were made by the models. This is usually a high priority in fields like medicine

or the legal field, where decisions not made by humans need to be interpreted and

understood by humans. However this is not the case with decision making models. Even

though it would be interesting to see what features are used for parameter prediction,

and how they interact, this is not a legal or medical requirement and therefore can be

omitted. Another major critical point about deep learning is whether it actually learns

anything about the input data, or whether it just learns direct input-output matching

without learning anything about the underlying qualities of the input data. This in

general is a huge point of discussion, see (C. Zhang, Bengio, Hardt, Recht, & Vinyals,

2016). However it is unclear whether in parameter recovery, learning representations are

actually needed, or whether input-output mapping is sufficient for the task of parameter

recovery itself.

One issue that the researchers could face when trying to apply the deep learning models

in parameter recovery could be the specificity of the inputs required for the models.

For example, both section 4 and section 5 used congruent, incongruent, and neutral

trials in model training. If the same pre-trained models were to be used in recovering

parameters from experimental studies, all the experimental studies will need to have

those three types of trials, as deep learning models cannot deal with missing inputs. In

order for the deep learning models to be more general, they should be trained with-

out the neutral trials in inputs, as they are not always included in the experimental

studies.

The number of samples used to train the models in section 4 and section 5 should be

reviewed as well. The number of 150,000 samples was chosen because models trained with

data from distributions with a high number of trials seemed to perform exceptionally well

with this number of samples and did not need any more training data. This is evident

from deep learning models performing very well, even with quite shallow architectures.
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But overall, 150,000 samples is a very small number for deep learning models, when the

number of trainable weights is in hundreds of thousands. Increasing the training dataset

at least ten times could benefit the performance of the models predicting parameters

from reaction time distributions with low number of trials.

One of the most important issues to consider moving forward should be further shaping

of the deep learning model architecture to predict parameters better from data with low

number of trials, especially the impulsivity parameters, as they could not be predicted

very well from data with low number of trials. In this thesis, data with low number of

trials consisted of 600 trials, which is still quite high considering that if each decision

takes 3 seconds to make, it would take half an hour to collect that data, which could be

challenging with clinical or younger populations. We need to see how much the number

of trials in the training distributions can be reduced to predict the parameters well from

datasets with few hundred, or even below a hundred trials.

Even though learning from data with low number of trials is difficult due to the abun-

dance of non-numerical inputs, further smoothing or filtering of the data is not an answer

to this problem. This is because one of the the biggest advantages of the deep learning

methods over shallow machine learning is that feature engineering is unnecessary for

good model performance. Feature engineering can bring researcher bias to the models.

In the ideal circumstances, if the models are provided with a good amount of training

data and appropriate architecture that allows the models to learn the features, inputs

of raw data should be sufficient for good model performance. This is quite tricky with

reaction time data. As discussed in section 4, unlike in convolutional neural networks,

reaction time distribution data is not spatially correlated. This means that if the trial

sequence in a reaction time distributions were reshuffled, the distribution itself would

not change. This makes neural networks with convolutions unsuitable. Secondly, even

though we know there are temporal dependencies in reaction times in decision mak-

ing, decision making models like the diffusion model for conflict tasks treat each trial

as independent, therefore recurrent network architectures are also unsuitable. Reaction

time distributions, in broad terms, are not bound by a fixed number of trials (e.g., a

reaction time distribution with 1000 trials would overall be the same as a reaction time

distribution with 995 trials or a reaction time distribution with 1005 trials). However

the varied input size is a problem for deep learning, as most models require a fixed input

size. This is usually solved with some kind of empty padding, for example, images can

be framed with white pixels, word embeddings with non-words, and so on. It is yet
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unknown how to pad reaction time data so that it does not change the properties of the

distributions. One way to avoid that would be using sequence models instead of fixed

input sizes.

In the second part of the thesis, we looked at the stability of response inhibition tasks,

and whether it was improved when speed and accuracy pressures were manipulated in

the experimental studies, as well as whether looking at parameters from diffusion model

for conflict tasks improved the stability between tasks and between the experimental

sessions. The only reason we were able to investigate model parameters was because

using deep learning allowed us to apply the diffusion model for conflict tasks in a very

short period of time. If global optimization algorithms were used instead, recovering

parameters from 1100 different reaction time distributions (the amount of different sets

of parameters that were recovered in section 7 and section 8) would have taken that

long - 1100 days. This approach is also very inflexible and allows no space for errors

with either the data preparation (e.g., changing your mind about data cleaning criteria),

or the algorithm hyperparameters (e.g. changing mutation and crossover parameter

values in the differential evolution algorithm), meaning that refitting the data for any

reason is computationally unfeasible. This is completely avoidable with deep learning as

even though retraining the deep learning models can take a few days, depending on the

size of the architecture and the training dataset, the application pipelines take seconds,

meaning that refitting full sets of experimental data from hundreds of participants can

be done in seconds.

To conclude, deep learning is a very promising approach in parameter recovery from the

diffusion model for conflict tasks, as it performs as well as differential evolution, which

came out as the best global optimization algorithm for the problem in our benchmarking

in section 3, but in a fraction of time.
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