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ABSTRACT 16 

 17 

Confluences are geomorphologic features fed by distinct channel tributaries and record the 18 

contribution of multiple sediment sources. They are key features of both fluvial and submarine 19 

channels in geomorphologic and sedimentologic terms. Here, we use high-quality 3D seismic data 20 

from SE Brazil to document the response of a submarine channel confluence to turbidity currents 21 

sourced from a tributary. The studied channel system consists of a west tributary, an east tributary and 22 

a post-confluence channel, with the last two comprising the main channel at present. Downstream 23 
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from the confluence, a series of changes in planform morphology and architecture were found due to 24 

the effect of turbidity currents sourced from the west tributary channel. A channel bend in the main 25 

channel curved toward the west when it was first formed but later curved toward the east, and so 26 

remained until the present day. This process led to the migration of the confluence point ~500 m to 27 

the east, and changed its bed morphology from discordant (the beds of tributaries and main channels 28 

meet at an unequal depth) to concordant (the beds of tributaries and main channels meet at 29 

approximately the same depth). In addition to the channel bend near the confluence, two other bends 30 

further downstream record significant changes with time, increasing channel sinuosity from 1.11 to 31 

1.72. These three channel bends near the confluence accumulated a large volume of sediment at their 32 

inner banks, generating depositional bars. Multiple channel forms within the depositional bars 33 

indicate the occurrence of large-scale lateral migration near the confluence. Hence, turbidity currents 34 

from the west tributary are shown to influence submarine channels by promoting lateral channel 35 

migration, confluence migration, increases in channel sinuosity, and the formation of large 36 

depositional bars. The above variations near the confluence reveal a change in tributary activity and 37 

a shift in sediment sources from east to west on the continental shelf. Such a shift suggests variations 38 

in sedimentary processes on the continental shelf but with unclear causes.  39 

 40 

Keywords: SE Brazil; Submarine channel; Confluence; Tributary; Lateral migration; Sediment 41 

supply 42 

 43 

INTRODUCTION 44 

 45 

Confluences mark the locations where two channels meet to accommodate water and sediment 46 
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flows from distinct tributaries (e.g. Best, 1987; Ferguson and Hoy, 2008; Ismail, 2017). In fluvial 47 

channels, the varied depositional records upstream and downstream of confluences reflect the 48 

contribution and provenance evolution of their tributaries (e.g. Constantine et al., 2014; Munack et 49 

al., 2014; Jonell et al., 2017). On the Tibetan plateau and Himalayas, for instance, geochemical and 50 

sediment-composition analyses of fluvial channel confluences were used to demonstrate variations in 51 

the denudation rates of mountain ranges due to climatic, glacial and tectonic events (Munack et al., 52 

2014; Jonell et al., 2017; Munoz et al., 2019). In submarine settings, channels are conduits that 53 

transport sediment from land sources to the deep sea (e.g. Kolla et al., 2007; Jobe et al., 2015). 54 

Sedimentary records from submarine-channel tributaries and associated confluences reflect variations 55 

in the hydrodynamics of turbidity currents sourced from different parts of continental margins. In 56 

tectonically active regions such as the Cascadia Margin, North America, turbidite sequences cored 57 

upstream and downstream of channel confluences are key for recognising the main triggers of 58 

turbidity currents (Goldfinger, 2011; Atwater et al., 2014). Some submarine confluences indicate 59 

variations in sedimentary processes on the continental shelf (Jobe et al., 2015; Hansen et al., 2017). 60 

Offshore the Niger Delta, the occurrence of a submarine channel tributary and a new confluence may 61 

have caused by an avulsion of rivers on Niger Delta (Jobe et al., 2015). 62 

Submarine channel confluences are well documented on continental margins such as West Africa 63 

(e.g. Pirmez et al., 2000; Hansen et al., 2017), in North and South America (e.g. Greene et al., 2002; 64 

Mitchell, 2004; Paull et al., 2011; Gamboa et al., 2012), offshore Japan (Noda et al., 2008), and in 65 

New Zealand (Micallef et al., 2014). On the Atlantic continental slope off New Jersey, Mitchell (2004) 66 

observed that tributary canyons tend to be steeper near their confluences than main slope canyons. 67 

Similar patterns have been documented in other parts of the USA (Greene et al., 2002), offshore Japan 68 

