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Abstract

Accurate grading of skin disease severity plays a crucial
role in precise treatment for patients. Acne vulgaris, the
most common skin disease in adolescence, can be graded
by evidence-based lesion counting as well as experience-
based global estimation in the medical field. However, due
to the appearance similarity of acne with close severity,
it is challenging to count and grade acne accurately. In
this paper, we address the problem of acne image analy-
sis via Label Distribution Learning (LDL) considering the
ambiguous information among acne severity. Based on the
professional grading criterion, we generate two acne label
distributions considering the relationship between the sim-
ilar number of lesions and severity of acne, respectively.
We also propose a unified framework for joint acne image
grading and counting, which is optimized by the multi-task
learning loss. In addition, we further build the ACNE04

dataset with annotations of acne severity and lesion number
of each image for evaluation. Experiments demonstrate that
our proposed framework performs favorably against state-
of-the-art methods. We make the code and dataset publicly
available at https://github.com/xpwu95/ldl.

1. Introduction

Automatic grading of skin disease severity is of great im-

portance in the medical field. Acne vulgaris, commonly

named acne, is the most common skin disease, which has

prevalence peaks during adolescence [28, 33]. About 80%
adolescents suffer from acne [9] and the symptoms last

through adulthood in 3% men and 12% women [23]. There-

fore, there are a massive number of acne patients that need

specific treatment imminently, since acne may also leave

scars and pigmentation and often leads to considerable in-

ferior and depressed emotions [48]. The severity of acne
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Figure 1. Image examples (a) and their corresponding label distri-

butions (b, c). The x-axes in (b, c) indicate the number of lesions

and acne severity, respectively. The label distributions cover sev-

eral neighboring labels which represent the degree each label de-

scribes the instance (denoted as “D”). Acne images can be divided

into different severity levels according to the lesion numbers [24]

(d). Different colors indicate different severity levels, e.g., blue is

for mild, and green is for moderate.

is essential for dermatologists to make a precise and stan-

dardized treatment decision [24]. Besides, junior dermatol-

ogists also need an objective and reliable diagnosis for refer-

ence. A standard criterion used by dermatologists for grad-

ing acne severity is the Hayashi criterion [24], which com-

bines the outcome measures of lesion counting and global

assessment. Specifically, acne can be graded into four lev-

els of severity, i.e. mild, moderate, severe, and very severe,

according to the number of lesions.

In the past years, substantial advances have been made

for acne lesion analysis [2, 6, 16]. Most methods indi-

rectly focus on the classification or detection of acne le-

sions and generally rely on hand-crafted features. For ex-

ample, Abas et al. [1] employ discrete wavelet frames and

gray-level co-occurrence matrices to extract features for de-

tecting acne lesions. Recently, Convolutional Neural Net-



works (CNNs) [39, 35, 56] show powerful performance in

the medical imaging processing tasks, e.g., common tho-

rax disease classification [47] and biomedical segmenta-

tion [8]. However, there are some limitations when employ-

ing CNNs for acne image analysis. First, acne images with

close severity show similar appearance, while the existing

single-label learning methods (SLL) [25] represent the acne

label using one-hot vector ignoring the ambiguity issue, as

shown in Fig. 1(a). Second, the tasks of lesion counting and

acne grading have different objectives, i.e., the classifica-

tion score and counting number, which cannot be combined

directly for grading acne severity.

In this paper, we address acne image analysis via Label

Distribution Learning (LDL) [22], which assigns each in-

stance with a label distribution containing the degree each

label describes it. Instead of using a single label for an acne

image, we propose two acne label distributions to represent

the lesion number and acne severity, respectively. As illus-

trated in Fig. 1(b), label distribution for the lesion number

is generated based on the Gaussian distribution, where the

original dominant label keeps the highest description de-

gree, and labels far from it have a lower degree. For the acne

severity, since acne images belonging to the same sever-

ity level may have a greatly varied number of lesions [24],

we consider the professional medical criterion to generate

distribution, as shown in Fig. 1(c). We further propose a

unified deep framework with two branches for joint acne

severity grading and lesion counting. The counting branch

first predicts the label distribution for the lesions, which is

then mapped to the acne severity distribution based on the

Hayashi criterion [24]. The grading branch combines the

predicted severity distribution and the mapped distribution

for acne image grading. Our framework is then optimized

by the multi-task learning loss through end-to-end training.

