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Abstract  

Increasing displacement and strain accumulation in normal faults can result in the formation 

of hard-linked structures that are preferred loci for fluid leakage. Three-dimensional seismic 

data from offshore New Zealand reveals Miocene geological units that were structurally 

deformed to form several hard-linked fault zones.  Fluids are observed to migrate through 

these breached zones into younger strata. Here, we use an automated approach by designing 

two different meta-attributes, the Thinned Fault (TFC) and Fluid (FC) Cubes, to capture the 

detailed geometry of hard-linked fault zones, and of fluid flowing through these same 

structures. The two meta-attributes are prepared through an amalgamation of different seismic 

attributes, which are trained based on the interpreter’s skills and experience following a 

supervised scheme of neural learning. The meta-attributes enhance sub-surface geological 

features and reveal their structural geometries. Faults in the study area are therefore observed 

to strike to the NE with different geometries, e.g. forming curved shapes (F1 and F2), sigmoid 

shapes (F3), and Y shapes (F4). Relay ramps between these faults are intensively breached, 

allowing for important fluid migration through hard-linked structures. We demonstrate that our 

interpretation approach does not only honour the interpreter’s knowledge about key geological 

processes, but also adds value in revealing the 3D architecture of hard-linked normal faults. 
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1. Introduction 

Hard-linked faults comprise structures in which a breaching fault cuts and displaces a relay 

ramp formed between two adjacent, larger faults (Larsen, 1988; Peacock and Sanderson, 

1994). In contrast, soft-linked faults are structures in which a relay ramp is formed and remains 

relatively undeformed. The primary factors that control the breaching of a relay ramp are the 

slip vectors of overlapping faults, their spacing and relative displacement (Pollard and Aydin, 

1984; Peacock and Sanderson, 1994; Peacock et al., 2000; Ferrill and Morris, 2001). In 

extensional regimes, relay ramps are formed initially in low strain conditions. At a later stage, 

when the strain progressively accumulates, the relay ramp starts to deform internally and is 

breached by several faults and smaller structures (Larsen, 1988; Peacock, 1991, 1994; 

Kristensen et al., 2013; Fossen and Rotevatn, 2016). Importantly, the degree of deformation 

that is experienced in relay ramps greatly depends on the mechanical rock properties of 

faulted rocks at the time of deformation (Aydin et al., 2006; Fossen et al., 2007) 

 

Relay ramps in hard-linked fault zones are structurally complex, comprising multiple faults and 

fractures (Sibson, 1996; Peacock and Parfitt, 2002; Kim et al., 2004; Fossen et al., 2005). 

These faults and fractures can act as pathways for the vertical migration of fluids such as 

hydrocarbons, CO2, hydrothermal solutions, metamorphic fluids, magmatic fluids and ground 

water (Breit and Meunier, 1990; Curewitz and Karson, 1997; Rowland and Sibson, 2004; Dini 

et al., 2008; Sharp et al., 2010; Dockrill and Shipton, 2010). In hydrocarbon exploration, relay 

ramps are not only important to the accumulation and trapping of hydrocarbons, but also have 

a negative impact on seal integrity (Gartrell et al., 2004; Kristiansen, 2011).  Fault-controlled 

(structural) hydrocarbon traps are generally underfilled or dry wherever the seal is controlled 

by two or more interacting faults (Kristiansen, 2011). In parallel, fault intersections, or intensive 

breaching within fault-controlled structural traps, usually comprise leakage zones for 

hydrocarbons (Gartrell, 2004).   

 

The use of high quality 3-D seismic reflection data has opened new avenues to better 

understand the history of hard-linked fault zones, especially when fluid leakage is associated 

with such structures (Coward et al., 1998; Bense and Baalen, 2004; Manzoochi et al., 2008; 

Rotevatn et al., 2007; Alarfaj and Lawton, 2012; Mohammedyasin, 2015). Several authors 

have documented different interpretation techniques that enhance the interpretation of such 

hard-linked fault zones (e.g., Pedersen et a., 2002, 2003; Cohen et al., 2006; Wu and Zhu, 



2017; Huang et al., 2017; Lu et al., 2018; Wu et al., 2019b).  Seismic attributes can thus be 

applied to characterise the response of seismic waves in these geological structures, 

identifying fluid migration pathways (Alarfaj and Lawton, 2012; Mohammedyasin, 2015), but 

these attributes are chiefly used in the literature to assist ‘conventional’ interpretation 

workflows that rely on manual interpretation.  Since faults are normally associated with breaks 

in seismic reflection, and often appear as linear, sub-linear or curvilinear features (Shaw et al., 

2005; Iacopini and Butler, 2011; Jaglan et al. 2015), to accurately position and interpret them 

becomes a tedious task (Kumar and Mandal, 2017; Kumar and Sain, 2018). Moreover, the 

quality of seismic attributes used in the mapping of discontinuities, such as seismic semblance 

or coherency, essentially relies on the different parameters (step-outs, time windows, input 

data etc.) used in their computation (Kumar et al., 2019a). To complement these conventional 

interpretation approaches, Mohammedyasin et al. (2015) used an advanced interpretation 

method involving the computation of a volume probe to show escaping fluid from seismic data 

in the Snøhvit Gas Field, Hammerfest Basin. A common downside of this latter technique is 

the inability of an attribute (e.g. seismic amplitude) to respond to a certain geological 

phenomenon within the seismic volume.  This caveat often results in the overlapping of several 

geological bodies along desired targets, thus hindering consistent structural interpretations.    

 

The present study introduces an automated approach for elucidating fluid leakage through 

discontinuous geological structures. In detail we developed two meta-attributes, called the 

Thinned Fault (TFC) and Fluid (FC) Cubes, using a high-resolution, high-quality, 3-D seismic 

volume from New Zealand (Fig. 1). To achieve the aims of this study, a well-known natural 

site was chosen whereby the presence of hard-linked faults is well documented, i.e. the 

Parihaka prospect, offshore Taranaki Basin (Figs. 1 and 2). The stratigraphic interval of 

interest comprises the Oligocene Tikorangi Formation and the Miocene Monganui and Moki 

Formations (Fig. 3). The workflow and methods adopted in this work are automated and not 

laborious, leading to an enhanced interpretation of hard-linked faults and vertical fluid 

migration. The strength of our approach is in the integration of the artificial intelligence of 

Neural Networks with the interpreters’ skills and experience, ultimately streamlining any 

interpretation workflow.  

 

2. Tectonic evolution and geology of the study area 

The study area is the Taranaki Basin, which is ~60 km wide and extends ~350 km in a NNE 

direction, from south of the Taranaki Peninsula to the offshore area west of Auckland (Fig. 1). 

From Late Cretaceous to Early Eocene, the Taranaki Basin recorded extensional tectonics 

due to the breakup of Gondwanaland and the formation of the Tasman Sea. This was followed 

by compression during the Late Eocene, and back-arc extension from Late Miocene to Recent 



(Giba, 2012). The western part of the basin has been largely stable since the Late Eocene 

(Pilaar and Wakefield, 1978; Knox, 1982), while its eastern part is bounded by the Taranaki 

Fault (Fig. 1). In parallel, the southern part of the basin is characterised by reverse faulting 

and important tectonic inversion. The study area, located in the northern half of the Taranaki 

Basin, has undergone continuous subsidence as revealed by the numerous normal and 

extensional faults observed in seismic data. The northern part of the basin also comprises 

several intrusive magmatic bodies (Pilaar and Wakefield, 1978; Knox, 1982; King and 

Thrasher, 1996).   

