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A metasomatized lithospheric mantle control on
the metallogenic signature of post-subduction
magmatism
David A. Holwell1, Marco Fiorentini2, Iain McDonald 3, Yongjun Lu2,4, Andrea Giuliani 5, Daniel J. Smith 1,

Manuel Keith 1,6 & Marek Locmelis7

Ore deposits are loci on Earth where energy and mass flux are greatly enhanced and

focussed, acting as magnifying lenses into metal transport, fractionation and concentration

mechanisms through the lithosphere. Here we show that the metallogenic architecture of the

lithosphere is illuminated by the geochemical signatures of metasomatised mantle rocks and

post-subduction magmatic-hydrothermal mineral systems. Our data reveal that anomalously

gold and tellurium rich magmatic sulfides in mantle-derived magmas emplaced in the lower

crust share a common metallogenic signature with upper crustal porphyry-epithermal ore

systems. We propose that a trans-lithospheric continuum exists whereby post-subduction

magmas transporting metal-rich sulfide cargoes play a fundamental role in fluxing metals into

the crust from metasomatised lithospheric mantle. Therefore, ore deposits are not merely

associated with isolated zones where serendipitous happenstance has produced miner-

alisation. Rather, they are depositional points along the mantle-to-upper crust pathway of

magmas and hydrothermal fluids, synthesising the concentrated metallogenic budget

available.
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Magmatic arcs are the factories where continental crust is
built. Furthermore, they host some of the greatest metal
accumulations on Earth, as giant mineral deposits of

copper (Cu), gold (Au), molybdenum (Mo) and associated by-
products, such as tellurium (Te) and rhenium (Re). The majority
of these deposits are genetically linked to magmatic and hydro-
thermal processes that occur during subduction, when arc mag-
matism is voluminous, hydrous and typically calc-alkaline in
composition1,2. Once active subduction ceases, the Sub Con-
tinental Lithospheric Mantle (SCLM) that was metasomatised
during subduction may undergo localised partial melting3,4. This
post-subduction process forms relatively small volume, hydrous
magmas that range from high-K-calc-alkaline, through silica-
saturated to silica-undersaturated alkaline compositions1, and are
henceforth referred to as alkali-enriched. These melts are
genetically related and emplaced during post-collisional exten-
sion1. During ascent through the lithosphere, these magmas may
incorporate variable amounts of crustal material5, differentiate
and locally stall at a range of depths. Rocks formed from these
post-subduction magmas may host ore deposits, which generally
display even more pronounced Au and Te enrichments (up to
~1 wt% Te6) than syn-subduction deposits6. Whereas the Au–Te-
rich nature of these deposits is well documented6–8, the causes of
this metal enrichment, and the crustal architecture in which the
deposits sit, remain poorly understood.

In this framework, a thread of mineral systems with a common
alkali-enriched signature can be traced through the continental
crust: from lower (>15 km) and mid-crustal hydrous alkaline
intrusions, which locally contain magmatic Ni–Cu–Au–Te and
platinum-group element (PGE) sulfide mineralisation3,4,9, all the
way to upper crustal (<5 km) alkali-enriched plutons, which may
host magmatic–hydrothermal porphyry Cu–Au–Pd–Pt–Te and
epithermal Au–Ag–Te mineralisation10–13. In lower crustal
magmatic systems, the source of volatiles and metals is relatively
well constrained as being derived largely from the underlying
hydrous, metasomatised SCLM3. Conversely, in upper crustal
porphyry–epithermal systems the scenario is more complex.
Whereas the volatile content of the magmas in porphyries and, by
extension, overlying epithermal systems appears to be directly
related to the degree of metasomatism in the SCLM14, the source
of metals may be more variable. For example, Cu enrichment can
reflect repeated cycles of fractionation, crystallisation and
enrichment at the base of the crust15, whereas Au endowment can
be spatially and genetically associated with the presence of loca-
lised enriched domains in the SCLM16 and/or the depth of
emplacement17. Furthermore, relatively high volatile contents and
oxidation states could locally suppress early sulfide segregation in
post-subduction magmas18. This process could potentially create
the conditions for a chalcophile metal-rich volatile phase to be
released upon ascent, thus explaining the enrichment of Cu and
Au in the shallow crustal porphyry–epithermal systems2,13.

Questions arise as to what the ultimate source of the volatiles
and metals in the SCLM is; and whether there is a common
metallogenic fingerprint that links Au–Te mineral systems asso-
ciated with alkali-enriched magmas emplaced at variable crustal
levels to a common and traceable genetic thread. Many post-
subduction geodynamic settings are characterised by significant
mantle-to-crust fluxes of metals and volatiles. Here, we show that
Te can act as a direct tracer of this flux, and of both the magmatic
and hydrothermal processes involved in driving it. Due to its
enrichment in post-subduction settings, and to its incompatible
and chalcophile behaviour in magmatic and hydrothermal sys-
tems, Te can be used as a robust tracer to identify the spatial and
genetic links between deep magmatic Ni–Cu–PGE–Au–Te
occurrences and more evolved, shallower, alkali-enriched
porphyry–epithermal Cu–Au-(PGE-Te) systems. They have

never previously been considered to be linked, but we argue that
they effectively form a lithospheric-scale metallogenic continuum.