Our contributions are three-fold: First, oriented by ac-

cepted medical criterion, we present a unified acne sever-

ity grading framework, which considers the procedures of

global acne assessment and lesion counting simultaneously

for acne image analysis. Second, we generate two acne la-

bel distributions based on the professional grading criterion,

considering the relationship between the similar number of

lesions and severity of acne, respectively. Third, we collect

a new dataset ACNE04, which provides the annotations of

acne severity and the bounding boxes of lesions annotated

by professional dermatologists. The experimental results

demonstrate that the proposed method performs favorably

against the state-of-the-art methods.

2. Related Work

2.1. Medical Disease Diagnosis

Medical disease diagnosis attracts more and more atten-

tion of researchers in the vision community. Deep learn-

ing technologies which achieve significant performance on

many computer vision tasks (e.g., classification [25, 19], de-

tection [15, 14, 58], and segmentation [12, 13]) have been

successfully employed in the medical field. Focusing on the

task of medical image diagnosis, [10] utilizes deep CNNs to

diagnose skin cancers from dermoscopic images. Wang et
al. [47] jointly train a CNN-RNN model and achieve multi-

label classification and reporting of common thorax dis-

eases. Their experimental results show excellent feature

representation ability of deep networks for medical images.

There are massive datasets for common object recog-

nition [36, 11] in the vision community. However, it is

challenging and expensive to collect and annotate medical

images due to the requirements of expert knowledge and

medical experience. Recently, [41] proposes a benchmark

dataset, named SD-198, for common skin disease recog-

nition on clinical images. Wang et al. [46] present the

ChestX-ray8 with weakly-supervised annotations for clas-

sifying and localizing common thorax diseases on X-ray

imaging. Several related works also demonstrate the im-

portance of professional medical criteria for medical dis-

ease diagnosis. Yang et al. [53] design a computer-aided

diagnosis system which represents skin lesions with several

medical representations according to different criteria and

achieve comparable results with dermatologists.

2.2. Object Counting

Object counting technologies are widely applied in a va-

riety of scenarios, such as crowd counting [5, 56] and ve-

hicle counting [32]. They can be mainly grouped into two

types: detection and regression based methods. Detection-

based mechanisms aim to detect the specific location and

size of objects and then convert the proposals into the count-

ing result. [44, 59] are first used to generate potential ob-

ject proposals. Then the classifiers are trained with hand-

crafted features [7, 37] or recent deep features [35]. The

proposals with high classification confidence are counted

for the final result. Besides, state-of-the-art object detec-

tion methods [55, 34] seek the end-to-end training archi-

tecture for real-time applications. Detection based meth-

ods perform well to some degree, but there are still chal-

lenges, e.g. detected objects are too small in most counting

scenarios. Without concerning the detailed location of ob-

jects, regression-based methods globally estimate counting

results [29] from features. To maintain spatial information,

[3, 4] consider regressing the density map from the feature

map of CNNs and achieve more accurate performance. The

large-scale variation also cannot be ignored in real life ap-

plications. [38, 56] design scale-aware networks to adapt

to the density variation in input images. Meanwhile, de-

scribing the inherent characteristic that counted images with

neighboring class labels have similar features [57] is of im-

portance to regression-based methods.



Figure 2. Pipeline of the proposed framework. The input image is resized and passed through the CNN backbone model (ResNet-50 [25]).

Then the framework is divided into two branches. The grading branch globally estimates the severity of acne. The counting branch first

predicts the label distribution of acne lesion count. Then it is converted into the label distribution of acne severity based on Eq. 3. The

counting model simultaneously grades the acne severity and predicts the lesion number to provide acne diagnosis evidence. Finally, the

prediction results from global grading and local counting models are merged, oriented by the medical criterion.