 

In the Late Cretaceous, several fault-bounded graben and half-graben structures (King and 

Thrasher, 1996; Higgs et al. 2012) related to extensional movements were filled by syn-rift 

strata consisting of interbedded coal measures and sandstones of the Pakawau Group ( 

Palmer and Andrews 1993; King and Thrasher 1996) (Fig. 3). The overlying Paleocene and 

Eocene deposits contain late-rift and post-rift transgressive sequences, the Farewell, Kaimiro, 

Mangahewa and McKee Formations (King and Thrasher 1996; Higgs et al. 2012). They 

contain terrestrial to marginal marine strata part of the Kapuni Group (Higgs et al. 2012). 

Tectonic quiescence and a relative reduction in clastic sediment supply during the Oligocene 

led to the widespread deposition of limestones and calcareous mudstones in the Ngatoro 

Group, and the Otaraoa and Tikorangi Formations (King et al., 1999; King 2000). A 

transgressive phase followed this quiescent period and reached its climax in the Early 

Miocene, when the Taimana and Manganui Formations were deposited. A subsequent 

regressive phase started from the Middle Miocene (Wai-iti Group) through the Pliocene 

Rotokare Group (Giant Foresets Formation), until the present day (Higgs et al. 2012; Singh et 

al. 2016).  

 

Petroleum systems in the study area 

The younger Urenui Formation (~539 m thick) comprises claystones interbedded with 

sandstone reservoirs (Fig. 3). This unit was deposited in lower to mid bathyal environments 

from Late Miocene to Early Pliocene. The Moki Formation is a ~222 m thick reservoir 

consisting of interbedded sandstone, claystone tuff deposited during the Late Miocene (Arco 

Petroleum, 1992) (Fig. 3). The Monganui Formation was deposited in lower to mid bathyal 

environments during the Miocene and consists of interbedded tuff and claystone (Arco 

Petroleum, 1992).  The Oligocene Tikorangi Formation is a limestone unit (Arco Petroleum, 

1992) (Fig. 3). The Pakawau Group consists of carbonaceous shale and coal measures 

deposited during the Late Cretaceous (Arco Petroleum, 1992).  Arco Petroleum (1992) 

documented the occurrence of hydrocarbon migration from the Pakawau Formation into 

reservoirs in the Moki and the younger Urenui Formation (Fig. 3).  Oil and small amounts of 



gas were observed within the Moki, Monganui and Urenui strata when the well Arawa-1 was 

drilled (Arco Petroleum, 1992). 

 

3. Geophysical Data 

The work uses 3-D time-migrated seismic data consisting of 1132 inlines (Line no. 1665 to 

2797) and 2904 xlines (Line no. 2835 to 5739) acquired over the Parihaka prospect of the 

Taranaki Basin (Fig. 1). The seismic data was acquired in 2005 by B/V Veritas Viking II for 

Pogo New Zealand and covers an area of 1028.55 km2. Additional acquisition parameters 

include a bin spacing of 25.0 m × 12.5m (inl/xl), a 4 ms sampling interval, a 60-fold coverage 

and a recording length of 6.0 s. The acquired data has been processed following conventional 

workflows that include trace edits, geometry updates, signal deconvolution, anomalous 

amplitude attenuation (AAA), multiple elimination, velocity analysis, dip move-out corrections, 

migration preconditioning, anisotropic Kirchhoff time migration, and common midpoint (CMP) 

data stacking. A three-pass velocity analysis, accompanied by a dense velocity analysis 

(DVA), was applied to the seismic data. The aim behind this robust processing sequence was 

to image deep geological structures (particularly Cretaceous strata), improve fault resolution, 

and reduce multiple and fault shadow effects (Western Geco, 2012). The seismic volume is 

displayed following the Society of Exploration Geophysicist’s (SEG) American polarity, i.e. an 

increase in acoustic impedance is shown in black and related to a peak (or positive amplitude), 

while decreases in acoustic impedance boundary are shown as red reflections and correlated 

with troughs, or negative amplitudes. Additional geophysical data available in the study area 

derive from exploration wells Arawa-1, Kanuka-1, Okoki-1, Taimana-1 and Witiora-1. For this 

study, we used the Arawa-1 well, which was drilled to a total depth (TD) of 3055 m until the 

top of the Moki Formation (Arco Petroleum, 1992). 

 

4. Research workflow 

The research workflow is divided into two segments. The first segment deals with the 

computation and optimization of the Thin Fault Likelihood (TFL) (Fig. 4a). The second segment 

deals with the computation of the Thinned Fault (TFC) and Fluid (FC) Cubes (Fig. 4b).   

 

Phase 1: Structural Conditioning 

This phase is common to both workflows shown in Figs. 4a-b. Structural conditioning of the 

data makes seismic events laterally continuous and provides sharper structural images. Thus, 

to achieve our objectives, the seismic data was conditioned in three different ways. 

 

Steering cube: a process to extract dip-azimuth information 



A dip-steering process based on the phase-based dip algorithm of Tingdahl (1999), Tingdahl 

and de Groot (2003) and Jaglan et al. (2015), is used to compute a steering cube. This consists 

of a time-derived cube that contains information about seismic reflection dips and azimuth at 

every sample point. Different filters (i.e., ‘mild, medium and coarser filters) are applied to the 

cube to extract the finest structural information and create ‘Detailed and Background Steering 

Cubes’.  

 

Structural filtering 

In this step, a structure-oriented filter (SOF) is used to structurally filter the data volume by 

segregating the dip-azimuth of seismic reflectors and overlying random noise (Chopra and 

Marfurt, 2007; Hocker and Fehmers, 2002; Kumar and Mandal, 2017). This procedure helps 

to remove any random noise, enhance the lateral continuity of seismic events (Höcker and 

Fehmers, 2002; Fehmers and Höcker, 2003), and ultimately results in sharper geological 

structures (Kumar and Mandal, 2017; Wu and Gao, 2019). The SOF operates on three basic 

properties: (a) the orientation of seismic reflectors, (b) the geometry of reflection terminations, 

and (c) the relative preservation of these terminations, thereby smoothing seismic reflectors. 

Based on these principles, the seismic volume is filtered in three different stages to obtain 

three different conditioned seismic volumes. These filtering stages are: (i) smoothing of the 

seismic reflectors by applying a Dip-Steered Median Filter (DSMF), (ii) enhancement of the 

faults’ subsurface position and geometry via a Dip-Steered Diffusion Filter (DSDF), and (iii) a 

logical merging of these two steps to generate Fault Enhanced Filtered (FEF) seismic data.  

. During the structural filtering, seismic reflectors are first smoothed using a Dip-Steered 

Median Filter (DSMF) to produce DSMF seismic data. Median statistics are applied over 

seismic amplitudes by this filter following the stored dip-azimuth information from the Steering 

Cube. Hence, the masked background random noise is suppressed and seismic reflections 

become smoother and continuous. Later in this process, diffused reflections around fault 

zones are filtered using an intermediate Dip-Steered Diffusion Filter (DSDF). In this instance, 

a pre-computed similarity attribute derived from the original stacked seismic and Background 

Steering data helps the DSDF to identify linear and dissimilar seismic traces, i.e. fault zones. 

In the final structural filtering stage, the DSMF and the DSDF are logically merged using a cut 

off value of 0.5, and the similarity attribute, in order to obtain Fault Enhanced Filter (FEF) 

seismic data. For the TFC meta-attribute, the FEF and Detailed Steering seismic data are the 

main inputs, while the DSMF and Detailed Steering seismic data were used to create the FC 

meta-attribute.  