Results
Chalcophile element signatures of post-subduction magmas
and mineralisation. During active subduction, >10% partial
melting of the fertile, metasomatised asthenospheric mantle wedge
leads to voluminous basaltic magmatism that produces large mafic
underplating complexes19. These interact with the base of the
crust through melting, assimilation and fractionation, and produce
the largely andesitic magmas typical of arcs1. Conversely, post-
subduction magmatism generally comprises <10% partial melting
of subduction-metasomatised SCLM, and/or lower crustal melts10.
This process produces smaller volume, hydrous, alkali-enriched
melts, which may pond and crystallise at various depths in the
crust1. The heat engine for post-subduction melting is provided
either by asthenospheric upwelling due to lithospheric extension;
and/or slab drop-off and delamination; and/or post-collisional
thermal rebound2. We present here an idealised metallogenic
section of the lithosphere, using a series of natural laboratories
that best represent the metasomatised SCLM (mantle rocks from
the Ivrea Zone, Italy, as well as xenoliths from the Kapvaal Craton,
brought up in the Bultfontein kimberlite in South Africa, and from
Lihir, Papua New Guinea); magmatic settings from the lower and
mid crust (ultramafic pipes from the Ivrea Zone, Italy, and lam-
prophyric intrusions from Scotland and Australia), and shallower
magmatic–hydrothermal systems, such as porphyry systems
(Gangdese Belt, China; Skouries, Greece and British Columbia,
Canada) and epithermal systems (Cripple Creek, Colorado, USA).
Whereas these are from a range of selected global localities, they
all share a common association with post-subduction magmatism.

We present new chalcophile element data together with major
element compositions for magmatic and hydrothermal miner-
alisation within a series of trans-lithospheric Au–Te-bearing,
hydrous, alkali-enriched systems, and compare them with the
results from metasomatised mantle rocks and xenoliths (Fig. 1;
Table 1). Chalcophile element data are generally presented on line
plots normalised to chondrite or primitive mantle20, with
elements ordered left to right by decreasing compatibility (Fig. 1a).
Nickel, Co, Os, Ir and Ru are variably compatible (i.e.,
preferentially concentrated) in the residuum of melting and in
minerals that form early from a melt (i.e., olivine, Cr-spinel,
Ni–Fe sulfides). Conversely, Rh, Pt, Pd, Au, Cu and Te are
incompatible and enriched in the liquid phase during partial
melting and melt differentiation. Variations in the slope and
peaks in these profiles reflect variations in inter-metal ratios,
which can be attributed to various fractionation and/or deposi-
tional processes; they are thus useful for tracking the evolution of
chalcophile metal-bearing systems20. Increasing degrees of partial
melting and crystal fractionation, both act to steepen a normal-
ised slope by retaining compatible elements in the source or
removing them from the melt during fractional crystallisation
(Fig. 1a). Conversely, a negative slope indicates a source
previously modified by removal of the incompatible elements
through low degrees of partial melting (Fig. 1a).

Many of the rocks from which we display data contain some
degree of mineralisation, as shown by enriched Ni, Cu, PGE, Au
and/or Te (Table 1). Owing to the chalcophile nature of the
elements shown in Fig. 1, the profiles of such samples represent
the signature of the mineralisation, with the exception of the
mantle rocks and some of the upper crustal porphyry samples (i.e.,
Gangdese belt), which are unmineralised. It is important to note
the possible effects of hydrothermal alteration on these profiles as
alteration and mineralisation processes may cause mobilisation
and/or fractionation of the chalcophile elements. We essentially
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have samples that contain magmatic sulfide mineralisation, whose
chalcophile element concentration profiles may be modified by
hydrothermal alteration; and porphyry/epithermal mineralisation,
whose chalcophile element concentration profiles are the result of
hydrothermal processes. Major element compositions and loss on
ignition (LOI) data are also supplied in the Supplementary Data,
whereas the implications of any mineralisation/hydrothermal
alteration processes are discussed below.

Mantle. Information about mantle melting and subsequent
enrichment processes in the form of depleted and metasomatised

mantle rocks, respectively, is largely derived from petrochemical
observation of rare exposed sections in orogenic massifs (e.g.,
Ivrea Zone, Italy21,22), as well as from SCLM xenoliths in volcanic
rocks (e.g., Lihir23 and kimberlite-hosted xenoliths, this study).
The spinel harzburgite samples from Balmuccia in the Ivrea Zone
display evidence of depletion due to melt extraction, with flat
profiles showing a very gentle negative slope from Ru to Te
(Fig. 1b) and very little evidence of alteration (i.e., LOI contents <
2 wt%; Supplementary Data 1). Almost undistinguishable to the
depleted Balmuccia spinel peridotite is the signature of the
kimberlite-hosted mantle xenoliths from South Africa, which
show a profile from Ni to Pt that reflects the high degree of melt
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Fig. 1 Trans-lithospheric post-subduction chalcophile element profiles. Primitive mantle-normalised chalcophile element profiles as explained in (a) for: b-d
mantle rocks from the Ivrea Zone (b), xenoliths from the Bultfontein kimberlite (c) and Lihir (d); e lower crustal intrusions; f mid-crust intrusions; g upper
crustal magmatic–hydrothermal porphyry systems and h epithermal systems. Note: “a” indicates data from this study, whereas other data are cited in
reference list. Normalisation values are from Palme and O’Neill60
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extraction that stabilised the Kaapvaal craton in the Archean
eon24,25. However, these xenoliths also exhibit slightly positive Au
and Te anomalies (Fig. 1c), which are consistent with metaso-
matic addition of minor sulfides prior to kimberlite magma
entrainment26. The source of these metasomatic agents is

considered to be recycled crustal material, including sedimentary
and altered oceanic crust components, which was related to
ancient subduction zones at the margins of the Kaapvaal craton26.
Other samples from the Balmuccia locality, collected from lher-
zolite and pyroxenite veins hosted in the spinel harzburgite,

