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Abstract
Due to its simplicity and robustness, smooth particle hydrodynamics (SPH) has been widely used in the modelling of solid
and fluid mechanics problems. Through the years, various formulations and stabilisation techniques have been adopted to
enhance it. Recently, the authors developed JST–SPH, a mixed formulation based on the SPH method. Originally devised for
modelling (nearly) incompressible hyperelasticity, the JST–SPH formulation is mixed in the sense that linear momentum and
a number of strain definitions, instead of the displacements, act as main unknowns of the problem. The resulting governing
system of conservation laws conveniently enables the application of the Jameson–Schmidt–Turkel (JST) artificial dissipation
term, commonly employed in computational fluid dynamics, to solid mechanics. Coupled with meshless SPH discretisation,
this novel scheme eliminates the shortcomings encountered when implementing fast dynamics explicit codes using traditional
mesh-basedmethods. This paper focuses on the applicability of the JST–SPHmixed formulation to the simulation of high-rate,
large metal elastic–plastic deformations. Three applications—including the simulation of an industry-relevant metal forming
process—are examined under different loading conditions, in order to demonstrate the reliability of the method. Results
compare favourably with both data from the previous literature, and simulations performed with a commercial finite elements
package. Most noticeably, these results demonstrate that the total Lagrangian framework of JST–SPH, fundamental to reduce
the computational effort associated with the scheme, retains its accuracy in the presence of large distortions. Moreover, an
algorithmic flow chart is included at the end of this document, to facilitate the computer implementation of the scheme.

Keywords Metal plasticity · Equal channel angular extrusion (ECAE) · Solid dynamics · Mixed formulations · SPH · JST

1 Introduction

Displacement-based explicit dynamic codes, implemented
using low-order finite element methods, are commonly used
for advanced numerical simulations in aerospace, automo-
tive, biomedical, defence and manufacturing applications.
However, difficulties arise in modelling high-speed impacts
or large material deformations, often leading to simulation
failure. In these scenarios, most computational codes prefer
to employ the 8-noded underintegrated hexahedral element to
model solid components [5]. Nonetheless, for many practical
applications (e. g. crashworthiness, ballistics andmetal form-
ing), the extremely large deformations still result in severe
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mesh distortions. These lead to irregular and entangled ele-
ments, unless some form of adaptive remeshing is employed.

In addition, difficulties currently encountered by the
widely employed, displacement-based, low-order finite ele-
ment analysis include lower order of convergence for rel-
evant field variables; excessive element distortion under
large deformations, requiring periodic remeshing; locking
behaviour in bending scenarios; non-physical pressure insta-
bilities, and high-frequency noise due to Newmark-type time
integrators.

Recent developments in computational methods for fast
solid dynamics [1,2,7–9,18,19,21,23–25] recommend the
representation of motion and deformation of a given body
via a system of first-order, mixed formulation conservation
laws. The partial differential equations (PDEs) that form this
system do not present the displacement as the main unknown
to be evaluated, instead yielding a set of other relevant quan-
tities (i. e. velocity, deformation gradient, its cofactor matrix
and scalar Jacobian), depending on the number of conser-
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vation equations being considered. This choice of the field
variables will be driven on the one hand, by the need to repro-
duce certain features of material behaviour (e. g. near or full
incompressibility) while ensuring polyconvexity of the strain
energy function and, on the other hand, by the computational
efficiency of the resulting scheme.

Mixed conservation laws have already been proven [1,
21,25] to achieve second order of accuracy for stresses and
strains. The two-fieldmixed formulation, composed of linear
momentum �p and deformation gradient F, was later aug-
mented by including a governing equation to conserve the
Jacobian J of the deformation gradient [18]. This enabled the
scheme to effectively solve nearly and fully incompressible
materials. Further enhancement of this { �p, F, J } framework
has also been recently reported in [7,19] for modelling com-
pressible, nearly incompressible and fully incompressible
materials governed by a polyconvex constitutive law. In par-
ticular, this requires the presence of the matrix of co-factors
of the deformation gradient F (denoted here byH), leading to
an extended system of field variables. The { �p, F,H, J } sys-
tem can be reformulated to an alternative description in terms
of entropy conjugates, as in [7,19], due to the existence of a
generalised convex entropy function. This readily facilitates
the proof of existence of associated real wave speeds, which
in turn establishes existence and uniqueness of real solutions.

A novel computational frameworkwas devised to improve
the numerical simulation behaviour during large material
distortions, and to address the other numerical issues (e. g.
locking, spurious oscillations) highlighted earlier. In a total
Lagrangian perspective, the proposed methodology com-
bines the use of smooth particle hydrodynamics (SPH), a
meshless spatial discretisation technique, with an explicit,
two-stage, total variation diminishing (TVD) Runge–Kutta
temporal scheme.

To date, the application of mixed formulation has been
largely focused on nearly incompressible hyperelasticity
[1,2,21,25],wheremanyof the aforementioned shortcomings
are encountered while using linear finite element methods.
Thework presented in this paper aims to investigate the feasi-
bility of using the developed mixed formulation technique in
the field of metal plasticity, by exploring some applications
involving large material deformations. These will include a
high-velocity impact scenario, where material is subjected
to a non-uniform deformation and thus develops a large geo-
metric discontinuity; a constrained boundary problem under
heavy distortion, and the simulation of severe plastic defor-
mation in a metallurgical process of industrial relevance.

This paper is organised as follows: a description of the
mixed hyperbolic system of governing partial differential
equations is presented in Sect. 2, while the adopted SPH
discretisation methodology, that incorporates a stabilisa-
tion procedure based on a Jameson–Schmidt–Turkel (JST)
artificial dissipation term, widely used in the field of com-

putational fluid dynamics (CFD), will be detailed in Sect. 3.
Numerical applications in metal plasticity are presented in
Sect. 4, along with an assessment of the accuracy and sta-
bility of the methodology. These numerical examples are
mainly chosen to demonstrate the potential and the accu-
racy of the developed computational strategy. Concluding
remarks are then presented in Sect. 5. Finally, for the purpose
of completeness, a brief outline of the chosen elasto-plastic
constitutive model, including relevant computational proce-
dures for evaluating the material deformation, is provided in
“Appendix A”.

2 Conservation laws

In this paper, a vector will be expressed with the notation �a,
and a tensor with A. The material and spatial coordinates are
denoted by �X and �x , respectively. The gradient operator that
refers to initial spatial coordinates will be denoted by �∇0.
The symbol ××× represents the tensorial cross product, a key
operation utilised in obtaining a concise mathematical rep-
resentation of the proposed methodology. This notation was
introduced in a series of papers devoted to the development
of mixed formulation techniques [7–9,19]. More details on
the properties of the tensorial cross product can be found in
the cited references.

The system of conservation laws describing the motion
and deformation processes in terms of field variables �p, F,
H, J can be written as:

∂ �p
∂t

− �∇0 · P(F,H, J ) = ρ �b (2.1a)

∂F
∂t

− 1

ρ
�∇0 �p = 0 (2.1b)

∂H
∂t

− 1

ρ
�∇0 × ( �p××× F) = 0 (2.1c)

∂ J

∂t
− 1

ρ
�∇0 ·

(
HT �p

)
= 0 (2.1d)

In Eq. (2.1a), ρ and �b, respectively, represent the mate-
rial density and the body force per unit mass. System (2.1)
is solved for �p, F, H, J with respect to time t . It is a set of
hyperbolic PDEs similar in structure to those widely used
in CFD [42]. This similarity enables one to employ well-
established artificial dissipation numerical techniques from
CFD to improve the computational stability of Eqs. (2.1a)
and (2.1d) [1,23,24]. It is worth noting that, in the presence
of non-smooth solutions, the above system (2.1) of local
conservation laws must be accompanied by suitable jump
conditions, as described in [42].