2.3. Label Distribution Learning

To cope with the issue of label ambiguity existing in

traditional single label learning, Geng et al. [22, 45] pro-

pose a new machine learning paradigm, i.e., label distribu-

tion learning. Instead of assigning a single label [25], LDL

covers a certain number of adjacent labels where each la-

bel represents different description degree to the instance,

respectively. Recently, LDL has been used to well ad-

dress label ambiguities in various tasks, e.g., age estima-

tion [26, 27, 54], head pose estimation [21], and visual sen-

timent analysis [51, 52]. Many methods [49, 40, 18, 50]

successfully employ the Gaussian function to generate la-

bel distribution. Geng et al. [20] propose adaptive label

distribution learning (ALDL) to generate label distributions

with different shapes for each age, i.e., different variance

parameter in the Gaussian function for each class. In this

particular scenario that the aging process varies at different

aging stages, the ALDL performs well with sufficient la-

beled training data. Subsequently, Hou et al. [27] propose

a semi-supervised ALDL method that utilizes the unlabeled

data to solve the data-scale problem. In addition, Gao et
al. [17] employ deep CNNs for label distribution learning

by minimizing the KL divergence between the predicted

and ground-truth distributions. In the multi-task learning

scenario, our framework also explores the latent fusion of

multiple tasks in both training and testing phases.

3. Method
Fig. 2 illustrates the pipeline of our proposed method

with two branches for joint acne severity grading and le-

sion counting. Given N input training images with corre-

sponding single labels of acne severity and ground-truths

of lesion counts {(x1, y1, z1), · · · , (xN , yN , zN )}, where

yi ∈ [1, · · · , Y ] and zi ∈ [1, · · · , Z]. Y and Z denote the

class number of acne severity levels and max number of

lesion counts, respectively. The goal of our framework is

to simultaneously output the grading result of acne severity

and the counting result of lesions as diagnostic evidence.

The following subsections introduce details of these two

tasks respectively and the final multi-task learning strategy.

3.1. Label Distribution Generation

For the input image xi, we utilize the Gaussian function

following [17] to generate the label distribution for the le-

sion counting task. The description degree of one particular

count label of acne lesions cj to the instance xi can be de-

fined as:

d
cj
xi =

1√
2πσM

exp

(
− (cj − zi)

2

2σ2

)
, (1)

where j ∈ [1, · · · , Z] and all the labels are utilized to de-

scribe the instance. The standard deviation σ is a hyper-

parameter which controls the distribution amplitude, which

is set as 3 in this paper. Let the vector dc
xi

= [dc1xi
, · · · , dcZxi

]
denote the label distribution of the instance xi in the count-

ing task. The label distribution dc
xi

generated by a Gaussian

function has two properties. The first is that d
cj
xi ∈ [0, 1]

and
∑Z

j=1 d
cj
xi = 1. The normalization factor M ensures

this property, where

M =
1√
2πσ

Z∑
j=1

exp

(
− (cj − zi)

2

2σ2

)
. (2)

The other is that the ground-truth label of lesion count

describes the highest degree, i.e., the description degree



dzixi
� d

cj
x . The count label farther from the ground-truth

has lower description degree.

In the grading task, the label distribution is converted

from the counting task. Specifically, Table 1 shows that

the count of acne lesions in an image can be mapped to a

specific class of acne severity according to the medical cri-

terion [24]. Then the description degree dskxi
of the acne

severity label to instance xi can be defined as the sum of

the description degrees of the lesion count labels that be-

long to the corresponding mapping interval φ(k) based on

the medical criterion:

dskxi
=
∑

j∈φ(k)

d
cj
xi , (3)

where k ∈ [1, · · · , Y ]. The label distribution ds
xi

=
[ds1xi

, · · · , dsYxi
] used for the grading task also satisfies the

aforementioned two properties similar to the counting task.