(Noda et al., 2008), in New Zealand (Micallef et al., 2014) and Nigeria (Hansen et al., 2017). In SE 69 
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Brazil, the gradients of tributaries and main channels are nearly the same for the Miocene-Quaternary 70 

Rio Doce Canyon System (Gamboa et al., 2012). However, channel width and height increase 71 

downstream of an Early Miocene channel confluence in the same area considered in this paper (Fig. 72 

1). In Nigeria, a decrease in channel size is recorded downstream of a channel confluence (Jobe et al., 73 

2015), contrasting with the information in Gamboa et al. (2012). Further data from offshore Nigeria 74 

recorded changes in channel pathways, and associated sinuosity, near submarine confluences: a) Jobe 75 

et al. (2015) described the straightening of a submarine channel downstream of a confluence and 76 

attributed it to ‘underfit’ flows sourced from a tributary, b) Hansen et al. (2017) documented a marked 77 

difference in channel sinuosity between a relatively straight tributary (Upper Avon channel) and a 78 

sinuous post-confluence channel (Lower Avon channel). This increase in sinuosity relates to the 79 

presence of an inherited, but presently inactive, main channel (Hansen et al., 2017).  80 

Morphologic changes in submarine confluences reflect the complex hydrodynamics of 81 

submarine channels. Variation in flow dynamics at confluences is probably one main cause for such 82 

complexity. For example, there are three possible scenarios when considering flow dynamics at 83 

submarine channel confluences (Gamboa et al., 2012): a) confluences showing an active tributary and 84 

an active main channel (e.g. Gamboa et al., 2012), b) confluences between an active tributary and an 85 

inactive main channel (e.g. Jobe et al., 2015), and c) confluences dominated by an active main channel 86 

and an inactive tributary (e.g. Pirmez et al., 2000). Furthermore, tributary flows are able to reactivate 87 

abandoned or inactive submarine channels, in which case pattern b) above can be inferred (Jobe et 88 

al., 2015; Hansen et al., 2017). Numerical simulations and experimental studies show that junction 89 

angles are critical to flow hydrodynamics in submarine confluences (Ismail, 2017). Increases in 90 

junction angle from 30° to 90° lead to an increase in the peak front velocity and front thickness of 91 

turbidity currents (Ismail, 2017).  92 
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Although the morphology and architecture of submarine channel confluences have been 93 

extensively documented (Mitchell et al., 2004; Gamboa et al., 2012; Jobe et al., 2015; Hansen et al., 94 

2017), little attention has been paid to: a) confluence evolution through time, and b) the responses of 95 

confluences to turbidity currents sourced from channel tributaries.  96 

This work reconstructs the temporal variations in submarine channel morphology around a 97 

Pliocene-Quaternary confluence offshore Espírito Santo Basin, SE Brazil (Fig. 1). The studied 98 

channel system is commonly named Rio Doce Canyon, or Channel System, in the literature (Qin et 99 

al., 2016). It is only partly filled by sediment and comprises two tributaries upstream, and a post-100 

confluence channel downstream (Fig. 1B). The continuity of sedimentary infill patterns between the 101 

east tributary and the post-confluence channel, as well as their continuous channel thalwegs, indicate 102 

that these two channel segments are the main flow pathway at present (Gamboa et al., 2012). There 103 

has been a detailed description of spatial changes in morphologic characters of this channel system 104 

(Gamboa et al., 2012, Qin et al., 2016), however, the architecture and the temporal evolution of the 105 

channel system and the confluence region were not fully addressed in previous work.  106 

We aim at analyzing how submarine channels adjust their morphology and architectures in 107 

response to turbidity currents sourced from tributaries. Hence, this paper provides a case study 108 

documenting: 1) temporal variations in submarine channel morphology near confluences, and 2) the 109 

depositional architecture of a submarine channel system around its confluence region.  110 

 111 

DATA AND METHODS 112 

 113 

The interpreted 3D seismic volume covers 1600 km2 of the northern Espírito Santo Basin, SE 114 