 

Phase 2: Attribute Selection and Computation   



Seismic attributes sensitive to faults and fractures were chosen based on the following criteria: 

(a) faults and discontinuities such as relay ramps are marked by abrupt changes in reflection 

continuity and dip (Tingdahl, 2003; Tingdahl and de Groot, 2003; Chopra and Marfurt, 2007; 

Roberts, 2001; Tingdahl and de Rooij, 2005; Chopra and Marfurt, 2007) and (b) fault zones 

are susceptible to losses in the energy and frequency content of the seismic signal (Bahorich 

and Farmer, 1995). Similarly, fluid migration zones in seismic data are marked by: (a) 

disrupted seismic reflections, (b) loss in energy content, (c) ‘washing’ of the higher frequency 

content, and (d) a dissimilar nature in seismic events (Singh et al., 2016; Omosanya et al., 

2017). Knowing this, seismic attributes such as similarity, ridge enhancement filter (REF), 

thinned fault likelihood (TFL), reference time and signal-to-noise (S/N) ratio are grouped under 

the TFC meta-attribute design. Similarity, energy, average frequency and signal to noise (S/N) 

ratio were grouped under the FC meta-attribute design.  

 

The thin fault likelihood (TFL) attribute (Hale, 2013; Wu and Hale, 2016) is computed using 

the FEF seismic data over a wide range of fault strikes and dips (Fig. 4a). In this study, the 

TFL is computed with 10 to 50 scans (at every 5 incremental steps) in the strike direction 

within a range of 0 to 360 degrees, and 15 to 55 scans (at every 5 incremental steps) in the 

dip direction within a range of 35 to 85 degrees. During this process, an optimised TFL is 

prepared to image linear faults from the seismic data. Furthermore, the similarity attribute is 

extracted using long (96 ms) and mid-length (48 ms) time windows. These window lengths 

were selected to match the orientation and vertical extent of targeted features throughout the 

data volume, and also to improve the detection power of the seismic attributes (Kumar and 

Sain, 2018). The computation of attributes is quality-checked to test their efficacy in imaging 

geological structures. After being quality-checked, volumetric seismic attributes are computed 

to be used as inputs for the neural computation (further information on the different attributes 

is provided in Appendices D to H). 

 

Phase 3: Training Locations 

To discriminate the input attribute responses from target and non-target zones, training 

locations are prepared. First, fault picks are marked as zones associated with bed 

displacements and associated breaks in seismic reflectors, as they are characterised by low 

similarity and variable dip anomalies. The non-fault picks are designated as zones that are 

devoid of acoustic disturbances. These locations are identified by the interpreters based on 

their own skills and knowledge of the local geology, the judgement of which is further 

corroborated (or rebuked) by seismic attribute responses.  

 



In our study, around 3875 example locations comprising 1975 fault picks and 1900 non-fault 

picks, for every 10th seismic line, were selected from the seismic data.  In addition, fluid 

migration zones were mapped based on their low similarity, low energy and ‘washing-out’ of 

frequency content. Hence, they were categorised as ‘fluid picks’, and the surrounding area(s) 

considered as ‘non-fluid picks’.  Approximately 1475 training locations i.e., 775 fluid picks and 

700 non-fluid picks, for every 10th seismic line, were selected from the seismic data.  

 

Phase 4: Neural Network Design 

The Neural Network chosen for computing the meta-attributes is a fully connected multi-layer 

perceptron (MLP) network (see Meldahl et al., 2002; Aminzadeh and de Groot, 2006). The 

perceptron in the Neural Network are segregated into three different layers: the input layer, 

the hidden layer and the output layer. Inputs are fed into the network through the input layer. 

The processing of the data is carried out in the hidden layer, and later the outputs are extracted 

in the output layer. Hence, the hidden layer controls the overall structure and computational 

performance of the MLP network, as the number of neurons assigned to the hidden unit 

significantly influences the final results (Cybenko, 1989; Hornik, 1991; Hinton et al., 2006).  

Too many neurons in the hidden layer increase the training time and often result in problems 

such as overfitting, a situation where the Neural Network fits to too many a data point and fails 

to generalise, subsequently hindering any predictions. Therefore, it is appropriate to use a 

relatively small number of neurons within the hidden layer such that the computation speed is 

enhanced, and a faster performance of the network is guaranteed (Hornik, 1991; Hinton et al., 

2006; Aminzadeh and de Groot, 2006; Singh et al., 2016).  

 

In a multi-layer perceptron (MLP) network, the neurons within the network are interlinked with 

each other through synaptic weights that control and strengthen the connection. Each layer 

within the Neural Network consists of several neurons, thereby making the entire neural model 

a complex non-linear model. At this point, the use of an activation function successfully helps 

the non-linear mapping between inputs and their response variables (Singh et al., 2016; 

Kumar and Mandal, 2017; Kumar and Sain, 2018). For this reason, the MLP network in this 

study uses a sigmoid function that is continuous, monotonically increasing, and differentiable 

(Appendix A). For both the TFC and FC meta-attribute cases, the input, hidden and output 

layers consist of 5, 3, and 2 interconnected nodes.  

 

The learning rate and momentum are other parameters that regulate the changes required to 

be incorporated into the connection links, or the weight between the different layers. These 

are generally assigned to the network in a trial and error basis (Poulton, 2001). In the present 

study, the learning rate and momentum of the Neural Network are set to 0.01 and 0.25, 



respectively. Such small values in learning rates may slow down the convergence rate of the 

network, but help ensuring that global minima are not missed. A constant bias (node or 

threshold) of 1.0 is fed into the Neural Network such that the connection between the input 

and the processor is maintained and controlled. Accordingly, the Neural Network is made to 

randomly split the data into train and test sets, in which 30% of the data is used for testing and 

70% is used for training. The training of the Neural Network is performed through several 

iterations in order to establish a minimum normalised root-mean square (nRMS) error between 

the two data sets, i.e. the train sets, based on interpreter’s intelligence and the test sets 

extracted from the data, such that a probability output is obtained.  

 

The performance evaluation of the Neural Network training is examined through normalised 

RMS (nRMS) error curves and misclassification percentages (Appendices B and C). The 

nRMS error curve demonstrates the overall error on the train and test sets. The error scale of 

the nRMS ranges from 0 to 1, where 0 signifies least or no error and 1 signifies the maximum 

error in the computed model. During the training, both error curves of the train and test data 

sets should initially follow a smooth decay and later continue to change in a linear fashion. If 

the error curve corresponding to the test data rises further, the network encounters an 

overfitting issue; Neural Network training should be stopped immediately before such situation 

happens. The misclassification percentage is also a quality control parameter that provides 

an estimate of the number of wrong predictions made during the classification.  We follow the 

general rule that ‘the lower is the nRMS, the lower is the misclassification percentage’ (Kumar 

et al., 2019a, 2019b).  Once this is achieved, the neural training is stopped and the output is 

quality-checked over key seismic lines. After a satisfactory outcome, the training is carried out 

over the entire data volume and this finally generates the TFC and FC meta-attributes.  

 

Phase 5: Validation 

In this phase, the results of the automatic targeted object-oriented technique are validated 

using the well completion reports from Arawa-1 and data published in Arco Petroleum (1992), 

Giba et al. (2012), Iacopini et al. (2016) and Kumar (2016).  

 

The computation time required to execute the process is demonstrated in Table 1. The 

computational process was completed in a workstation with 512GB RAM and Intel Xeon E5 

series dual processors, each consisting of 14 cores. All the process was run in multi-threading 

(parallel processing) mode. 