3.2. Lesion Counting

For the input instance xi, its predicted probability of be-

longing to each class j ∈ {1, · · · , Z} is calculated as:

p
(j)
i =

exp(θj)∑Z
m=1 exp(θm)

, (4)

where θj is the predicted score corresponding to the j-th

class outputted from the last fully connected layer. We ap-

ply the KL loss following [17] to minimize the deviation

between ground-truth label distribution dc
xi

and predicted

label distribution pc
i = [p

(1)
i , · · · , p(Z)

i ] in the counting task:

Lcnt(xi, zi) = −
Z∑

j=1

(
d
cj
xi ln p

(j)
i

)
. (5)

Observed from the Hayashi criterion [24], we can find

that counting has certain practical significance in the task of

acne severity grading. The information of lesion count can

latently classify the acne into one of the four severity levels

(i.e., mild, moderate, severe and very severe) according to

the mapping intervals φ(k) as shown in Table 1. Hence we

further convert the predicted counting result p
(c)
i to grad-

ing result p̂s
i = [

∑
j∈φ(1) p

(j)
i , · · · ,∑j∈φ(Y ) p

(j)
i ] based on

Eq. 3. Then the loss of label distribution of grading results

converted from the counting results can be defined as:

Lcnt2cls(xi, yi) = −
Y∑

k=1

⎛
⎝dskxi

ln
∑

j∈φ(k)

p
(j)
i

⎞
⎠ . (6)

3.3. Acne Severity Grading

The previous section shows that the counting task can

provide the results of acne severity and lesion number si-

multaneously. Yet the procedure of global acne severity

grading is also necessary, since the Hayashi criterion [24]

grades the acne severity based on the combination of global

and local diagnosis results.

For the i-th input instance xi, its predicted probability of

belonging to each class k ∈ {1, · · · , Y } is calculated as:

p
(k)
i =

exp(δk)∑Y
n=1 exp(δn)

, (7)

where δk is the predicted score corresponding to the k-th

class outputted from the last fully connected layer. The dis-

tribution loss of ps
i = [p

(1)
i , · · · , p(Y )

i ] in the KL divergence

form can be defined as:

Lcls(xi, yi) = −
Y∑

k=1

(
dskxi

ln p
(k)
i

)
. (8)

3.4. Multi-Task Learning Model

Different losses or tasks mentioned above guide the

model to focus on different aspects of acne images. For ex-

ample, the classification loss makes global estimation and

the counting loss tends to explore local information of spe-

cific lesions. A unified multi-task learning strategy latently

leads the model to learn more robust and discriminative de-

scription of features and classifier.

Our model combines the advantages of both global and

local features for visual acne representations both in train-

ing and testing phases. At the training procedure, the multi-

task learning loss is defined as:

Li(xi, yi, zi) =(1− λ)Lcnt(xi, zi) (9)

+
λ

2
(Lcls(xi, yi) + Lcnt2cls(xi, yi)) ,

where the hyper-parameters of λ is the trade-off between

counting and grading tasks.

At the testing phase, the model merges classification re-

sults from grading task py
i and counting task p̂y

i for the in-

stance xi. The final diagnosis takes the average of them
1
2 (p

y
i + p̂y

i ). In this way, our method achieves an end-to-

end procedure that simultaneously grades the acne severity

and provides diagnostic evidence of lesion counts. Besides,

it combines the global estimation and lesion counting tasks

both in training and testing phases.

4. Experiments
In this section, we detail the experiment settings, param-

eters, ablation analysis, and comparison with the state-of-

the-art methods.

4.1. Dataset & Evaluation Metrics

For verifying our algorithm and promoting further study

on medical disease grading, we build an acne severity grad-

ing dataset named ACNE04. The ACNE04 dataset includes



the annotations of local lesion numbers and global acne

severity. When the experts are making a diagnosis, the im-

ages with acne lesions are collected by a digital camera with

the consent of patients. Following the requirements of the

Hayashi grading criterion [24], all images are taken at an

approximately 70-degree angle from the front of patients.

Then the experts manually annotate the images with our

provided annotation tool. Fig. 3 shows several example im-

ages with annotations. Under the challenges both on the

procedures of data collection and annotation, the ACNE04
contains 1, 457 images with 18, 983 bounding boxes of le-

sions. For evaluating, we split the dataset into 80% training

set and 20% testing set, containing 1, 165 and 292 images,

respectively, as shown in Table 1.

Following previous methods, we select different evalua-

tion metrics for the tasks of classification and object count-

ing, respectively. The commonly utilized accuracy and pre-

cision are applied to evaluate the classification performance.