Table 1 New chalcophile element data generated within this study as shown in Fig. 1

Sample ID Zone Location Rock type Ni Co Ir Ru Rh Pt Pd Au Cu Te

BAL1 Mantle Balmuccia, Italy Spinel harzburgite 2463.4 124.11 5.49 10.7 1.9 6.22 2.23 0.3 3.5 0.007
BAL2 Mantle Balmuccia, Italy Spinel harzburgite 1902.6 99.45 3.94 7.2 1.3 6.91 6.2 1.11 23.7 0.007
BAL3 Mantle Balmuccia, Italy Spinel harzburgite 2003.7 101.95 4.26 7.93 1.4 7.47 6.86 1.24 23.5 0.007
BAL4 Mantle Balmuccia, Italy Spinel harzburgite 2165.4 109.75 4.46 7.49 1.12 4.55 2.84 0.78 16.5 0.004
BAL6 Mantle Balmuccia, Italy Lherzolite vein 797.9 49.46 2.04 1.41 3.09 51.4 134 13.7 117.7 0.050
BAL8 Mantle Balmuccia, Italy Pyroxenite vein 952.2 51.63 2.45 1.54 1.63 97.3 152 41.2 159.3 0.050
XM1/142-A Mantle Bultfontein, RSA Phlogopite-spinel lherzolite 1309 63.0 4.08 7.48 1.20 3.87 0.44 0.56 3.5 0.017
XM1/142-B Mantle Bultfontein, RSA Phlogopite-spinel lherzolite 1123 61.9 3.58 11.80 1.72 5.81 1.21 2.01 27.5 0.019
XM1/341 Mantle Bultfontein, RSA Phlogopite-spinel lherzolite 1635 91.2 5.95 3.22 0.62 2.96 0.93 1.62 22.2 0.113
XM1/345 Mantle Bultfontein, RSA Phlogopite-spinel lherzolite 1885 113.8 3.07 6.57 0.47 0.59 0.65 0.77 5.5 0.017
XM1/355 Mantle Bultfontein, RSA Garnet harzburgite 1640 81.9 2.31 4.19 0.72 0.65 0.25 0.52 4.4 0.016
XM1/422 Mantle Bultfontein, RSA Spinel harzburgite 1721 80.2 3.87 4.73 0.60 0.66 0.17 0.46 3.3 0.017
V-LZD2 Lower crust Valmaggia, Italy Amphibole-phlogopite