The notation adopted, along with a pictorial representa-
tion of the main measures of deformation used in (2.1), is
illustrated in Fig. 1.
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Fig. 1 Finite deformation process on a bodyB in the continuum. Shown
are measures of fibre, area, and volume strain—F,H, J—that define the
process from the initial configuration B0, to B(t) at time t

It is evident from the expressions (2.1b) and (2.1c), respec-
tively, for the F and H conservation variables, that, for
both physical (required compatibility of strains, [8]) and
mathematical (ensure convexity, [17]) reasons, two sets of
involutions need to be satisfied by the solution of (2.1):

�∇0 × F = 0 (2.2a)

�∇0 · H = �0 (2.2b)

In the above equations, the components of the material
curl of F in (2.2a), and of the material divergence of H in
(2.2b), can be expanded with the help of the Levi–Civita
permutation symbol Ei jk1 as, respectively,

( �∇0 × F
)
i j

=
3∑

k=1

3∑
l=1

E jkl
∂Fil
∂xk

and

( �∇0 · H
)
i
=

3∑
k=1

∂Hik

∂xk
for i, j = 1, 2, 3.

Using the involutions described in (2.2), Eqs. (2.1c) and
(2.1d) can be further simplified into [25]:

∂H
∂t

− F××× �∇0

( �p
ρ

)
= 0 (2.3a)

∂ J

∂t
− H : �∇0

( �p
ρ

)
= 0 (2.3b)

In the place of the full set of conservation variables,
denoted here by U = { �p, F,H, J }, reduced systems based
on { �p, F, J }, or only { �p, F} formulations have been adopted
in the past. The robustness of these reduced systems has
been positively ascertained by testing them against a thor-
ough variety of numerical regimes and external conditions
[1,18,24].

1 Ei jk assumes value +1 in case i jk is an even permutation of the
sequence [1, 2, 3], and −1 in case is odd.

However, the complete { �p, F,H, J } mixed system of
conservation laws (2.1) can be providedwithmathematical—
instead of merely empirical—proof of existence and stability
of physically relevant solutions. Such a proof may be
obtained by verifying the hyperbolicity of the system, i. e.
whether U can be expressed in wave-like form [18,27]:

U = f
( �X · �Z − λi t

) �Ri i = 1, 2, 3 (2.4)

In (2.4), �Z is a chosen direction,λi is thewave velocity and
an eigenvalue of the systemmatrix, and �Ri is the wave profile
and the eigenvector of the systemmatrix corresponding to λi .
As can be seen from (2.4), in order to prove the hyperbolicity
of the system, its own matrix should present real and distinct
eigenvalues, and eigenvectors orthogonal to each other. Only
then the hyperbolicity of a system of conservation laws can
be guaranteed by specifically choosing an elastic potential
function Ψ , for description of the material in use, able to
satisfy certain convexity conditions. This would ensure the
existence of minimum values of Ψ , for the solution of the
variational problem associated with an elastic system [27].

The most stringent convexity condition is the notion of
polyconvexity [3,27].More precisely, the polyconvexity con-
dition states that the potential strain functionΨ (F,H, J ) has
to be convex in the function space formed by the components
of F and H, and by J [3,8]. This also ensures a one-to-one
mapping between the stress P and strain measures {F,H, J }
[3,16,27,31].

3 Discretisation

The governing systems of Eqs. (2.1) and (2.3) can be dis-
cretised by the SPH numerical scheme incorporating JST
stabilisation components (JST–SPH) [21,25].

The JST–SPHmethodology consists of three key features:

– spatial discretisation with the SPH scheme;
– a JST-based numerical dissipation tool, adopted from
CFD, to improve the accuracy and the stabilisation of
the overall discretisation procedure;

– an explicit, two-stage total variation diminishing Runge–
Kutta time integrator scheme to follow the time evolution
of the solutions during dynamic simulations.

The above main features of the proposed methodology
will be briefly elaborated in the following sections.

3.1 The SPHmethod

Being ameshfree technique, SPHcanbe effectively employed
in the simulationof high-velocity impacts andhigh strain-rate
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deformations [10,15,20,26,28,29,34,39,40]. In fact, beyond
theyield point, SPHdiscretisationbecomes attractive because
large distortions make standard Lagrangian finite elements
analyses difficult to pursue, without resorting to remesh-
ing techniques that increase the computational cost [5,38].
This subsection briefly outlines the background for the SPH
method and details the total Lagrangian SPH discretisation
of the governing system of equations. The adoption of a
total Lagrangian SPH formulation allows to avoid numer-
ical tensile instabilities [4,11,33,40]. However, it was proven
in [32] that for simulations involving material disconti-
nuities (such as cracks and fragmentation), stabler results
are achieved when switching to Eulerian kernels over the
discontinuity regions while retaining Lagrangian kernels
elsewhere.

In a discretised domain, the SPH interpolation of a func-
tion variable φ(�x) at any arbitrary point �x , denoted here by
〈φ(�x)〉, can be approximated by:

〈φ(�x)〉 ≈
∑
b

Vb φ(�xb) W (�xb − �x, h) (3.1)

where Vb is the fractional volume assigned to a neighbouring
particle in �xb, h is the smoothing length, and W (�xb − �x, h)

is usually a polynomial function with compact support D of
radius 2h (that is,W vanishes for ‖�xb − �x‖ ≥ 2h). Although
studies introducing adaptivity via a variable radius of support
h exist in the particlemethods literature (see [35]), here h and
consequentlyD and V for in-field particles are kept constant
for simplicity.

For accurate interpolation of any given function, the poly-
nomial kernel should satisfy the following reproducibility
conditions:

∫

D
W (�r , h) d�r = 1; (3.2a)

lim
h→0

W (�r , h) → δ(�r) (3.2b)

In (3.2), �r = �xb − �x , and δ(�r) represents the Dirac delta
function centred at 0. The first derivative of a given function
φ can be discretised in terms of SPH interpolation as

�∇φ(�x) =
∑
b

Vb φ(�xb) �∇W (�r , h) (3.3)

Several different types of kernel functions have been
employed as SPH interpolators. In the present work, to main-
tain the continuity for spatial derivatives of kernel function up
to the fourth order, the following quintic spline polynomial
is adopted as the kernel function:

W (�r , h) = α

hd

⎧
⎪⎨
⎪⎩

(2 − rh)5 − 16 (1 − rh)5 if rh ≤ 1

(2 − rh)5 if 1 < rh ≤ 2, rh = ‖�r‖
h

0 if rh > 2

(3.4)

In (3.4), d is the number of spatial dimensions of the prob-
lem, and α is a normalising constant that depends on d as,

{
α = 1

32π if d = 2

α = 7
40π if d = 3

(3.5)

It is widely known that the fundamental discretised form
of SPH interpolation in (3.1) suffers from poor accuracies at
and in the vicinity of the domain boundaries. More precisely,
(3.1) does not completely satisfy the partition of unity condi-
tion at or near the boundaries, due to the truncation of kernel
functions. To improve the accuracy of the SPH interpolation
near boundaries, and to exactly preserve momentum, correc-
tions must be introduced on both the kernel and the gradient
of the kernel [10–12]. In the present work, the accuracies of
the kernel and the gradient of kernel are improved by using
correctionmethods proposed in [12]. The corrected SPH ker-

nel W̃ (�r , h) and the corrected gradient of kernel �̃∇0W (�r , h)

defined in [12] exactly fulfil first-order completeness, that is,
they allow the SPH representation to exactly reproduce linear
fields.