Considering that our work of the acne severity grading is re-

lated to medical image processing, we additionally choose

several important metrics from the medical field, includ-

ing sensitivity, specificity, and Youden Index. Sensitivity

is typically named recall or true positive rate in the vision

community. Specificity is the true negative rate, which re-

flects the ability to correctly rule out a disease. Youden In-

dex equals (Sensitivity + Specificity − 1) with a range of

[−1, 1], which represents the comprehensive ability of di-

agnosis. Larger Youden Index indicates higher diagnostic

value and the diagnosis is entirely meaningless if it is less

than or equal to 0. We adopt mean absolute error (MAE)

and root mean squared error (MSE) to evaluate the object

counting performance [56, 4].

4.2. Implementation Details

The backbone of our architecture is ResNet-50 [25] with

the parameters pre-trained on the ImageNet [36] dataset.

Before training the network, we resize the input image to

224× 224× 3 pixels and normalize it to the range of [0, 1]
in RGB channels, respectively. We choose Stochastic Gra-

dient Descent (SGD) with the mini-batch of 32 as the model

optimizer and train the model for 120 epochs ensuring that

the average loss on the training set is stable. The momentum

and weight decay are set to 0.9 and 5e-4, respectively. We

start the learning rate at 0.001 and decay it by 0.5 every 30
epochs. Our algorithm runs on an NVIDIA TITAN X GPU

with 12GB VRAM. Notice that 5-fold cross-validation is

applied for robust evaluation. Our proposed algorithm is

implemented based on the PyTorch framework.

4.3. Parameters

In this section, we experimentally discuss the setting of

λ parameter. The λ parameter is the trade-off between the

acne grading and lesion counting tasks. Larger λ makes

Figure 3. Examples in the ACNE04 dataset. The numbers under

each image denote the ground-truth severity and lesion number,

respectively. The yellow bounding boxes represent the lesion po-

sitions.

Table 1. Medical criterion [24] and statistics of training and testing

splits of the ACNE04 dataset. The criterion represents the relation-

ship between severity class and lesion number.

Class Criterion
Training Testing

Image Lesion Image Lesion

Mild 1 ∼ 5 410 858 103 221

Moderate 6 ∼ 20 506 4,547 127 1,123

Severe 21 ∼ 50 146 3,857 36 890

Very severe > 50 103 5,965 26 1,522

Total - 1,165 15,227 292 3,756

the model pays more attention on the counting task. We

evaluate the proposed algorithm performance under differ-

ent settings of λ from 0.1 to 0.9 using the accuracy and

MAE metrics. As illustrated in Fig. 4, with an increasing

λ, the model performs better within a certain range. The

model gains the best performances on the two evaluation

metrics when λ = 0.6. So we choose λ = 0.6 as the final

parameter setting.

4.4. Ablation Studies

In this section, we analyze the efficiency of each com-

ponent in our proposed method. The conventional SLL uti-

lizes a single label to represent the instance. Table 2 shows

that this learning scheme achieves the accuracy of 78.42%
on the acne grading task and the MAE of 4.16 on the lesion

counting task. The counting results are converted into corre-

sponding acne severity guided by the Hayashi criterion [24]

and achieves the accuracy of 75.69%.

We first introduce the LDL into the grading and count-

ing tasks, respectively. On the grading task, the LDL gains

slightly with improved accuracy of 0.89% compared with

the SLL. Yet the very low standard deviation (less than 0.1)



indicates that it can achieve more reliable acne grading re-

sults. On the counting task, the LDL improves the model

performance in the MAE by 0.92. In addition, the con-

verted grading results gain significant improvements on all

the evaluation metrics, e.g., by 5.40% for the accuracy, even

better than the direct grading procedure. This indicates that

the label distribution of the lesion number has the latent ca-

pacity to represent the continuous features of acne images.