lherzolite
4570.3 255.0 15.8 279.7 11.3 830 0.732

V-LZAB Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

2815.9 231.0 32.1 1299 0.286

V-LZD1A Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

4080.0 205.1 39.4 322.0 9.5 997 0.505

V-LZD1B Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

3109.9 176.3 12.1 263.8 31.3 1395 0.297

V-LZ-D1C Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

2981.5 169.6 11.3 230.9 7.5 718 0.229

V-L2A Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

2021.7 168.6 83.1 544 0.139

V-L2B Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

881.8 93.8 94.0 10.5 740 0.116

V-L2C Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

727.0 64.8 6.09 69.0 400 0.099

V-L3B Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

516.6 39.4 63.9 455 0.174

VMG2 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

1183.9 154.3 0.12 0.13 0.12 0.27 3.08 2.55 415.6 0.070

VMG5 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

209.70 34.65 0.02 <0.08 0.02 <0.17 0.17 0.80 99.40 0.016

VMG6 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

421.90 44.93 0.08 <0.08 0.10 1.18 1.60 2.28 321.90 0.060

VMG7 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

572.80 116.32 0.04 <0.08 0.04 0.23 0.38 0.39 37.20 0.013

I7 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

>4100 >187 18.11 22.20 6.98 26.50 69.30 10.10 863.90 0.950

I2 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

1975.9 155.26 0.38 4.12 0.25 1.82 2.51 3.64 129.00 0.018

FDD1 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

2131.3 116.33 0.88 0.86 0.43 17.50 5.03 10.40 654.10 0.290

FDD1A Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

1526.0 98.56 0.47 0.51 0.28 5.11 3.94 9.01 490.40 0.170

FDD2 Lower crust Valmaggia, Italy Amphibole-phlogopite
lherzolite

21.40 3.80 0.02 <0.08 0.02 <0.17 0.22 1.42 9.80 0.011

SGAQ14–13 Mid crust Sron Garb, Scotland Appinite 1602.0 276.1 410.2 563.3 185.0 6115.1 0.288
SGAQ15–06 Mid crust Sron Garb, Scotland Appinite 1022.8 100.7 242.6 301.6 32.1 3777.5 0.268
SGAQ15–07 Mid crust Sron Garb, Scotland Appinite 2715.8 225.7 514.9 627.0 146.8 8840.9 0.638
SGAQ16–12 Mid crust Sron Garb, Scotland Appinite 1800.0 132.1 380.9 755.8 158.7 5783.8 0.768
SGAQ16–13 Mid crust Sron Garb, Scotland Appinite 1720.5 90.9 774.2 794.2 275.3 9151.8 1.208
G318–4 Upper crust Gangdese, China Amphibolite 10 16 5.4 6 6 0.030
BR-1 Upper crust Gangdese, China Strongly altered porphyry 8 5 0.5 7 20 0.110
CJ-3 Upper crust Gangdese, China Altered granite porphyry 10 4 0 2 733 0.030
BR-2 Upper crust Gangdese, China Biotite monzonite porphyry 4 1 0.8 5 461 0.030
GJ-3 Upper crust Gangdese, China Tonalite porphyry 17 5 0 16 217 0.040
GJ-1 Upper crust Gangdese, China Granite porphyry 4 3 0 2 263 0.050
GJ-4 Upper crust Gangdese, China Diorite 183 17 0.7 1 1 238 0.060
PB-2 Upper crust Gangdese, China Mafic dyke 1 18 0 1 72 0.020
CJ-4 Upper crust Gangdese, China A-vein bearing granite

porphyry
5 5 0 47 617 0.670

TG-3 Upper crust Gangdese, China K-feldspar porphyritic
tonalite

10 5 0 4 100 0.060

CJ-1 Upper crust Gangdese, China Monzogranite porphyry 7 5 0 3 4 0.170
SNM-1 Upper crust Gangdese, China Metamorphic gabbro with

skarn veins
27 36 3.6 6 9 95 0.010

TG-2 Upper crust Gangdese, China K-feldspar-plagioclase
porphyritic tonalite

9 6 0 25 634 0.010

G318–6 Upper crust Gangdese, China Lamprophyre dyke 267 35 1.7 2 3 156 0.020
CC-16–01.1 Upper crust Cripple Creek, CO Phonolite+ quartz–fluorite-

telluride veins
3.68 7.17 60.7 270.8 8.61 1.325

CC-16–02.2 Upper crust Cripple Creek, CO Phonolite+ quartz–fluorite-
telluride veins

3.74 6.88 65.7 1933.9 12.90 3.428

CC-16–03.2 Upper crust Cripple Creek, CO Phonolite+ quartz–fluorite-
telluride veins

n.d. 3.13 76.6 24.5 4.44 0.045

CC-16–4 Upper crust Cripple Creek, CO Quartz–fluorite-telluride vein 1.88 3.53 5.05 126.2 651.4 5.06 1.601
VV-16–03.3 Upper crust Cripple Creek, CO Tephriphonolite with

telluride veins
2.64 125.6 45.7 3.10 0.895

VV-16–07.1 Upper crust Cripple Creek, CO Tephriphonolite with
telluride veins

1.51 4.18 31.3 166.5 2.65 0.541
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display an enriched signature, showing a much more arched
profile between Pd and Au (Fig. 1b). These compositions are
comparable with those of mantle wedge xenolith samples from
Lihir that are interpreted to reflect subduction metasomatism23

(Fig. 1d).

Lower crust. Post-subduction alkali-enriched magmatism in the
lower crust is exemplified by a suite of hydrous and carbonated
alkaline ultramafic pipes that intrude the base of the exposed
lower crustal section of the Ivrea Zone, which comprises a mafic
underplating complex and the gneisses of the lower continental
crust3,4,27–29. The pipes, which comprise olivine, pyroxene,
amphibole, phlogopite and PGE–Au–Te-rich magmatic
Fe–Ni–Cu sulfides associated with carbonate, were emplaced at
~800 °C and ~6 kbar23. The pipe rocks are remarkably fresh with
very minor alteration. Any LOI values greater that 2 wt% (Sup-
plementary Data 1) are related to the presence of sulfide and
minor carbonate in the samples28, which are lost on ignition as
SO2 and CO2, respectively. As a consequence, the chalcophile
profiles shown in Fig. 1 are interpreted to reflect the nature of the
magmatic sulfide assemblage. Locmelis et al.3 interpreted the
pipes to have been sourced from low-degree partial melting of a
metasomatised SCLM. Whole-rock chalcophile data from these
pipes display relatively flat profiles from Ni to Pt, and a positive
slope from Pd to Te (Fig. 1e).

Mid crust. Post-subduction magmatism in the mid crust is
exemplified by a number of small alkali-enriched intrusions, such
as Sron Garbh, Scotland9 and the Mordor Complex, Australia30.
Sron Garbh is a zoned intrusion with a marginal zone of hydrous
lamprophyric cumulates (appinites) and a central unit of diorite.
The appinites have cumulus amphibole with interstitial ortho-
clase, plagioclase, phlogopite, quartz, calcite and Au–Te-rich
magmatic Cu–Ni–PGE sulfides9. Graham et al.9 interpreted the
intrusions to be low-degree partial melts of subduction-modified
SCLM. The Sron Garbh intrusion is more evolved than the lower
crustal Ivrea pipes, comprising amphibole-rich cumulates
emplaced at >4 km9. The chalcophile element patterns from Sron
Garbh and Mordor30 are steeper than those from the lower
crustal intrusions, with a positive slope from Ni to a peak at Au or
Cu, and a negative inflection towards Te (Fig. 1f). They also
display a positive Co anomaly, which has been interpreted to
reflect a subduction signature inherited from their source31.