Brazil (Fig. 1A; Alves et al., 2009), and has a bin spacing of 12.5 m by 12.5 m, with a 2 ms vertical 115 
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sampling interval. The vertical resolution of the seismic data is ~10 m at the depth of analysis in this 116 

study, based on a dominant frequency of 40 Hz and a P-wave velocity of 1600 m/s for near-seafloor 117 

strata. This vertical resolution improves to ~ 5 m on the sea floor. A water-column velocity of 1480 118 

m/s is used for time-depth conversions of seafloor features.  119 

Channel depth was measured at intervals of 125 m at the channel thalweg (i.e. the deepest point 120 

of channels) along the west tributary and the main channel. The cross-sectional area of the channel 121 

system (CSAE), and cross-sectional area of deposits within the channel system (CSAD), were 122 

calculated at intervals of 1 km along the main channel (i.e. east tributary and post-confluence channel) 123 

and exclude overbank deposits (Fig. 2), which may have similar seismic facies to deposits that are 124 

not related to channels, and induce errors in geomorphologic calculations. The parameter CSAE 125 

indicates the size of the channel system generated by erosional processes. In turn, CSAD concerns the 126 

sediment volumes accumulated by depositional processes within the channel system. Sediment 127 

volume is calculated as CSAD multiplied by distance along the channel, and is proportional to CSAD. 128 

The depositional ratio, defined as CSAD/CSAE, is used here to quantify sediment dispersal 129 

patterns in the studied channel system. This ratio quantifies the percentage of the area filled by 130 

deposits at pre-selected sections across the channel system. As flows may deposit more sediment in 131 

locations where erosion has produced more accommodation, CSAD is normalized by CSAE in order 132 

to eliminate the influence of CSAE on deposition.  133 

 134 

GEOLOGIC SETTING 135 

 136 

Tectono-sedimentary evolution of the Espírito Santo Basin 137 

 138 



7 

 

The Espírito Santo Basin is located on the continental margin of SE Brazil, between the Abrolhos 139 

Bank and the Campos Basin (Fig. 1A). The development of the Espírito Santo Basin is related to the 140 

breakup of the Gondwana supercontinent (Ojeda, 1982; Mohriak, 2008), with three main tectono-141 

stratigraphic megasequences filling the basin: syn-rift, transition and drift (França et al., 2007). The 142 

‘syn-rift’ megasequence spans the Late Berriasian to Early Aptian and comprises fluvial-lacustrine 143 

sediments (Ojeda, 1982). The transitional megasequence spans the Middle Aptian to Late 144 

Aptian/Early Albian and is composed of thick evaporites and marine carbonates (Ojeda, 1982). Thick 145 

salt was deposited at this time to be later deformed into various salt structures (e.g. salt rollers, salt 146 

diapirs and salt canopies) by gravitational gliding and differential loading (Fiduk et al., 2004). Salt 147 

structures controlled deposition in great part of the Espírito Santo Basin, deforming carbonates 148 

accumulated in the transitional megasequence and marine strata of Late Aptian/Early Albian to 149 

Holocene age (Ojeda, 1982).  150 

In the study area, two salt ridges bound a NW-SE salt-withdrawal basin containing large-scale 151 

depositional elements such as mass-transport deposits (MTDs), turbidite lobes, submarine canyons 152 

and channels (Gamboa and Alves, 2015). The distribution and geometry of these depositional 153 

elements are closely related to the location of seven (7) distinct salt diapirs that grew close to the 154 

modern sea floor (Alves et al., 2009; Gamboa et al., 2012; Gamboa and Alves, 2015).  155 

 156 

Sources of sediment to submarine channels  157 

 158 

In the Espírito Santo Basin, one possible terrestrial sediment source for the interpreted submarine 159 

channels is the Rio Doce (Fig. 1A). This river has an annual suspended-sediment flux of 11 x 106 160 

ton/year (Lima et al., 2005), and an annual average discharge of 900 m3/s (Oliveira et al., 2012). The 161 
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present-day distance between the mouth of the Rio Doce and the shelf edge is ~ 70 km (Fig. 1A). 162 

Turbid river water has been observed 40 km off the Rio Doce after prolonged rainfall, suggesting that 163 

hyperpycnal flow events are able to deliver sediment to the continental slope during river floods 164 

(Summerhayes et al., 1976).  165 

On the continental shelf, seismic data shows a series of incised valleys connected to the Rio 166 