The improvements also demonstrate that it is reasonable

and capable to discriminate acne severity via counting le-

sions using computer vision. In the third row, we propose

to explore the label distribution for grading as introduced in

section 3.1 via the correlation of these two tasks. The stan-

dard LDL assigns all the instances with label distributions

of the same shape, while our proposed label distribution for

the grading task is dynamically generated and achieves the

grading accuracy of 82.05%. Then we combine the tasks

of acne grading and lesion counting in the sixth row, which

improves the performance on all the metrics. This indicates

that the multi-task learning pattern based on the medical cri-

terion can latently benefit the problem of acne severity grad-

ing. Furthermore, in the seventh line, the introduction of

Lcnt2cls loss and the average of the grading pyi and counting

p̂yi results bring performance improvement to the model, be-

cause these two processes benefit the consistency between

the counting and classification tasks and make the training

and testing procedures of our method more stable.

4.5. Comparison with Classification Methods

As shown in Table 3, we compare our method with

three types of methods, including LDL, hand-crafted fea-

ture (HF), and deep feature (DF) based methods. The LDL

methods contain PT-Bayes, PT-SVM, AA-kNN, AA-BP,

SA-IIS, SA-BFGS, and SA-CPNN [22]. We extract fea-

ture representations from the last fully connected layer of

the ResNet-50 [25]. Gao et al. [17] also propose a CNN-

based deep LDL (DLDL) which is consistent with the LDL

method in Table 2. Hand-crafted feature based methods

consist of SIFT [30], HOG [7], GABOR [31], and color

histogram (CH) [42]) representations. Extracted features

are sent into a Support Vector Machine (SVM) classifier.

Deep feature based methods consist of VGGNet-16 [39],

Inception-v3 [43], and ResNet-50 [25].

We compare our method with several LDL methods as

shown in Table 3. SA-BFGS [22] performs better than

other classifiers, although the grading accuracy of 76.16 is

lower than basic deep ResNet-50 [25] model. The DLDL

performs the best because the DLDL trains an end-to-end

CNN model. However, the standard label distribution, i.e.,

assigning all the instances with the label distribution of

the same shape, is more suitable for totally ordered labels

such as the age. The labels of acne severity are ordered,

yet it is too raw to represent the large intra-class variance.
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Figure 4. Model performance of our proposed method with differ-

ent λ parameter.

Table 2. Ablation experiments demonstrating the effectiveness of

different modules on the ANCE04 dataset. “YI” indicates the

Youden Index metric. “G” and “C” denote the grading and count-

ing tasks, respectively. The values following ‘±’ are standard de-

viations.

Method MAE ↓ Precision ↑ YI ↑ Accuracy ↑

SLL(G) - 75.81±2.56 67.21±4.11 78.42±2.11

LDL(G) - 78.51±0.03 68.81±0.05 79.31±0.02

Ours(G) - 80.56±0.02 71.67±0.05 82.05±0.02

SLL(C) 4.16±0.11 76.04±1.57 66.23±3.42 75.69±1.26

LDL(C) 3.24±0.14 80.39±0.02 70.65±0.01 81.09±0.01

Ours(G+C) 3.01±0.17 83.12±0.03 72.88±0.04 82.53±0.01

Ours 2.93±0.18 84.37±0.02 75.32±0.02 84.11±0.01

Our method explores the label distribution from the lesion

counting task with continuous features for the acne severity

grading and achieves the best performance.

Furthermore, compared with deep feature based meth-

ods, hand-crafted features perform poorly in all evaluation

metrics. Different stages of acne have distinct variances

between lesions in texture, color, and border. For exam-

ple, acne lesions should have deeper color (e.g., crimson or

black) in the late stage compared with the early stage, while

these low-level features are not enough to discriminate dif-

ferent acne severity. Since every severity level of acne will

experience the same procedure from the early stage to re-

covery. Even for more severe acne, the lesions may present

richer and clearer color etc. to a certain degree. The poor

performance of YI metric also indicates that the diagnostic

results from hand-crafted feature based methods have very

low reference value.

In contrast, deep features represent the acne via high-

level semantic information and perform better. ResNet-

50 [25] achieves the best performance in basic CNN models

(i.e., the accuracies of 3.2% and 2.0% over the other two



Table 3. Comparison with the label distribution learning methods (PT-Bayes, PT-SVM, AA-kNN, AA-BP, SA-IIS, SA-BFGS, SA-CPNN,

DLDL), hand-crafted feature based classification methods (SIFT, HOG, GABOR, CH), and deep methods (VGGNet, Inception, ResNet).