 

5. Results and interpretation 



 

5.1 Stratigraphy and basin structure 

The Parihaka prospect is structurally deformed and comprises strata deposited from Late 

Cretaceous to the Holocene. The major fault system known as the Parihaka Normal Fault 

(PNF) has divided the subsurface strata into major structural compartments, the eastern and 

western compartments. The western compartment is highly deformed relative to the eastern 

compartment, consisting of series of horst-graben structures (Fig. 5). Importantly, basement 

units occur at a depth of 4.0 to 5.0 s Two-Way Time (TWT), being faulted and intruded by 

magma. The basement is overlain by the Pakawau Formation, which comprises a major 

source rock interval; carbonaceous shale and coal occur at a depth of 3.5 to 4.0 s TWT (Fig. 

5). The reservoir succession in the Parihaka prospect comprises the Miocene Moki Formation, 

which is overlain by the Monganui and Mohakatino Formations. These formations are overlain 

by the Pliocene-Pleistocene Urenui and Giant Foreset Formations. Well Arwa-1 encountered 

all these stratigraphic formations and was drilled to a depth of 3055 m, i.e., the top of the Moki 

Formation. For this present study, the zones of interest are the Monganui, the Moki and the 

underlying Oligocene Tikorangi Formations that occur at depths 2.0 to 3.0 s TWT. The 

Monganui and Moki Formations were deposited in a lower to mid bathyal environment in the 

Mid to Late Miocene (Arco Petroleum, 1992). The Late Miocene is associated with back-arc 

extension (Giba et al., 2012). This tectonic event structurally deformed the Pariahaka 

prospect, giving rise to several structural compartments in the study area (Giba et al., 2012; 

Kumar, 2016).   

 

5.2 Initial identification of hard-linked fault zones  

The Miocene Monganui and Moki formations are faulted by NE-SW structures. At this level, 

the western compartment (WC) is structurally more deformed than the eastern compartment 

(EC). Such a deformation within the western compartment generated relay ramps between 

normal faults, as revealed by the similarity attribute, which demonstrates the growth and 

deformation of relay ramps within these geological units (Fig. 6). Relay ramps between faults 

F2 and F3, at a depth of 1120 ms, are devoid of any deformation (Fig. 6a). In a deeper level, 

1320 ms and 1820 ms, the relay ramp experiences tectonic breaching; the ramp is breached 

by minute faults and discontinuous structures (Fig. 6b-c).  At a depth of 2020 ms, the relay 

ramp between faults F2 and F3 records intensive breaching, leading to the development of a 

hard-linked zone (Fig. 6d).   

 

Similar observations are made for faults F4 and F3 (Fig. 6e-h). The relay ramp between the 

two faults remains stable a depth of 1120 ms to 1320 ms (Fig. 6e-f). Breaching of the relay 

ramp begins at a depth of 1820 ms (Fig. 6g). In addition, F3 appears to be segmented and F4 



develops several splays, thereby generating Y-shaped structures within this zone.  At a depth 

of 2020 ms the relay-ramp between faults F4 and F3 records intensive breaching, leading to 

the development of hard-linked zones (Fig. 6h). Such an observation suggests that low 

tectonic strain prevailed at shallower Early Pliocene levels. Towards Mid to Late Miocene 

strata, high strain and increasing displacement resulted in the deformation of relay ramps, with 

consequent formation of several interconnected breached faults between F2 and F3, and F3 

and F4. This gave rise to several hard-linked fault zones at Miocene level.   

 

5.3 Thinned Fault Cube (TFC) and Fluid Cube (FC) 

The 3-D time migrated seismic volume reveals that geological structures are prone to noisy 

distorted reflections, leading to poor imaging (Fig. 7a). Conditioning the data using the Dip 

Steered Median Filter (DSMF) smoothes the reflectors by minimising noise, and enhances the 

continuity of seismic events (Fig. 7b). This has improved the visibility of fault zones and several 

other structures in the study area. Furthermore, the application of a fault enhanced filter (FEF) 

added value to these observations by sharpening the interpreted structures and refining the 

signal strength near the fault zones. Fault edges are now sharpened, distinct and clear (Fig. 

7c).  

 

Seismic attribute analysis is used in this study to recognise structural complexity from the data 

volume (Figs. 8 and 9). The Thinned Fault Likelihood attribute improves the imaging of 

subsurface features when scanned for maximum likelihood, with several steps in the strike 

and dip directions (Fig. 8b-f). When scanning is increased in the strike direction from step 11 

to 21, and in the dip direction from step 14 to 26, the attribute fails to capture the maximum 

structural detail from the seismic volume. Towards the SW, faults and minute structural 

features are poorly imaged in the deeper part of the section. Moreover, faults exhibit poor 

structural continuity and connectivity (Figs. 8b and c). Upon gradually increasing the number 

of scans from step 21 to 31 (strike direction) and step 26 to 34 (dip direction), a steady 

improvement in structural detail is observed (Fig. 5d). The TFL attribute computed for strike-

dip scans 41, 50 (Fig. 8e) reveals the presence of faults in the SW and NE parts of the study 

area, which were previously hard to visualise (Figs. 8b to c). The faults now appear to be 

continuous in Fig. 8e. Further increasing the scans from step 41 to 51 in the strike direction, 

and step 50 to 60 in the dip direction, improves the imaging of faults and other minute structural 

details (Fig. 8f).  

 

Structural features in the deeper parts of faults are efficiently captured by the TFL attribute 

(Fig. 8f). These observations are ascertained for an optimised case of the TFL attribute (i.e. 

TFL with number of strike and dip scans; 51, 60) that captures the maximum number of 



structural discontinuities from the seismic volume. Attributes such as similarity and ridge 

enhancement filter can capture the discontinuous reflection character of the fault zones (Figs. 

9a and b). The TFL attribute brings out linear fault images from the data volume (Fig. 9c).  

 The interval of interest in the present study (Miocene) occurs at a depth of 2.0 to 2.5 s TWT 

(Figs. 5). The initial interpretation of hard-linked fault zones suggested that intensive breaching 

of the ramps occurs at Miocene level (Figs. 7). Moreover, Arco Petroleum (1992) documented 

possible hydrocarbon migration from the Pakawau Formation into Moki and Urenui sandstone 

reservoir units. Based on these data, it can be inferred that the hard-linked fault zones acted 

as pathways for the migration of hydrocarbon fluid from deeper to younger strata. Attribute 

analysis optimally adds value to this interpretation by improving the imaging of the fluid 

migration pathways, as most of these pathways correspond to breached relay ramps. Thus, 

as similarity attribute illuminates contrasting reflection events within these pathways, 

distinguishing them from surrounding strata (Fig. 9d), the energy attribute suggests these 

zones are associated with low-amplitude and low-energy events (Fig. 9e). The higher 

component of frequency is washed out within the fluid migration pathways, as highlighted by 

the frequency attribute (Fig. 9f).  

  

5.4 Neural Optimization of the Thinned Fault Cube (TFC) and Fluid Cube (FC)  

Neural training between the test and train data sets resulted in small RMS errors and minor 

misclassification percentages (Figs. 10a-f). In the case of the TFC meta-attribute, after 40 

iterations, the normalised RMS error and misclassification percentage for both the train and 

test data sets reached minimum values between 0.3-0.42 and 7.13-9.38%, respectively. 

Similarly, in the case of the FC meta-attribute, after 30 iterations the normalised RMS error 

and misclassification percentage for both the train and test data sets reached minimum values 

between 0.3-0.45 and 3.08-7.55%, respectively (Fig. 10f). It is important to attain a minimum 

error between the test and train data, and thus achieve a closer approximation between the 

computed (system-generated) and the targeted (based on the interpreter knowledge and 

skills) outputs. The relative contribution (weights assigned to each input nodes) offered by the 

input sets (seismic attributes for both the cases) are shown in Tables 2 and 3.  