Doce Channel System (Bischoff and Lipski, 2008). However, it seems that these valleys are no longer 167 

active conduits of terrestrial sediment from the Rio Doce to the continental slope, as they are nearly 168 

completely filled.   169 

 170 

RESULTS 171 

 172 

Morphology of the Rio Doce Channel System 173 

 174 

West tributary 175 

 176 

The west tributary is 15 km-long as measured from a lower-order confluence upslope to the 177 

confluence analysed in this work (Fig. 3A). The west tributary shows an NNW–SSE course on the 178 

upper continental slope, shifting to NW–SE at a water depth of ~ 1100 m (Fig. 3A). There is an 80 179 

m-high morphologic step (i.e. a sudden change in thalweg slope) approximately 500 m to the west of 180 

the studied confluence (Figs. 3B and 4). At the foot of the step in thalweg slope, a 6 m-depth scour 181 

was identified (Fig. 4B). Downstream of the step, the orientation of the tributary pathway changes 182 

from NW-SE to E-W (Fig. 3B). The tributary joins the main channel at a water depth of 1405 m (Fig. 183 

4B), with a confluence angle of 75° (Fig. 3B).  184 
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The width of the west tributary ranges from 500 to 1800 m. The tributary height changes from 185 

20 m to 200 m. Tributary depth ranges from 950 m to 1405 m (Fig. 4A). Its gradient decreases from 186 

2.9° in its shallowest portion, to 0.7° downstream until the step near the confluence is reached (Fig. 187 

4A).  188 

 189 

Main channel (east tributary and post-confluence channel) 190 

 191 

The main channel is 42 km-long in the interpreted seismic volume (Fig. 3A). Its orientation is 192 

NNE-SSW in its shallowest portion, and changes to NE–SW at a water depth of ~ 1300 m due to the 193 

presence of a growing salt diapir (Fig. 3A). At a water depth of 1330 m, the general orientation of the 194 

channel system changes to nearly N–S and is maintained toward the southern limit of the seismic 195 

volume (Fig. 3A). Its width changes from 200 to 1000 m, whereas its height ranges between 10 and 196 

150 m (Qin et al., 2016). The depth of the main channel varies from 1000 to 1700 m (Fig. 4A) and 197 

the channel gradient ranges from 1.5° in its shallowest part, to 0.5° downstream (Fig. 4A).  198 

 199 

Depositional patterns near the confluence 200 

 201 

The depositional ratio (CSAD/CSAE) of the main channel (east tributary and post-confluence 202 

channel) increases by 14% downstream of the confluence and is the largest for 4 km, between 18 km 203 

and 22 km (Fig. 5A). It varies between 72% and 85%, with an average value of 78% from 18 km to 204 

22 km (Fig. 5A). It is less than ~60% on average in the first 18 km, and approximately 50% on average 205 

between 22 km and 34 km. In addition, CSAE and CSAD are both larger downstream of the confluence 206 

when compared to other parts of the channel system, suggesting that the largest sediment volumes 207 
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occur immediately downstream of the confluence (Fig. 5B). 208 

Three large depositional bars are observed where the largest depositional ratios are recorded - 209 

from 18 km to 22 km along the main channel (Figure 5C). Seismic data show these deposits to be 210 

associated with lateral channel migration (Fig. 6). Channel-form erosional truncations at the base of 211 

the channel system represent the positions of previous channel banks (Fig. 6).  212 

Lateral channel migration, demonstrated by the trajectories of shifts in bank positions (Fig. 6), 213 

resulted in large CSAE and CSAD values from 18 to 22 km (Fig. 5B). These large values in CSAE and 214 

CSAD are associated with cut-bank erosion and inner-bank deposition caused by lateral migration, 215 

respectively. We interpret that the enhanced sediment volumes in the channel system, downstream of 216 

the confluence, result from large sediment inputs from the west tributary (Fig. 5). We also interpret 217 

that flows from the east tributary contributed to deposition near the confluence, but they were not as 218 

important as the flows sourced from the west tributary. If flows from the east tributary were the main 219 

source of sediment downstream of the confluence, we would expect a reduction in channel gradient 220 

immediately downstream of the east tributary, as sediment tends to deposit in places where channel 221 

slope decreases (e.g. Friedmann et al., 2000; Mulder and Alexander, 2001; Wynn et al., 2012). Such 222 

a reduction in channel gradient, however, is not observed in association with the east tributary (Fig. 223 

4).  224 

The depositional ratio (CSAD/CSAE) decreases from 85% to 32% at a down-channel distance of 225 