The values following ‘±’ are standard deviations.

Criterion PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS SA-CPNN DLDL [17]

Precision 45.31±0.09 44.60±0.07 67.61±0.13 65.36±0.10 60.45±0.04 73.85±0.03 47.60±0.17 78.51±0.03

Specificity 79.39±0.03 83.04±0.03 87.73±0.07 87.37±0.02 85.93±0.01 91.01±0.01 80.40±0.03 92.24±0.01

Sensitivity 45.06±0.12 46.05±0.05 67.33±0.15 58.65±0.10 60.17±0.05 72.03±0.03 47.15±0.08 78.57±0.05

Youden Index 24.44±0.15 29.10±0.08 55.05±0.22 46.02±0.11 46.10±0.06 63.03±0.04 27.55±0.10 68.81±0.05

Accuracy 45.38±0.07 48.15±0.11 68.15±0.17 66.44±0.04 63.22±0.02 76.16±0.03 46.92±0.08 79.31±0.02

Criterion SIFT [30] HOG [7] GABOR [31] CH [42] VGGNet [39] Inception [43] ResNet [25] Ours

Precision 42.59±2.14 39.10±5.30 45.35±5.58 43.40±4.20 72.65±3.42 74.26±3.26 75.81±2.56 84.37±0.02

Specificity 78.44±1.10 77.91±1.53 79.89±1.58 78.70±1.06 90.60±0.71 90.95±0.68 91.85±0.77 93.80±0.00

Sensitivity 39.09±4.47 38.10±5.33 41.78±5.47 41.27±2.01 72.71±2.60 72.77±2.61 75.36±3.39 81.52±0.02

Youden Index 17.53±5.38 16.01±6.80 21.67±7.02 19.97±2.91 63.31±3.19 63.72±2.92 67.21±4.11 75.32±0.02

Accuracy 45.89±2.16 41.30±6.02 48.22±4.20 47.47±2.39 75.17±1.97 76.44±1.77 78.42±2.11 84.11±0.01

Table 4. Comparison with the state-of-the-art counting methods on the ACNE04 datasets. The values following ‘±’ are standard deviations.

Methods MAE ↓ MSE ↓ Precision ↑ Specificity ↑ Sensitivity ↑ Youden Index ↑ Accuracy ↑

F-RCNN [35] 6.70±0.28 11.51±0.37 56.91±9.15 90.32±0.86 61.01±3.90 51.34±4.66 73.97±1.88

RefineDet [55] 5.82±0.53 10.14±0.49 72.20±1.70 89.53±0.60 66.03±5.10 55.56±5.69 72.09±1.46

YOLOv3 [34] 6.69±0.28 11.35±0.13 67.01±0.09 85.96±0.71 51.68±4.58 37.63±5.29 63.70±1.37

MCNN [56] 5.28±0.20 7.76±0.29 63.97±3.89 82.84±1.40 46.22±3.34 29.07±4.62 58.01±3.26

Ours 2.93±0.18 5.42±0.66 84.37±0.02 93.80±0.00 81.52±0.02 75.32±0.02 84.11±0.01

models respectively). Besides, it obtains at least 30% ac-

curacy boost over hand-crafted feature based methods. Our

method outperforms ResNet-50 in accuracy by a significant

5.69% and YI by 8.11%. This demonstrates the advantages

of label distribution and multi-task learning strategies ori-

ented by the professional medical criterion. The very low

standard deviations further indicate the stability of our pro-

posed method. Our method can benefit mining discrimina-

tive feature representation for acne images.