The corrected SPH interpolation of a given function �f ( �X)

will thus be expressed as,

�∇0 �f ( �Xa) =
∑

b∈Λb
a

Vb( �fb − �fa) ⊗ �̃∇0Wb( �Xa). (3.6)

In (3.6), Λb
a identifies the set of neighbours b of a particle

a, at which the gradient is evaluated. The mixed { �p, F,H, J }
system described by Eqs. (2.1) and (2.3) can now be dis-
cretised in space using the corrected SPH interpolation as
described above.

Further, to obtain the discretised form of (2.1a), the weak
statement for the linear momentum evolution [10–12,43] can
be obtained by employing work–conjugate pairs [7,19].With
the help of integration by parts, this yields

∫

V
δ�v·∂ �p

∂t
dV =

∫

V
δ�v·ρ �bdV+

∫

∂V
δ�v·�tdA−

∫

V
P : �∇0δ�v dV

(3.7)

In (3.7), virtual velocities are denoted by δ�v. By using
particle discretisation on the domain V , the above expression
(3.7) is approximated to:

N∑
a=1

Vaδ�va · d �pa
dt

=
N∑

a=1

Vaδ�va · ρ �ba
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+
N∑

a=1

Aaδ�va · �ta −
N∑

a=1

VaPa : �∇0δ�va (3.8)

In (3.8), Aa and �ta are, respectively, associated area and
traction force assigned to particles a located at or near the
domain boundary. The density is assumed to be homoge-
neous throughout the domain. Equation (3.8) can now be
expressed in terms of SPH discretisation as

∂ �pa
∂t

= ρ �ba + Aa

Va
�ta

−
∑

b∈Λb
a

Vb
[
Pb

�̃∇0Wa( �Xb) − Pa
�̃∇0Wb( �Xa)

]
(3.9)

The last term on the right-hand side of Eq. (3.9) represents
the resultant internal force �Ta acting on particle a:

�Ta =
∑
b∈Λa

Vb
[
Pb

�̃∇0Wa( �Xb) − Pa
�̃∇0Wb( �Xa)

]
(3.10)

Conservation laws given by Eqs. (2.3) and (2.1d), respec-
tively, for strainmeasures F, H, and J , can also be discretised
in a similar manner to what has been done for (3.9), with the
linear momentum �p evaluated through SPH:

∂Fa
∂t

= 1

ρ

∑

b∈Λb
a

Vb ( �pb − �pa) ⊗ �̃∇0Wb( �Xa) (3.11a)

∂Ha

∂t
= Fa × 1

ρ

∑

b∈Λb
a

Vb ( �pb − �pa) ⊗ �̃∇0Wb( �Xa) (3.11b)

∂ Ja
∂t

= Ha : 1

ρ

∑

b∈Λb
a

Vb ( �pb − �pa) ⊗ �̃∇0Wb( �Xa) (3.11c)

Depending on the chosen materials, the above semi-
discrete formulation (3.9)–(3.11) may still suffer from accu-
mulated numerical instabilities over a long span of time
response. Therefore, it is necessary to address any such insta-
bility via suitable computational procedures.

3.2 JST artificial dissipation

In the context of SPH, various artificial dissipation techniques
have been used in the past [28–30] to alleviate the afore-
mentioned numerical instabilities. Alternatively, SPH can be
stabilised by introducing stress points in the formulation (see
[33]). In this case, however, a background mesh would be
needed for the computation and assignment of fractional vol-
umes. In the present work, an adapted nodally conservative
JST stabilisation term DJST(Ua) will be incorporated into
(3.9), mirroring CFD techniques. The hyperbolic nature of
the first-order conservation laws in system (2.1), reflecting

that of the Euler equations in fluid dynamics, makes it pos-
sible to introduce the JST term as a dissipative component
[1].

The nodally conservative JST stabilisation is additively
decomposed into a second-order (harmonic) operatorD2(Ua)

and a fourth-order (biharmonic) operator D4(Ua) as:

DJST(Ua) = D2(Ua) + D4(Ua) (3.12)

where

D2(Ua) = κ(2)cp �xmin

∑

b∈Λb
a

Vb (Ub − Ua) ∇̃2
0Wb( �Xa)

(3.13a)

D4(Ua) = −κ(4)cp �x3min

∑

b∈Λb
a

Vb

(D2(Ub) − D2(Ua)

κ(2)cp �xmin

)
∇̃2
0Wb( �Xa) (3.13b)

In (3.13), cp is the pressurewave speed,�xmin is the parti-
cle spacing, κ(2) and κ(4) are user-defined parameters, while
the ∇̃2

0 symbol represents a corrected Laplacian operator,
applied to kernel W as detailed in [10].

3.3 Semi-discrete governing equations

Out of the four unknowns in the vector of state U , only �p
and J will see JSTdissipation terms appear in their respective
conservation laws (3.9) and (3.11c).DJST(F) = DJST(H) =
0 are imposed in order to respect conditions (2.2), set to
ensure these strain measures preserve compatibility with the
domain motions. This is because F andH are nowmain inde-
pendent variables of the problem, and are not associated with
displacements �x . In the context of the standard displacement-
basedmethod, it is worth recalling that F is directly computed
from �x , which acts as main independent variable of the prob-
lem.

In the light of the above, the spatial semi-discretisation
yielded by the JST–SPH methodology reads as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ �pa
∂t

= Aa

Va
�ta + ρ �ba

−
∑
b∈Λa

Vb
[
Pb

�̃∇0Wa( �Xb) − Pa
�̃∇0Wb( �Xa)

]
+ DJST( �pa)

∂Fa
∂t

=
∑
b∈Λa

Vb
ρ

( �pb − �pa) ⊗ �̃∇0Wb( �Xa)

∂Ha

∂t
= Fa ×

∑
b∈Λa

Vb
ρ

( �pb − �pa) ⊗ �̃∇0Wb( �Xa)

∂ Ja
∂t

= Ha :
∑
b∈Λa

Vb
ρ

( �pb − �pa) ⊗ �̃∇0Wb( �Xa) + DJST(Ja)

(3.14)
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Due to the incompatibility between strains and displace-
ments introduced by the adoption of the mixed { �p, F,H, J }
formulation, discussed above, the conservation of angular
momentum will not in general be satisfied by the discretised
system of Eq. (3.14). In addition, the conservation of linear
momentum may also not be respected, due to the lack of
radial symmetry introduced by kernel and gradient correc-
tions that are applied on particles located at, or in the vicinity,
of domain boundaries.