Upper crust. Post-subduction alkali-enriched magmatism in the
upper crust is exemplified by variably Te–Pt–Pd-enriched por-
phyry Cu–Au deposits from selected deposits in the Tethyan belt
through Romania, Bulgaria and Greece (e.g., Skouries32,33),
British Columbia, Canada34, and the Gangdese belt in Tibet,
China35. Many of the deposits in these belts are relatively Au-rich,
and some may contain tellurides and display anomalously high
concentrations of Pd and Pt6,33. We present chalcophile element
profiles for the least altered porphyry igneous rocks from the
Gangdese belt (i.e., 13–15 Ma-old tonalite to granite porphyries
representative of fertile intrusions from the porphyry Cu deposits
in the belt), along with data from ore deposits32,34. Samples from
the Skouries and British Columbia ores have a very steep profile
from Pt to Au, with a flattening or negative slope to Te (Fig. 1g).
Conversely, the porphyry host rocks to the Gangdese porphyry
Cu deposits have a shallower profile, but identical depletions in
the more compatible elements, with a peak at Cu rather than at
Au. This discrepancy is likely due to hydrothermal enrichment of
the mobile Pd, Te, Cu and especially Au, from the porphyry
igneous rocks into the hydrothermal deposits.

Epithermal Au–Te mineralisation associated with fluids
derived from post-subduction alkali-enriched magmatism in the
uppermost crust includes a number of giant Au deposits,
including Cripple Creek, Colorado; Vatukoula, Fiji; and Porgera
and Ladolam, Papua New Guinea7. Tectonically, all of these
deposits formed in extensional or trans-tensional post-subduction
settings. They are hosted by calc-alkaline to alkaline intrusions,
with both silica-saturated and nepheline-normative composi-
tions36. Whereas generally containing few base metal sulfides,
they instead commonly host a telluride-rich ore assemblage with
typical grades of tens to hundreds of ppm Te7. The chalcophile
profiles of these hydrothermal systems and deposits are strongly
depleted in all compatible elements (Fig. 1g, h). We present data
from Cripple Creek, an Oligocene epithermal complex related to
alkaline intrusions and diatremal breccias. Samples include
mineralised phonolitic breccias with quartz–fluorite–telluride
veins, containing disseminated pyrite and Au–Ag–Hg–tellurides
alongside electrum and native silver. These samples display steep
profiles similar to the porphyry deposits, with the notable
diference of a strong negative Cu anomaly (Fig. 1h).

Chalcophile element ratios. Using the Ni/Te ratio as a proxy for
the steepness of the normalised element patterns (i.e., fractiona-
tion), the new data show that there is a progressive decrease in
mean bulk Ni/Te ratio of five orders of magnitude from the
depleted mantle (105–6), through metasomatised mantle and the
lower crust (104–5), mid crust (103–4), to the upper crustal por-
phyry (101–3) and uppermost crustal epithermal (100–1) systems
(Fig. 2a). The Cu/Te ratio is relatively constant in the magmatic
environments (104–5), but diverges significantly between the
porphyry and epithermal ore systems (Fig. 2b). It is argued that
this pattern reflects significant chalcopyrite precipitation at
~350 °C in the porphyry ores, as well as diminished Cu con-
centrations in fluids associated with the <300 °C epithermal
environment37.

Discussion
Low volume, post-subduction magmas range from ultramafic to
phonolitic in composition, with a common hydrous and variably
alkaline nature38 and a Au-(Te)-rich character7. In this frame-
work, the variable geochemical signature associated with the
processes of depletion due to melt extraction and subsequent re-
fertilisation with Au, Cu and Te following subduction-related
metasomatism is shown in the mantle data from the Lihir and
South African xenoliths, as well as from the Balmuccia peridotite
in the Ivrea Zone. Emplaced in the lower crust, the alkaline
ultramafic pipes of the Ivrea Zone represent the most primitive
magmas, whereas the Sron Garbh and Mordor systems represent
more fractionated, lamprophyric mid-crustal intrusions. Finally,
the upper-crustal porphyry–epithermal systems are associated
with evolved calc-alkaline and alkaline compositions.

Although the lower-mid-crustal magmatic sulfide occurrences
and the upper crustal porphyry–epithermal systems have each
independently been suggested to be sourced from subduction-
modified SCLM1–4,9, they have never before been linked as parts
of a continuous trans-lithospheric system. Here, we propose that
these mineralised occurrences reflect a complete crustal
magmatic–hydrothermal continuum (Fig. 3). The ore deposits
likely represent key depositional points along the mantle to upper
crust pathway taken by the magmas and hydrothermal fluids,
synthesising the concentrated metallogenic budget available at
that given stage. We hypothesise that the gradual variation in Ni/
Te and Cu/Te with crustal depth is the result of lithosphere-scale
processes, which effectively transfer and fractionate metals and
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volatiles from the subduction-metasomatised SCLM all the way
up through the crust.