4.6. Comparison with Counting Methods

We compare with detection and regression based count-

ing methods respectively. Table 4 illustrates the acne sever-

ity grading results, which are converted by counted lesion

numbers based on the medical criterion [24], and lesion

counting results respectively. Object detection methods

such as Faster R-CNN [35] etc. generally outperform re-

gression methods in the grading task due to the sparsity of

acne lesions. However, detection based methods are un-

stable when the object size is small. For example, Faster

R-CNN [35] achieves the best accuracy of 73.97% among

the compared counting methods. But the poor performance

such as precision and sensitivity indicates detection based

methods are hard to achieve balanced results in each cate-

gory. Specifically, as shown in Fig. 5, Faster RCNN (de-

noted as F-RCNN) achieves the accuracy of 12.44% on the

acne severity of ‘severe’, while only achieving the accu-

racy of 4.62% on the acne severity of ‘very severe’. The

regression-based MCNN [56] achieves the best counting re-

sults especially in the MSE metric compared with detection

based methods. However, the poor grading performance

shows this method ignores the different weights between

acne severity levels when counting lesions, i.e., the interval

corresponding to different severity levels of acne is differ-

ent. And our method can not only achieve excellent count-

ing results but also balance the counting loss among differ-

ent acne severity via label distributions. As shown in Ta-

ble 4, our method outperforms compared methods both on

classification and counting tasks. In addition, as illustrated

in Fig. 5(b) and Fig. 5(c), our method achieves lower count-

ing errors both on average and for each severity level of

acne. Especially the significant improvement on the sever-

ity of ‘very severe’ demonstrates the stability of our method.

4.7. Comparison with Dermatologists

To validate the practical application value of our diag-

nostic system, we compare our method with 2 professional

dermatologists and 2 general doctors. After getting famil-

iarized with the Hayashi criterion [24], each doctor tests

on 700 acne images which are randomly sampled from the
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Figure 5. Classification (a) and counting (b, c) results of different methods on four severity levels of acne and average performance.

Table 5. Comparison of the doctors on the ACNE04 datasets.

‘Derm’ denotes professional dermatologists who are knowledge-

able in the dermatology field. ‘GD’ denotes general doctors who

are not specialized in dermatology. The values following ‘±’ are

standard deviations.

Criterion GD 1 GD 2 Derm 1 Derm 2 Ours

Precision 62.87 62.07 77.33 82.95 84.37±0.02

Specificity 84.11 86.98 90.66 92.16 93.80±0.00

Sensitivity 55.27 68.33 72.56 78.27 81.52±0.02

Youden Index 39.38 55.31 63.22 70.43 75.32±0.02

Accuracy 58.43 63.14 75.29 79.43 84.11±0.01

ACNE04 dataset. We report the grading results of each doc-

tor in Table 5. We can observe that expert knowledge is

of great importance in the acne grading procedure. Gen-

eral doctors show mediocre performance on each evalua-

tion metric. The poor results of Youden Index value and

accuracy indicate that they have a weak ability to clearly

distinguish different severity levels of acne without expert

knowledge. The dermatologists achieve better performance

on all metrics. The gap in their results is due to the differ-

ence of acne diagnosis experience and personal subjectivity.

Our method achieves the dermatologist level perfor-

mance and even exceeds the two dermatologists to a cer-

tain degree. This demonstrates that our method can provide

valuable diagnosis evidence for doctors or patients. While

the grading of acne severity is still a challenging task, as

the examples illustrated in Fig. 6, the counting result can

be regarded as the confident evidence for final acne grad-

ing. When the results of the classification and the number

are inconsistent, they can also refer to each other such as

Fig. 6(b). However, when both the results of classification

and counting are wrong such as Fig. 6(c), we may need to

introduce more prior expert knowledge or medical criteria

to the diagnostic system.

5. Conclusion
In this work, we present a unified framework which can

simultaneously learn to grade global acne severity and count

Figure 6. Examples of the counting and classification results. The

numbers under the images denote the ground-truths of the acne

severity and lesion number. The numbers in parentheses repre-

sent classification probability corresponding to true severity and

estimated lesion number, respectively. The red font denotes the

wrong prediction.

local lesions. Oriented by the professional medical crite-

rion, our method has two branches addressing grading and

counting tasks. Our method learns the continuous feature

representation of the acne image from the lesion counting

task. Then it learns the severity label distribution to effi-

ciently grade the acne image. To verify the effectiveness of

the proposed method, we collect a dataset named ACNE04.

We invite several experts to manually annotate the lesion

bounding boxes and severity grade. Results indicate that

our method can achieve dermatologist level performance

and provide accurate diagnostic reference.
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