With the aim to preserve the linear and angular momenta,
the internal forces �T and the JST dissipation termsDJST have
to be amended, in order to enforce the following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
a=1

Va �Ta = �0;
N∑

a=1
Va �xa × �Ta = �0;

N∑
a=1

VaDJST( �pa) = �0;
N∑

a=1
Va �xa × DJST( �pa) = �0;

N∑
a=1

VaDJST(Ja) = 0

(3.15)

To impose conditions (3.15), a procedure based on the
method of Lagrangianmultipliers has been implemented (see
[25] for more details).

3.4 Two-stage TVD Runge–Kutta temporal
integration

To obtain a fully discretised system, that is able to describe
the time evolution of the solution, the set of particle equa-
tions (3.14) has to be now explicitly integrated between
chosen time intervals.

The solution will update from current time step tn to next
step tn+1, until the end of the simulation. An explicit, two-
stage TVD Runge–Kutta integrator scheme will be used for
the purpose of time integration as follows:

U∗
a = Un

a + �t Ra
(Un

a , tn
)

(3.16a)

U∗∗
a = U∗

a + �t Ra

(
U∗

a , tn+1
)

(3.16b)

Un+1
a = Un

a + U∗∗
a

2
(3.16c)

The size of the time step, �t , in (3.16) is obtained using
the Courant–Friedrichs–Lewy (CFL) condition [42]:

�t = αc f l
hl

max(cp)a
a = 1, . . . , N (3.17)

In (3.17), hl is the characteristic length of the problem,
here chosen to be equal to the initial distance between two
particles, and αc f l is a user-defined constant assuming values

Fig. 2 Taylor bar problem. Initial configuration

between 0 and 1. The lower the value of αc f l , the better the
accuracy of the simulation.

The TVD Runge–Kutta scheme as defined in (3.16) has
the advantage of being able to control the amount of spuri-
ous energy introduced by the explicit time integration, while
allowing it to retain its qualities of speed and simplicity, espe-
cially when compared to implicit time-stepping methods.

Current particles positions, �xa for a = 1, . . . , N , are
obtained monolithically from the two-stage Runge–Kutta

process (3.16), given U = �x and R(U) = �p
ρ
.

4 Applications

In this section, the proposed JST–SPH algorithm will be
used to perform three numerical examples. The first amongst
these will be the classic Taylor bar test for high-speed-impact
plasticity effects: a three-dimensional cylindrical metal bar
that impacts a horizontal wall at a high velocity. In the sec-
ond example, the performance of the method is assessed by
examining the elasto-plastic compression of a constrained
rectangular body. The last example involves the simulation
of the equal channel angular extrusion (ECAE) cold metal
forming process, where aworkpiece is forced to pass through
two 90° turns inside an extrusion die. The localised distor-
tions caused by the substantial shear stresses experienced by
the workpiece at these 90° turns should constitute an ideal
test for assessing the capability of the developed methodol-
ogy under large strain, high-velocity conditions.

4.1 Taylor bar high-speed impact

A common benchmark test for plastic deformation at high
speed is the Taylor bar impact problem [41], illustrated in
Fig. 2.

Elastic behaviour is governed by thematerial energy func-
tion presented in Eq. (A.1). Equation (A.1) is coupled with
the plastic yield model described in “Appendix A”, using the
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Fig. 3 Taylor bar problem. The
pictures show the cross-sectional
shape of the bar, and the plastic
strain contour plot at various
instants in the simulation

Fig. 4 Taylor bar problem. The
pictures show the
cross-sectional shape of the bar,
and the von Mises stress contour
plot at various instants in the
simulation

linear isotropic hardening law presented in (A.14). Themate-
rial is assumed to be copper, with the following properties:
Young’s modulus E = 117 GPa, Poisson ratio ν = 0.35,
yield stress σ Y

0 = 0.4 GPa, hardening modulus H = 0.1
GPa and density ρ = 8930 kg/m3. The bar has initial height
h0 = 32 mm and radius r0 = 3.2 mm, and is discretised by a
set of 4131 particles arranged in a regular pattern. The impact
is supposed frictionless and takes place at an initial speed of
the bar of v0z = −227m/s in the z direction, normal to the
rigid wall. Due to the extensive plastic dissipation, the JST
stabilising term is set to a very low value.

Figure 3 presents results of the Taylor bar simulation per-
formed by JST–SPH. As observed in experimental results
[44], in Fig. 3 the plastic front appears closer to the bot-
tom wall at the early stages of the simulation (red contour
regions). It then slowly moves towards the top of the bar, as
more kinetic energy dissipates into plastic strain.

To investigate the stress distribution across the bar, the
von Mises equivalent stress is plotted in Fig. 4. A gradual
increase in the plastic stress flow over time can be clearly
observed.

In Table 1, the radius of the bottom face at time t = 80 µs
is compared to the results of identical tests performed using
different numerical methodologies [1]. It can be noted that
the mixed formulation techniques, being locking-free, avoid
excessive rigid response of the structure often demonstrated
by low-order finite elements, displacement-based analyses.

Plots of the total internal energy and of energy dissipa-
tion associated with plastic deformation and JST artificial
dissipation are reported in Fig. 5.

The equations used to evaluate the total internal energy
Uint, the total plastic dissipation W(p) and the artificial JST
dissipation W(JST) at each time step are given as follows:
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Table 1 Taylor bar problem. Radius of bottom face at time t = 80 µs,
obtained from different numerical methods

Numerical method Final radius (mm)

Standard finite elements, hexahedra [6] 6.95

Standard finite elements, tetrahedra [6] 5.55

Mixed JST finite volumes, vertex-centred [1] 6.98

Mixed JST–SPH 6.98

Fig. 5 Taylor bar problem. Total values, summed over all particles,
of the internal energy (blue line), plastic dissipation (yellow line) and
JST artificial dissipation (red line) over simulation time. (Color figure
online)

Uint =
N∑

a=1

�t

ρ
‖ �pa

( �X , t
)

‖ · ‖ �Ta‖ (4.1a)

W(p) =
N∑

a=1

J‖σa‖ · �ε(p)a (4.1b)

W(JST) =
N∑

a=1

�t

ρ
DJST

a ( �pa) (4.1c)

It is shown in Fig. 5 that artificial dissipation introduced
by the JST algorithm constitutes a negligible quantity.

4.2 Highly constrained problemwithmoving
discontinuity

An example of the use of JST–SPH in a highly constrained
setting is presented in [21,25] for a fully elastic, nearly incom-
pressible material. The effects of plasticity will be studied
in this similar example, where a bidimensional rectangular
block with dimensions 1m × 0.5m is considered under the
assumption of plane strain. Thematerial is copper, with prop-
erties chosen to be the same as those in theTaylor bar example
in Sect. 4.1.

An external velocity �v = (0,−10)T m/s is applied
throughout the simulation on the top side of the block, as

Fig. 6 Constrained block under external velocity load

shown in Fig. 6. Roller boundary conditions are applied to
its left, right and bottom edges.

The rectangular block is discretised by 231 regular parti-
cles. Additional numerical parameters used in the simulation
are CFL number αc f l = 0.3 and JST coefficient κ(2) = 0

and κ(4) = 1

1024
.

These specific values of κ(2) and κ(4) were chosen in
order to provide the simulation with a small amount of JST
numerical dissipation, useful to suppress any spurious pres-
sure oscillations at the initial stages of the process.