In order to explain this, we use Te, and its relationship with
other chalcophile elements, as a tracer of the processes of metal
extraction, transport, fractionation and deposition. Tellurium has
a crustal abundance of only ~5 ppb39, but is notably enriched in
volcanogenic massive sulfides and deep marine sediments, such as
Fe–Mn nodules and crusts, limestone and shale (~1–200 ppm
Te7). When subducted, these lithologies may undergo devolati-
lisation and/or partial melting with metasomatic mass transfer of
constituent elements like Te (and Au) into the mantle wedge.
Unlike other commonly used tracers of crustal cycling at sub-
duction zones, such as radiogenic isotopes, Te is particularly
useful as it will, like Au, partition into the metasomatising fluids/
melts that modify the composition of the SCLM during sub-
duction and form localised Te- (and other metal)-rich domains40.
It is thus not surprising that magmas and mineral deposits that
tap this enriched source have some of the highest Te contents of
any magmatic systems. Due to its paucity in the continental crust,
the Te signature of mafic magmas ascending through the crust is

only minimally affected by crustal assimilation; thus, it is inferred
that the observed Te-enriched signature in post-subduction
alkaline melts reflects the primary, subduction-modified mantle
source.

The variable geochemical behaviour of Te at different P–T
conditions provides the key constraint to support this hypothesis.
At magmatic temperatures (> 1000 °C), Te behaves as a chalco-
phile element, like Au, Cu and the PGE. Therefore, it is readily
concentrated into sulfide melts, which cool and fractionate,
generally forming Pt–Pd-telluride melts at ~900 °C and then
Pt–Pd-telluride minerals at <400 °C41,42. In hydrothermal envir-
onments, Te can be mobilised as chloride complexes at ~300 °C40,
as polytellurides in S- and CO2-rich fluids36,43, and as
telluride–bismuthide melts33. The combination of these aspects of
Te behaviour underlines its applicability to understanding
mantle-to-crust fluxes of metals, as it is an ideal tracer of both
magmatic and hydrothermal processes. Although Te is not gen-
erally included in routine analyses, we present here the largest
and most comprehensive Te data set to date, in order to illustrate
its use as a tracer alongside other chalcophile elements of
magmatic–hydrothermal processes.

It is widely assumed that the vast majority of the chalcophile
element budget of the mantle resides in sulfide phases25,44. Sul-
fides from anhydrous mantle domains mainly comprise Ni-rich
monosulfide solid solution (mss), Cu-rich intermediate solid
solution (iss), Pt–Pd-semi-metal minerals and Au phases42. The
formation of anhydrous mafic/ultramafic magmas can involve
variable degrees of partial melting, with major melting events
(e.g., linked to plumes) generating >15% of mantle melting. Such
large degrees of melting will consume virtually all the sulfides in
the source region45, thus effectively transferring the full incom-
patible chalcophile element budget to the melt. Sulfides in
hydrous, metasomatised mantle domains may also be enriched in
elements, such as Te and Au introduced from the subducted slab
(Fig. 3a). The generation of alkali-enriched magmas from this
metasomatised source in post-subduction settings involves lower
degrees of partial melting (<10%) compared with the larger-scale
melting that predominantly occurs during active subduction. We
argue that low-degree partial melting of metasomatised SCLM
during post-subduction magmatism is the trigger for transfer and
concentration of metals and volatiles in magmatic arcs. A key
aspect lies in the fact that relatively low-degree partial melting of
previously metasomatised mantle sources preferentially con-
centrates S and incompatible trace metals (e.g., Cu, Au and Te)
through incongruent sulfide melting46. This process accentuates
the magnitude of the geochemical signature related to the frac-
tionation and concentration mechanisms that are essential for ore
genesis.

Incongruent melting of sulfides during low-degree partial
melting of the mantle would preferentially leave some of the
Ni–Os–Ir–Ru-rich mss behind, but liberate the Cu-sulfide and
Au–Pt–Pd–Te phases, which have lower melting temperatures,
thus producing mantle melts that are enriched in these incom-
patible elements46. Any mantle restite generated from this melt-
ing process would therefore be depleted in Cu–Au–Te relative to
Ni and Ir (Fig. 1a, b), with a subsequent enrichment in the melt,
as reflected in the metallogenic fingerprint of the pipes hosted in
the lower continental crust (Fig. 1e). This process represents the
first crucial stage in the transfer of metals and volatiles from the
mantle to the crust (Fig. 3b).

Whereas the SCLM is the most likely source of metals in these
systems, it can be argued that some may be sourced from the
lower crust as well. For example, the generally more calc-alkaline
post-subduction Gangdese porphyries have been suggested to be a
product of melts from juvenile subduction-modified lower crust,
based on their high Sr/Y and La/Yb ratios and unevolved isotopic
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compositions47,48. However, several studies14,35,49 have clearly
shown that lower-crust melting alone cannot provide sufficient
water to these systems (>10 wt%). Post-subduction magmatism in
the Gangdese belt ranges from ultrapotassic rocks10, through
shoshonites35 and medium K-calc-alkaline14 to high-K-calc-
alkaline14, and the ore forming high Sr/Y porphyries have been
shown to be genetically related to the alkaline and shoshonitic
melts from metasomatized Tibetan mantle14,35,49. Thus, it
appears that although crustal melts may constitute the major
source component in the Gangdese belt, the input of hydrous
mantle melts from the metasomatised Tibetan lithospheric
mantle is a small, but important requirement for the genesis of
post-subduction porphyry mineralisation.