 

5.5 Enhanced interpretation of hard-linked fault zones and fluid pathways 

The TFC meta-attribute highlights subsurface structural features and brings out thinned 

continuous fault images from the data. The Monganui, Moki and the underlying Tikorangi 

Formations are structurally deformed, and have been compartmentalised in a series of half-

graben structures (Figs. 11). Faults captured by the TFC meta-attribute within the Monganui 

Formation strike to the NE (Figs. 12). The master fault i.e., the PNF (Fault F3) presents a 

sigmoidal geometry and divides the formation into eastern and western structural 



compartments. The eastern compartment belongs to the hanging-wall domain and the western 

compartment belongs to the footwall domain. 

  

Towards the NW part of the Monganui Formation, faults exhibit a curved (or semi-circular) 

geometry, e.g. Fault F1 (Fig. 12b). These curved faults are further associated with several 

splays with a horse-tail appearance (See Omosanya et al., 2017; Fig. 12b and 13a). A similar 

geometry is also observed in the central part of the study area at the level of the Monganui 

Formation, e.g. in Fault F2 (Fig. 12b). The ramps between faults F1-F3 and F2-F3 are hard-

linked and breached by several parallel faults and fault splays (Figs. 12b and 13b). Fault F3 

is segmented in the northern part of the study area, but a sigmoidal shape is more prominent 

from the centre of the study area towards the south (Fig. 12c). A Y-shape fault (F4) and 

associated fault splays are observed in the south (Figs. 12c and 13c). These splays breach 

the ramp formed between F4 and F3 (Figs. 12c and 13c).  

 

The Moki Formation is also deformed by a complex fault system (Figs. 14). Faults within the 

Moki Formation have NNE-SSW strikes (Figs. 14).  Faults in the northern part of the study 

area are curved (F1) and parallel along their strike (Fig. 14b). In the southern part, a relay 

ramp between the sigmoidal F3, Y-shaped F4 and curved F2 is breached by a series of parallel 

faults (Fig. 14c). Discontinuous structures within the underlying Oligocene Tikorangi unit 

demonstrate two major fault strikes, i.e. NNE-SSW and NE-SW (Figs. 15). Curved faults (F1 

and F2) are prominent and well-developed within this latter unit (Fig. 15a). In addition, the 

segmented F3 continues to reveal an S-shaped pattern (Figs. 15b-c). The ramps between the 

faults F1, F2 and F3 are breached by en-enchelon faults (step faults) in the northern to central 

parts of the seismic volume. The southern part of the study area is deformed by several fault 

splays with Y-shaped geometries (Fig. 15c).    

 

Relay ramps within the western structural compartment of the Miocene units are deformed 

internally and, hence, are further breached by faults and minute structural discontinuities (Figs. 

13, 14 and 16a). Such intense breaching of the relay ramps provides conductive pathways for 

fluid migrating towards younger strata (Fig. 16a). The FC meta-attribute captures these 

leakage pathways where fluids are observed to migrate through the Miocene succession to 

younger strata through the hard-linked fault zones (Fig. 16b).  Breaching of the relay ramps, 

and fluid leakage through these structures, can be further observed in Fig. 17, where seismic 

data is sliced at t=2.2 s. In the northern part, the relay ramp between faults F2 and F3 is 

breached with several parallel faults and smaller structures (Fig. 17b). To the south, the relay 

ramp between faults F3 and F4 is breached by several fault splays (Fig. 17c). These zones 



are associated with high fluid probability, thus, signifying fluid leakage through breached 

structures (Figs. 17d-f and 18a-b)  

 

6. Discussion 

 

6.1. The TFC and FC: An automated approach of interpretation 

 We observe that faults F1, F2, F3 and F4 consist of hard-linked relay ramps (Table 4). This 

geological scenario is prominently elucidated through the automated approach adopted in this 

work. This automated approach is inspired by a unique rule, where the geological targets are 

interpreted based on the interpreter’s skills and verdict. Based on such facts, all appropriate 

locations that illustrate the maximum and minimum probability of faults and fluid zones in the 

seismic data are selected (Figs. 10a and d). The response of multiple seismic attributes adds 

value during such selection. Once satisfied, the attribute responses and identified locations 

are trained through a fully connected multilayer perceptron Neural Network so as to minimize 

errors in interpretation, and an optimal output is obtained (Figs. 10b, c, e and f). In turn, this 

generated a meta-attribute showing sharper faults, and revealing fluid migration pathways in 

the interpreted seismic data volume (Figs. 11 and 15).  

 

The TFL attribute is efficient in generating thinned fault images from the data. Its success 

depends on the number of scans performed such that subsurface structural details are imaged 

from the data (Hale, 2013). The optimised TFL attribute in the present study illustrates thinned 

fault images from the seismic volume (Figs. 8 and 19a). However, geological structures in the 

NE part of the prospect are poorly captured, and lack structural continuity and connectivity. 

The TFC meta-attribute improves the interpretation by enhancing the presence of geological 

features in the data (Fig. 19b). Faults observed throughout the Parihaka prospect are now 

continuous and prominent. Hence, such a process of amalgamating seismic attributes and 

generating a meta-attribute is by all means superior to single attribute computation.  

 

The efficiency of the TFC is compared in Fig. 20 to individual attributes, e.g. the coherency 

attribute of Bahorich and Farmer (1995) and Marfurt et al. (1998) and the similarity attribute of 

Tingdahl and de Groot (2003). At t=1.7s the TFC meta-attribute demonstrates its superiority 

to the individual seismic attributes. The coherency and similarity attributes show the geometry 

of faults from the data, but local structural patterns are poorly visible and lack in continuity and 

connectivity (e.g. the northern zones with a question mark and yellow circle; the southern 

zones with an orange circle; Figs. 20a and b). The TFC meta-attribute improves the visibility 

of structures, making structural continuity more prominent (Fig. 20c). Similar observations are 

made for the time slice t=2.0 s as compared to common seismic attribute analysis used in 



Figs. 20d, 20e and 20f. A downside of the TFC and FC meta-attributes lies in the use of noisy 

data as input for the meta-attribute design. Noisy data will mislead the interpreter and results 

in the erroneous identification of geological features. Hence, interpreters should start their 

analysis by excluding noisy areas from the data; if these noisy areas are trained with attribute 

responses, the learning capability and the generalization efficiency of the Neural Network can 

be significantly reduced.  

 

6.2 Implications for fluid plumbing through hard-linked faults 

Relay ramps typically provide pathways and control the vertical migration of hydrocarbons 

(Peacock and Parfitt, 2002; Kim et al., 2004; Fossen and Rotevatn, 2016). This setting 

becomes more favourable when structural complexity within these ramps increases, i.e. when 

the ramp is breached by faults and fractures. In such a situation, these zones become the loci 

of a range of fluid-rock interactions, making them economically significant. In the present 

study, Miocene strata are structurally deformed by a series of hard-linked fault zones. Arco 

Petroleum (1992) documented the occurrence of hydrocarbon migration from the Pakawau 

Formation into reservoir intervals in the Monganui, Moki and Urenui Formations (Fig. 3). The 

FC meta-attribute logically reveals this process where hydrocarbon is observed to migrate 

through the breached relay ramps, at the level of Miocene strata, into younger sedimentary 

units. Most of these breached ramps are observed between faults F1 and F2, and between 

F3 and F4 (Figs. 16, 17 and 18). Though hydrocarbons might have been accumulated within 

Miocene reservoir units, intense tectonic activity affecting these latter resulted in the breaching 

of the relay ramps. Most of these breaching events are observed during the Miocene period. 