23 km (Fig. 5A), indicating that some of the sediment sourced from the west tributary was deposited 226 

directly downstream of the confluence, with only a small volume of sediment reaching the lower part 227 

of the channel system.  228 

 229 

Temporal variations in confluence morphology 230 
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 231 

Variations in the pathway of the west tributary and the main channel 232 

 233 

Temporal variations in channel pathways were reconstructed in Figure 7. The map of the original 234 

and present-day channels in the Rio Doce Channel System reveals significant variations in the 235 

pathway of the main channel immediately downstream of the confluence (Fig. 7A). At the confluence, 236 

a channel bend curved initially toward the west but subsequently changed its curvature to the east 237 

until the present day (Figs. 7B and 7C). In addition, sharp variations in the pathway(s) of the main 238 

channel are observed in two bends further downstream (Fig. 7). These variations increased channel 239 

sinuosity from 1.11 for the original channel pathway, to 1.72 for the present-day pathway (Figs. 7B 240 

and 7C). Seismic data show that such a significant change in channel sinuosity resulted from lateral 241 

channel migration near the confluence (Fig. 6).  242 

The west tributary shows small changes in its pathway with time. This tributary migrated laterally 243 

for ~500 m toward the east, accompanying confluence migration (Fig. 8). 244 

 245 

Confluence migration 246 

 247 

In the west tributary, a step in thalweg slope and a scour are observed the west of the present-day 248 

confluence (Figs. 3B and 4B). These two features are commonly found at confluences where 249 

tributaries join the main channels (Best, 2008). Considering that the step in thalweg slope is located 250 

at the intersection of the west tributary and original pathway of the main channel (Fig. 8A), we 251 

interpret it as marking the original position of the confluence between the west and east tributaries 252 

(Fig. 8B). The different positions between the original and the present location of the confluence 253 
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suggests confluence migration toward the east in the order of ~500 m.  254 

At the original location of the confluence, the confluence bed is discordant because the west 255 

tributary is much higher than the east tributary (Fig. 8A). In contrast, the confluence bed is concordant 256 

at its present-day location, as shown by the same depth between the beds of the west and east 257 

tributaries (Fig. 4B).  258 

Confluence bed morphology changed from discordant to concordant during confluence 259 

migration. When the west tributary started to move eastward, its bed changed from the top of the step 260 

to its foot, where its depth is similar to the bed of the east tributary. This resulted in the formation of 261 

a concordant confluence. 262 

 263 

DISCUSSION 264 

 265 

This work shows that the main channel bend curved toward the west at the original location of 266 

the confluence (Figs. 8 and 9). After the west tributary joined the main channel, sediment flows from 267 

the west tributary pushed the bend toward the east due to flow inertia, resulting in confluence 268 

migration and a series of morphologic and sedimentologic changes. These include changes in channel 269 

pathways, the formation of depositional bars and relative increases in sediment volume downstream 270 

of the confluence (Figs. 8 and 9). 271 

 272 

Confluence morphology  273 

 274 

Similarly to the confluence morphology documented in this work, Paull et al (2011) observed a 275 

step in the thalweg slope of the Soquel channel (offshore California) upstream of its confluence with 276 
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the Monterey channel. A 500 m-long, smooth tributary segment was mapped between the step and 277 

the confluence, and later defined as an “embayment” at the mouth of tributary (see Fig. 8 in Paull et 278 

al., 2011). We suggest that this embayment was formed by the upstream migration of the step by 279 

means of retrogressive (headwall) erosion, contrasting with the downstream migration recorded in 280 

the study area due to the absence of features such as the original channel pathways and attached 281 

depositional bars near the confluence analyzed in the Rio Doce Channel System. An arcuate feature 282 

at the tributary mouth of the Soquel Canyon also indicates sediment failure (Paull et al., 2011). Such 283 

types of feature are not observed in the study area. 284 

Confluence migration is also common in both meandering and braided rivers (Dixon et al., 2018). 285 