In the lower crust, most magmas will be saturated in sulfide due
to the inverse relationship between S solubility and pressure50.
Staging of a sulfide saturated system in the lower crust will pro-
duce magmatic sulfide-rich deposits, as exemplified by miner-
alisation hosted in the pipes of the Ivrea Zone (Fig. 3). If the
magmas ascend further, the more compatible elements Ni and Co
will already have been fractionated from the incompatible Cu, Au
and Te by concentration into early-forming silicates like olivine,
and therefore removed from the melt; this process can be traced
using the varying Ni/Te ratio51 (Fig. 2a). The resultant effect on
the full chalcophile element profiles of any ore system in the mid
crust will be a steepening of the normalised chalcophile element
profile, as indeed observed in Fig. 1e. However, although the
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profiles of the mid-crustal intrusions show a steepening, the slope
flattens out and inverses at Au, Cu and Te (Fig. 1f). The observed
pattern in these intrusions indicates an apparent deficit in Au, Cu
and Te compared with the expected metallogenic budget predicted
from incompatible element fractionation alone (Figs 1a, 3c).

Upon ascent, sulfide liquid droplets containing the bulk of the
chalcophile element budget would begin to redissolve into the
silicate melt due to the increase in magma S solubility52, as the
result of decreasing pressure50. The rate of chemical transfer is
enhanced by the very hydrous nature of the system53. The ele-
ments with the lower partition coefficients into sulfide (Dsul/sil),
such as Cu (421–1108)55, followed by Te (1005–10,000)54 and Au
(11,200)55, will partition into the silicate melt first, with the PGE
retained in the sulfide liquid phase (Dsul/sil of Pt ~300,000 and Pd
~500,000)55. As such, the silicate melt would become relatively
enriched in Cu, Au and Te, whereas any remaining sulfide liquid
would become relatively depleted in these elements, as seen in the
sulfide-bearing mid-crust intrusions (Figs 1c, 3b). Thus, it is
argued that the observed steepening of the profiles reflects the
process of sulfide fractionation (also seen by Ni/Te decrease;
Fig. 2a) that occurs during magma ascent in the mid crust.
However, the concurrent sulfide dissolution and release of Cu, Au
and Te back into the silicate melt produces a downward inflection
in the profiles for these elements (Fig. 3c). The Ni/Te ratio is
therefore higher than expected due to this effect, which may be
the reason why samples from the lower- and mid-crust plot much
closer to each other in Fig. 2a. Sulfide dissolution represents a key
process in the evolution of such magmas and leads to the priming
of the melts for subsequent Cu–Au–Te ore genesis at upper
crustal levels.

However, the characteristic enrichment of Pd, and to a lesser
extent, Pt in some post-subduction porphyry systems cannot be
explained by this mechanism alone as it would imply that these
elements, which have the highest Dsul/sil values, ought to remain
in the sulfide melt. Therefore, an additional factor to account for
the observed enrichment is likely to be the role of telluride melts
at temperatures below 900 °C33,42,56. It is likely that some Te in
the sulfide liquid at this temperature will form a telluride melt
that is incompatible in crystalline sulfide, but into which Pd and
Pt are highly compatible. Therefore, while sulfide dissolution may
be occurring at this stage, there may also be a co-existing
Pd–Pt–telluride melt, which will remain liquid to low tempera-
tures (~400 °C)41. Thus, while in mid- to upper crustal systems Pt
and Pd are likely to be transported by telluride melts, Cu and Au
may be redissolved into the silicate melt. Telluride melts have
been suggested to be the reason for the Pd–Pt–Te enrichment in
the Skouries deposit33; and we propose this to be a viable
mechanism for enriching some upper crustal deposits in Pd and
Pt, but not in the other PGE.

At mid- to upper crustal levels, the evolved, likely sulfide-
undersaturated magmas50 have the potential to transport a
heavily fractionated metal budget, depleted in Ni, Co, Os, Ir,
Ru, Rh, but enriched in Cu, Te and Au (and possibly also Pt and
Pd in the presence of telluride melts; Fig. 1f, g). Our data from
the non-mineralised, least altered Gangdese host rocks support
this hypothesis, with a fractionated profile shown in Fig. 1g that
is comparable with the mid-crust profiles. The metals may be
enriched in the silicate melt following the priming process
described above, be transported in a volatile component as, for
example, chloride complexes, or potentially as telluride
melts33,41. Subsequent ore formation from these melts, such as
magmatic–hydrothermal Cu–Au–(Te–Pd) deposits in the
upper crust (e.g., Skouries), displays heavily fractionated, steep
profiles (Fig. 1g). The key concept here is that the deep mag-
matic processes fractionate metals to enrich the porphyry
magmas with a metal cargo that is preferentially enriched in

Cu–Au–Te(–Pd–Pt). Most importantly, these processes are
limited in space and time.

The contrasting metal ratios between porphyry and epithermal
deposits (Fig. 1d) likely reflect hydrothermal processes that frac-
tionated Cu from Au and Te (Fig. 2b) between the higher tem-
perature (>300 °C) porphyry and lower temperature (<300 °C)
epithermal environments40 (Fig. 3b). Knowledge about the
behaviour of Te at the porphyry–epithermal transition is limited,
but fluid boiling is known to be one of the prevalent processes of
ore formation in these environments. Fluid boiling could lead to
depositon of Cu in porphyry environments, whereas Te partitions
into vapour and precipitates at shallow crustal levels in Au-rich
zones under epithermal conditions13,57.