Such a breaching resulted in the generation of several leakage zones within the Miocene 

reservoirs, allowing fluid to migrate further into younger strata.   The TFC and FC meta-

attributes strengthen this fact and elucidate the location of hydrocarbon leakage zones through 

hard-linked fault zones. 

 

7. Conclusions 

A combination of multiple seismic attributes trained by the interpreters’ skills and experience 

yielded two meta-attributes, the Thinned Fault Cube (TFC) and the Fluid Cube (FC), which 

provide enhanced images of faults and fluid migration pathways from 3D seismic reflection 

data. The approach brought out the structural architecture of faults compartmentalising 

Miocene strata in the Parihaka prospect, New Zealand. Main conclusions of this work are as 

follows: 

 

a) The workflow adopted in this work was able to identify fluid flow pathways through 

hard-linked fault zones at Miocene and Pliocene level. The only downside of using 



such workflow lies in the use of noisy data as input for the meta-attribute design, a 

caveat that will lead to the erroneous interpretation of non-geological features. 

b) The approach taken to interpret the geological features from seismic reflection data 

using Neural Networks is not painstaking; rather it is an automated process and makes 

use the interpreters’ skills to produce a reliable interpretation of geological targets.  

c) It is worth noting that several new seismic attributes may evolve in the future, and these 

can be incorporated into the proposed algorithm to further enhance the interpretation. 

d) The primary concern of an interpreter should be to consistently improve the imaging 

capabilities of seismic data such that newer approaches can prominently image 

subsurface geological targets from the seismic volume.  
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Appendix A 

A sigmoid function is an S-shaped mathematical function or simply a sigmoid curve. 

Mathematically, it is defined as: 

 

𝑦(𝑥) = 1/(1 + 𝑒−𝑥)……………………………(A1) 

 

The derivative of this function is given as  

 

𝑑𝑦

𝑑𝑥
= 

𝑒𝑥

(1+𝑒𝑥)2
  ………………………………………(A2) 

 

The sigmoid function is very often used in neural network to introduce nonlinearity in the neural 

model. Moreover, it is continuously differentiable which makes the computation easier. 

 

  



Appendix B 

The classification percentage is defined as the ratio of number of correct predictions to the 

total number of predictions, and is used to judge how best the intelligent neural model is able 

to differentiate the given distribution into object and non-object classes.  

 

                      𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (%) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 …………………… (B1) 

 

In turn, the misclassification percentage, is defined as the ratio of number of wrong predictions 

to that of the total predictions. It is given as: 

                           𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (%) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 …………….. (B2) 

 

 

  



Appendix C 

The normalised RMS (nRMS) error is computed from the RMS error between the targeted (𝑡𝑖) 

(which the interpreter expects) and computed (𝑐𝑖) (values that the network computes) values 

for 𝑖 ranging from 1 to 𝑛. This is given by (Aminzadeh and de Groot, 2006): 

                                           𝑅𝑀𝑆 =  √
1

𝑛
 ∑ (𝑡𝑖 − 𝑐𝑖)

2𝑛
𝑖=1    ………………………………… (C1) 

and, 

                        𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑀𝑆 = 𝑅𝑀𝑆 √
1

𝑛
⁄  ∑ (𝑡𝑖 − 𝑚𝑒𝑎𝑛)2𝑛

𝑖=1  ………………………(C2) 

 

where, the mean is given by: 

 

                                                       𝑚𝑒𝑎𝑛 = 
1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=1  …………………………………… (C3) 

 

 

 

  



Appendix D 

Similarity quantifies how similar are the two segments of seismic traces 𝑢(𝑥, 𝑦, 𝑡) (Tingdahl, 

2003). Considering two trace segments (𝑥𝐴,𝑦𝐴) and (𝑥𝐵 ,𝑦𝐵), centered at a time t, the similarity 

(S) between these two trace segments (Tingdahl, 2003; Tingdahl and de Rooij, 2005) is 

expressed as: 

 

          𝑆 = 1 −
|𝑎−𝑏|

|𝑎|+|𝑏|
 ……………………………………. (D1) 

 

where: 

𝑎 =

[
 
 
 
 

 𝑢(𝑥𝐴, 𝑦𝐴, 𝑡 + 𝑡1)

𝑢(𝑥𝐴, 𝑦𝐴, 𝑡 + 𝑡1 + 𝑑𝑡)
…

𝑢(𝑥𝐴, 𝑦𝐴, 𝑡 + 𝑡2 − 𝑑𝑡)

𝑢(𝑥𝐴, 𝑦𝐴, 𝑡 + 𝑡2) ]
 
 
 
 

 , 𝑏 =

[
 
 
 
 

 𝑢(𝑥𝐵, 𝑦𝐵, 𝑡 + 𝑡1)

𝑢(𝑥𝐵, 𝑦𝐵 , 𝑡 + 𝑡1 + 𝑑𝑡)
…

𝑢(𝑥𝐵, 𝑦𝐵 , 𝑡 + 𝑡2 − 𝑑𝑡)

𝑢(𝑥𝐵, 𝑦𝐵, 𝑡 + 𝑡2) ]
 
 
 
 

    

 

In these equations dt is the sampling interval, t1 is the relative start time of the comparison 

window, t2 is the relative stop-time of the comparison window, and u is the amplitude value in 

seismic cube. The output of the similarity attribute is enhanced, when computation is made 

using dip-steering as an input. The output in this case is called as dip-steered similarity. The 

dip-steered similarity is expressed as (Tingdahl, 2003): 

 

Sdip = 1 −
|adip−bdip|

|adip|+|bdip|
    ……………………. (D2) 

where: 

𝑎𝑑𝑖𝑝 =

[
 
 
 
 

 𝑢(𝑥𝐴, 𝑦𝐴, 𝑡𝐴 + 𝑡1)

𝑢(𝑥𝐴, 𝑦𝐴, 𝑡𝐴 + 𝑡1 + 𝑑𝑡)
…

𝑢(𝑥𝐴, 𝑦𝐴, 𝑡𝐴 + 𝑡2 − 𝑑𝑡)

𝑢(𝑥𝐴, 𝑦𝐴, 𝑡𝐴 + 𝑡2) ]
 
 
 
 

  , 𝑏𝑑𝑖𝑝 =

[
 
 
 
 

 𝑢(𝑥𝐵, 𝑦𝐵 , 𝑡𝐵 + 𝑡1)

𝑢(𝑥𝐵, 𝑦𝐵, 𝑡𝐵 + 𝑡1 + 𝑑𝑡)
…

𝑢(𝑥𝐵, 𝑦𝐵, 𝑡𝐵 + 𝑡2 − 𝑑𝑡)

𝑢(𝑥𝐵, 𝑦𝐵 , 𝑡𝐵 + 𝑡2) ]
 
 
 
 

    

 

𝑡𝐴 and 𝑡𝐵 are the dip-steered times going from the position (𝑥, 𝑦, 𝑡) to the traces at (𝑥𝐴,𝑦𝐴) and 

(𝑥𝐵,𝑦𝐵), respectively, and u is the amplitude value in the seismic cube. 

 

  



Appendix E 

The Ridge Enhancement Filter (REF) is computed by extracting nine (9) similarity values 

surrounding the central evaluation point. This is done by scanning the target in four different 

directions (Fig. E.1a), i.e. the inline, the xline and two diagonals oriented in 45 and 135 degrees 

in a time slice domain of the similarity attribute volume (Brouwer and Huck, 2011). Let us 

consider the Fault F1 as shown in the Fig. E.1b. AB and CD are two segments crossing the 

faults. The central evaluation point is shown through a blue transparent circle. 