In meandering rivers of Argentina and USA, confluence migration was promoted by the migration 286 

and cut-off of tributaries, with the planform of the main channel recording minor changes (Dixon et 287 

al., 2018). In the Pliocene-Quaternary Rio Doce Channel System, confluence migration was also 288 

associated with lateral migration of the main channel, but considered to have resulted from turbidity 289 

currents flowing from the west tributary toward the east. 290 

 291 

Generation of depositional bars 292 

 293 

In the study area, depositional bars are identified both upstream and downstream of the 294 

confluence (Fig. 5C). Similar bars have been documented in fluvial channel confluences due to flow 295 

stagnation upstream of the confluence and flow separation downstream (Best, 1988). Flow stagnation 296 

results from mutual flow deflections away from the upstream confluence corner when flows join 297 

together (Best, 1987). Flow separation occurs when tributary flows detach from tributary banks as 298 

they enter the main channel, resulting in a zone of low velocity favouring sediment deposition (Best 299 
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and Reid, 1984). Despite the different flow properties of turbidity currents (sediment gravity flows) 300 

and river currents (fluid gravity flows) (Kolla et al., 2007), flow stagnation and separation can also 301 

occur in submarine confluences and contribute to the formation of depositional bars. This is suggested 302 

by the similar locations of depositional bars in both submarine and river confluences.  303 

Flow deflection and reflection probably occurred near the confluence in this study. A possible 304 

scenario is that the basal, denser part of turbidity currents were deflected against the inner bend of the 305 

main channel, resulting in bank erosion, whereas the upper, less dense part of the flows was reflected 306 

back to the outer bend of the main channel, leading to bank deposition and the formation of 307 

depositional bars (Fig. 9). After these bars were formed, subsequent tributary flows were deflected to 308 

promote bank erosion and deposition, leading to further growth of the bars. Finally, channel gradient 309 

decreased as the channel became longer and more sinuous, leading to enhanced deposition near the 310 

confluence.  311 

 312 

Flows within the channel system 313 

 314 

The lack of core data and age constraints make it difficult to evaluate flow dynamics within the 315 

Rio Doce Channel System. Nevertheless, variations in the continuity and amplitude of seismic 316 

reflections in submarine channels have been widely used to assess flow dynamics in a qualitative way. 317 

For example, active channels are characterised by high-amplitude near-seafloor strata, whereas 318 

inactive channels are commonly of relative low amplitude (Pirmez et al., 2000; Gamboa et al., 2012; 319 

Jobe et al., 2015; Hansen et al., 2017). In the study area, the west tributary and main channel are likely 320 

active at present based on the presence of high-amplitude strata inside them (Gamboa et al., 2012). 321 

Therefore, flows downstream of the confluence could be either sourced from the west tributary or the 322 
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east tributary, or from both at the same time.  323 

We interpret that the west tributary contributed with larger volumes of sediment to the post-324 

confluence channel than the east tributary due to the presence of large depositional bars downstream 325 

of the confluence. In addition, there are abrupt decreases in channel width and height (Qin et al., 2016) 326 

and a temporal change in the channel pathway immediately downstream of the confluence (Fig. 7A). 327 

All these changes suggest a marked effect of the west tributary on post-confluence channel 328 

morphology during the main stages of confluence migration (Fig. 9). However, based on the smooth 329 

transition at the confluence between the east tributary and the post-confluence channel, the east 330 

tributary is currently active (Fig. 4B).  331 

The west tributary contributed more sediments than the east tributary to the confluence region, 332 

suggesting an eastern ward shift in major sediment sources on the continental shelf (Figs. 9A and B). 333 

Such a shift is interpreted to be a result of variations in sedimentary processes on the continental shelf. 334 

Similar variations in tributary activities have also been documented offshore Niger delta (Jobe et al., 335 

2015; Hansen et al., 2017). These variations have been linked to river avulsions on the Niger delta 336 

(Jobe et al., 2015) and the capture of sediment supply by different canyons along the Niger shelf edge 337 

(Hansen et al., 2017). In this work, both of scenarios mentioned above could have occurred as the 338 

sediment delivery processes from the Rio Doce delta to the submarine channels is still unclear.  339 

 340 

Lateral migration as a response to turbidity currents from the west tributary  341 

 342 

We suggest that the west tributary provided significant volumes of sediment into the post-343 

confluence channel, as indicated by large depositional bars immediately downstream of the 344 

confluence. Lateral channel migration was a major response to greater sediment discharge and 345 
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resulted in confluence migration, as shown by: a) the multiple channel forms in depositional bars 346 

downstream of the confluence, and b) the higher magnitude of lateral migration at the three meander 347 

bends downstream of the confluence (Fig. 6).  348 

In a channel system offshore Nigeria, Jobe et al., (2015) found a transition from large-scale 349 

lateral migration at the early incision stage, to aggradation soon after, and attributed this transition to 350 

a decrease in sediment discharge. Unfortunately, it is difficult of evaluate the role of extrinsic controls 351 