The purpose of this example is to demonstrate the capa-
bility of the total Lagrangian framework of the JST–SPH
method, in the presence of high, localised distortions. The
evolution of the von Mises equivalent plastic strain ε(p)

during the analysis is shown in the top row of Fig. 7. For com-
parison, the same simulation has been runusing a commercial
finite element method package, without any remeshing, and
the results are presented in the bottom row of Fig. 7.

Results obtained by using increasing numbers of particles
in the simulation are presented in Fig. 8.

It is observed from Figs. 7 and 8 that the basic finite ele-
ment method is not able to handle the excessive distortions,
whereas the JST–SPHmethod is able to simulate severemate-
rial deformationwithout exhibiting any numerical instability.

Plots of the total internal energy and of energy dissipation
associated with plastic deformation and JST artificial dissi-
pation are reported in Fig. 9. Energy quantities have been
calculated using (4.1). It is shown in Fig. 9 that artificial
dissipation introduced by the JST algorithm is a negligible
quantity. Roller constraints imposed at the boundaries of the
block are at the origin of irregularities appearing in the inter-
nal energy plot [calculated as in (4.1a)].

4.3 Simulation of the equal channel angular
extrusion (ECAE) process

Numerous metallurgical techniques exploit the mechanics
of plastic deformation to attain smaller grain size, and con-
sequently better material properties, for metals and alloys.
Amongst them, ECAE [36,37] can offer high levels of shear
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Fig. 7 Constrained block
problem. Comparison between
JST–SPH (top row) and finite
elements results obtained using
Abaqus/Explicit (bottom row).
Configurations shown at
subsequent instants during the
deformation history; the plastic
strain profile is shown through
the colour scale

Fig. 8 Constrained block
problem. Comparison between
JST–SPH (top row) analyses
obtained using different particles
resolutions at time t = 15ms
into the simulation. Contour plot
of plastic strain profile shown

Fig. 9 Constrained block problem. Total values, summed over all par-
ticles, of the internal energy (blue line), plastic dissipation (yellow line)
and JST artificial dissipation (red line) over the simulation time. (Color
figure online)

strain for relatively low levels of external pressure, making it
an ideal material processing technique for mass production.
In the present setting, the ECAE process will be simulated in
a channel with two 90° turns, analogous to the set-up anal-
ysed in [36] using a commercial finite element software. This
example will demonstrate the robustness of the JST–SPH
numerical scheme under a demanding dynamical process,
where the material is subjected to continuous large deforma-
tion.

Fig. 10 ECAE simulation, initial set-up

The analysis is performed in plane strain conditions,
and the material is made of commercially pure aluminium
(Al1100, E = 69 GPa, ν = 0.33, ρ = 2800 kg/m3, width
l = 8 mm). The walls of the die are assumed rigid. Its right-
angled corners are rounded, with 1.5 mm and 1 mm external
and internal fillet radii. The initial set-up of the experiment
is presented in Fig. 10.

The simulations are performed with a regular mesh of 400
particles. Contact between workpiece and die is assumed to
be lubricated, and considered frictionless during the simula-
tion. For the purpose of simplicity, a contact algorithm based
on a reflective, bouncing back procedure [22] is adopted to
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Fig. 11 Pressure p at various
stages of the ECAE process. Top
row, JST–SPH results. Bottom
row, finite elements commercial
solver Abaqus/Explicit, linear
elements

Fig. 12 Equivalent plastic strain
(peeq) ε(p) at various stages of
the ECAE process. Top row,
JST–SPH results. Bottom row,
finite elements commercial
solver Abaqus/Explicit, linear
elements

simulate the interaction between the die walls and the parti-
cles representing billet material.

Given that large plastic deformations are expected, it is
useful to introduce numerical dissipation at the early stages of
the simulation, to prevent pressure instabilities that may arise
when the billet initially comes into contact with the bottom
wall of the channel. To facilitate this, for each particle, the
JST term k(4) was defined as function of the equivalent plastic
strain ε(p), to ensure that k(4) linearly decreases, as plastic
dissipation gradually sets in. This is achieved by adopting
the following formula:
{
k(4) = 1

64 − 2
( 1
64 − 1

4096

)
ε(p) if ε(p) ≤ 0.5

k(4) = 1
4096 if ε(p) > 0.5

(4.2)

The plastic yield stress of the billet material is assumed to
follow the nonlinear hardening law given by:

σ Y (ε(p)) = A(0.02 + ε(p))
0.27 where A = 159 × 106

(4.3)

Equation 4.3 is solved for ε(p) numerically by using the
Newton–Raphson method.

Figures 11 and 12, respectively, depict the distributions
of pressure and plastic strains during the deformation pro-
cess of the billet, at various instants in time. For the purpose
of comparison, Figs. 11 and 12 also present the correspond-
ing pressure and plastic strain distributions obtained with a
commercial finite element software (Abaqus/Explicit) using
linear quadrilateral elements.

It can be noted that the results from the JST–SPH method
correlate well with those obtained with the finite element
method. Results from Figs. 11 and 12 are also consistent with
observations reported in [36]. It is evident from the figures
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Fig. 13 JST–SPH ECAE. Total
values, summed over all
particles, of the internal energy
(blue line), plastic dissipation
(yellow line) and JST artificial
dissipation (red line) over the
simulation time. The evolution
of these quantities discloses
information on various stages of
the process. (Color figure
online)

that the particle distribution in the vicinity of sharp corners of
the channel is not smooth at the later stages of the simulation.
This uneven distribution of the particles can be attributed
to boundary effects. The plastic strain contour illustrated in
Fig. 12 compareswell with results reported in [36]. Further, it
is clearly evident that the plastic strain distribution increases
significantly as the billetmaterial passes through eachbendof
the channel in the die. This feature iswhat ismainly exploited
in the ECAE process to achieve the desired level of plastic
strain in the workpiece.

Investigation of the energy patterns throughout the simula-
tion confirms that plastic deformation is themainmechanism
of energy dissipation, being on average two orders of mag-
nitude larger than the energy dissipation introduced by
activating the JST stabilisation term. Figure 13 compares the
energies associated with plastic deformation, JST artificial
dissipation, and the total internal energy of the bar during the
simulation of the entire ECAE process. Energy quantities in
Fig. 13 were calculated using (4.1).

As shown in Fig. 13, the values of total internal energy
and of total plastic dissipation follow specific trends that can
be linked to the motion of the billet inside the channel of
the die. For example, a peak value for both energies was
observed around 0.00142 s, corresponding to the instant in
which the billet comes into contact with the bottom wall of
the middle (horizontal) part of the channel. Following that,
the energy values begin to decline steeply during the expan-
sion of the billet material in the mid-channel. A similar, but

less pronounced energy pattern can be observed once the bar
reaches, and then begins to flow into the second channel, with
a peak value attained around 0.035 s. Moreover, it transpires
from Fig. 13 that the energy values are highly oscillatory
when the billet initially passes through the angular sections
of the channel. However, the frequency and the intensity of
these oscillations gradually decrease, as the material moves
away from the angular sections.

In addition, Fig. 13 shows the gradual decrease in energy
dissipation associated with the JST term at the onset of plas-
tic deformation. This effect follows from the definition of
the JST terms in (4.2), and further demonstrates that higher
artificial dissipation values are only required at the very early
stages of the simulation, that is, before any plastic deforma-
tion takes place.