Alkali-enriched magmas emplaced at the base of the con-
tinental crust have the potential to ascend further, transporting
mantle-derived volatiles and metals through the continental
lithosphere all the way to uppermost crustal settings. Deep
magmatic processes have a profound effect on the metal budgets
of melts that reach the upper crust, and thus play a key role in
controlling the abundance of the characteristic metals that are
enriched in post-subduction settings. The proposed metallogenic
continuum most likely operates partially or completely in dif-
ferent localities, depending on the pre-existing tectonic archi-
tecture. The ore deposits represent key staging points for the
system as a whole: where clusters of epithermal Au–Te deposits
occur, the system has progressed to very shallow crustal depths; in
other cases, aborted systems may stall at any point in the crust.
Post-subduction settings contain magmatic systems that, due to
their small volume and enriched metal source, magnify litho-
spheric metal and volatile concentration and transfer through a
continuous (or staged) ascent from the mantle to the upper crust.
However, the widely documented association of Te–Au deposits
with alkali-enriched magmatism is not mutually causative.
Rather, the alkali-enriched nature of the igneous rocks and the
Te–Au-rich signature of the metal budget are separate functions
of the same broader process: low-degree partial melting of a
hydrous, subduction-metasomatised mantle source.

Methods
Samples. Chalcophile element abundances were determined in this study for a
total of 54 samples from selected localities: the Balmuccia mantle peridotite and
one of the lower crustal alkaline ultramafic pipes (the Valmaggia pipe) in the Ivrea
Zone, Italy; peridotite xenoliths from the Bultfontein kimberlite (Kimberley, South
Africa); the mid-crust Sron Garbh appinite intrusion, Scotland; Gangdese porphyry
rocks in southern Tibet, China and the upper crustal Cripple Creek deposit, Col-
orado, USA. Major and chalcophile trace element data are shown in the Supple-
mentary Data. In addition, to complement our new data, we utilise published data
on metasomatised mantle xenoliths from Lihir23, Papua New Guinea; other alka-
line lower crustal pipes from the Ivrea Zone27; the mid-crust alkaline Mordor
Intrusion, Australia30 and the upper crustal Skouries porphyry deposit, Greece32,
and deposits in British Columbia34.

Bulk rock geochemistry. A suite of samples from the Ivrea Zone and peridotite
xenoliths from the Bultfontein kimberlite were analysed by ICP-MS analysis at
Geoscience Laboratories (GeoLabs, Ontario Geological Survey, Sudbury, Canada),
and a separate suite from Valmaggia was analysed by XRF at the University of
Leicester, UK. Platinum-group element data and gold concentrations were
obtained using the conventional nickel-sulfide fire assay pre-concentration tech-
nique. An aqua regia extraction step was necessary for the accurate determination
of tellurium values. Analytical details for all the techniques utilised to generate the
PGE data in this study, including sample preparation, accuracy and precision
information for a diverse range of standards and internal reference samples, have
been described by Barnes and Fiorentini58 and Fiorentini et al.59, who also provide
information on inter-laboratory reproducibility, sample homogeneity and repro-
ducibility of determinations on standard materials.

Bulk rock major element compositions of samples from Cripple Creek samples
were determined using a PANalytical Axios-Advanced XRF spectrometre,
operating with PANalytical SuperQ software at the University of Leicester on
pressed powder pellets. Full PGE (Pt, Pd, Rh, Ru, Ir, Os) and Au analyses of
Sron Garbh samples were undertaken using 30 g of samples by fire assay with
nickel-sulfide collection and neutron activation analysis at ALS Geochemistry
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(PGM-NAA26) as reported in Graham et al.9. No major element analysis was
performed on these rocks. Tellurium contents of samples from Sron Garbh and Te,
Au, Pt and Pd contents of samples from Cripple Creek were analysed by aqua regia
digest followed by ICP-MS finish at Cardiff University, UK. Masses close to 0.5 g of
milled and dried powder were digested in 5 ml of concentrated aqua regia (three
parts HCl:one part HNO3) inside a sealed 15 -ml capacity screw-top Teflon vial on
a hotplate at ~150 °C for 16–18 h. Samples were allowed to cool and settle before
0.5 ml of digest solution was extracted using a pipette and diluted to 5 ml with 18.2
molar deionised water. Diluted samples were analysed on a Thermo iCAP RQ ICP-
MS. Highly chalcophile elements such as those that are associated with sulfide
minerals are assumed to be close to 100% extracted by aqua regia.

Bulk rock compositions of Gangdese samples were determined at ALS Minerals
in Perth, Western Australia. Major elements (Si, Al, Fe, Ca, Mg, Na, K, Ti, Mn, P,
LOI) were determined by lithium metaborate fusion with ICP-AES (ALS code ME-
ICP06). Trace- element compositions were measured by lithium borate fusion with
ICP-MS with base metals (Ag, Cd, Co, Cu, Li, Mo, Ni, Pb, Zn) and Sc determined
by four-acid digestion with ICP-AES (ALS code ME-4ACD81). Volatile trace
elements (As, Bi, Hg, In, Re, Sb, Se, Te) were measured by aqua regia with ICP-MS
(ALS code ME-MS42). Precious metals (Au, Pt, Pd) were analysed using 30 g of
pulp by fire assay with Pb collection and ICP-MS finish (ALS code PGM-MS23).

Data availability
All correspondence and material requests should be addressed to D.A.H. dah29@le.ac.uk.
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