(e.g. climate change, tectonic activity, and the proximity of a shelf-edge delta) in sediment delivery 352 

to the channel system due to the lack of chronostratigraphic constraints (Jobe et al., 2015). In subaerial 353 

settings, close relationships between sediment supply and lateral channel migration have also been 354 

documented. For example, downstream of tributaries a relative increase in channel migration rate is 355 

observed in rivers such as the Amazon (e.g. at the confluence between the Rio Mamoré and Rio 356 

Grande) due to high sediment load from tributaries and associated point-bar growth (Constantine et 357 

al., 2014). 358 

Other flow properties such as flow velocity could have also contributed to lateral channel 359 

migration in the study area. Numerical models by Das et al. (2004) show that lateral migration is 360 

more likely to be driven by erosional currents with a relatively high current velocity and a steep 361 

channel bed slope. Ismail (2017) further found that higher junction angles result in higher peak front 362 

velocity in channel flows. In this work, the junction angle is 75°, which is a higher angle than that 363 

reported by Ismail (2017). Therefore, a relatively high flow velocity likely promoted out-bank erosion 364 

during lateral channel migration.  365 

Hubbard et al. (2009) suggest a link between the grain size of turbidity currents and the 366 

magnitude of lateral channel migration in the Molasse foreland basin of Austria. They considered 367 

relative pauses in channel sedimentation (Puchkirchen Formation, represented by 1–20 m thick shale 368 
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beds), and associated slow channel migration rates, as reflecting the cessation of coarse-grained 369 

sediment supply. Similarly, Nelson and Dubé (2016) found a close relationship between river bed 370 

sediment flux and lateral channel mobility in the Chehalis River in Washington State, Northeast USA. 371 

The influx of coarse-grained sand may have also contributed to lateral migration in the Rio Doce 372 

Channel System, but it is hard to confirm such an assumption without sediment cores and in-situ 373 

current monitoring equipment. 374 

 375 

CONCLUSIONS 376 

 377 

This work documents a series of morphologic and sedimentologic features downstream of a 378 

confluence of a Pliocene-Quaternary submarine channel system, SE Brazil. Such variations are 379 

interpreted as resulting from the effect of turbidity currents sourced from tributaries, which have 380 

impacted on the hydrodynamic processes sculpting a submarine confluence. The results of this work 381 

can be summarized as follows: 382 

 383 

(1) High-quality 3D seismic data reveal confluence migration approaching 500 m during the 384 

development of the Pliocene-Quaternary Rio Doce Channel System. The original location of the 385 

confluence is discordant, and marked by an 80 m-high morphologic step. At present, the 386 

confluence is concordant, i.e., characterized by a similar bed depth between the tributary and the 387 

main submarine channel.  388 

 389 

(2) Significant temporal changes are recorded in the pathway of the main channel and associated 390 

sinuosity values. At the confluence, a channel bend in the main channel curved toward the west 391 
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when the bend was formed in the Pliocene. However, this same channel bend curves toward the 392 

east at present. We interpret the changes in the geometry of this bend as resulting from the effect 393 

of turbidity currents sourced from the west tributary. Turbidity currents deviated the channel bend 394 

and curved it toward the east. Two other bends downstream of the confluence also show 395 

significant variations in channel pathway, increasing the sinuosity of the main channel from 1.11 396 

to 1.72. 397 

 398 

(3) Lateral channel migration is therefore proposed as an important process responding to sediment 399 

supply from channel tributaries. Lateral channel migration led, in the study area, to the 400 

accumulation of large depositional bars fed by sediment discharged from tributaries. 401 

 402 

(4) Confluence evolution in this study reflects an eastward shift in sediment sources at the continental 403 

shelf. The cause of such a shift is interpreted as reflecting variations in sedimentary processes on 404 

the continental shelf. Further numerical and physical models addressing the hydrodynamic 405 

processes at submarine confluences are needed to further understand how these latter evolve. Both 406 

numerical and physical models are important to understand flow properties (e.g. sediment 407 

discharge, grain size, flow velocity) and associated variations in morphology and architecture (e.g. 408 

depositional bars formed during lateral channel migration) of submarine channel systems. 409 