In order to verify the accuracy of the simulation, a con-
vergence study was performed by varying the number of
particles in the discretised domain.

The quantity under analysis is the amount of plastic strain
at 0.035 s, both in local (the maximum equivalent plastic
strain max ε(p) amongst particles) and in global (the plas-
tic dissipation developed in the single time step leading to
instant 0.035 s) terms. Apart from the mesh of 400 particles
used so far, alternative meshes with 88, 216 and 640 particles
were employed. The results of the convergence analysis are
presented in Fig. 14. It can be noted from the figure that the
chosen parameters monotonically converge with increasing
particle density.

123



Computational Particle Mechanics

Fig. 14 JST–SPH ECAE. Convergence plot of local maximum plastic
strain ε(p) (in blue, left y-axis) and total dissipationW(p) due to plastic-
ity (in red, right y-axis) at the time step entering 0.035 s in simulation
time. (Color figure online)

The mesh with 640 particles has also been utilised for
closer comparison of the degree of similarity between the
JST–SPH ECAE test conducted here with the analysis found
in [36]. For this purpose, the strain contour in the direction
normal to the billet movement has been investigated towards
the end of the test, at simulation time t = 0.04 s. The two
locations selected are “Section 1” positioned at the centre
of the middle channel, and “Section 2” at 5mm from the
second corner of the die. The above locations are consistent
with those of the results reported in [36].

Ten equally spaced target positions have been chosen
across the two sections of interest. Local values of the plastic
strain ε(p) havebeen computedusingSPH interpolated values
over neighbouring particles. Results are presented in Fig. 15.
Comparison of Fig. 15 with results reported in [36] reveals
that plastic strain patterns of the two testsmatch closely along
Section 2, the main difference being that the JST–SPH anal-
ysis predictably presents a smoother curve. The same can be
observed for Section 1, for which there is qualitative agree-
ment with results from [36], except for the points near the
upperwall, where results obtainedwith JST–SPHyield larger
plastic strain. This discrepancy can be attributed to the fact
that these points lie in the vicinity of the upper wall, and
closer to the first bend. As can be noted in Fig. 12, also the
accuracy of the plastic strain at these points is affected by the
same boundary effects.

Fig. 15 JST–SPHECAE. Plastic strain ε(p) distribution across the billet
sections labelled in colour at margin, at t = 0.04 s. Compare to Fig. 5
in [36]

Parametric analyses reported in [36] provided an oppor-
tunity for further verification of the validity of the results.

In [36], geometrical properties of the die are modified in
order to investigate the possibility of enhancing ECAE met-
allurgical performances. One of these parameters was the
length of the middle channel of the die. In [36], it was noted
that interesting deformed shapes develop, when the middle
channel is shortened from 24 to 16 mm. The upper part of
second bend has a large unfilled area, while the billet expe-
riences more stress due to bending than due to shear. This
effect is particularly severe around the inner region of the
billet in the vicinity of the bottom part of the second bend.
Both of these phenomena could be identified in an analogous
simulation performed with JST–SPH, as presented in Fig. 16
at time t = 0.027 s. Results obtained with the finite elements
commercial solver Abaqus/Explicit, using linear quadrilat-
eral elements, are also shown in Fig. 16.

It is evident from the numerical examples that the JST–
SPH scheme eliminates the excessive element distortions
usually associated with mesh-based methods during the
simulation of large plastic strains. In addition, the total
Lagrangian framework adopted here provides an efficient
modelling tool to gain better understanding of the physics
underlying large material deformations.

An algorithmic diagram, illustrating the JST–SPH solu-
tion procedure for simulating elasto-plastic material defor-
mations, is presented next.
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JST–SPH algorithm for elasto-plastic simulations

Performs Total Lagrangian dynamics simulations of an elasto-plastic process using { �p, F,H, J } mixed formulation:
SPH space discretisation + JST dissipation term + 2 stages TVD Runge–Kutta explicit time stepping.

Initialisation

– Initiate all variables (set of particles geometry, material properties, numerical parameters, �pi , Fi , Pi , �xi
for each particle i).

– Compute SPH kernel smoothing length h = α(V /N )1/3, with N number of particles and α a user-defined
input parameter.

– Locate neighbours j for each target particle i , using the alternating digital tree (ADT) search algorithm
[13].

– Compute corrected kernel W̃ , its gradient �̃∇W and its Laplacian ∇̃2W .

Time-stepping the solution

FOR t < t f

– Compute wave speed cws|i =
(√

λ+2μ
ρ

/max
i

λC|i
)
for particle i .

– Compute time step �t (3.17).
– Runge–Kutta time-stepping (3.16):
FOR RK = 1, 2

– Advance �p (3.14).
– Compute JST term (3.13).
– Apply conservation of ang. momentum on �p (3.10) and JST (3.13) [25].
– Advance the other variables F, H and J (3.14).
– Impose boundary conditions

• Identify particles that have crossed the walls:
IF |�xi | > �xW THEN

· Determine normal to the wall.
· Reflect �pi around the normal to the wall.
· Place particle position on the wall, �xi = �xW .

– Compute first Piola–Kirchhoff stress tensor Pi as in “Appendix A”:
• Given initial C(p), J and ∇ε(p).
• Calculate pressure p.
• Calculate trial Left Cauchy–Green tensor b(e).
• Calculate λ2(e)a , �na , a = 1, 2, 3 from b(e) (eigendecomposition).
• Calculate σa , a = 1, 2, 3.
• Calculate �ε(p) and check:
IF �ε(p) > 0 THEN

· Correct σa , a = 1, 2, 3 with return map algorithm.
· Update λ(e)a → λ

upd
(e)a , b(e) → bupd(e) and C(p).

• Compute Pi from σa , a = 1, 2, 3.
• Update plastic strain εn+1

(p) = εn(p) + �ε(p).

– Obtain conserved variables values and particles positions at time n + 1 through averaging Runge–Kutta
steps (3.16).
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Fig. 16 On the left, contour plot
obtained with JST–SPH of the
equivalent plastic strain ε(p)
distribution over a modified
version of the die, with a
shortened middle channel
length, at time t = 0.027 s. On
the right, analogous result
obtained on Abaqus/Explicit,
with linear quadrilateral finite
elements and no remeshing

5 Conclusions

This paper has focused on the application of JST–SPHmixed
formulation inmetal plasticity. Thismethodology has proved
to be a valid tool for computing plastic deformations under
dynamic regimes. It has been shown that there is good agree-
ment between results reported in the previous section and
data for the same tests found in the literature. The Taylor bar
impact case provides an ideal application for JST–SPH, since
SPH performs particularly well in high-velocity, large defor-
mation settings. On the other hand, the ECAE test confirmed
the robustness of JST–SPH: the total Lagrangian framework
was able to withstand high local gradients of stresses, strains
and displacements, while the presence of a constant loading
in time did not lead to any kind of instability. This robustness
was further evidenced in the constrained block simulation,
where it can be seen that JST–SPH is able to achieve accu-
rate results while preserving the initial connectivity under
very large distortions. The same outcome cannot be obtained
with standard mesh-based methods, without remeshing. It
was noted, in the case of the ECAE simulation, that the
results in the vicinity of the boundaries were slightly affected
by sharp corners. These boundary effects can be easily elimi-
nated by using more sophisticated boundary treatments. This
will be one of the focal points in future publications.
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Appendix A: Rate-independent plastic
constitutive relations

In the following, a stretch-based, elastic energy function will
be defined as [14]:

Ψ (λ1, λ2, λ3, J ) = μ[(ln λ1)
2 + (ln λ2)

2 + (ln λ3)
2]

+λ

2
(ln J )2 (A.1)

where μ and λ are the Lamé constants, and λ1, λ2, λ3 are the
principal stretches, such that the right Cauchy–Green defor-
mation tensor, C [14], can be expressed as:

C =
3∑

a=1

λ2a
�Na ⊗ �Na (A.2)

In (A.2), �Na , a = 1, 2, 3, are the principal directions in
the reference frame.