 

Thus, the REF is defined by the following equation: 

 

𝑅𝐸𝐹 =
𝑆𝑢𝑚 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡

2
− 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑢𝑒   ……………….E1 

 

Either side of the fault will compute small values for the REF, whereas the places over the 

fault are associated with large ridge values. The REF attribute improves fault visibility by 

sharpening the edges, while maintaining the connectivity of the fault networks. 

 

Appendix F 

The Thin Fault Likelihood (TFL) attribute aims to compute sharp fault images from seismic 

data (Hale, 2013). The computation uses the principle of fault-oriented semblance. Using the 

reflection slopes, initially a structure-oriented semblance is computed. This is expressed as: 

𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 =
〈𝑖𝑚𝑎𝑔𝑒〉𝑠

2

〈𝑖𝑚𝑎𝑔𝑒2〉𝑠
 …………………………………(F1) 

 

where a structure-oriented averaging 〈∙〉𝑠  operation is performed. Such computation results in 

large semblance values for small numerators and denominators. These variations can be 

reduced by additional smoothing of the numerators and denominators. When incorporating 

this additional smoothing, the semblance ratio can be defined as: 

 

𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 =
〈〈𝑖𝑚𝑎𝑔𝑒〉𝑠

2〉𝑓

〈〈𝑖𝑚𝑎𝑔𝑒2〉𝑠〉𝑓
 …………………………………. (F2) 

 

where 〈∙〉𝑓 denotes the additional smoothing. 

After applying such smoothing, the fault likelihood attribute is defined as: 



 

𝑓 ≡ 1 − (𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒)8 …………………………………..(F3) 

 

The power term used in the above equation, helps to discriminate between the samples 

corresponding to larger and smaller likelihoods of fault. The computation of 𝑓 becomes 

accurate if some prior information on fault orientation and locations are available. Scanning 

the numerator and denominator (Eq. F2) in the direction of fault strikes and dips help the 

accurate alignment of structures in their respective orientations, and improves the imaging of 

structures in seismic data (Hale, 2013).  The TFL output values range from 0 to 1, where 0 

refers to the minimum likelihood of faults, and 1 refers to maximum likelihood of faults. 

 

  



Appendix G 

The Average Frequency Squared (AFS) attribute helps revealing the responses pertaining to 

loss in frequency components in faults and within disordered fluid zones. The AFS can 

mathematically be expressed as (Tingdahl and de Rooij, 2005): 

 

AFS = (∑ p(ωi)
2N

i=1 ωi
2)/(∑ p(ωi)

2N
i=1 )  ……………………..(G1) 

 

 

where, p(ω) is the complex response of the trace segments in the Fourier domain and N is 

the length of the signal.  

 

Appendix H 

The Energy attribute at (x, y, t) is defined as the sum of the squared amplitudes within a given 

window (Tingdahl, 2003), and is given by: 

                                                             E =  ∑ u(x, y, t + τ)2t2
τ=t1

 ……………………. (H1) 

where, t1 and t2 are the relative start and stop times of the energy window. Fluid zones are 

outlined as low amplitude and low energy disturbed events. 
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Fig. 1: Location of the Parihaka prospect offshore northern Taranaki Basin, New Zealand. The prospect 

is crossed by multiple extensional faults trending NE-SW. To the NE, the Parihaka prospect is 

surrounded by buried intrusive bodies forming the Mohakatino Volcanic Centre (MVC).  PNF: Parihaka 

Normal Fault; NTG: Northern Taranaki Graben; CG: Central Graben; TTZ: Tarata Thrust Zone; NWB: 

Northern Wanganui Basin; TFZ: Taranaki fault Zone. 

 

 

 

 



 

 

 

 

 

Fig.2: Block diagrams of soft- and hard-linked faults. (a) When the relay ramp is formed between two 

normal faults the zone is said to be ‘soft-linked’. (b) When the relay-ramp is breached by other faults 

and minute structures the fault system is considered to be ‘hard-linked’ (after Larsen, 1988; Peacock 

and Sanderson, 1991, 1994; Gürboğa, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 3: Lithostratigraphy of the offshore Taranaki basin, New Zealand. Modified after King and Thrasher 

(1996) and Singh et al. (2016). 

 

 

 

 

 



 

Fig. 4: (a) Proposed workflow for the computation of the Thin Fault Likelihood (TFL). (b) Proposed workflow for the computation of the Thinned Fault Cube 

(TFC) and Fluid Cube (FC), comprising five main stages: data conditioning (stage 1), preparation of test data sets (stage 2), preparation of train data sets (stage 

3), designing and operation of the Neural Network (stage 4) and validation (stage 5).  DS: Detailed Steering; BS: Background Steering; DSMF: Dip Steered 

Median Filter; DSDF: Dip Steered Diffusion Filter; FEF: Fault Enhancement Filter; TFL: Thinned Fault Likelihood; REF: Ridge Enhancement Filter; TWT: Two-

way Time; RT: Reference Time; AF: Average Frequency; S/N: Signal to Noise.  

  



 

 

Fig. 5: (a) Uninterpreted seismic line (IL 2575) and (b) corresponding interpretation of seismic line (IL 2575) demonstrating the subsurface structure of the 

Parihaka prospect. The prospect was drilled by well Arawa-1, which terminates within Miocene strata. The Parihaka Normal Fault (PNF) divides the subsurface 

strata into two major structural units, the eastern and western compartments. The eastern compartment is further compartmentalised by fault systems. The 

Miocene Formations (Mohakatino, Mokau and Moki) are associated with horst and graben structures. Furthermore, the basement is intruded by sill complexes 

from which hydrothermal fluid migrate into younger strata.  



 

 

Fig. 6: Breaching of the relay ramp at different depths within the Parihaka prospect as revealed by the 

similarity attribute. The ramp between two sets of faults F2-F3 and F4-F3 is breached by several faults 

and minute discontinuous structures. The breaching begins at 1320 ms and becomes predominant at 

2020 ms.  

 

 



 

 

Fig. 7: (a) & (b) Original time migrated seismic section inline (IL) 2231 from the Parihaka prospect. The 

fault zones shoow noisy and distorted reflections (highlighted in the zoomed right panel). (c) & (d) The 

Dip Steered Median Filtered (DSMF) conditioned seismic section for the same inline demonstrating 

improved seismic signal within the fault zones, free from distortion; (e) & (f) The Fault Enhanced Filtered 

(FEF) sharpens the fault edges and enhances the fault zones as shown in the zoomed panel to the 

right.  



 

Fig. 8: Thinned Fault Likelihood (TFL) attribute computed for different scans (b-f) along the strike and dip orientations of faults. Scans (b-c) fail to highlight 
discontinuities at different places of the seismic section. Discontinuities towards the south are poorly imaged (yellow dotted oval and green arrows). A steady 
improvement is observed for scans (d) and (e). Faults in the northern, central and southern part are clearly visible (cream arrows). Small discontinuities are 
also observed in deeper strata. Further scanning in (f) brings out most structural discontinuities (yellow arrows and orange dotted oval) and captures maximum 
structural detail.  



 

 

Fig. 9: (a), (b) &(c) Similarity (low similar values), Ridge Enhancement Filter (REF) (high ridges) and TFL (maximum likelihood of structural disturbance) attributes 
capture the structural signatures of geological discontinuities in the seismic data; (d), (e) & (f) Similarity, Energy and Average Frequency attributes captures the 
dissimilar, chaotic and frequency ‘wash-out’ characters of fluid migration zones.  