 410 
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 507 

Fig. 1. (A) Bathymetric and topographic map of the SE Brazilian margin showing the location of the study area in 508 

the Espírito Santo Basin. (B) Contoured seafloor map of the study area generated from the interpreted seismic 509 

volume. Bathymetric data in (A) was taken from GeoMapApp (http://www.geomapapp.org; Amante and Eakins, 510 

2009). 511 

 512 

Fig. 2. Uninterpreted and interpreted seismic profiles highlighting the areas of the Pliocene-Quaternary Rio Doce 513 

Channel System used to calculate CSAE (cross-sectional area of the channel system formed by erosional processes) 514 

and CSAD (cross-sectional area of the deposits within the channel system). (modified from Qin et al., 2016). 515 

Overbank deposits were not considered in the calculation because they may have similar seismic facies to deposits 516 

unrelated to the channel system, causing errors in calculations. The location of the seismic profile is shown in Fig. 517 

1B. The polarity of data is SEG normal i.e., positive amplitude reflections (red) on the seismic profiles represent an 518 

increase in acoustic impedance in seismic sections. 519 

 520 

Fig. 3. (A) Dip map of the seafloor showing that the modern Rio Doce Canyon System is composed of west and 521 

east tributaries upslope of a confluence and a post-confluence channel downslope. The east tributary and the post-522 

confluence channel comprise the main channel. (B) Dip map showing the seafloor morphology near the confluence. 523 

In the west tributary a step in thalweg slope, with a height of 80 m, is located ~500 m to the west of the confluence, 524 

as shown in dark color. 525 

 526 

Fig. 4. (A) Depth profiles of the west tributary and main channel. Values next to the profiles show the average 527 

channel gradient of a specific channel segment. (B) Enlarged view of depth profiles near the confluence. This graph 528 

shows a morphologic step in thalweg slope and a scour in the west tributary, near the confluence.  529 

http://www.geomapapp.org/
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 530 

Fig. 5. (A) Depositional ratio (CSAD/CSAE) along the channel system, which comprises the east tributary and the 531 

post-confluence channel. The depositional ratio was not calculated at the confluence because here CSAD and CSAE 532 

are also affected by the west tributary, instead of the east tributary and main channel alone. (B) Variations of cross-533 

sectional area of the channel system (CSAE) and cross-sectional area of deposits within the channel system (CSAD). 534 

These two parameters were not calculated at the confluence because they are also affected by the west tributary. (C) 535 

Thickness map of deposits within the channel system. The upper and lower surfaces used in the calculation of 536 

thickness are the sea floor and the base of the channel system, respectively.  537 

 538 

Fig. 6. Seismic profiles across three depositional bars near the confluence. The profiles reveal lateral channel 539 

migration and suggest that depositional bars were formed by this same process. The shift in bank positions show 540 

the trajectories of lateral channel migration.  541 

 542 

Fig. 7. (A) Schematic diagram showing significant variations in the pathway of the channel immediately 543 

downstream of the confluence. Small variations in the pathway of other parts of the main channel are also observed. 544 

(B) and (C) show that channel sinuosity increases from 1.11 to 1.17 due to pathway changes in the post-confluence 545 

channel.  546 

 547 

Fig. 8. Schematic diagram highlighting the observed variations in the geometry of channel pathways and confluence, 548 

overlain on a seafloor dip map. (A) The step in thalweg slope at the west tributary is shown by a high dip value and 549 

dark color. The foot of the step marks the original position of the confluence. (B) Original position of the confluence 550 

at the intersection between the west tributary and the post-confluence channel. (C) Present-day position of the 551 

confluence at the intersection between the east tributary and post-confluence channel. (D) The confluence migrated 552 
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~500 m toward the east until it reached its present location.  553 

 554 

Fig. 9. Schematic diagram summarizing the influence of the west tributary on the evolution of the Pliocene-555 

Quaternary Rio Doce Channel System. Turbidity currents from the west tributary promoted a series of morphologic 556 

and architectural variations via lateral channel migration. These included confluence migration, the formation of 557 

three large depositional bars downstream of the confluence, changes in channel pathway, and variations in channel 558 

sinuosity. T2 and T4 correspond to Figs. 8B and 8C, respectively. 559 
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