From (A.1), it is possible to calculate the first Piola–
Kirchhoff stress tensor P for a polyconvex material in the
elastic realm and, in so doing, to close the system of conser-
vation laws (2.1) [7,8,19]:

P (F,H, J ) = �F + �H ××× F + �JH (A.3)

In (A.3), �F, �H and �J are the entropy conjugates of
strain variables F, H and J . More detailed definitions of
entropy conjugates can be found in [7,19].

Equation (A.3) provides solutions while in the elastic
regime. However, once the deformation state progresses
beyond the yield point and acquires a plastic component,
the first Piola–Kirchhoff stress tensor P will be hereby com-
puted as a function of the Cauchy stress σ in the current
configuration, following [14]:

P = JσF−T (A.4)
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The stress tensor σ in (A.4) can be expressed in spatial prin-
cipal directions �na , a = 1, 2, 3 as

σ =
3∑

a=1

σa �na ⊗ �na (A.5)

where σa is given by

σa = κ
ln J

J
+ 2

μ

J

(
ln λ(e)a − 1

3
ln J

)
a = 1, 2, 3 (A.6)

In (A.6), the bulk modulus κ for the material was intro-
duced. Operating in principal directions holds the distinct
advantage of making quantities computed in the current sec-
tion automatically frame invariant.

The elastic principal stretches λ(e)a for a = 1, 2, 3 in
(A.6), and the principal directions �na , a = 1, 2, 3 in (A.5)
are obtained as the eigenvalues and eigenvectors of the elastic
part b(e) of the left Cauchy–Green deformation tensor b, as

b(e) =
3∑

a=1

λ2(e)a �na ⊗ �na (A.7)

The plastic part of the deformation enters the algorithm
just described through the preliminary evaluation of b(e),
obtained using the plastic part of the right Cauchy–Green
strain tensor in (A.2), C(p), at the beginning of each time
step:

b(e) = FC−1
(p)F

T (A.8)

Given the deviatoric component σ dev of the stress tensor σ

found in (A.5), and its principal components σdev,a , a =
1, 2, 3:

σ dev = σ − κ
ln J

J
I;

σdev,a = 2
μ

J

(
ln λ(e)a − 1

3
ln J

)
a = 1, 2, 3 (A.9)

the plastic domain is enteredwhen the equivalent stressσeq =√
3

2
(σ dev : σ dev) is past the yield point, as determined by the

von Mises yielding criterion:

σeq − σ Y ≤ 0 (A.10)

In (A.10), σ Y = σ Y (ε(p)) is the yield stress, that in gen-
eral will be a function of the history of accumulated plastic
deformation during the process, through amaterial hardening
rule.

In case condition (A.10) does not hold, plastic deformation
develops, ε(p) > 0, and the yield surface is updated through

a radial return mapping procedure, whereby the normal to
the yield surface �m = (m1,m2,m3) is expressed by

ma = σdev,a√
σ dev : σ dev

a = 1, 2, 3 (A.11)

and the principal components of the deviatoric stress tensor
σdev,a are updated as [14]

σ
upd
dev,a = σdev,a − 2μ�ε(p) ma a = 1, 2, 3 (A.12)

The resulting increment in equivalent plastic strain �ε(p)

will be computed as the strain amount necessary to keep the

updated equivalent plastic stress σ
upd
eq =

√
3

2

(
σ
upd
dev : σ

upd
dev

)

on the yield surface:

σ
upd
eq (�ε(p)) − σ Y (ε(p),�ε(p)) = 0 (A.13)

In the case of the classic hardening rule that linearly depends
on �ε(p), i. e.

σ Y = σ Y
0 + H

(
ε(p) + �ε(p)

)
(A.14)

where σ Y
0 is the initial yield stress value, and H is the hard-

ening modulus, �ε(p) can be explicitly obtained as

�ε(p) = σeq − σ Y
(
ε(p)

)

3μ + H
(A.15)

If instead a more complicated dependency of the type
σ Y = σ Y (�ε(p)) is in place, then �ε(p) has to be extracted
numerically.

Once �ε(p) is known, the elastic principal stretches λ(e)a

can be corrected to take the plastic dissipation into account

λ
upd
(e)a = λ(e)ae

−�ε(p) ma a = 1, 2, 3 (A.16)

and the updatedCauchy stress components in principal direc-
tions σ

upd
dev,a from (A.12) are returned as

σ
upd
dev,a = 2

μ

J

(
ln λ(e)a − 1

3
ln J

) (
1 − 2μ�ε(p)√

σ dev : σ dev

)

(A.17)

Equation (A.16) allows updating the elastic deformation ten-
sor bupd(e) accordingly:

bupd(e) =
3∑

a=1

(
λ(e)a

)2 �na ⊗ �na (A.18)

Equation (A.18) exploits the known fact that plastic dis-
sipation does not alter principal directions �na , a = 1, 2, 3.
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Fig. 17 A typical von
Mises-defined yield surface in
plain stress and in the presence
of isotropic hardening. Radial
return mapping also shown

What is left in order to complete the algorithm is then to
substitute in Eq. (A.5) σa with σ

upd
dev,a obtained from (A.17),

and to add the dilatation pressure term κ
ln J

J
. The plastic

deformation state is also updated as

C−1
(p) = F−1b(e)F−T (A.19a)

ε
upd
(p) = ε(p) + �ε(p) (A.19b)

The von Mises plastic algorithm described in this section
is depicted in Fig. 17 in the case of isotropic hardening.

References

1. AguirreM,Gil A, Bonet J, CarreñoA (2014)A vertex centred finite
volume Jameson–Schmidt–Turkel algorithm for amixed conserva-
tion formulation in solid dynamics. J Comput Phys 259:672–699

2. Aguirre M, Gil A, Bonet J, Lee C (2015) An upwind vertex centred
finite volume solver for Lagrangian solid dynamics. J Comput Phys
300:387–422

3. Ball J (1977) Convexity conditions and existence theorems in non-
linear elasticity. Arch Ration Mech Anal 63(4):337–403

4. Belytschko T, Guo Y, Liu W, Xiao P (2000) A unified stability
analysis of meshless particle methods. Int J Numer Methods Eng
48(9):1359–1400

5. Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements
for continua and structures. Wiley, Hoboken

6. Bonet J, Burton A (1998) A simple average nodal pressure
tetrahedral element for incompressible and nearly incompress-
ible dynamic explicit applications. Commun Numer Methods Eng
14(5):437–449

7. Bonet J, Gil A, Lee C, Aguirre M, Ortigosa R (2015) A first order
hyperbolic framework for large strain computational solid dynam-
ics. Part I: total Lagrangian isothermal elasticity. Comput Methods
Appl Mech Eng 283:689–732