 

Fig. 10: (a) Example locations showing Fault-Yes and Fault-No; (b) Fully connected multilayer perceptron (MLP) network used for neural operation; (c) 

Performance evaluation of the Neural Network used to construct the TFC meta-attribute; (d) Example locations showing Fluid-Yes and Fluid-No; (e) Fully 

connected multilayer perceptron (MLP) network used for neural operation; (f) Performance evaluation of the network for constructing the FC meta-attribute. 

 



 

 

Fig. 11: (a) Uninterpreted seismic line (IL 2231) revealing the subsurface structural compartments; (b) 

TFC meta-attribute co-rendered with the amplitude data and the relief attribute for the interpreted 

seismic line (IL 2231). The TFC meta-attribute prominently brings out thin sharpened faults that 

structurally compartmentalise the Miocene Formations. These faults also intersect the underlying 

Oligocene Tikorangi Formation.  



 

 

Fig. 12: TFC meta-attribute for the Mokau formation. Faults in the Mokau Formation strike to the NE. (b) Faults in the northern to central parts show a curved 

pattern (namely F1 and F2). Fault splays are observed in the central part of the formation, and parallel faults are observed towards the NE. Fault F3 is segmented 

and shows a sigmoidal geometry. (c) Faults towards the southern part are Y-shaped (e.g. F4). F4 is also associated with several splays. The sigmoid-shape of 

F3 is more prominent in the southern part of the study area. 

 

 

 



 

 

Fig. 13: TFC meta-attribute for a time slice at t=2.1 s. Faults are better appreciated in the three panels 

(a), (b) and (c). (a) Fault F1 is curved in nature and gave rise to several splays arranged in a Y-shaped 

pattern. Towards the NW, F1 is linked to several other faults arranged in a horse tail pattern. (b) The 

central part of the prospect is deformed by several parallel faults. (c) Fault F4 exhibits a Y-shaped 

geometry with several splays. Fault F3 is segmented and is sigmoidal.  

 

 

 

 

 

 

 

 



 

 

Fig. 14: TFC meta-attribute for the Moki formation. Faults in the Moki Formation strike to the NE. (b) Faults in the northern part of the study area are curved 

(e.g. F1) and parallel (violet dotted oval); (c) Fault F3 is segmented and sigmoidal. Faults in the south are Y-shaped (e.g. F4). F4 is also associated with several 

splays (violet dotted oval).  

 

 

 



 

Fig. 15: TFC meta-attribute for the Tikorangi Formation. Faults in the Tikorangi formation strike to the NE; (b) Faults in the north are curved (e.g., F1). The 

central part of the study area is deformed by a set of closely-spaced en echelon faults. (c) Faults in the south are Y-shaped (orange dotted oval). F4 is Y-shaped 

and associated with several splays. Fault F3 continues to reveal its sigmoidal shape. 

 

 

 

 



 

Fig. 16: (a) Interpreted seismic line (IL 1976). Discontinuous fluid zones are observed within the western 

compartment of the Parihaka prospect. Moreover, the Mokau, Moki and Tikorangi Formations trap the 

migrating fluid. (b) The FC meta-attribute reveals the true extend of  the vertical migration of fluid through 

the faults. These fluids migrate from older formations (Late Cretaceous-Oligocene) into Miocene strata, 

and escape into younger successions. Discontinuous breached ramps act as conducive pathways for 

such fluid migration and leakage; (c) Detailed view of the fluid zone.  

 

 

 

 



 

 

Fig 17: (a) Time slice at t=2.2 s, displayed using the TFC meta-attribute. Faults strike to the NE. (b) The 

relay ramp between faults F2 and F3 is breached by a set of parallel faults, thereby deforming the ramp 

towards the NE. (c) The relay ramp between faults F3 and F4 is breached by parallel faults and splays 

in fault F4, thereby deforming the ramps in the south. (d), (e) & (f) FC meta-attribute co-rendered with 

the TFC meta-attribute. The breached ramps are associated with high FC probability, suggesting fluid 

leakage within hard-linked fault zones.  

 

 

 

 

 

 

 

 

 



 

 

Fig 18: (a) Time slice at t=2.2 s through a co-rendered display of TFC and FC meta-attributes. Fluid 

flow is revealed through the breached relay ramps. (b) 3D view of fluid leakage through the deformed 

hard-linked zones of the Miocene interval. Fluid leakage is more pronounced in a NE-SW direction, 

where faults are segmented and show complex geometries.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 19: (a) TFL attribute for seismic line IL 2231. Though the TFL bring out thinned fault signatures, in 

some places (marked with yellow question mark) the structural continuity of faults is poorly captured. 

Moreover, the attribute fails to bring out the presence of minute structural discontinuities in deeper 

strata; (b) The TFC attribute fills these gaps by revealing the presence of structural discontinuities, 

proving to be efficient in comparison to TFL.  

 



 

Fig. 20: (a), (b), (c) Time slice at t=1.7 s showing coherency, similarity and TFC attributes. The TFC attribute brings out enhanced images of faulted structures 

when computed  to the individual attributes (a) & (b); (d), (e), (f) A similar enhancement is observed in the time slice at  t=2.0 s . Such a comparison highlights 

the efficacy of meta-attributes over single attribute interpretation. NN-Neural Network. 
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Fig. E.1: (a) Scanning the target by REF in four different directions, i.e. inline, xline and two diagonal 

lines oriented 45 and 135 degrees in a time-slice domain; (b) Extraction of a ridge (REF) surrounding 

the central evaluation point. 
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Table 1: Computation time required to execute the process. 

 

 
Conditioning of Data 
(computation time in  

seconds) 

 
TFL optimization 

(computation time in 
seconds) 

 
Multiple attributes 

(computation time in 
seconds) 

Neural 
Network  

(run time in 
seconds) 

Detailed Steering 19916 s TFL (11,14) 45267 s REF 13248 s  
 
 
 
NN-TFC: 17 s 
NN- FC: 21 s 

Background Steering 36126 s TFL (21,26) 37524 s Similarity 18335 s 

DSMF seismic volume 32516 s TFL (31,34) 92293 s Energy 2435 s 

DSDF seismic volume 59191 s TFL (41,50) 92849 s Avg. 
Frequency 

11496 s 

Similarity attribute 18335 s TFL (51,60) 261128 s Reference 
Time 

294 s 

FEF seismic volume 5361 s --------------- -------------- Optimized 
TFL (51,60) 

261128 s 
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Table 2: Relative contributions offered by each input nodes (seismic attributes) for neural 
training in the design of the TFC meta-attribute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Attributes (Input nodes) Weights 

TFL 97.2 

Similarity LW (Long Window) 93.8 

REF 87.2 

Signal/Noise 84.5 

Similarity MW (Mid Window) 77.3 

Reference Time 71.8 
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Table 3: Relative contributions offered by each input nodes (seismic attributes) for neural 
training in the design of the FC meta-attribute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Attributes (Input nodes) Weights 

Similarity 96.8 

Signal/Noise 92.4 

Average Frequency 84.8 

Energy 74.2 

Reference Time 71.8 
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Table 4: Identified fault geometry and trends within Miocene strata.  

 

 

 

Fault ID Structural 
Architecture 

Structural 
Trend 

Remarks 

 
F1 

 
Curve shape 

 
N100-
120E 

The fault contains several splays and breached ramp 
zones 

 
F2 

 
Curve  shape 

 
N110-
170E 

The fault contains several splays  

 
F3 

 
Sigmoidal/S-shape 

 
N50-70E 

The fault is segmented and separates the whole 
geological sequence into two major eastern and western 
structural compartments 

 
F4 

 
Y-shaped 

 
N40-60E 

The fault is associated with several splays and breached 
ramps providing pathways for fluid leakage 