8. Bonet J, Gil A, Ortigosa R (2015) A computational framework for
polyconvex large strain elasticity. Comput Methods Appl Mech
Eng 283:1061–1094

9. Bonet J, Gil A, Ortigosa R (2016) On a tensor cross product based
formulation of large strain solid mechanics. Int J Solids Struct
84:49–63

10. Bonet J, Kulasegaram S (2000) Correction and stabilization of
smooth particle hydrodynamicsmethodswith applications inmetal
forming simulations. Int J Numer Methods Eng 47(6):1189–1214

11. Bonet J, Kulasegaram S (2001) Remarks on tension instability of
Eulerian and Lagrangian corrected smooth particle hydrodynamics
(CSPH) methods. Int J Numer Methods Eng 52(11):1203–1220

12. Bonet J, Lok TS (1999) Variational and momentum preservation
aspects of smooth particle hydrodynamic formulations. Comput
Methods Appl Mech Eng 180(1–2):97–115

13. Bonet J, Peraire J (1991) An alternating digital tree (ADT) algo-
rithm for 3D geometric searching and intersection problems. Int J
Numer Methods Eng 31(1):1–17

14. Bonet J, Wood R (2008) Nonlinear continuummechanics for finite
element analysis, 2nd edn.CambridgeUniversity Press,Cambridge

15. Cleary P, Prakash M, Ha J (2006) Novel applications of smoothed
particle hydrodynamics (SPH) in metal forming. J Mater Process
Technol 177(1–3):41–48

16. Coleman B, Noll W (1959) On the thermostatics of continuous
media. Arch Ration Mech Anal 4:97–128

17. Dafermos C (2013) Non-convex entropies for conservation laws
with involutions. Philos Trans R Soc Lond A Math Phys Eng Sci
371(2005):20120344

18. Gil A, Lee C, Bonet J, Aguirre M (2014) A stabilised Petrov–
Galerkin formulation for linear tetrahedral elements in compress-
ible, nearly incompressible and truly incompressible fast dynamics.
Comput Methods Appl Mech Eng 276:659–690

19. Gil A, Lee C, Bonet J, Ortigosa R (2016) A first order hyper-
bolic framework for large strain computational solid dynamics.
Part II: total Lagrangian compressible, nearly incompressible and
truly incompressible elasticity. Comput Methods Appl Mech Eng
300:146–181

20. Gray J,Monaghan J, Swift R (2001) SPHelastic dynamics. Comput
Methods Appl Mech Eng 190(49–50):6641–6662

21. Greto G, Kulasegaram S, Lee C, Gil A, Bonet J. A stabilised total
Lagrangian corrected smooth particle hydrodynamics technique in
large strain explicit fast solid dynamics. In: ECCOMAS congress
2016—proceedings of the 7thEuropean congress on computational
methods in applied sciences and engineering, pp 8231–8240

22. HoomansB,Kuipers J,BrielsW, vanSwaaijW(1996)Discrete par-
ticle simulation of bubble and slug formation in a two-dimensional
gas-fluidised bed: a hard-sphere approach.ChemEngSci 51(1):99–
118

23. Lee C, Gil A, Bonet J (2013) Development of a cell centred upwind
finite volume algorithm for a new conservation law formulation in
structural dynamics. Comput Struct 118:13–38

24. Lee C, Gil A, Bonet J (2014) Development of a stabilised Petrov–
Galerkin formulation for conservation laws in Lagrangian fast solid
dynamics. Comput Methods Appl Mech Eng 268:40–64

123



Computational Particle Mechanics

25. Lee C, Gil A, Greto G, Kulasegaram S, Bonet J (2016) A new JST
smooth particle hydrodynamics algorithm for large strain explicit
fast dynamics. Comput Methods Appl Mech Eng 311:71–111

26. Libersky L, PetschekA, Carney T, Hipp J, Allahdadi F (1993) High
strain Lagrangian hydrodynamics a three-dimensional SPH code
for dynamic material response. J Comput Phys 109(1):67–75

27. Marsden J, Hughes T (1983) Mathematical foundations of elastic-
ity. Dover civil and mechanical engineering. Dover Publications,
Mineola (reprint)

28. Monaghan J (1988) An introduction to SPH. Comput Phys Com-
mun 48(1):89–96

29. Monaghan J (1992) Smoothed particle hydrodynamics. Ann Rev
Astron Astrophys 30(1):543–574

30. Monaghan J, Pongracic H (1985) Artificial viscosity for particle
methods. Appl Numer Math 1(3):187–194

31. Ogden R (1970) Compressible isotropic elastic solids under finite
strain constitutive inequalities. Q J Mech Appl Mech 23(4):457–
468

32. Rabczuk T, Belytschko T (2007) A three-dimensional large defor-
mation meshfree method for arbitrary evolving cracks. Comput
Methods Appl Mech Eng 196(29):2777–2799

33. Rabczuk T, Belytschko T, Xiao S (2004) Stable particle methods
based on Lagrangian kernels. Comput Methods Appl Mech Eng
193(12):1035–1063

34. Randles P, Libersky L (1996) Smoothed particle hydrodynam-
ics: some recent improvements and applications. Comput Methods
Appl Mech Eng 139(1–4):375–408

35. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridy-
namics. Int J Numer Methods Eng 108(12):1451–1476

36. Rosochowski A, Olejnik L (2002) Numerical and physical mod-
elling of plastic deformation in 2-turn equal channel angular
extrusion. J Mater Process Technol 125–126:309–316

37. Segal V (1995) Materials processing by simple shear. Mater Sci
Eng A 197(2):157–164

38. Simo J, Hughes T (2000) Computational inelasticity. Interdisci-
plinary applied mathematics. Springer, New York

39. Springel V (2010) Smoothed particle hydrodynamics in astro-
physics. Ann Rev Astron Astrophys 48:391–430

40. Swegle J, Hicks D, Attaway S (1995) Smoothed particle hydrody-
namics stability analysis. J Comput Phys 116(1):123–134

41. Taylor G (1948) The use of flat-ended projectiles for determin-
ing dynamic yield stress. Proc R Soc Lond A Math Phys Eng Sci
194:289–299

42. Toro E (1999) Riemann solvers and numerical methods for fluid
dynamics: a practical introduction.Appliedmechanics: researchers
and students, 2nd edn. Springer, Berlin

43. Vidal Y, Bonet J, Huerta A (2007) Stabilized updated Lagrangian
corrected SPH for explicit dynamic problems. Int JNumerMethods
Eng 69(13):2687–2710

44. WilkinsM, GuinanM (1973) Impact of cylinders on a rigid bound-
ary. J Appl Phys 44(3):1200–1206

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	An efficient and stabilised SPH method for large strain metal plastic deformations
	Abstract
	1 Introduction
	2 Conservation laws
	3 Discretisation
	3.1 The SPH method
	3.2 JST artificial dissipation
	3.3 Semi-discrete governing equations
	3.4 Two-stage TVD Runge–Kutta temporal integration

	4 Applications
	4.1 Taylor bar high-speed impact
	4.2 Highly constrained problem with moving discontinuity
	4.3 Simulation of the equal channel angular extrusion (ECAE) process

	5 Conclusions
	Acknowledgements
	Appendix A: Rate-independent plastic  constitutive relations
	References




